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Daughters, Conspiracies, and Lorentz Synnnetry~
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The Freedman-Wang prescription for the introduction of daughter trajectories is generalized to the
arbitrary-spin case. The daughter problem is then investigated, within the framework of Lorentz symmetry,
and a Regge-type representation for the asymptotic 8 matrix is obtained which satisaes all kinematic
constraints. The representation is found to be equivalent to a Lorentz pole expansion in the case of elastic
scattering. Some properties of the representations of the covering groups of the homogeneous Lorentz
group and rotation group are also investigated.

C. INTRODUCTION

DISTURBING feature of the usual Regge theory
of the high-energy scattering, of two particles

into two particles, is the number of kinematic con-
straints that have to be applied. These take Inany
forms, from the removal of threshold and pseudo-
threshold factors of individual residue functions, ' to
the conspiracy of trajectories' in order to ensure the
vanishing of helicity-Rip elastic scattering amplitudes
on the physical region boundary. Indeed it is the great
variety of necessary constraints that makes the theory
so unattractive.

In this paper, we examine in detail the possibility of
restoring the usual asymptotic behavior of a Regge
expansion for the scattering of particles with arbitrary
nonzero masses and spins. First of all, while introducing
our notation, we review the kinematics' of two-particle
scattering processes, including Reggeization, and
collect various constraint equations for Regge residue
functions. "

Our principal interest lies in the behavior of Regge
expansions in the case of scattering of unequal-mass
particles, with spin, at high energies gs, when the
squared momentum transfer f is zero. It has been shown
that the problem of obtaining asymptotic Regge be-
havior can be resolved, if each Regge pole conspires
with a sequence of integrally spaced daughter poles, '
according to some four-dimensional symmetry. s We
eventually investigate this possibibty in detail. Initially,
we adopt a prescription similar to that used by Freed-
man and Wang" in the "spinless" case, and group
Regge poles together into families. The members of
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each family conspire with correlated residues. They
give contributions to s-channel hehcity amplitudes
S.g,. y which are of the order of s ~'&, for large s, where
rr(0) is a constant. We discover, when particles have
spin, that, in addition to the daughter poles of Freed-
man and Wang, one must introduce parity-doublet
poles with the same signature. Only in this way may
the usual analyticity properties of the 5 matrix be
retained.

We then investigate the problem within a group-
theoretical framework and show that it is possible to
sum, into a closed form, the contributions to the helicity
amplitudes of families of Regge poles with speciaOy
correlated residues. The closed-form expression pos-
sesses "good" analytic structure and asymptotic be-'

havior at high energies. Moreover, we show that the
contributions of such families to the s-channel helicity
amplitudes satisfy the equal-mass conspiracy con-
straints of Toiler'0 and of Freedman and Wang. e When
invariance under spatial inversion is considered, one
finds that in order to have factorizable residues" on
may be forced to consider Regge poles in parity doublets.

In the next section, we consider the general properties
of our special forms for Regge residues that are corre-
lated near t=o, and discover that they possess the
usual threshold behavior, ' for positive values of t.
They also possess the singularities at t=o, which we
should have expected from our earber Freedman-Wang-
type analysis.

We then investigate the leading asymptotic behavior
of the s-channel helicity amplitudes at high energies,
with 1=0, which depends on both the external particle
mass ratios"" and a Regge family parameter jo. We
then proceed to apply our ana1ysis to obtaining a
representation for the scattering of spinless particles
and compare it with that of Freedman and Wang, '

In Appendices A, 8, C, and D, we state and derive
some useful properties of representations of the covering
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groups of the rotation group and homogeneous Lorentz
group.

2. KINEMATICS AND REGGEIZATION

In this section, we recall some well-known results
concerning the kinematics and Reggeization of scatter-
ing amplitudes of particles with arbitrary masses and
spins. We consider the interaction of four particles (r)
with spins s„mornenta P„,masses m„, and intrinsic
parities g„,where r=u, b,c,d. As usual, we shall be
concerned with related physical processes:

$: (a)+(b) ~ (c)+(d),
t: (a)+ (c)~ (b)+(d),

and

and

s(t—I)+(m.'—mb2)(m, '—mg2)

s,=cosO', = (4)
A(s; a,b)h(s; c,d)

$1/2y

sinO', =
~(s; a,b)d, (s; c,d)

where the representation functions D, „'"of the covering

group of the rotation group SU(2) correspond to
tA'igner rotations E.„which transform the states

!P„,s„r)into the c.m. helicity states !p„s„r).The
amplitudes S,&,,& are functions of the total c.m. energy
s and the c.m. scattering angle O~„ofparticle (c) rela-

tive to particle (a), with

.: ( )+(d)- ()+(b),
where (r) denotes the antiparticle of the particle (r)
and s, t, and I are the squares of the c.m. energies in

the s, t, and I channels, respectively,

$= (P.+P )' t=(P P.)' l=-(P P)' (—2)

We shall be interested in the high-energy behavior of
the s-channel c.m. helicity amplitudes, "

gad ab=(pc&so&cl p"lsd)d! TIP~P&~a) P»sbb)

The threshold function 6(s; a,b) is given by

'(s; a,b) =~+(s; a,b)6 (s; a,b)—,
where

a+(s; a,b) =Ls—(m.+mb)2$'/2

and g is the Kibble' boundary function

y(s, t I)= usta s(m.' —m, ') (m—b2 ms2)—
t(m—.' mb')—(m 2 mg)—

—(m 2m'' —mb2m, 2)~b.'"j'/2,

(6)

which are simply related to the scattering amplitudes
in an arbitrary Lorentz frame, " with

hb "=m,2+m/ —m, '—mb'.

by
(P„s„c;P",s~,d! T!P.,s.,a; Pb, sb, b),

(P„s„c;Pg, sg, d! T!P„s„a;Pb, sb, b)=D, ;.(R,)
XDybb(Rb)D c (R)D«a"(Rd)gs.

We choose our masses to satisfy m, &m, &no~&m~ so

that the point t=0 lies within the s-channel physical

region. For convenience we shall consider the c.m. four-

(3) momenta p, in a standard Lorentz frame.

s+m. '—mb' 6(s; a,b))
, 0, 0,

2$1/2 2$1/2 j

and

(s+m, ' mP 6—(s;c,d) sinO,
, 0,

2s'/' 2s'/'

($+md mg '($;c)d) slung

2sl/2 2sl/2

s+mb2 —m.' —h(s; a,b) )
, 0, 0,

2s'" 2s'/' 1

6(s; c,d) cosO', )
2s'

—'(s; c,d) cosO, i
2s'/'

(10)

As is well known, " the s-channel c.m. helicity amplitudes 3,&. & may be expressed as linear combinations of

the t-channel c.m. helicity amplitudes 9"&&, , analytically continued to the region of negative t and positive s.

