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The Freedman-Wang prescription for the introduction of daughter trajectories is generalized to the
arbitrary-spin case. The daughter problem is then investigated, within the framework of Lorentz symmetry,
and a Regge-type representation for the asymptotic S matrix is obtained which satisfies all kinematic
constraints. The representation is found to be equivalent to a Lorentz pole expansion in the case of elastic
scattering. Some properties of the representations of the covering groups of the homogeneous Lorentz

group and rotation group are also investigated.

1. INTRODUCTION

DISTURBING feature of the usual Regge theory

of the high-energy scattering, of two particles
into two particles, is the number of kinematic con-
straints that have to be applied. These take many
forms, from the removal of threshold and pseudo-
threshold factors of individual residue functions,' to
the conspiracy of trajectories? in order to ensure the
vanishing of helicity-flip elastic scattering amplitudes
on the physical region boundary. Indeed it is the great
variety of necessary constraints that makes the theory
so unattractive.

In this paper, we examine in detail the possibility of
restoring the usual asymptotic behavior of a Regge
expansion for the scattering of particles with arbitrary
nonzero masses and spins. First of all, while introducing
our notation, we review the kinematics® of two-particle
scattering processes, including Reggeization,* and
collect various constraint equations for Regge residue
functions.®

Our principal interest lies in the behavior of Regge
expansions in the case of scattering of unequal-mass
particles, with spin, at high energies 4/s, when the
squared momentum transfer ¢ is zero. It has been shown
that the problem of obtaining asymptotic Regge be-
havior can be resolved, if each Regge pole conspires
with a sequence of integrally spaced daughter poles,”
according to some four-dimensional symmetry.t We
eventually investigate this possibility in detail. Initially,
we adopt a prescription similar to that used by Freed-
man and Wang? in the “spinless” case, and group
Regge poles together into families. The members of
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each family conspire with correlated residues. They
give contributions to s-channel helicity amplitudes
Sca;q» Which are of the order of s*©, for large s, where
(0) is a constant. We discover, when particles have
spin, that, in addition to the daughter poles of Freed-
man and Wang, one must introduce parity-doublet
poles with the same signature. Only in this way may
the usual analyticity properties of the .S matrix be
retained.

We then investigate the problem within a group-
theoretical framework and show that it is possible to
sum, into a closed form,? the contributions to the helicity
amplitudes of families of Regge poles with specially
correlated residues. The closed-form expression pos-
sesses “good” analytic structure and asymptotic be-’
havior at high energies. Moreover, we show that the
contributions of such families to the s-channel helicity
amplitudes satisfy the equal-mass conspiracy con-
straints of Toller® and of Freedman and Wang.® When
invariance under spatial inversion is considered, one
finds that in order to have factorizable residues! one
may beforced to consider Regge poles in parity doublets.

In the next section, we consider the general properties
of our special forms for Regge residues that are corre-
lated near =0, and discover that they possess the
usual threshold behavior,! for positive values of i.
They also possess the singularities at ¢=0, which we
should have expected from our earlier Freedman-Wang-
type analysis.

We then investigate the leading asymptotic behavior
of the s-channel helicity amplitudes at high energies,
with =0, which depends on both the external particle
mass ratios'®®® and a Regge family parameter j,.. We
then proceed to apply our analysis to obtaining a
representation for the scattering of spinless particles
and compare it with that of Freedman and Wang.”

In Appendices A, B, C, and D, we state and derive
some useful properties of representations of the covering
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groups of the rotation group and homogeneous Lorentz
group.
2. KINEMATICS AND REGGEIZATION

In this section, we recall some well-known results
concerning the kinematics and Reggeization of scatter-
ing amplitudes of particles with arbitrary masses and
spins. We consider the interaction of four particles ()
with spins s,, momenta P,, masses m,, and intrinsic
parities 7,, where r=a,b,c,d. As usual, we shall be
concerned with related physical processes:

51 (0+0) = O+ @,
@+ — B+ @, o

u: (@)+@— @+,

where (7) denotes the antiparticle of the particle (r)
and s, ¢, and u are the squares of the c.m. energies in
the s, £, and # channels, respectively,

§= (Pa+Pb)2; t= (?a_Pc)zg U= (Pa_Pd)2- (2)

We shall be interested in the high-energy behavior of
the s-channel c.m. helicity amplitudes,™

Scd;ab= (Pusc,c; Pd:sd’dl T[ PasSas@; ?bysbyb> ’

which are simply related to the scattering amplitudes
in an arbitrary Lorentz frame,s

(PeySesC; PaySa,@| T| PaySay@; P,yS,b),

and

by

(PG;SC;C; Pd7sd7d| Tl Poysaya; Pbrsb:b>=Da’ﬂsa(Ra)
X Dy (Ry) Dor** (Re) Dara®@* (Ra) Seaian,  (3)
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where the representation functions D,,** of the covering
group of the rotation group SU(2) correspond to
Wigner rotations R, which transform the states
| P,,s,7) into the c.m. helicity states |pns.7). The
amplitudes S.4;q» are functions of the total c.m. energy
s and the c.m. scattering angle ©,, of particle (c) rela-
tive to particle (a), with

25=c0s0,= s(t—u)+ (ma—me?) (mst—md?) “
A(s; a,b)A(s; ¢,d)

and
2s'%
sin@y=—. 5)
A(s; a,b)A(s; ¢,d)
The threshold function A(s; a,b) is given by
A(s; a,b)=A*(s; a,0)A(s; a,0), (6)
where
Ax(s; a,b) =[s— (matma)* ] (M

and ¢ is the Kibble? boundary function

& (s,0,1) = [stu— s (m2—mc?) (me—ma?)
—t(mat—md) (m2—md)
— (m2md—mdmd)Ap2 ]2, (8)
with
Apo®d= 2t mE—me—m?. )]

We choose our masses to satisfy m,=m.2ma=ms SO
that the point =0 lies within the s-channel physical
region. For convenience we shall consider the c.m. four-
momenta p, in a standard Lorentz frame.

stma2—m? A(s; a,b)
E——
25112 25112
S+m;;2“7na2 '—A(Sa d,b)
= < 0,0 )
25112 25112
(10)
stm2—ma A(s; ¢,d) sin®, 0 A(s; c,d) cos®,
T )
and
st+mat—m2 —A(s;c,d) sin®, 0 —A(s; ¢,d) cos®,
pd_( 25172 25112 251/ ) '

As is well known,!s the s-channel c.m. helicity amplitudes 8c4;05 may be expressed as linear combinations of
the f-channel c.m. helicity amplitudes 744 analytically continued to the region of negative and positive s.
We shall be interested in crossing a Regge-type expansion, from the # channel, to the s channel and must define
precisely the continuations of our functions A and ¢ outside the relevant physical regions. This we do in Appendix

14 M. Jacob and J. C. Wick, Ann. Phys. (N.Y.) 7
15T, L. Trueman and G. C. Wick, Ann. Phys. (N.

-

404 (1959).
Y.) 26, 322 (1964).
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A. The crossing relation then takes the form!®

Sediap= (— 1)d(p)+2su+2aoei1r(a—d)

a’b’c’d’
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(1)

where o(p) vanishes unless both particles (b) and (c) are fermions, in which case ¢(p)=1. The crossing angles

X% are given by

(sFm2—md) (+ml—m2)—2m2A ¢ —2mqp
cosxqt=— , sinygtl=——-—"-——,
A(s; a,0)A(t; a,) A(s,a,0)A(t,a,)
(s+mp2—ma2) b+ mp2— ma?)+2mpA ¢ —2mup
cosxp*t= , sinyptt=—m—-,
A(s; a,b)A(2; b,d) A(s,a,0)A(t,b,d) 12)
(s+m2—md) (t+mE— mo?)+2m2A ¢ 2m.p
COsX*f= , sinytt=—-—-—,
ond A(s; ¢,d)A(; a,c) A(s,c,d)A(¢a,0)
(s+m2—m2) (t-+md—mp2) — 2mPA ¢ 2mad
cosyqtt=— , sinygtt=—m—-——,
A(s; ,d)A(; b,d) A(s,e,d)A(4,5,d)
where all square roots are taken to be positive in the where
physical region. The functions d,-,*r(X,**) are representa- Hu(2)= (14-2)" el (1 —g)— el
tions of the group SU(2) corresponding to rotations A= AL IV (19)
: m=max([\], [N']),
about the y axis.'” and
We now consider #-channel partial-wave analysis, nsa=nsma(—1)srreer
where we use formulas (4)-(10) with the substitutions 1) ’
le>sand be>e. =4,J half-integral
. S . =3, -integral
Following Jacob and Wick,'* we define f amplitudes —0,7 integral.

by
2;1/2

[A@; b,0)A@; a,0) T2
which are simply related to differential cross sections,
do= | fsa;ac(,0:)|2dQ. (14)

These may be expanded in partial waves,

fbd;ac= de;ac ) (13)

’

P 1/2 ’
fbd;ac(t,z)—; <~P—> ; (2]+ I)de:acJ(t)d)\)\’J(z) ’ (15)

where the initial and final -channel c.m. three-momenta,
p and p’ are given by

p=A(t; a,0) /202, (16)
P'=A(t; b,d)/20". a7

In these expressions, A and N\ are the total helicities,
A=a—c,N'=b—d, and J is the total angular momentum.

The parity-conserving amplitudes® feq;qa. are linear
combinations of the form

fbd:ac:k (t,Z) =& (Z)fbd; ac (t:z)
=+ (‘__‘ D)MAmp s v (8) fob—dsac (t,7), (18)

16 G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N.Y.) 46, 239 (1968). We use the same crossing angles, but the
expressions appear different because of a difference in definition
of kinematic threshold functions (see Appendix A).

17 M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).

Partial-wave expansions are of the form

1/2
fbd; aci (t,z) = <£;> ; (2]+ 1)[de; ach (t)e)\)s’ J+(z)
P +F bd; acJ:F (t) VY = (Z)] ’ (ZO)

where the parity-conserving partial-wave amplitudes
Fyg;407% are defined by

de; ach (t) =de; acJ (t)ﬂ:") bdF-— b;d; acJ (t) y (21)

and the representation functions e/*(z) are linear
combinations of the usual representation functions

d)\)\"’(z)’
e’ *(2)=3(6ru(2)dr” (2)
£ (= 1)ng_,(2)d-” (2)).  (22)
The Reggeization of the amplitudes Fpg;q’* has

been discussed in detail by Gell-Mann, Goldberger,
Low, Marx, and Zachariasen.* They find

f bd; “:!: (t,z)
P 1/2 (Zai + 1 )
=~ ("‘) > (B bd; ac®E () —————Epy @)+ (—2)
P’ ] sinra®
(267+1)
_Bbd;acai -iTE)‘)‘,(DFF)"(_z)) , (23)
A

(()ur1 )!ggl:e conventional (Ref. 25) definition differs by a phase
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where 8%+ and o denote the residues and positions of
Regge poles in the amplitudes Fpg;q.’ and Fpgac’™,
respectively. The functions E,)%(z) coincide with
analytic continuations in z of the functions ex,/*(2),
for integral or half-integral values of a (see Appendix B).

When we take signature s into account, we replace

the functions Fpg;ac®E by Fpa;qc*F, where
de; cu:smi = % (1+ se_i‘” (a—v))de; acai (24)

and the trajectory corresponding to a physical particle

fbd; Miz Z [de; acsaiEhk’ () + ('— Z) - Pbd; acsa:FE)\)‘, (a:F)—(_- Z)]
a
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with spin J has signature s= (—1)7—. We shall later
refer to several equivalent forms of the Regge repre-
sentation and for convenience list them here. If we
define a generalized residue function I'pg;4.°*(f) by

=2 b (=) Tsa;0eED\ o (= 3) = Toa; T DT (—2) ]

=2 Toa;a® v (—2)Dav “E* (= 2) 4 b~ (— 2) Dav 9= (= 2) ]

P\'? (2a+1)
Ty ac®E (l) = (_> .
P’ sinma
X (A+se=m N Brg;00%,  (25)
the ¢-channel amplitudes for large s are given by
(26)
+ (_' 1))\+)\m EA—)" (_ Z)[P bd; ucsa:l:D)‘_‘)\,a:E: (_ Z)+ de; acs‘ﬁ:D)\-—)\’a; (—‘ Z)] (27)
—Toa;ac®TLEW (= 2) Do @O (—2)+ bt (— 2) Dy @D~ (—2)], (28)

where the functions Dy ©@£%(2) and &% (2) are defined
in Appendix B [(BS), (B12)].

The behavior of s-channel helicity amplitudes, at
high energies, may be obtained by using expression (13)
and the crossing relation (11).

Let us now recall some properties of the reduced
Regge residues,

ﬁ bd; aca(t) = (P?,)— *Bba; ac”(’) . (29)

They are real, analytic functions of ¢ with poles at
normal and pseudothresholds. The behavior at these
singular points follows directly from that of the ampli-
tudes Fpa; oo’ 2(),!

ﬂ-bd; () =[AT(E; a,6) IV A= (t;a,0) P+

X[A*+(E;6,d) 1V *[A=(t;6,d) 7'+, (30)
where
Nt= —(Sa+Sc)+%(1:F'ﬂac) (31)
and
PE=—(sots5o)+3[1F (= D)*n4], mazme, (32)

with A%(¢; a,c) defined by Eq. (7).
This leads to threshold behavior of the amplitudes
Sfoa;act(8,%) of the form

Foaiact(t,2) = [A(; a,0) A 5,d) M Brasact.  (33)

The residue functions Bs4;4c are not independent. Parity
conservation alone implies®

(34)

At the physical-region boundary of the s channel, we
expect helicity flip amplitudes to vanish. If we use the
crossing relation (11), we obtain more constraints on
the ¢-channel amplitudes.® For arbitrary masses in the
case of s-channel backward scattering or unequal

Bbd; ac™ ﬂbdﬂacﬂ—_ b—d;—a—c+

Masses, Mq5me, Mmpy#Zmq, in the case of forward scat-
tering, we find

b—ds£a—c. (35)

0= 8¢d;a8= T bd; ac ,

In the case of forward s-channel elastic scattering, we
find

0= Scd; ab™ Z da'aaa (_ %’"‘)db' b

a'bc’d’
X (=3m)der(3m)dara(G7m) Ty arsarer
a—c#b—d.

(36)

These constraints are known as equal-mass conspiracy
relations, first obtained by studying NN scattering? and
later investigated in detail by Toller and collaborators,®
and Freedman and Wang.®

3. ANALYTICITY TROUBLES AND
REGGE FAMILIES

Let us examine the Regge representation (26) more
closely. All the s dependence of the amplitude foa;ac*(4,2)
is contained in the functions Ex.**(—3z), where

t(s— )+ (m2—m2) (m2—ma?)

A(t; a,0)A(t;5 0,d)

(37

z=cos®,=

We note that for zero s-channel momentum transfer ¢
the energy dependence is lost unless both m,=m,. and
mp=mgq. When two masses are equal,!® i.e., m,=m, or
my=mg, the cosine of the scattering angle tends to zero
with ¢, and when all masses are unequal, it tends to —1.

18Tf only two masses are equal #mq=m, or m,=ma, the point
$=0 lies outside the s-channel physical region.
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Moreover, the functions Eun.*t(z) have logarithmic
branch points when z=—1, provided a—\’ is not an
integer.'” The Regge representation then conflicts with
the usually assumed analyticity properties of the S
matrix. One way of recovering suitable behavior for
large s is to use a modification of the prescriptions which
Freedman and Wang proposed,” for the case of the
scattering of spinless particles.

We introduce a family of poles with related residue
functions, enabling us to regain Regge asymptotic
behavior in s, and simultaneously eliminate spurious ¢
singularities from the helicity amplitudes. Since we are
concerned with the behavior of Regge terms near =0,
we must be careful to remove correctly the ¢ singularities
artificially introduced into the amplitudes F/* by the
half-angle factors £,(z), Eq. (19). If we inadvertently
introduce families of poles directly into the amplitudes
Figa’ and Fpges’™, to produce uniform Regge be-
havior, we shall encounter difficulties when trying to
obtain the correct asymptotic form of the f-singularity-
free fyaqc amplitudes. Consequently, we introduce
daughters by considering expansions (28) in terms of the
functions Dy @F)+(—3z) in preference to Fy )+(—z),

CONSPIRACIES,
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which we define in Appendix B. The expansion is so
constructed that if we introduce families of poles into
amplitudes F/* and F/-, with residues I'***, to cancel
out singularities in the coefficients of the half-angle
factors &vE(2) independently, the analyticity of the
amplitudes fy4;q. at t=0 is guaranteed.