We shall be interested in crossing a Regge-type expansion, from the t channel, to the s channel and must de6ne

precisely the continuations of our functions 6 and p outside the relevant physical regions. This we do in Appendix

'4 M. Jacob and J. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
~' T. I,. Trgeman and G. C. Wick, Ann. Phys. (N. Y.) 36, M3 (I964),
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A. The crossing relation then takes the form'6

g —( 1)s(tt)+sss+ssssstt(s s-r Q d, ss(x st)d, ss(~ st)d, ss{~ st)d„,„ss(~st)tl', s,

w11cl'c o'(p) vallrsllcs llIllcss botll pRI'trclcs (b) Rnd (c) arc fcrlIllons, III whrch case o'(p) = 1. Tllc cl'ossrllg angles
RIC given by

(s+m.' m—ss) (1+m.' m—.s) 2—m.str, ss'

h(s; rt, b)h{t; /t, c)

—2m, ttt

siny, "=——

5 (s, rt, b)6 (t, rt;i",)

(s+mss m, ')—(t+mss ms')—+2msstt, ss" —2m'
cosyg"=- SlIlgg

ttt(s; rs,b)tt. {t;b,d) 6(s,ts, b)b (t,b,d)

(s+mss m—g) {1+mss mss)+—2msskssss 2m Q
cosx,"= sing, "=

h(s; c,d)d (t; rs, c) 6(s,c,d)ttt(t, u, c)

(12)

(s+mss m.') —(t+mss mss) —2mss—h, ss»

h(s; c,d)h(t; b, d)

2mstti
slnxtIr,

tt (s,c,d)tI(t, b,d)

where all square roots are taken to be positive in the
physical region. The functions d, ;"(x ) are representa-
tions of the group SU(2) corresponding to rotations
Rbout thc p Rx18.

%'e now cons1der 5-channel part1al-wave analys1s,
where we use formulas (4)-(10) with the substitutions
f~ s Rnd 5~ c.

Following Jacob and Kick,"we define f amplitudes
by

Ms QC ~bd oc
Ltsr(t; b,d)h (t; rr, c)J/s

which are simply related to diGcrential cross sections,

do=
I fss.,(t,Ot) lsdQ.

These 1Tlay bc expanded 1n pRrtlR1 waves~

p )I/S
fM;-(ts)= —

I E (2~+1)Fss;-'(t)4v'(s) {15)
p z

where the 1n1t1al and 6nal f-channel c.m. three-momenta

p and p' are given by

p= ~(t; o;)/2tr/s, {1&)

p'= a(t; b, d)/2tr/s. (1V)

In these expressions, X and X' are thc total helicities,
X=u—c, X'= b—d, andJ is thetotal angular momentum.

The Parity-conserving RmPlitudess fss, .+ are linear
combinations of the form

fss;..+(t,s) =bv(s) fM;-(t, s)
a {—1)"+"Wssb-x (s)f-r s;-(t,s), (1&)

"G. Cohen-Zannoudji, A. Morel, and H. Navelet, Ann. Phys.(¹Y.) 46, 239 (1968).We use the same crossing angles, but the
expressions appear diferent because of a difference in de6nition
of kinematic threshold functions (see Appendix A).

"M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).

P&„(s)= (1+s)—ssl&+/sr (1 s)—ir&-tsl

)-=m»(l) I I)'I)

~= ~~,J half-integral
=O,J integral.

Partial-wave expansions are of the forln

p pl/sf;-'(t, )= —
I Z (»+1)LF "-"(t) '"()

pr
+ass--'+(t)sr v' (s)j (20)

where the parity-conserving partial-wave amplitudes
FytJ; gg + Rlc dc6ncd by

&ss;-~+(t) =&ss;-'(t)+I/r 8' s s;-'(t), (21)

and the representation functions sr,v~+(s) are linear
combinations of the usual representation functions

~(—1)"+""h-s(s)d~-.'(s)) (22)

The Reggeization of the amplitudes Fq@,.„~+has
been discussed in detail by Gell-Mann, Goldbergcr,

os Marx~ RIMI Zacharlasen. They hand

fss;..+(t s)

(p '/' (2n++1)
Z PM.- +(t) &~v'+'+( —s)

kp ~ slntrn+

(2n++1)
Pss;-"+ — &r v'+' (—s) I, (23)

sinwn+

Our more conventional (Ref. 25) deSmtion diKers by a phase
( 1)x-v
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where pc+ and n+ denote the residues and positions of
Regge poles in the amplitudes I'~~... + and F~~.,~-,
1cspcc'tlvciy. Tile fullctlons Ebc +(z) colllcldc wltil

analytic continuations in s of the functions cb„d+(z),
fol' llltegl'Rl ol' 11Rif-llltcgrR1 vRlllcs of tx (scc Appendix 8).

When we take signature 8 into account, we replace
the functions FM-„+by FM.,„'+, where

P ca+ —1 (1+SC cc (c c))P cl+

with spin J has signature s= (—1)d ". We shall later
refer to several equivalent forms of the Regge repre-
sentation and for convenience list them here. H we
de6ne a generalized residue function Pbd,„'(t) by

(2oy1)
P '.--'(t) = —,I

P'& sins n

X (1+sc ic(—uc) )p-a+ (25)

and the trajectory corresponding to a physical particle the t-channel amplitudes for large s are given by

fbd;-+=2 [Pbd;..-+&&v' +'+(—z)—Pbd -+Rb '+'-(—z)j

+(-1)"'"-~.— (- )[P '...-'D -"(- )+P '...-'D.— -'(- )j (»)
=P &bd;.."+[&bv+(—z)ale '+'+(—z)+61 (—z)Dbv'+' (—z)]

—Pbd;--+[5) v (—z)Dbv'+'+( —z)+gbv+( —z)»v'+' (—z)j, (2g)

where the functions Q,vt"+ +(z) and $bb +(z) are de6ned
in Appendix 8 [(85), (812)j.

The behavior of s-channel helicity a,plitudes, , at
high energies, may be obtained by using expression (13)
and the crossing relation (11).