A property of the functions Dy, (@)%(z) which we use
is the differing “odd” or “even” asymptotic behavior
in 2 (B13). With the new half-angle factor combinations,

ba B () =3[bw () (E)exm e (2)], Imz=0, (38)

where pn=3%(|]AN|—|A=N\]), we may express the
functions Eyv*(2) in the form

By @%(z) = bvE(3) D @9+ (2) 4 b T (2) D @ (3). (39)

Let us now consider the Regge expansion (28) in-
corporating signature s (24) with Re(—2) large and
positive and Im(—2)>0. We use expression (B13) for
the asymptotic form of the functions Dy.**(3), and
define a reduced generalized residue (25) .

de;acsa= (PP')—“de;acs“~ (40)
Substitution into Eq. (28) gives

fotsacE= 2 Toa;ac® (@) { Eant (— 2) Iy @D o240 (x@D2) |4 pp’ £yn—(— 2) Iy @B [ (@D-14- O (gle)-3) )

—ToasaeF O v (= Dy PHaF+0 (@D ]+ pp bt (— 2y @D T @P-14H0 (6@ ]}, (41)

where = pp'z and the functions /. (*£)* are asymptotic
constants. We now consider in particular the contribu-
tion of a Regge pole in amplitude F7+ to the helicity
amplitudes fsq;q.%, in the case where s is large and ¢ is
small but finite,

foasact = ToH{EH (§5)*—capp’ (3s) =]
+et[pp'Gs)= ]},

foasas™m —TooH{E[ (35)*—crpp’ (35) 1]
+ek oy (3s)*]},

where ¢; and ¢; are constants. In the asymptotic region
where s is large and ¢ is finite the functions £+(z) behave
like (B1):

E @)= (/o) £ ()~ (st/oM) 1,

M= ¢ (ma—m2)(mad—ms?) ’

(42)

(43)
(44)

and we see at once that this gives rise to the usual
Regge behavior,*

fbd; au+z §&m 3 fbd; ac = soeAm—1,

(45)

If we let ¢ become zero, we have singular terms in
expression (42). We are interested in introducing addi-
tional poles with singular residues into F/+ and F’- in
order to obtain an expression in which the coefficients
of £5(2) and £(z) are manifestly analytic at #=0. In
order to remove the second term in the coefficient of &+,

from the amplitude fsq;q,7, We propose to add a pole,
with opposite signature, at the point (@—1) in ampli-
tude Fpa;q.”", such that the generalized reduced residue
T'-s(e=D+(¢) satisfies the condition

T-steV+(f) — cipp'Teet(t) as t—0.  (46)

This is a daughter pole of the type introduced by
Freedman and Wang. We note that in the nonzero-spin
case there is an additional singularity in fegq. with
coefficient & +(—2). This can only be removed by the
introduction of a pole, with the opposite parity and the
same signature as the first daughter, and residue
I'-s(e=1—_at the point (@—1) in Fpqq4."", such that

Tse-D=() > copp/To=+() as t—0.  (47)

Note that the effect of the introduction of the first
parity-doublet daughter poles is to remove the leading
P9’ singularities from both fu4;ac" and foa; 0. In general,
we shall need an infinite sequence of integrally spaced
parity doublets to remove all the poles at =0 from the
expansion (42). We refer to this process of cancellation
as a Regge-pole conspiracy. In the equal-mass case,
Ma=1m,, Mmy=ma, the momentum product pp’ is not
singular, and we have no reason to introduce an infinite
number of daughter poles at =0 to restore analyticity.
On the other hand, it seems unreasonable to have a
Regge spectrum that changes abruptly when one con-
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siders a slight variation in the mass of an external
particle. As we shall see later, it is possible to obtain a
daughter representation which automatically satisfies
the conspiracy conditions (36) in the equal-mass limit.

In the previous discussion, we have tacitly assumed
that the Regge residue of the parent pole remains finite
at =0. We now define a k-evasive solution to the
analyticity problem to be one in which the parent
residue T's2(¢) (40) has the property Ise(f) ~¢* as t— 0.
In this case, we have many ways of introducing daughter
doublet trajectories. These lead to different asymptotic
behaviors of the helicity amplitudes. To see this, let us
write s in the form Tse=#g—ryse(f), where y5%(0) is
finite. We may then consider the parent contribution
to the helicity amplitude fu4;q0",

Frtmpa(O[gH(ads - -
+dr_ksa—k+r+ ar_k+1t—lsa—k—1~—l+ .o )

_I__ S—-(tk—-r—-lsa—l_l_ con )]

and introduce daughter-doublet poles to remove terms
which are singular at {=0. The leading asymptotic be-
havior for large s, in the limit as ¢ tends to zero, is then
given by

(48)

fbd; ac = £+trs a—kir, (49)

We refer to such a solution of the daughter problem as
a k-evasive solution of order 7. It is to be noted that a
k-evasive solution of order zero may be referred to as
a k-evasive conspiracy and an ordinary conspiracy is
a O-evasive solution of order zero.

We conclude this section with some remarks con-
cerning the 0-evasive asymptotic and threshold behavior
of the various helicity amplitudes. We rewrite Eq. (41)
in the form

foa:act = TE[ ot (—2) 5o+ pp/ b (— 2)steD—1]
— I on(—2)seT+pp' bt (—2)s @], (50)

The helicity amplitude fsq;q4. (18) is then found to have
the asymptotic form (B5):

Foasaom TH(sot pp/steh=1)
+ P“(S“"—f—pp’s(a—)—l) . (51)

As is well known,! the functions £u*(—2) behave like
|142|~FN+ND a5 g— —1 and the final asymptotic
expressions are'®

Frtsar (1)~ (st~ HDHNDgam

fb'i; ac(t,Z) ~som,

(52)
(53)

for large s and small 4, where a,=max(ey,0). For
future reference, we recall the threshold behavior of the
parity conserving amplitudes (20) and note that near
the normal and pseudothresholds the amplitude fsq;a0

19 These results appear to differ from those obtained by J. D.
Jackson and G. E. Hite, Ref. 1, Appendix D.
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has the following behavior'® with parity doubling:

Joaiao~[At; a,0) - Cota[A(L; b,d) - Crred . (54)

4. LORENTZ SYMMETRY APPROACH
AT t=0

In the previous section, we obtained a solution to the
problem of obtaining Regge asymptotic behavior and
the usual S-matrix analyticity, in the case of the
scattering of unequal-mass particles with spin. It has
been shown that, by using the theory of group con-
tractions, one may obtain solutions to the daughter
problem if the Regge-pole spectrum has Lorentz sym-
metry at =0, even in the case of unequal-mass scat-
tering.® The scattering amplitude does not possess this
symmetry, however, since the homogeneous Lorentz
group is not in general a little group of the Poincaré
group. Such a restriction, on the Regge-pole spectrum,
has also been suggested by considerations of properties
of the complex homogeneous Lorentz group.?°

We now propose to construct® a representation for
the asymptotic .S matrix which automatically satisfies,
not only the daughter-doublet conditions at ¢=0, but
also the kinematic constraints (35) and (36) discussed
in Sec. 2. Our representations will differ in detail from
those presented before®*? and depend upon a daughter-
doublet addition formula which we derive in Appendix
D:

i dsv—kmj0g+l(6)d8’u—xm’j00+1(61)Dmm’a.—K(e) ‘
=0
=2 di® @) * @) Dsor® ' (v),  (55)
"

where
sinhé’ sinf
sin¢= >
sinhy
coshd sinhé’ cosf-+sinhd coshd’
cosy= R
sinhy
(56)
sinhé sinf
siny/ = ————
sinhy
coshd’ sinhéd cosf-}-sinhé’ coshd
cosy/= ,
sinhy
with
coshy= coshd’ coshé+sinhé’ sinhd cosf.  (57)

The functions der—rn®t(8) and Diye,#oti(y) are
analytic continuations in ¢ of the discrete nonunitary
representations of the group SL(2C) discussed in
Appendix C.

Let us now consider the Regge expansion in the form
(27). The trajectories a(f) are normally independent

2 G. Cosenja, A. Sciarrino, and M. Toller, CERN report,
Geneva, 1968 (unpublished).
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but at {=0 they group together in such a way that to
each parent trajectory, with a=o, there correspond
daughter-doublet trajectories, with a=o-, where
k=1,2,3,- - -. We shall refer to such a collection of poles
in the unequal-mass case at t=0 as Lorents families,
which must not be confused with Lorentz poles which
only have physical significance in the case of elastic
scattering.

We are especially interested in the region near {=0,
and shall assume our daughter and parent residues to
be correlated in a particular way for infinitesimal values
of £. Let us compare the Regge expansion (27) with the
left-hand side of the addition formula (55). We identify
a with o-k, m and ' with A and +\’ and 6 with 7— ©..
Our object is to find what choice of boost angles 5(f)
and &'(f) will lead to functions v(s,t), ¥(s,t), and ¢'(s,f)
such that for large s at =0 the functions d,,*(¢) and
dym*(¥) are bounded and coshy(0,s)=s. If this be the
case the property [(C11) and (C12)]

Dygr 0o+ 1(y) == (e7) o~ littrl g (58)

[y|—

leads to “good” asymptotic power behavior.
Consider two four-vectors
A=¢"%3(1,0,0,0)= (coshs, 0, 0, sinhs)
and
B=¢"28—iK39'(1.0,0,0)

= (coshd’, sinhd’, sin®, 0, sinhd’ cos®).  (59)

The angle v corresponding to the boost ¢ *K3v of the
vector B in the -Lorentz frame where 4 is at rest, i.e.,
A=0, is given by

A4,.B,= coshy
=coshé coshd’+sinhé sinhé’ cos(r— ©). . (60)

We see that, provided we take the parameters & and ¢’
to be the boost angles of four-vectors ¢ and ¢’ with

q-q
lalla’|

(61)

=cos(r—0)=cos0,

the boost angle v is obtained by taking the scalar
product

quqs’
cosy= .

[gullgu’|

(62)

By looking at the #-channel four-momenta in the
standard c.m. frame (10), we see that the most general
candidates for the vectors ¢ and ¢’ are

q= ?a"l" §' ?o
and

9,=Pb+§"ﬁd, (63)

where { and ¢’ are free parameters. The boost angle v is
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now given by

coshy= (1/4t|q| |¢' D{CtA+5)+ (ma>—me) (1—£)]
XA+ (m2—ma)(1—¢) ]— (1= (1—=¢)
X [t(s_u)'*‘ (maz'_'mc2) (m b2"md2):|} (64)

Igl = {t+(1—=§) (mo?—m.?)
lg'| ="t+(1=¢") ma?—{'ma?) . (65)

In order to have Regge behavior at =0, the constant
term in the square brackets must vanish. Indeed, we
see that it does so automatically, for all values of ¢
and {’.

In the Bethe-Salpeter approaches of Domokos?* and
Freedman and Wang,” and in the S-matrix approach of
Domokos and Tindle® and Toller et al.,20 the daughter
problem has been considered with {={'=—1 when ¢
and ¢’ coincide with the initial and final #-channel four-
momentum transfers p,—p, and ps-p4, respectively. In
this special case the expression for coshy takes a
particularly simple form,

with

and

—(s—u)
Li—2(ma4-m2) 2L 1—2(mp+m2) ]2

Let us now examine the expression for the hyperbolic

sine of v at {=0,
1/2
1:| . (67)

This function has spurious square-root branch points
in s which have no simple physical interpretation.
Moreover, on crossing from the ¢ channel, where we
define our Regge expansion, to the s channel, these may
contribute factors which interfere with the asymptotic
phases of the function Dj,r,#7+1(y). This problem does
not arise in the equal-mass case, when m,=m, and
my=1mg, since for arbitrary { and {’ the function sinh¢
reduces to the s-channel threshold form A(s; a,d)/2m ms.
The spurious kinematic branch points in s in sinhy are
likely to occur as long as the momenta |g| and |¢’| (65)
contain spurious kinematic branch points in £. We may,
however, obtain expressions with acceptable kinematic
singularities, i.e., singularities at threshold, pseudo-
threshold, or on the physical boundary, if, and only if,
we have {={'=0 or =~ . This limits our choice of
boost angles 6 and & to those associated with the
individual particle four-momenta:

coshy= (66)

(2s—Zm2)?
sinhy= [
4(m2+m2) (mi+ma)

t+ ma2 - mcz A (t 5 a,c)
coshf,=——,

204%m,

sinhé,= s
20%m,

A(t; b,d)

Ztll2mb

(68)
t+mit—md
coshdp=————, sinhdp=
284 2m,,

, etc.

% G. Domokos, Phys. Rev. 159, 1387 (1967).
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In this case, we obtain simple expressions for v,

coshyas'= (m2+mpi—s)/2mams,
and (69)

sinhyqp*=A(s; a,)/2mams.

We note that coshvy,;® is independent of ¢ and has the
required (58) behavior for large s. This analysis suggests
that the most general form for a generalized residue
function *Tpa;4.°(f) (25), corresponding to a parent
Regge pole (k=0) or daughter pole at J=¢—« in the
amplitude F_p_q.q07(f), which “conspires” at £=0 is

T bd;acvz Kde;ach(t) kA bd;acjw(t) 3 (7O>

where

KA bd;acj""(t)
={Co-ar®*[dso—n® 11 (80)+ €acd so—n®F1(—8.) 1}
X{Coar® [ d gt oinr #7+1(85)
~+ €sadsr o—ir T (—8a) [+ jo> — jo,  (71)

and eq,€5q are free parameters. We have introduced the
Clebsch-Gordan coefficients Cq5\%* so that, as we shall
see later, one has consistency with the equal-mass
conspiracy relations (36). This leads to a natural inter-
pretation of s and s’ as the channel spins. The parameter
7o is yet to be identified although it is restricted by the
inequality | jo| Smin(s,s”) (C4).

The function *Gpq;4.0°(f) which becomes independent
of the daughter-son parameter « at t=0 shall be
referred to as a dynamical residue. Similarly, for reasons
which will become apparent later, we refer to the func-
tion *Apg;qec® as the kinematic residue. For simplicity,
unless otherwise stated, we shall take *Apg;q.° to be
of the form

KAbd; acjw: KAbdjw KAacj‘w 3 (72)
where
A3 = Cpar®®® dgr g nr 0F1(85)

. ) 73
A g 107 = Ca—chsascsdsv—xkjov+1(6a) ) ( )

and we shall omit indices when it is not likely to lead
to confusion. In this case, the rotation angles corre-
sponding to ¥ and ¢/ in the addition formula (55) are
given by (56):

(sHma2—ms®) (1H-ma*—m2)— 2ma*A 5

cosy=— s
A(s; a,0)A(; a0)
2map
ny=-———————,
A(s; a,0)A(¢; a,0)
(74)
(s+me2—ma?) (t+mi*—md)+2mi’ Aoy
cosy/=— s
A(s; a,b)A(t; 0,d)
Zmbqs
siny/ =

A(s; a)A®; bd)

and comparison with the expressions (12) for the
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crossing angles indicates
¥=—x.", ‘p,: T+ x5, (75)

These angles have the required property that the func-
tions dy,*(¥) and da¥'(Y’) remain bounded in the
s-channel physical region.

We have found that a parent Regge pole with a=¢(f)
and daughters with kinematic residues *Asq®7(f) A0 (%)
may conspire near ¢=0, to give a contribution to
channel helicity amplitudes of the form

ft—dsac(t,2) = Zpa;ac™ (5,1)

=3 ®Apg 07 (1) “Age® () D (r—0,) (76)

=2 (= Xa*)dur* (1= Xp*) Dsrn®H (vas?) . (77)
m

It is to be noted that if we replace the crossing angles
(12) in the expression (77) by those obtained in the
limit s — o,

i+meE—m

A(t; ac)

— g (— D)1
A(t; a,0)

COsXy — — , sinX,—

we obtain the representation suggested by Klein'? for
the behavior of helicity amplitudes near {=0. He was,
however, unable to demonstrate the correspondence
with a Regge-pole daughter sum in the unequal-mass
case. For finite values of s, the major qualitative
difference between these representations is that our
t-channel helicity-flip amplitudes only vanish (siny,=0)
on the s-channel (or #- or #-channel) physical boundary,
whereas those of Klein only vanish at ¢=0 for all s.

Since our expression for Zs4;4.%(s,f), Eq. (77), varies
smoothly as a function of the external mass ratios,
provided we stay in the s-channel physical region, it
should be possible to satisfy both the kinematic con-
straints (35) and (36) at the boundary of the physical
region. Indeed, we find that, provided the dynamical
residue Gpa,ac(f) (70) be helicity-independent,** the
kinematic constraints (35) and (36) are satisfied auto-
matically. When we consider the equal-mass limit, we
find cosh6—0 and 6—in/2. The expression for the
helicity amplitudes after continuation to the bound-
state region is then of the form

f—b-—d;ac =~ Z Ga (t)ca—c)\sascacb—d)\’sbsds’dsu—-x)\ Joo+1 (7:7'-/2)
,K

X Ayt g 0 (i) 2)dorr ¥ (— By),  (78)
which is consistent with that obtained by Freedman
and Wang.® In other words, the Clebsch-Gordan-
coefficient helicity dependence is such that our Lorentz

22 Helicity independent up to a phase (—1)™ which can be
determined by comparison with a Lorentz-pole expansion in the
equal-mass case. We shall in general neglect over-all spin-de-
pendent phase factors.
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families may be described as Loreniz poles in the case of
elastic scattering. We now see the reason for introducing
the Clebsch-Gordan coefficients into the expression for
Asiac (71). We may identify 7, with the equal-mass
Lorentz-pole classification parameter M, and observe
that o=# corresponds to the four-dimensional angular
momentum.

This indicates that our solution to the unequal-mass
problem is consistent with the equal-mass conspiracy
theory developed by Domokos,?! Freedman and Wang,®
and Toller.%?

Let us now consider properties of the kinematic
residue functions ApsAe, under spatial inversion. The
constraint (34) suggests we construct parity-conserving
functions

Ava;ac= ApalaotMbaNacd-b—ib_ao, (79)

such that
Avd;a0= N6MaD—b—d;—a—c- (80)
Factorization of the parity-conserving residues

Boa;ac**(f) (25) suggests that we should express them
in the form Bpa®%B4.%%. Now, from Eq. (21), we see that

Krbd;acui’: KGI’U) KAbd;acUiﬂbdKG2a(t) "A—b—d;acd ) (81)
and it only factorizes and satisfies conditions (21) and
(34) if Gi())=G:2(f)=G(f). Since the functions Apg,qc
and A_p_g;q. (73) are not linearly dependent in general,
we are obliged to introduce parity-doublet Regge poles
with ¢*=0¢"=0¢ into amplitudes F/+ and F/— with
correlated residues at ¢=0. The factorized residues of
such parity doublets are of the form

+T bd; aci = G(t) (A bat 7 bdA-—- b——d) (Aacﬂ: ﬂacA—a—c) (82)
=G Avat A tE=G(t) Aba; a0t (83)

In the special case where 7o=0 we find d,;,°"+(8)
=d,;_,0(8) (C22) and from the defining equations
[(73) and (83)] we have

Abd; acoai= AdeGA‘wOu[li nbnd(_ 1)8,_"]
X[ nam.(—1)].