Let us now recall some properties of the reduced
Regge resKlues~

i '.-"(t)=(pp')-.e '.-.(t). (»)
They are real, analytic functions of t with poles at
normal and pseudothresholds. The behavior at these
singular points follows directly from that of the ampli-
tudes Fbd;cc (t),

p (t) =[~'(t' )3"'[~-(t' H-
X[A+(t; b,d)$"'+[6 (t; b,d)$~'+, (30)

where

masses, m Qm„m~4m~, in the case of forward scat-
tering, we And

0= Ietg;ab +ad;ee p (35)

In the case of forward s-channel elastic scattering, we
find

lcd; c b Q dc'c ( Z&)db' b

tsar glgf Jr

X (——,'7I')d. ."(-',s')dd d"(zw)f'b d, .. . (36)
8—cga —d,

These constraints a,re known as equal-mass conspiracy
relations, first obtained by studying Eg scattering' and
later investigated in detail by Toiler and collaborators, '0

and Freedman and Wang. '
N+= —(s.+s.)+-z'(1abt..) (31)

P+= —(s.+s,)+-',[ia(—1)'"lt.,j, m, &m„(32)
with d+(t; a,c) defined by Kq. P).

This leads to threshold behavior of the amplitudes

fbd. ,+(t,s) of the formf„.,+(t,z) =P (t;a,c)a(t;b,d)fb-P„.,+. (33)

The residue functions pbd.,„arenot independent. Parity
conservation alone implies'

P bd; ac= 9bd %cP bd; 'a c'~---—
At the physical-region boundary of the s channel, we

expect heHcity Rip amplitudes to vanish. If we use the
crossing relation (11), we obtain. more constraints on
the t-channel amplitudes. ' For arbitrary masses in the
case of s-channel backward scattering or unequal

3. ANALYTICITY TROUBLES AHB
REGGE FAMILIES

Let us examine the Regge representation (26) more
closely. Ail the s dependence of the amplitude fbd, „+(t,z).
is contained in the functions Ebb +(—z), where

t (S—u)+ (ill.'—m.') (~ebb —md')
2:=coso,=- (37)

A(t; a,c)h(t; b, d)

We note that for zero s-channel momentum transfer t
the energy dependence is lost unless both m =m, and
my=my. When two masses are equal, "i.e., m =m, or
my=md, the cosine of the scattering angle tends to zero
with t, and when all masses are unequal, it tends to —j..

"If only two masses are equal m, =m, or mb=md, the point
I,=0 lies outside the s-channel physical region.
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Moreover, the functions Ell. +(s) have logarithmic
branch points when 2'= —j., provided n —X' is not an
integer. "The Regge representation then conQicts with
the usually a,ssumed analyticity properties of the 5
matrix. One way of recovering suitable behavior for
large s is to use a modification of the prescriptions which
Freedman and Wang proposed, ~ for the case of the
scattering of spinless particles.

We introduce a family of poles with related residue
functions, enabling us to regain Regge asymptotic
behavior in s, and simultaneously eliminate spurious t
singularities from the helicity amplitudes. Since we are
concerned with the behavior of Regge terms near 1=0,
we must be careful to remove correctly the t singularities
arti6cially introduced into the amplitudes Ii~~ by the
half-angle factors g„(s),Eq. (19). If we inadvertently
introduce families of poles directly into the amplitudes
Ilgwu, „~+and Fqq.,„~—,to produce uniform Regge be-
havior, we shall encounter difhculties when trying to
obtain the correct asymptotic form of the 5-singularity-
free flq ,„amp.litudes. Consequently, we introduce
daughters by considering expansions (28) in terms of the
functions Dll. & +&+(—s) in preference to Ell. & +'+(—s),

which we de6ne in Appendix B. The expansion is so
constructed that if we introduce families of poles into
amplitudes E'~+ and F~—,with residues I" ~, to cancel
out singularities in the coefBcients of the half-angle
factors gll. +(s) independently, the analyticity of the
amplitudes fqd ,„a.t t=0 is guaranteed.

A property of the functions Dg,' +'+(s) which we use
is the diGering "odd" or "even" asymptotic behavior
111 s (313).Wltll tile llew llalf-allgle fac'tol' comblnatlons

bl'+'(s) = -', Lbl. (s)(+)e+' ""5&l.(s)j, Ims~O, (38)

where tI =-', ((X+X'( —(X—X'(), we may express the
functions Ell+(s) in the form

E. - ()=S, '()~ - ()+S,' ()~'--() (»)
I et us now consider the Regge expansion (28) in-

corporating signature s (24) with Re(—s) large and
positive and Im( —s))0. We use expression (313) for.
the asymptotic form of the functions DII.»+(s), and
define a reduced generalized residue (25)

I ' "=(pp')-.I ' - (40)

Substitution into Eq. (28) gives

f -'=2 I' --'(t)(b '(—)h '"+L '+0(*'" ')3+Pp 5 (—)» '"' L'*'" '+0(*'" ')3)

I'M;-' +(t)(b&' ( s)h», '& +'+f x ++0(x'+' ')3+Pp 6 +(—s)»l' +' Lx'+' '+0( '+' ')3) (41)

where x=pp's and the functions heal. &»+'+ are asymptotic
constants. We now consider in particular the contribu-
tion of a Regge pole in amplitude P~+ to the helicity
amplitudes fbi, „+,in the case where s is large and t is
small but 6nite,

f~',-'= I" (VL(2s) —clpp'(2s)-'j
+cg& QP (2s) 'g)

f~e:- =—I's™(~L(2s) —clPP'(-:s)-'j
+cI&+QP'(2s) 'j)

where c~ and c2 are constants. In the asymptotic region
where s is large and t is finite the functions $+(s) behave
like (31):

~+()=(t~~)-"-, ~-()=(ti~)- =,
Jlt'=-I, (m.'-m, ')(m j-ml, 2), (44)

and we see at once that this gives rise to the usual
Regge behavior, '

f„+s»-I» f„—$»-)»-I (45)

If we let $ become zero, we have singular terms in
expression (42). We are interested in introducing addi-
tional poles with singular residues into F~+ and F~—in
order to obtain an expression in which the coefBcients
of p(s) and $ (s) are Inanifestly analytic at t=O. In
order to remove the second term in the coeKcient of $+,

from the amplitude fl,e, ,+, we propose to add a pole,
with opposite signature, at the point (n —1) in ampli-
tude Ii q~,~+, such that the generalized reduced residue
I' '&~»+(t) satisfies the condition

r &. »+(t)~-c,p-p'I ~(t) a,s t~o. (46)

This is a daughter pole of the type introduced by
Freedman and Wang. %e note that in the nonzero-spin
case there is an additional singularity in f le,„with-
coeflicient $&l+(—s). This can only be removed by the
introduction of a pole, with the opposite parity and the
same signature as the 6rst daughter, and residue
I'-I~ I&-, at the point (n —1) in FIe,„~, such that-

' "() PP'' () o (&)
Note that the efFect of the introduction of the 6rst
parity-doublet daughter poles is to rexnove the leading
PP' singularities from both fI,~...+ and fM, ., In general,
we shall need an in6nite sequence of integrally spaced
parity doublets to remove all the poles at 1=0 from the
expansion (42). We refer to this process of cancellation
as a Regge-pole conspiracy. In the equal-mass case,
my=my) mb=me) 'tile Illolllelltlllll product pp ls llo't

singular, and we have no reason to introduce an infinite
number of daughter poles at I,=0 to restore analyticity.
On the other hand, it seems unreasonable to have a
Regge spectrlm that changes abruptly when one con-
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f „+-~+ps s+ (49)

tIIIte refer to such a solution of the daughter problem as
a k-cecssM sols1/soB of 0M'' o'. It ls to be Iloted that a
k-evasive solution of order zero may be referxed to as
R k-evasive conspiracy Rnd RQ ordinary conspiracy ls
a 0-evasive solution of order zero.