This means that for a particular choice of spins s and s’
the contribution to the helicity amplitudes comes either
from a pole in F7+ or a pole in F/-.

If we denote the positions of parity-doublet Regge
poles by a, and parent doublet positions by ¢, we have,
near /=0, the helicity amplitude expansion

(84)

SoaiacE= D, G Apg; 0072 Epyt(—32)
) + Apgiac™FEve=(—2)]  (85)
=2 G T Zoaiac™ Ern (—2) = (— 1)
’ XnpaZopdzac ™ Er—n (—2)], (86)

where the general residues *Apgq°*(f) and family
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TasLE I. Angles in the addition formula.
) & 6 ¥ ¥ v
da 8 m—0 —Xa® w+x5° Yab®
8a —8a —0 Xa®t T—xq" Yad®
-8, 3 T—@ Xc*t T—xp"t Yoe¥
—d; —dq —0 _Xc" 7|'+Xd8t Yed®

sums Epq;q.27(Z,2) are given by

Abd; aci= (A bd:bﬂbdA—b—d)(Aac:*: nacA—a—c) (87)
and '

KAach(t) = Ca—c)\sasca
X [dsnr—x)\jw-l-l(aa)"l_ Eacdsa—x)\jw"-l('— 56)] (88)

with a=0—«, and

> bd;ac= 2z bd; ac*+ n bd’?acz—b—-d;-—a—c* 3 (89)

where

Zoga0t = Caen?°Cy_ap®4%8
X[ (—xa*Dd i (4 x5") Do+ (y05%)
+ €ac€ratdr i (—Xo*)dun® (T X ") Dsor w7 (y0a®)
+ facdkus(Xcut)du)\’sl("""X b"t)Dss'anH ('Y bau)
+ evadry* (Xa")din® (1 — X" Dot 7 (v00") ] -

It is to be noted that a change in the sign of j is, apart
from phase factors, equivalent to changing the signs of
helicities. In this way for each Regge family we have
obtained a sum of terms of the form (76).

For convenience, we now list in Table I the corre-
sponding angles appearing in the addition formula (55)
where [(68) and (69)]

(90)

+m2—m? A(l; a,)
coshy,=———, sinhé,= R
94112 24112
t+md2—mb2 A(t; b,d)
COSh5d=_“—““_‘ y Sinhac'_'"_—— ) (91)
24112 24112
and
Mo+ ma—u A(u; a,d)
coshygqg*= , sinhygq¥=— . (92)
2mama 2mamq

For different angle combinations, one may use the
symmetry relations of the functions d,p®(8) and
dw¥(0) discussed in Appendices B and C.

5. ANALYTICITY AND ASYMPTOTIC BEHAVIOR
OF REGGE FAMILIES

In this section we shall examine the Regge-pole and
Lorentz-family expansions (85) and (86) for small values
of ¢, and compare them in the light of the daughter-
doublet formalism developed in Sec. 3. We also present
a discussion of the behavior of kinematic residues
A0 () for arbitrary values of ¢ This may prove
useful in developing models for Regge-residue functions.
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Let us consider the equation

Z [(PP/)—v+xd“_K)‘joa'+l (8a)da'o'-x)\’ jooHl (36)]
X (pp")"* D (w—0y)
=3 [d)\u' ("' Xo)dun® (W‘l‘xb) ]Dss',;j"""'l (’Yabs) , (93)
M

where the parameters §, ©, x, and vy are defined by
Egs. (12), (37), (68), and (69). We recall that o—«
denotes the position of a daughter pole with parent
trajectory a=¢(f), and that the term in square brackets
on the left-hand side is proportional to the reduced
Regge residue Bya;qc” [Eqgs. (29) and (97)]. We shall
refer to the term on the right-hand side as a Lorentz-
family sum.

In order to determine the behavior of our amplitudes
for large positive s, we first require some properties
of the group-representation functions derived in
Appendices B and C:

Doy (y) = | o7 | =1 livFul
as |et7| —> w0,
(sinhé)=o+*d sy 7H1(8) & | 20| 130T +e
as |exf| — o, (95)

(94

and
dr® () = (sinx) M4

In order to simplify the discussion, we shall first con-
sider a Regge family with kinematic residues of the
form *Apg,qc°(f) (72), and denote the contributions to
amplitudes by fraa=? etc. It is then easy to obtain
the full contribution from poles with kinematic residues
kA bd;acjo” (87).

The reduced Regge residue *Bsa.q.° (29) is given in
terms of the kinematic residue by

as sinx—0, cosx=0. (96)

Bt a (= (— 1)y (ppry-omsd
i 0= (1 ()
XGH7(f)  *Apgiac®(t).  (97)

As t approaches zero, the hyperbolic sines and cosines
of the boost angles 8, (68) become singular, and Eq. (94)
implies

B a0V~ UIHF N 1=20) (98)
Note that the sign of A or A’ is the same as that of the
hyperbolic tangent of the corresponding boost angle &
appearing in the addition formula (55), as we approach
t=0. At i=0, the £(|jo+N|+ | jo+N'|)-evasive parent
residue?® with k=0, may generate an evasive Regge
asymptotic behavior of the type discussed in Sec. 3 (49),

(99)

Fod; ac® = trsT— Ut H AN Db,

28 See note preceding Eq. (48).
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At this point, we should like to discuss in detail the
prescription for obtaining the behavior at #=0. The real
analytic function *8_p—g;ac” which multiplies D “(—32)
is not necessarily analytic at {=0. It must have a
square-root branch point at (=0 for [A—X'| an odd
integer to cancel a singularity in the half-angle factor
& (—2) which is present in the function D (—2).
The total contribution to the amplitude fy4q. Will then
be analytic in ¢ at t=0. The asymptotic form of the
parent contribution is then given by expanding the
function Dw°(—32), with the half-angle factors removed,
in a power series in (s£) and then letting ¢ become small,

Fod oD & (AU ANDT]
X o[ (s£) IRV (49— s8) IMMT]
X [(st)cr—)\m_i_ al(st)"—*m*l—l— . :|
~ G0N+ G0N =AM 1)
X [s7 NI gyt Lsm NN =1 LT

Now | oA+ |jo+N|—|A=N| is an even integer so
we may adopt the daughter cancellation procedure
discussed in Sec. 2 (49) to obtain the asymptotic form

for zero t:
FO e se—d Uit HiRD

However, for any finite {, no matter how small, for
large enough s, we still find

(100)

fbd;ac(l) ~s7.

Let us now consider the Lorentz-family sum at £=0.
The crossing angles x [Eq. (12)] then have the property
siny =~ s~1/2 for s large. If we use the asymptotic relations
(96) and (94) in conjunction with Eq. (93), we see that
the leading power behavior at t=0 is of the form (99),
and the Lorentz symmetry solution is a 5(| jo-+A|
+ | jo+-)\'|)-evasive solution of order zero.*® For finite ¢,
the crossing angles do not tend to zero as s becomes
large, and the power behavior is again given by
expression (100).

We have shown that the four-dimensional symmetry
solution with a particular value of 7, gives rise to
evasive residues B at t=0 unless jo=—A=—\.
Moreover, whether we consider the Lorentz-family
expansion at #=0 or take the leading terms in a Regge-
pole expansion for large s and small finite ¢ and then
let ¢ become zero, we may obtain the same behavior for
the helicity amplitudes fizq.®. After crossing to the
s channel (11), the asymptotic behavior in s remains
the same,

@) g go—3 (ol HN+D) | =0,
~s7, 1#0.
(\=a—c,N'=b—d) (101)

The change for infinitesimal values of ¢ can be most
easily followed by using a Lorentz-family expansion (86)
in place of the usual Regge expansion (85). The asymp-
totic behavior of parity-conserving amplitudes foa; st
may be obtained directly from Egs. (99) and (100) by

Scd;ab
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using the definition (18) and properties of the half-angle
factor functions &a(z) (B2). It should be noted that if
at {=0 we have m,=m, or my=mg or both, the asymp-
totic s behaviors of the amplitudes 8.4;46™ are of the
form so—V+al | so—Miol and 57, respectively.

We now use the most general form for the kinematic
residue functions and obtain the following Regge
asymptotic behavior for helicity amplitudes. We assume
that they are dominated by the contributions of a single
Lorentz-family parity doublet at =0, with conspiracy
parameter 7o and kinematic factors *Agg,..07%(f) (87)

. (1.2) == so—3(IN+dol+IMdol) L. go—4 (IM—dol+IN—dol) 102
fbd,ac 5 $ +S . ,

Fod; act = (styHINFHND (go—d(hkl+HN+4ol)
+sd~%(l)\¢iol+l>\’—iol)) ,
according as  |[N==N|=|\|4+|N|, (103)
and

S ap = 59— IHRIHN i) | o—F—dol+N—dol) | (104)
As noted by Jackson and Hite,! the singular behavior
of the amplitudes f* at {=0 is a reflection of the most
singular behavior of & (z) and £ (2) together (B2).