Ke conclude this section with some remarks con-
cerning the 0-evasive asymptotic and threshold behavior
of the various helicity amplitudes. We rewrite Eq. (41)
in the form

siders a slight variation in the mass of an external
particle. As we shall see later, it is possible to obtain a
daughter representation which automatically satis6es
the conspiracy conditions (36) in the equal-mass limit.

In the previous discussion, we have tacitly assumed
that the Regge residue of the parent pole remains 6nite
Rt 1=0. Wc Qow dcGQc R k-evasive solution to thc
analyticity problem to be one in which the parent
residue I"a(t) (40) has the property I"a(/) =t' as t-+0.
In this case, we have many ways of introducing daughter
doublet trajectories. These lead to diferent asymptotic
behaviors of the helicity amplitudes. To see this, let us
write I"a in the form I"a=Pal ry'a(t), where y'a(0) is
Gnite. Ke may then consider the parent contribution
to the helicity amplitude fss ,„+, .

f+—(r~sa(() p+(O (SrSa+. . .-
+&r kS +Or—S+1t S —+' ' ')

+]—(~S
—r—1Sa-1+.. .)1 (48)

and introduce daughter-doublet poles to remove terms
which are singular a,t 1=0.The leading asymptotic be-
havior for large s, in the limit as t tends to zero, is then
given by

has the following behavior" with parity doubling'.

fM:«=PE(t;a, c)] '"+"P(t'bd)$ &"+"~ (54)

In the previous section, we obtained a solution to the
problexn of obtaining Regge asymptotic behavior and
the usual S-matrix analyticity, in the case of the
scattering of unequal-mass particles with spin. It has
been shown that, by using the theory of group con-
tractions, one may obtain solutions to the daughter
problem if the Regge-pole spectrlm has Lorents sym-
metry at I,=0, even in the case of unequal-mass scat-
tering. ' The scattering amplitude does not possess this
symmetry, however, since the homogeneous Lorentz
group is not in general a little group of the Poincare
group. Such a restriction, on the Regge-pole spectrum,
has also been suggested by considerations of properties
of the complex homogeneous I.orentz group. '0

Ke now propose to construct' a representation for
the asymptotic 5 matrix which automatically satis6es,
not only the daughter-doublet conditions at t=0, but
also the kinematic constraints (35) and (36) discussed
in Sec. 2. Our representations will di6er in detail from
those presented before'" and depend upon a daughter-
doublet addition formula which we derive in Appendix
D 0

lor+1(8)d, ,Joa+1{8r)D,o'—r (8)

=Z d-'(4)ds "(0')D-"""(v) (55)

fsd;,+=I'+f61+(—s)S ++pp'f1), (—s)S'+' ']
-I'D -(- ) -'+pp'b'(- ).-'- j. (5o)

The helicity amplitude fsg ,„(18)is the.n found to have
the asymptotic form (85):

f, ir+(Sa++ pprS(a+) —1)

+I-(s +pp's& &-'). (51)

As is well known, ' the functions $g,.+(—s) behave like

j1+s) &&~"~+~"'~& as s~ —1 and the final asymptotic
expressions are'9

sing =

cosP=

cosf'=

sinh8 slQO

coshb sinh8' cos8+sinh8 coshb'

sinhy

sinh8 sln8

Slnh+

cosh8' sinhb cos8+sinh8' cosh8

sinhy

(56)

f . +(t s) =(st)—&O"~+~"'~&s™"s (52)

fthm; «(&rS) =Sa™
r (53)

"These results appear to dier from those obtained by J. D.
Jackson and G. E. Hite, Ref. 1, Appendix D.

for large s and. small t, where n =max{n+,n ) For.
future reference, we recall the threshold behavior of the
parity conserving amplitudes {20) and note that near
the normal and pseudothresholds the amplitude fsg,

cosh' cosh=8 cosh'B+sinh8' sinh8 cos8. (5'l)

The functions 1f '"+'(8) and D ~ "+'(7) are
analytic continuations in 0 of the discrete nonunitary
representations of the group Sl.{2C) discussed in
Appendix C.

Let us now consider the Regge expansion in the form

(2f). The trajectories n(i) are normally independent

'06. Cosenja, A. Sciarrino, and M. Toiler, CERN report,
Geneva, 1968 (unpublished).
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leads to "good" asymptotic power behavior.
Consider two four-vectors

A = e 'x"(1,0,0,0)= (coshb, 0, 0, sinhb)

B=e *+see '~"'(10P P)
= (coshb', sinhb', sinO~, 0, sinhb' cosO) . (59)

The angle y corresponding to the boost e '~» of the
vector 8 in the.Lorentz frame where A is at rest, i.e.,
A=O, is given by

c4II,Btt = cosh+
= cosh' coshb'+ sinhb sinhb' cos(s.—O~) . , (60)

We see that, provided we take the parameters b and b'

to be the boost angles of four-vectors g and g' with

I'q =cos (s —0)=cosO',
I~lie'I

(61)

the boost angle y is obtained by taking the scalar
product

cosp = (62)

By looking at the t-channel four-momenta in the
standard c.m. frame (10), we see that the most general
candidates for the vectors g and g' are

~=p+&p
and

a'= Ps+i'Ps (63)

where f and f' are free parameters. The boost angle y is

but at t=0 they group together in such a way that to
each parent trajectory, with n=o, there correspond
daughter-doublet trajectories, with n= 0.-~, where
~= 1,2,3 . . .We shall refer to such a collection of poles
in the unequal-mass case at t=p as Lorentz families,
which must not be confused with Lorentz poles which

only have physical significance in the case of elastic
scattering.

We are especially interested in the region near t=0,
and shall assume our daughter and parent residues to
be correlated in a particular way for infinitesimal values
of t. Let us compare the Regge expansion (27) with the
left-hand side of the addition formula (55). We identify
n with r-~, m and m' with X and &) ' and |I with x—O~~.

Our object is to 6nd what choice of boost angles 8(t)
and b'(t) will lead to functions y(s, t), P(s, t), and P'(s, t)
such that for large s at t=p the functions d„„'(f)and
d„'(f)are bounded and cosh'(p, s) =s. If this be the
case the property l (C11) and (C12))

D„.„& +0'(y) = (e&) ~ Jo+&~ as

and
lgl =tt+(1—f)(m s—im s)

lg'l =i't+ (1—t-')(m, s—t'm. s). (65)

In order to have Regge behavior at 5=0, the constant
ter'm in the square br'ackets must vanish. Indeed, we
see that it does so automatically, for all values of f'

and f'
In the Bethe-Salpeter approaches of Domokos" and

Freedman and Wang, ~ and in the S-matrix approach of
Domokos and Tindle' and Toiler et al. ,' the daughter
problem has been considered with i =t'= —1 when q
and q coincide with the initial and anal 5-channel four-
momentum transfers p,—p, and ps-pe, respectively. In
this special case the expression for cosh' takes a
particularly simple form,

—(s—I)
cosh'= (66)

Lt—2 (m,'+m, ')j'~'Lt —2 (ms'+me') J~'

Let us now examine the expression for the hyperbolic
sine of y at I,=0,

(2s—Zms)' —I j2

sinhy= —1
4 (m, '+m,s) (m ss+ me')

(67)

This function has spurious square-root branch points
in s which have no simple physical interpretation.
Moreover, on crossing from the t channel, where we
define our Regge expansion, to the s channel, these may
contribute factors which interfere with the asymptotic
phases of the function D„„"~+'(y).This problem does
not arise in the equal-mass case, when m =m. and
m&= m&, since for arbitrary f and t' the function sinh|
reduces to the s-channel threshold form h(s; a,b)/2moms.
The spurious kinematic branch points in s in sinhy are
likely to occur as long as the momenta lgl and lg'l (65)
contain spurious kinematic branch points in t. We may,
however, obtain expressions with acceptable kinematic
singularities, i.e., singularities at threshold, pseudo-
threshold, or on the physical boundary, if, and only if,
we have /=i'=0 or =~. This limits our choice of
boost angles 8 and 8' to those associated with the
individual particle four-momenta:

coshb = t+m. '—m, '

2t'j'm

6 (t; a,c)
sli1hB~ =

2g'j'm

t+mss mss-
cosh8g=

2t'j'mg

h(t; b,d)sinhbq=, etc.
2$'j'mq

(6S)

"G.Domokos, Phys. Rev. 159, 1387 (1967).

now given by

cosh'= (1/4tlql lg'l) fl t(1+i)+(m,'—m, ')(1—t)]
&&It(1+t')+(m '-m")(1-f')j—(1—f)(1-f')

)& Lt(s —I)+(m.'—m, ') (ms' —m/)]) (64)
with
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In this case, we obtain simple expressions for 7,

cosh' b'= (m, '+mbo $)/2m, mb,

crossing angles indicates

4= —X.", 4'=~+Xb". (75)

Slnh"rob = 6($c a&b)/2mccmb.

We note that cosh' ~' is independent of t and has the
required (58) behavior for large $. This analysis suggests
that the most general form for a generalized residue
function sl'be.,„(t}(25), corresponding to a parent
Regge pole (lo=0) or daughter pole at J=o —z in the
amplitude F b e, „$(j),which "conspires" at i=0 is

These angles have the required property that the func-
tions di„'(p) and d„b."(g') remain bounded in the
s-channel physical region.

We have found that a parent Regge pole with n= a (j)
and daughters with kinematic residues sioi b@

jo (j) "6„j"(t)
may conspire near t=0, to give a contrlbutlon to &-

channel helicity amplitudes of the form

f ...,(j,s)=Z„...jo ($,j)

where

"r,... =&b, ., o(&) X„.,jo (&), =p a„'o(t) "a..' (t)D»..-"(~—0,) (76)

KQ QQjr «Q $00' KQ $00'
M~cc M CC (72)

jOa g&,sbscis'—d, &,jsa+1(bb)

sQ joa —C bssscsd 1joa+1(b )
(73)

Rnd wc shRll omit lndlccs when lt ls not llkcly to lcRd

to confusion. In this case, the rotation angles corre-
sponding to oP and iP' in the addition formula (55) are
given by (56):

($+m.' mb') (t+m—.' m, ') 2m.—'6 bo"—

D($; a,b)~o (j; a,c)
2m, ob

sing=
h($; a,b)h(j; a,c)

($+mbo m.') (1+ m—b' me')+2mb—'A, b'"

d, ($; a,b)h (t; b,d)

(74)

sing'=
6 ($; a,b)h (j; b,d)

alid compar1son wltll 'tlic cxpl'cssions (12) foi' tlic

joa(j)

={& .""'Id..-. j"+'(4)+".d"-. '"+'(—b.)3)
X{Cb eb'""'[&". .) +—'(~b)

+ob.d".—.b ""(—~e)])+jo~ —jo (71}

and ~ „eqqare free parameters. We have introduced the
Clebsch-Gordan coeKcicnts C,g,"'f" so that, as we shall
see later, one has consistency with the equal-mass
conspiracy relations (36). This leads to a natural mter-
pretation of s and s' as the channel spins. The parameter

jo is yet to be identified although it is restricted by the
inequality

~ jo~ min($, $') (C4).
The function &be.,„j"(j)which becomes independent

of the daughter-son parameter ~ at t=0 shall be
referred to as a dynamical residue. Similarly, for reasons
which will become apparent later, we refer to the func-
tion "AM;@g~0 Rs thc kNKmQAc Ms@luc. Fol slmphclty~
unless otherwise stated, we shall take "A~~., „&0'to be
of the form

=Pd '(—X")d "( —&b")D ~ j"+'(V ') ( )

It is to be noted that if we replace the crossing angles

(12) in the expression (77) by those obtained in the
limit s —+ ~,

slnXg ~
h(t; a,c)

—2m. (—t)'"

6 (j; a,c)

'~ Helicity independent up to a phase (—|)"&' which can be
determined by comparison with a Lorentz-pole expansion in the
equal-mass case. We shall in general neglect over-aH spin-de-
pendent phase factors.

wc obtain the representation suggested by Klein" for
the behavior of helicity amplitudes near t=0. He was,
however, unable to demonstrate the correspondence
with a Regge-pole daughter sum in the unequal-mass
case. For 6nite values of s, the major qualitative
difference between these representations is that our
j-channel helicity-fhp amplitudes only vanish (sinx„=0)
on the $-channel (or f or I-channel) -physical bound»y,
whereas those of Klcin only vanish at t=0 for all s.