It is interesting to note that the form of v, suggests
that the region of “pure” power behavior is sS>m2-+m.?,
where m; and . are the masses of the two lightest
particles. '

We should now like to point out that, if m,=m, and
both particles (a) and (c) have either integral or half-
integral spins when jo is an integer, alternate daughter
residue functions *834;4,°* will vanish as we approach
t=0. To see this, we use the relation (C19):

dso—in (L 0m/2)

= (—1)stedbing,, it (4r/2).  (105)

The Regge residue functions By4;4.* contain a factor

Agot= Ca_c)\sascs[d“_x)‘jw+l (ﬂa)
=+ (““ 1)8——vﬂa")cdsu——x-—)\jw+1(ﬁa)] (106)

and, in the equal-mass limit as =~ — |¢| (14i€) — 0, we
find B,~4m/2. Relation (106) then implies that

Aac:l:'_'o for j:"]-z")c("" 1)j0+"+)‘5£1 s (107)

and alternate daughter residues vanish. A similar result
holds in the case of particles  and d. This phenomenon
was observed by Domokos?! in a Bethe-Salpeter model
with zero-spin particles and by Freedman and Wang® in
the case of NNV scattering.

For nonzero values of £, we have no reason to believe
that there is any connection between the Regge poles
in a Lorentz family. In particular, there is no longer any
need to associate a single value of the parameter j, with
a given trajectory residue. We may still, however, take
a model with residues Byq4,q. expressed as linear com-
binations of zero-f kinematic residues. If we suppress
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the sum over spins s,s’, this could be of the form

Buisadrin X GAWSE() (pp Y A0 03,

o jo’

(108)

where G##%'«+ becomes diagonal in jo when /=0. Let us
now consider the analytic properties of the reduced
kinematic residues,

Bogsac=(O) = (pp) 7+ "Braia”*(@).  (109)

We show in Appendix C that the function (sinhs)—+*
X dssia®t1(8) (C14) may be represented as a terminat-
ing series of real analytic functions of ¢ Consequently,
both the kinematic reduced residue *Asgq.°(f), and the
dynamical residue G(f), are manifestly real analytic
when « is an integer.

In order to investigate the f-channel threshold be-
havior of the residue function *Ap.’%, when £ approaches
(my+ma)?, we need the relation (C20):

(sinhé)—o+*d g r 707 +1(8) = (sinhd)—*

+c(sinhs)~**+ as e?—41, (110)

where ¢ is a constant. As ¢ approaches the normal
threshold (m3+m4)?, the boost angle § tends to zero,
and we find on substituting (110) into the expression
for Ape®(2) [(108) and (106)]:

Bpa () =[A(t; 5,d) T [1=nema(—1)""]
+c[A(t; 5,d) T [1Fnema(—1)*—]. (111)

In general, there will occur in the expression for the
residues Bpq; 0.t (108) a term with s'=s3+54. The “most
singular” threshold behavior then coincides with that
described in Sec. 2! (30). It is interesting to note that,
in the case of a jo=0 conspiracy, although there is no
parity doubling, the threshold behavior is still given by
Eq. (111) because of the restriction (84).

We have shown that each Regge residue in a Lorentz
family has the correct {-channel threshold behavior. If
we now continue the expression for the Lorentz-family
sum (86) into the positive- region, we find that it also
possesses analytic properties which generate the usual
threshold behavior in the helicity amplitudes.

In order to see this we need expressions for the be-
havior of the functions d»,*(x) and £(3) for large |cosx|
and large |z|, derived in Appendix B:

At (Xa) = (32) =4 0= | Tm(2,)=0
where z,= cos(x,), and
£ (2) = (g)MmetiGm D=V Tm(3)=0, Re(z)>0. (113)

Near the normal threshold, the cosines of the crossing

angles x (12) and c.m. scattering angle @, (37) become

infinite. We use expressions (112) and (113) in conjunc-

tion with the Lorentz-family form (93), with large
=~ — |s| (1417¢), to obtain the result

foa; acE=Y GUOLA; b,d) T Hrme=iGm) (AN utN)
X (1npa)+O([A(t; b,d) T+ mt1),

(112)

(114)
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We see that this behavior coincides with that stated in
Sec. 2 (30). From the definitions of the amplitudes
Sfoa,act In terms of fog;q. (18) we find that the threshold
behavior of amplitudes fygqc coincides with that given
in Sec. 3 (54).

If one is prepared to retain the correlated Regge-
family trajectories and parity doubling away from =0,
one may use the Lorentz-family decomposition, which
satisfies all kinematic constraints. Alternatively, one
could choose particular values of j, and construct
residue functions with specific kinematic factors of
the form (108).

6. AN EXAMPLE—THE SPINLESS CASE

As an example of the behavior of the Regge-pole and
Lorentz-pole expansions near /=0, we consider the
scattering of spinless particles. In this case, the func-
tions dmm?(3) and dg\?°(8) are particularly simple.
The effect of parity conservation is trivial (84):

AE= A, (1 nma) (12=1410)

and either the f* or the f~ amplitude vanishes. The
Regge expansion is of the form (27):

=22 TDo*(—2)

a

1/2 2a-+1
= (-P—) 2 ( )ﬁ'”‘(t)(l'i' e )P (—z).

P’ « sinra

Let us now consider the group-representation func-
tions which occur in the daughter and parent kinematic
residues (23),

dOv—xOOU—H (6)
= +(5)= (b

(115)

(20— 2k+1)T (26— 2— )T (k+1) 12
(e+1) ]
Mo—x+ 1T (o+3—x)
T (20— 26+ 2)T (o+3)
X (2 sinhd)°C,~(e+1/2) (—cothsd),

(116)

where C,°(x) denotes the Gegenbauer polynomial of
degree x in x. We recall that ¢ denotes the position of
the parent pole and (¢—«) the position of daughter
poles for k=1,2,3---. The most general form for the
kinematic residue is (87):

A7r= ["W”(!Sa)”" €ac KW’("‘ 66)]
X[We(8p)+eva Wo(—8a)], (117)

where €, and eyq are arbitrary parameters. We recall

(68):

MmE—m —1

—coth,=——-
At; ac)

A(l; a,)
sinhé,= —

(118)

b

The proportionality between the reduced residue *3-
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and the kinematic residue *A,’, is demonstrated in
Eq. (97). Let us, first of all, examine the behavior of
*A,;° for small values of . The argument of the function
C @D (x) tends to —1, and we have a singularity of
the form ¢ for all k. Consequently, the reduced residue
8 will have a pole of order « at {=0.

We now consider the first two terms in the daughter
expansion (85) for large s and small ¢ with *A,® of the
form *A,7=W7(3,) *W(8s),

f=G@t) Y A (()®y—r(—2). (119)

From expressions (116) and (B9) for the functions
We(8) and ®.(2), we find, keeping terms less singular
than 72,

°A”(t)(?.,(-—z)zN.,( — >0(1—23r-zf), (120)

MMy st

2Mg 4 —s \"?
IA”(t)G)a-_l (‘— Z)z —N,%';z—(m—;) ’ (121)
alp ath

where N,=1/(c+1) and M =21(m2—m.2)(m2—m?).
We see immediately that the daughter contribution
(121) cancels out the #~! singularity in the parent
expansion (120):

1 —s
045 (1) Do (8) 4147 () Dug=1(8) = w—(
o+ 1\mamy

Moreover, the daughter contribution will vanish in the
equal-mass limit when 9=0. This is a property
possessed by all the odd daughter residues (107)
because the Gegenbauer function is an odd function of
the argument, —cothd [Eq. (118)], for « odd and in
the equal-mass case cothé tends to zero with £. We also
see that in this limit the {~* singularities in the residue
functions are no longer present, owing to the appearance
of /¢ zero in the functions A(Z; a,c) and A(¢; b,d).

Near the threshold and pseudothreshold the kine-
matic threshold functions A(¢; a,c), A(t;5,d) tend to
zero. The Gegenbauer polynomial develops a pole of
order x, and the reduced kinematic residue *Ac¢(f)
= (pp')~o+* *A° remains finite.

Before proceeding to examine the Lorentz-family
expansion; we first note that the boost functions are
given by

)”. (122)

— g—(ot+1)vs
Dot (y7) = V(1) = ———,
" 2(c+1) sinhy®
(123)
elot)vu
D 000'+1(,Yu) = Vv(,yu) =,
" 2(c+1) sinhy™

The addition formula (55) gives, for the contribution
of a single Lorentz family (89),

=G OLV (var*)+ €acV (vc")

+ €6aV (Yaa®)+ €aceraVo(vea®)]. (124)
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Now,
A(s; a,b) Mma2+mpt—s
sinhygp*=———— and coshy,’=————,
2mamy 2mams
S0
1 rA (s; @,0) 1T ma2Hms2—s o+
2V (vap®)=— :I [ 1:‘
a'+1|_ 2mams A(s; a,b)
2 s\’
z——e""’“( ) as s§— o,
o+1 MMy

We note that this is of precisely the same form as the
one we have obtained using the Freedman-Wang
prescription for Regge-pole cancellation (122). We see
that the leading term in (125) will be a good approxi-
mation to the function Vo(v,s*), provided s>mq2+-ms?.
Moreover, a natural scaling factor for asymptotic
behavior has appeared—the product of the masses of
the two lightest particles.