Sillcc 0111' cxprcssloii fol' gabe, ccaso ($,j), Eq. (77), vallcs
smoothly as a function of the external mass ratios,
provided wc stay in the s-channel physical region, it
should be possible to satisfy both the kinematic con-
straints (35) and (36) at the boundary of the physical
lcglon. Indeed, wc find that, provldcd the dynalTllcal

residue Gbd,„"(j) (70} be helicijy independen-j, " the
kinematic constraints (35) and (36) are satisfied auto-
matically. VVhen we consider the equal-mass limit, wc
find cosh' —o0 and b —sin/2 The exp.res.sion for the
helicity amplitudes after continuation to the bound-
state region is then of the form

f b e;oc=Z G -(t)-& —b""'Cb-ev'"""d —b"'+'(i~/2)
0's K

X4 v jo+( ~i/)2Ab" "(~—es), (7&)

which. ls conslstcnt with that obtained by FrccdmRn
and Wang. ' In other words, the Clebsch-Gordan-
coeKcient helicity dependence is such that our I.orcut@
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families may be described as I.orent«poles in the case of
elastic scattering. We now see the reason for introducing
the Clebsch-Gordan coeKcients into the expression for
&bd;„(71).We may identify jo with the equal-mass
I orentz-pole classification parameter M, and observe
that 0 =n corresponds to the four-dimensiona, l angular
momentum.

This indicates that our solution to the unequal-mass
problem is consistent with the equal-mass conspiracy
theory developed by Domokos, "Freedman and Wang, '
and Toiler. '0

I et us now consider properties of the kinematic
residue functions Aq@A„under spatial inversion. The
constraint (34) suggests we construct parity-conserving
functions

YmLK I. Angles in the addition formula,

x —0
x—0
x —0
vr —0

—x"
x."'
X.-

st

~+Xbddt

X&sbt

7l + X'

Jab
Pdbdg

+bc
+erg

Sums Xbd aa~a (f&«) Rre given by

Lbd...+= (chbd+gbdA b d)(A, ay,A, ) (87)
and

a+ fba(f) —C ~saaaa

XLd ~
.+'(b )+. d ~'"+'(-~)] (88)

~bd;aa ~bd~aa+ 9bd flaa~'b'd+ -a-ap—-

~W; c=gSgA —S-~;—

(79) with n=g —a', and

~M;ac ~bd;ac ~ gbd lilac~ —b—d;—a—c

Factorization of the parity-conserving residues
pbd.,„'+(/) (25) suggests that we should express them
in the form pbd +p„+.Now, from Eq. (21), we see that

"I'bd .'+="Gg (/) 'Abd, .&qbd"Go (/) "6 b d „,' (81)

Rnd lt only factorizes Rnd satls6es conditions (21) Rnd
(34) if G~(t)=Go(t)=G(t). Since the functions Zbd, „

and A b d;, (73) are not linearly dependent in general,
we are obliged to introduce parity-doublet Regge poles
with 0.+=tT =0. into amplitudes Ii~+ and Ii~ with
correlated residues at t=o. The factorized residues of
such parity doublets are of the form

&I'bd; .+=G(/)(Abd+qbdh b d)(A. ,aq„M, ,) (82)

8dbcc8C sb8(p

XEd;(—x.")d.~ "( +x ")D-.""(v.')
+«b A '(—x ")d "(~+xd")D ~ '"+'(v ")
+o..d~ '(x.")d I "(~—xb"')D- '"+'(vb.")
+ obdd. '(x-"')d,~ "(~—x"')D ~ ""(v"")] (9O)

It is to be noted that a change in the sign of jo is, apart
from phase factors, equivalent to changing the signs of
helicities. In this way for each Regge family we have
obtained a sum of terms of the form (76).

For convenience, we now list in Table I the corre-
sponding angles appearing in the addition formula (55)
where L(68) and (69)]

G(~)~b.+~—,+=G(~)~,...+—. (83)

In the special case where jo——0 we find d„ao'+'(P)
=d oa+'(p) (C22) and from the defining equations
&(73) and (83)] we have

3+m.b—m.'
cosh', = A(t; a,c)

sinhb, =
2t~~~

a(t; b, d)
sinh8,=, (91)

2tII'
Oak —Qb Oag Oar 1~~ ~ ( 1)a'—~]

&&$1~~ ~ (—1)-] (84)

This means that for a particular choice of spins s and s'
the contribution to the helicity amplitudes comes either
from a pole in Il ~+ or a pole in P~ .

If we denote the positions of parity-doublet Regge
poles by 0., and parent doublet positions by 0, we have,
near t=o, the helicity amplitude expansion

fbd:-+=2 ~G I &bd;-'"+&),V +( «)—
+&bd;..'"+&0," (—«)] (85)

=Z~G L»' '"h~ (—«)~(—1)'"""

Xgbd&-b-d;-'"6, -~ (—«)], (86)

where the general residues "ckbd...&a'+(t) dnd family'

m, '+ md' —u
cosh+ay

6(N; a,d)
Slllhvad"=, (92)

28$aSSg

For diferent angle combinations, one may use the
symmetry relations of the functions d.,q"'(5) and
db, .&'(8) discussed in Appendices 8 and C.

5. ANALYTICITY AND ASYMPTOTIC BEHAVIOR
OF REGGE FAMILIES

In this section we shall examine the Regge-pole and
Lorentz-family expansions (85) and (86) for small values
of t, and compare them in the light of the daughter-
doublet formalism developed in Sec. 3. We also present
a discussion of the behavior of kinematic residues
Abd, «"'(t) for arbitrary values of t. This may prove
useful in developing models for Regle-resjdue fgnctiogsa
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Let us consider the equation

p [(ppI)—~+ad too+1(b )d jpg+1(tl )j
X(pp')' "Dbb" "(pr—0,)

=2 [db '(—x )d 1 "(~+xb))D ~ '"+'(y b') (93)

where the parameters 6, 0, )(, and y are de6ned by
Eqs. (12), (37), (68), and (69). We recall that o —

r&

denotes the position of a daughter pole with parent
trajectory n= o (t), and that the term in square brackets
on the left-hand side is proportional to the reduced

Regge residue "Pbe,„[Eqs.(29) and (97)$. We shall

refer to the term on. the right-hand side as a Lorents-

family sum.
In order to determine the behavior of our amplitudes

for large positive s, we erst require some properties
of the group-representation functions derived in

Appendices B and C:

D-.'"h) = le+'I' ' I'""I
as

I

e+&
I
—& ~, (94)

(sinhtI) '+ d, .tp+(1&)=Ie"I-"~+"
(95)

and

db, '()() = (»nx) I"~"I as sinx ~0, cosX~~O. (96)

In order to simplify the discussion, we shall first con-
sider a Regge family with kinematic residues of the
form "b,bs,„"(t) (72), and denote the contributions to
amplitudes by fbi.,„+(»etc. It is then easy to obtain
the full contribution from poles with kinematic residues
"abc. ' (87).

The reduced Regge residue "Pbe., «~ (29) is given in

terms of the kinematic residue by

sine 0.
"p b e,«'(t) = (—1)" p'(pp') ' ""'

2o —2((+ 1

X "G&p (t) "t),be. «&p~(t) . (97)

As t approaches zero, the hyperbolic sines and cosines
of the boost angles (), (68) become singular, and Eq. (94)
implies

pb (1)—tk(lip+&I+lip+&'I —p~) (98)

Note that the sign of X or ) ' is the same as that of the
hyperbolic tangent of the corresponding boost angle 8

appearing in the addition formula (55), as we approach
t= 0. At t= 0, the -', (I jp+l(I+ I

jp+)('I)-evasive parent
residue" with ~=0, may generate an evasive Regge
asymptotic behavior of the type discussed in Sec. 3 (49),

fbd, (» =ps& t lio+& I+, li p+&'I)+~—(99)

"See note preceding Eq. (48).

fb (1) Sr (100)

Let us now consider the Lorentz-family sum at t= 0.
The crossing angles x [Eq. (12)]then have the property

sing =s 't' for s large. If we use the asymptotic relations

(96) and (94) in conjunction with Eq. (93), we see that

the leading power behavior at t= 0 is of the form (99),
and the Lorentz symmetry solution is a —,'(I jp+)(I
+ I

jp+)('
I
)-evasive solution of order sero."For finite t,

the crossing angles do not tend to zero as s becomes

large, and the power behavior is again given by
expression (100).

We have shown that the four-dimensional symmetry

solution with a particular value of jo gives rise to
evasive residues Pbb at t=0 unless jp ———X= —)('.

Moreover, whether we consider the Lorentz-family

expansion at t= 0 or take the leading terms in a Regge-

pole expansion for large s and small finite t and then

let t become zero, we may obtain the same behavior for

the helicity amplitudes fbi...(». After crossing to the

s channel (11), the asymptotic behavior in s remains

the same,

g „&(0—s —k(I&+iol+I&'+&oI) t= 0
=s~, t/0.

(),=a—c, X'=b —d) (101)

The change for in6nitesimal values of t can be most

easily followed by using a Lorentz-family expansion (86)
in place of the usual Regge expansion (85). The asymp-

totic behavior of parity-conserving amplitudes fbi .+' '

may be obta, ined directly from Eqs. (99) and (100) by

At this point, we should like to discuss in detail the
prescription for obtaining the behavior at t=0. The real

analytic function "p b d, „which multiplies Dbb '(—s)
is not necessarily analytic at t=0. It must have a
square-root branch point at t=0 for Il(—X'I an odd

integer to cancel a singularity in the half-angle factor

$&,b.(—s) which is present in the function Db&"( s). —
The total contribution to the amplitude fb~.,„willthen

be analytic in t at t=0. The asymptotic form of the

parent contribution is then given by expanding the

function Dbb '(—z), neith the half angle -factors removed,

in a power series in (st) and then letting t become small,

fb& (» —[tb(l jo+&I+I jo+& 'I)j
X t '[(st)'*I"+~'l(40K—st)'*I"-'I]

X[(st)~ )m+ a—
(st) ~—b m—1+.. .]

—tk(I jo+&I+tao+&'/ —t&—&'j)

X [sv 'IX b [+a t—isa+')1 b I 1+ ' ' ' j
Now

I jp+&I+ I jp+VI —I) —X'I )s an evert integer so

we may adopt the daughter cancellation procedure

discussed in Sec. 2 (49) to obtain the asymptotic form

for sero t:
f(0 s~ l-(I Sp+—& I+I jo+&'I )

However, for any finite t, no matter how small, for

large enough s, we still find
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8 & &
sec —oc(l)c+-o'ol+P'+oo()+so-(0) ool+I—)' Jo)(—(104)

As noted by Jackson and Hite, ' the singular behavior
of the amplitudes f+ at t=o is a reflection of the most
singular behavior of P),),.(s) and P), ),.(s) together (82).

It is interesting to note that the form of y, y' suggests
that the region of "pure" power behavior is s))oNP+o))os,
where m~ and m2 are the masses of the two lightest
particles.

We should now like to point out that, if m, =m, and
both particles (a) and (c) have either integral or half-
integral spins when jo is an integer, alternate daughter
residue functions "Pos.,„'+will vanish as we approach
5=0. To see this, we use the relation (C19):

g ) JoM&(~oor/2}
—( 1) +o-x+jod „joe+1(~&~/2) (103)

The Regge residue functions PM,.„+contain a factor

cccccc[d Socc+((p )
~(—1)-~ ~d, ~((P)j (1O6)

and, in the equal-mass limit as t= —
I
1

I (1+oo}-o 0, we
find P,=oor/2. Relation (106) then implies that

6,.+=0 for +o),o),(—1)so+"+~W1, (107)

and alternate daughter residues vanish. A similar result
holds in the case of particles b Rnd d. This phenomenon
was observed by Domokos" in a Bethe-Salpctcr model
with zero-spin particles and by Freedman and Wang' in
the case of EX scattering.

For nonzero values of t, wc have no reason to believe
that there is any connection between the Regge poles
in a Lorentz family. In particular, there is no longer any
need to associate a single value of the parameter j~ with
a glvcn tra]cctory rcsldllc. Kc may still» however~ take
a model with residues Pos., „expressed as linear com-
binations of zero-t kinematic residues. If we suppress

using the defi»tion (18) and properties of the half-angle
factor functions $~ {s) (82). It should be noted that if
at t=0 wc haven =m, or m~=mq or both, the asymp-
totic s behaviors of the amplitudes S,~-,,~&'~ are of the
form s ("'+J'~, s ("+&0( and s, respectively.