7. GENERAL DISCUSSION AND CONCLUSIONS

We have shown that it is possible, within the frame-
work of Regge-pole theory, to obtain asymptotic
expansions of the s-channel helicity amplitudes for
particles with arbitrary masses and spins, which
manifestly satisfy all kinematic constraints. The Regge
poles group together, with correlated residues, into
Lorentz families when the momentum transfer vanishes,
in order to preserve the usual Regge-type behavior at
high energies. In the case of elastic scattering, these
families may be identified with Lorentz poles, since our
helicity-amplitude expansion then coincides with those
proposed by Domokos,?* Freedman and Wang,® and
Toller.1

We have also demonstrated that asymptotic behavior
may be determined either by adopting a prescription
similar to that used by Freedman and Wang in the
spinless case or by considering the expression for a
Lorentz-family sum. The latter procedure is to be pre-
ferred when examining forward scattering, since the
changes in power behavior which occur are then simply
expressed in terms of crossing-angle products. More-
over, the Lorentz-family expansion in the physical
region varies smoothly as a function of the external mass
ratios and momentum transfer. We find that s-channel
helicity amplitudes behave in the following way at ¢=0,
for large s,

Sod; ap = s7—HUa—e—iolHa=btio)) | o—(le—a—dol+|b—d+anl)

where the contribution arises from a Lorentz family
with a parent Regge pole at a=0(0) and conspiracy
parameter jo.

The group-theoretic approach suggests that we can
write the ordinary Regge residue as a linear combination
of kinematic residues A® and a dynamical residue
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G»#'(f), depending upon the Lorentz-family parameter
7o. Provided that the function G#%'(¢) becomes diagonal
in jo at ¢=0, and poles group into parity doublets for
nonzero jo, all kinematic constraints are automatically
satisfied. This suggests immediately the possibility of
systematically constructing models for Regge residue
functions.
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APPENDIX A: KINEMATIC FUNCTIONS

We consider the kinematic functions A(s; a,b) and ¢,
defined by Egs. (6) and (8), to be positive in the s-
channel physical region. We define the principal sheets
of these functions to be such that they are real analytic,
ie., [o(s)T*=o(s*) and [A(s; a,0)1*=A(s*;a,b). This
implies that, for A(s; a,b), we must cut the s plane from
s=(mgt+ms)? to s=(m,—my)? and that for ¢, the s
plane is cut wherever s lies outside the physical regions
of the s,t,u plane.

The process of analytic continuation in crossing from
the s channel to the ¢ channel takes us from a region
where s= |s|(141¢) to a region where s=—|s|(1414¢)
and for consistency the imaginary part of s must vanish
between the mormal and pseudothresholds. Thus for
A(s; a,b) and A(s; ¢c,d) we pass onto the second sheet
and A(s; a,b)= | A(s; a,b) |, As;¢c,d)=|A(s;¢,d)| in the
t-channel physical region.

Similarly, the function ¢ is positive in each physical
region.

In general, when we consider functions of the param-
eters s,t,u all ambiguities are removed by giving these
parameters small “positive” imaginary parts above
corresponding thresholds and small “negative” imagi-
nary parts below the pseudothresholds. Confusion may
occur in the case where m,>mp+m.+ma when, for
example, the function A(s; a,b) A(s; ¢,d) has disjoint cuts,
but we note that formally particle (¢) is unstable. A
small, imaginary part added to the mass m, separates
the different threshold cuts “vertically” and permits us
to follow the trajectory of s through each cut from
above. v

It is to be noted that with this crossing path one does
not “pass over” dymamical cuts in the s plane. This
convention does not affect the expressions for crossing
angles given by Cohen-Tannoudji et al.'® The expres-
sions only appear different because the threshold func-
tions which they define change sign on crossing.
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APPENDIX B: ANALYTIC CONTINUATIONS OF
ROTATION GROUP REPRESENTATIONS

Let us first of all recall some properties of the half-
angle factors & (z) 24:

Ew(2) = (142)~IMVI(1— )=V

where we always, in defining the principal sheet of the
function (142)2=[1—(—2)] cut the z plane from —1
to — o and take | (1+2)2| = (1+2)* for 2> —1. In this
case & (2) is a real analytic function for A\’ integral
or half integral. For large |2|, we find

TN Re(2)>0

FETIVI Re(z)<0)

Im(2)=0,

o (2)~ |z

(B1)

where Anp=max([\[,[\'[). In addition we find as
|z| —1,

ba(@)~(1— a7, 2o, (B2)
and we have the symmetry relation
b (@)=b-n(—2). (B3)

We also define new functions:
EwE(z)=3[bn (@) Lerimmg o (2)], Im(2)=0 (B4)

where  un=3(|]A+N|—|A—N[), which have the

| D@+ 1) (= 0N
D)\)‘/’(Z)‘—’-‘
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properties
Eat(2)+En(2)= b (2)
and
Bt () — b (2) =eFmnh v (2). (BS)
For angles 6 in the range —w<f<m and integral or
half-integral parameters 7, m, and m’, we define®17
(N | e=8 |\ )= dyn¥(0) = dan¥(2) 0=0<w
=(—1)Mdni(),
—r<6=0

(B6)

where 2= cosf.
The function dx7(2) is defined for [1—2| <2 by

) T (4 A+ DI (= pmt+1) T
e —
L (j+unt DL (G—Ant1)
1+z FINMNY 1—g FINN
X (___> (__> (—1)0N+D=VD
2 2
F(= j4m, jA A1 1A=\ 1 (1—2)/2
X(] J I [ ( 2)/)’(B7)
T(1+[A—=N])

where F(a,b;c:3) is the ordinary hypergeometric func-
tion [HTF 2.8(1)]. There exists a unique analytic
continuation of this function into the whole z plane cut
from —1 to —o. When |z| is large, we find [HTF
2.10(3)]

dwi(z) = Da¥(2)+ Dy~ (),
where

In the special case A=\'=0, we find

Doof(z>=@j<z>=—r—@j1—)(1j)jﬁ(—j, —j, 2 —2—> .

[rG+HF

/]_ — Z>%I>\—>\’l

[F (_7+,um+ l)P (]+)\m+ I)P (j_ﬂm+ 1)P (]— >\m+ 1)]1I2\1+ 4

(H_z)jF( EBY 2 2) (B8)
X(—) F{ = j42my —j—pmy —25:— ).
5 j it =2

142 (89)

We now continue this function in j away from half-integer or integer values, and define the principal sheet to
have no cut for j large and positive.” This function possesses symmetry properties for complex j similar to those
of the functions dy)? for integral or half-integral j:

D)\)\/j(Z) — e:{:ir(i‘l‘)\)D)‘_)\,i(_ z) , Im(z)zo

_ _ ' 1,  Re(2)>0

D)‘)" ](Z*) — g:l:url)\—)\’ID)‘)\, ](z) X ) ,
eT2iri. Re(2)<0

(B10)

Im(z)=0. (B11)

We now define special linear combinations of these functions which occur in Regge theory:

e #E(2) = b (8)dan 1(38) = (— DMPmb v (2)dan i(2)
Exv7E(8)= b (8) D (2) = (— DMMivv (2) Do ¥(2)
% Tn this section we shall use (HTF) to denote Higher Transcendental Functions, edited by A. Erdélyi (McGraw-Hill Book Co., New

York, 1953).
2% M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957).
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and
Dy #£(2)= D\ 9(2) 265"V Dy, 9(z), where =21, Ims=0. (B12)

The functions E+ and D+, and E~ and D, are so constructed that they contain “even” or “odd” powers of z,
respectively, in an expansion for large |z|; '

Djﬂ:(z) zzﬁ%i}(ao+alz‘2+a2z—4+ ce ) ,
Eix (Z) ~~ giMm—it} (bo_l_ blz—2+bzz-—4+ “os ) ,

where a; and b; are constants. Moreover, the £+ functions may be simply expressed in terms of the D* functions:

(B13)

Exv % (2) = b E(2) D 7 (3)+ 5T (8) Dan (2) . (B14)
The asymptotic behavior may be determined from that of the functions Dy %(2):
. | 32|97 (2741)eFidm =D 1, Re(2)>0
Di(2)=~ - - - - o } , Im(z)=0. (B15)
[L(GAAmt DT Gt DT G— At DT =+ D2 L6257, Re(2)<0

In conclusion we state a property of the function d () for small 0;
i ¥(0) = (sin@)PEN1 - cosf — F1. (B16)
This relation may be derived directly from the definition (B6).

APPENDIX C: REPRESENTATIONS OF THE HOMOGENEOUS LORENTZ GROUP

Any element of the Lorentz group may be decomposed into a product of rotations, and boosts in the z direction.2¢
We are concerned here with representations of these boosts with a spin basis,?827

(s\| e K3 | /N )= danrdssn (7). (C1)

The parameters jo and o are related to the eigenvalues of the Casimir operators of the homogeneous Lorentz
group by

LT w=jié+0®>—1 and Jeun,Jwtr,=—2i070, (C2).
where the usual boost-rotation operators are
]¢=%eijk]jk and K;=Jy. (C3)

We now define x=¢27 and obtain a series expansion for half-integral or integral jq,s,s',\ and pure imaginary ¢
from the integral representation®® in terms of rotation-group representations, for |1—x|<1:

0
d“,)‘joa (x) = Nas’ Z (_ 1) H-T,Ear; )‘joEs’r'; )\porr'; 88’ .)\jw (x) ) (C4)

7, r'=0

where

[T (sA+ DT (s— A+ DT (s jot DT (s— fo+ 1) T2
I (s—A—r+ DT (s+ jo—r+ 1T rHA— o+ )T (r+1)
. D (s+s'—r—r'+jo— A+ DT (r+7+A— jot+- DF (s'—o+1, r+#+A— jot-1; 54542 : 1—x)
Qe owrin® (%)= PN (Ce)
I‘(s+s’+2)x!(u 1—2r'—N+jo)
I:(Zs-i-l) s+ (1+s+a)'(1+s'—0) sin1r(cr—-s’)]”2
o T (14+s5— )T (1+5'+0) sinr (o—s) '

The I' functions in =, restrict the range of summation,

Il

(C5)

sr;Njo =

and

rmin=max(0, jo—A),
Pmax=I0(S—\, fot5). (o))

% J. F. Boyce, R. Delbourgo, A. Salam, and J. Strathdee, International Centre for Theoretical Physics, Trieste, Report No. IC/67/9
(unpublished). There are several misprints in this paper.

27 H. Joos, Fortschr. Physik 10, 65 (1962). .

28 See, for example, Toller’s, work (Ref. 10). His normalization N, is given by [(2s+1)(2s'+1)]2, and his functions are less
symmetric than the.ones,we use.
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We now decompose ds s %7(%) into two parts,
dorr ™ (€)= Dy 2707 (%) (—1)*"*' Do x (),

in such a way that the function has simple asymptotic properties for large |x|. We continue the expression for
dss» (%) into the whole x plane cut along the real axis to 2= and use formulas (HTF 2.10) to obtain suitable
forms for Q... 55277 (x) corresponding to Dss %7 (x). We find

T (s-b5'—r—7"+ jo— A+ 1T (o= '+ r-+#'+A— o)
b e=1m2r =Nk (— 1) +=e] (g4 54-1)

er'; 88’; )‘jou (x) =

1
XF(s’—-a+1, —s—a,8—o+1—r—7r'—A+jo: )

—X

), [1—x|>1 (C8)

and

T (r4r 4 A— o DT (4o jo—A—r—7")
ao=1=2r' =Nt d0) (1 — )" H=oT (g+s-+1)

grr’;ss’;)\jm (x) =

x 1
XF(S’—a—E—l, —s—a, 1——s-—¢r—jo—l—)\+r+r':—-—) . Il—— >1. (C9)

x—1 x

The function Dy, 7°(x) for complex o is defined to be the continuation with Q,.r;s ;27 (x) of the form (C8) for
|1—x|>1 and (C9) for |1—1/x|>1, with the additional factor (—1)**".

By using properties of the hypergeometric series (HTF 2.10) and the integral representation, it is possible to
obtain many symmetry properties of these functions:

D9 () = Dy 017 (%) = Dyggrx~ 77 () = (— 1)*~¥ D217 (1/x).. (C10)
If we take into account the restrictions (C7), we find that D, %°(x) has the asymptotic behavior
Dss,;\foﬂ'(x)z !xl%(d‘—‘l_n‘f‘ioi)’ lxl—) 0 , (Cll)
We then use relation (C10) to find
Duwa 7 (a) = || Hom-0miod - [1/2] > 0. (c12)
In the case where jo=s=5"=\=0, we have
gD
Do+ (x) = , |1=2x[>1
o(x—
R ) (C13)
o(x1—1) %

We consider the functions dg,_a0+(8), which occur in the reduced residue functions. The representation (C4) is
not suitable since the sum over #’ is not finite for complex s’. We obtain a differential equation?® for the representa-
tion functions and find that it is possible to express them in the form

(1—x)*F(—k, 6—k+1— o, 20— 2x+2: 1—2)
dsgmrs Tt (x) =M g5s " s (C14:)
i (25— 2+2)

h

where I'(o+s+1—)T(e+jot 1— k)T (60— job1— k)T 2o+ 2— k)T (041 —5) 2

M yor= [(25-!— 1)(2o—2x+1) - - ] . (C15)

I'(e—s+1— )T (s+ jo+ I (s— jo+- DT (s+0+2)I' (14«)

For different values of A, we may use the relation where J
DM#)dgonn o (25) DMx)= —2>\(1-—x)x1/2d—

=[(s—N) (M D) (e—A—K) (e+N-1=1) T2 , y . |

X o1 () = [(sHN) (A1) (0= x+N) +Lio(e+1)+NTwt 4[N fo e+ 1) ]2, (C17)

X (=M 1—k) ]t (x), (C16) We note that since —« is a negative integer the hyper-
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geometric function in the expression (C14) reduces to
a polynomial in (1—x) of degree x. We shall be using
these functions in the kinematic residues and it proves

convenient to define a “reduced” function
dopn¥7 (%) = [(1—2) /212 ]~od o7 () ,

which is real analytic in the cut x'/? plane.

From the properties of the hypergeometric series
(HTF 2.10), we find

dn 07 (x) = exmitetad ,—ioo(1 /x)

(C18)

Moreover,
dup(e2271) = (= 1) ()
and
dojp 07 (ex2mix) = gxmitetstiNg . \io(1/x). (C19)
i

By considering properties of the operator DY, we find
for all A

(1 - x) Fdsv—x;{:)‘jo'ﬁ_l(x) ~ (1 - x)"‘—’

Hc(l—x)—estl (C20)

as x—1.

As x— «,0 we have similar asymptotic behavior to
that of the functions D,en?°(x):

J”_K)‘iow+1(x) ~ ]x,—%ljﬁ)\l ,

oo P07 H1(x) = || BN,

l#l= oy

| 2| —0

In addition, these functions possess similar symmetry
properties,
dsv—x)\jw-*-l(x) = dw—x—)\ﬁj‘,ﬁ_l(x) .

(C22)

In conclusion we remark that in the case jo=s=\A=0
the hypergeometric function (C14) may be simply
expressed in terms of Gegenbauer polynomials C,’;
We find, using [HTF 10.9(20)],

]1/2

(20— 2k+1)T (20— 2— k)T (k+1)
(@+1)
T(e—«+1)T(o+3—«)
I'(20—2k+2)T (o+3)

1—a\° x+1
X( > Cx'“(a-i-%)( :
xl/2 r—1

et e)= @]

) . (C23)
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APPENDIX D: ADDITION FORMULA

We use the following equation connecting Lorentz

transformations in the x-z plane:
e—iKsBB—iJzﬂe—iKsﬁ’ = e*iJz\l/e—iKs'ye~iJ2¢’ .

(D1)

By considering these group elements represented as
2X2 matrices,
0
e"%‘/]

cosio
e 20 s
l:sin%H
one obtains the relations between the angles stated in
Sec. 2 [(56) and (57)]. We now take |joojm) matrix
elements of the Eq. (D1), where o is an integer:

2 dujin (&) /(O) o 9 (8')
=2 dus? @)duw (V) ') (D2)

—sinif et
, € K3y ¢y

cosi 0

For 4, 8, and v pure imaginary, we have essentially just
invoked the “group property” for representations of the
covering group of the four-dimensional rotation group.
We now note that the functions d.;,*°(8) (C4) are
nonzero provided that jo<j,s<o—1. For this reason,
we rewrite the left-hand side of Eq. (D2) in the form

Z dw—l—xm doo (5)dmm’ j( 0)d¢r—l—u’7n' oo (5) J

Then, by using the functions D,;n#%7(x) and Dyi(x)
defined in Appendixes B and C, we obtain a modified
expression for arbitrary o. In particular, in the s-channel
physical region the addition formula takes the form?®
(55). It should be noted that the functions D#s and D?
are determined uniquely by demanding that they have
maximum symmetry and lead to similar asymptotic
behavior of the left- and right-hand sides of Eq. (55)
for large values of s.

We should like to remark that this addition formula
for the O(4) group has been given by Domokos?! in the
special case m'=s"= jo=s=m=0 when it reduces to

z; 0" (8)doo? (6)d 00 (8') = dooo® (v) .
J

 The addition formula as stated here holds up to spin-de-
pendent phase factors (—1)*#*' since for simplicity we only-
specify angles up to a rotation through 2. That is all we need
for our present analysis.