We now use the most general form for the kinematic
residue functions and obtain the following Regge
asymptotic behavior for helicity amplitudes. We assume
that they are dominated by the contributions of a single
Lorentz-family parity doublet at t=0, with conspiracy
parameter jo and kinematic factors "ckos „&".+(t) (8'T)

fos.„(]s) =sc-k(l&'+so(+I)+so()+so-k(l)-Jot+I@ —oo() (1()2)

fOS ,+ (.S[)-k(P (+(&'l)(So—Oc(l&+SOI+P '+N)

+so ((P +—ool+I)' o'oi) )—
/ P

according as IX+l('I = IXI+'ll('I (103)

the sum over spins s,s', this could be of the form

po&. ,cck- p Go'ohio'ccrc(]) (ppc)
—cckgM jocc+g oo'cc+ (108)

Jo j0

where G~"" + becomes diagonal in jo when t=0. Lct us
now consider the analytic properties of the reduced
kinematic residues,

"~os. +{&)={pp) +"'~os '+(&) (1o9)

We show in Appendix C that the function (sinh()) +"

Xd "+'(()) (C14) may be represented as a terminat:-

ing series of real analytic functions of t. Consequently,
both the kinematic reduced residue "Zos,„'(t),. and the
dynamical residue G(t), are manifestly real analytic
w'hen K ls Rn 1nteger.

In order to investigate the t-channel threshold be-
havior of the residue function "hq~ +, when t approaches
(oooo+ooos)o, we need the relation (C20):

(sinhl)) '+"(E, „~),o'o~((()) = (sinhl)) "
+(:(sinh()) "+' as e—'-+ ~1 (110)

where c is a constant. As t approaches the normal
threshold (o)oo+o)os)', the boost angle 8 tends to zero,
and we find on substituting (110) into the expression
for Z„+(S)[(1O8) and (1O6)j:
~o"(&)=[~(~c»d)j-"[1+ac.(—1)" "3

+(;[6()! f) d) j-"+'[1+o)oo)s(—1)"-"j. (111)

In general, there will occur in the expression for the
residues Pos,„+(108) a term with s'= so+ss. The "most
singular" threshold behavior then coincides with that
described in Sec. 2 (30). It is interesting to note that,
in the case of a j0=0 conspiracy, although there is no
parity doub1ing, the threshold behavior is still given by
Eq. (111)because of the restriction (84).

We have shown that each Regge residue in a Lorentz
family has the correct t-channel threshoM behavior. If
we now continue the expression for the Lorentz-family
sum (86) into the positive4 region, we find that it also
possesses analytic properties which generate the usual
threshold behavior in the helicity amplitudes.

In order to see this we need expressions for the be-
havior of the functions d),„'(x)and $(s) for large (cosy (

and large (s(, derived in Appendix 3:
d),„'()r.}= (s.)'e+'(»("-», Im(s, )~~0 (112)

where s,=cos(x,), and

,(s)={s)-ms+c(»l —&'( Im(s)~~0 Re(s))0 {113)

Near the normal threshold, the cosines of the crossing
angles x (12) and c.m. scattering angle 0, (3'I) become
infinite. We use expressions (112) and (113) in conjunc-
tion with the Lorentz-family form (93), with large
s= —(s( (1+ate), to obtain the result

fO& +-P G(~)[g(~. g d)j-o'+XocS-c(occc)(IX+)'(+s+X')

&& (1a»,)+O([a(r b d) 1-"+~-+') (114)
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We see that this behavior coincides with that stated in
Sec. 2 (30). Froln the definitions of the amplitudes
fM,+

, in terms of foo , , (18-) we find that the threshold
behavior of amplitudes f oo„.coi ncid cs with that given
in Sec. 3 (54).

If one is prepared to retain the correlated Regge-
family trajectories and panty doubling away from /= 0,
oQc IIlay usc the Lolentz-falnily dccoIIlpositlonq which
satisfies all kinematic constraints. Alternatively, one
coUld choose pRY'tlcular values of Jo Rnd constrUct
residue fUnctlons with specific klQcIQatlc factors of
the form (108).

As an example of the behavior of the Reggc-pole and
Lorentz-polc expansions near 1=0, we consider the
scattering of spinless particles. In this case, the func-
tions d „.a'(s) and d„1&oa(b) are particularly simple.
The effect of parity conservation is trivial (84):

~.,+= X,.(1~~,~,)(1a&.&,)

and either the f+ or the f amplitude vanishes. The
Reggc expansion is of the form (27):

f=Q I' Doo (—s}

(P )'" (2n+1)
~.(~)(1+-'.")~(- ). (»5)

a p ) ~ Slnirn

Let us now consider the group-representation func-
tions which occur in the daughter and parent kinematic
residues (23},

Oa+I (b)
(2o —2o+1)I'(2o —2—i~)l'(a+1) I'o

aWa (b) (1)a

(o+1)

I'(o —ii+1)I'(o.+-o,—ai)

X
I'(2o —2o+ 2)I'(o+-,')

X (2 sinhb)'C„&'+I"&(—cothb), (116)

wlMI'c C„($)denotes flic Gcgcnbaucr polynomial of
degree ~ in x. Ke recall that 0 denotes the position of
the parent pole and (o —«) the position of daughter
poles for ~=1 2 3 ~ . The most general form for the
kinematic residue is (87):

a.,-=I W (b.)+.o., W (—b.)$
XpWa(bO)+oM "W (—bg) j, (117)

where e, and ~~~ Rx'e arbitrary parameters. VVC recaB
(68):

d (t; u, o) m,'—m„'—t
sinhb, = —,—coth8, =— . (118)

2t'i'm a(t o o)

The proportionality between the reduced residue "P

and thc klncIQRtlc residue. "4; ~ ls delnonstrRtcd . ln
Eq. (9'7). Let us, first of all, examine the behavior of

for small values of t. The argument of the function
C„—&~»(x) tends to —1, and we have a singularity of
thc fox'IQ t for all x. Conscqucntlp, thc lcduccd residue
apa will have a pole of order iO at f,=0.

Wc now consider the hrst two terms in the daughter
expansion (85) for large s and small t with acL, ' of the
form "6 = "W (b ) "W' (bo)

(119)

From expressions (116) and (89) for the functions
aWa(b) and (p,(s), we find, keeping terms less singular
thRQ $ —s )' 2BRo)

oa (t)6.(-s)=X.
~

1——~, (120)
m.mO& Sr ) '

where X.= 1/(o+1) alld Bft=-,'{fn„'—tl4'}(tn„'—/goo}.

Wc sec immediately that the daughter contribution
(121) cancels out the t Isingular-ity in the parent
expansion (120):

F'~'(i)Doo'(s)+'~ (t)Doo'-'(s) =
I ~

. (122)
o+141o.oloo)

Moreover, the daughter contribution vs vanish in the
equal-mass limit when 5@=0. This is a property
possessed by all the odd daughter residues (107)
because the Gegenbauer function is an odd function of
the argument, —cothb LKq. (118)j, for o: odd and in
the equal-mass case cothh tends to zero with t. We also
see that in this limit the V" singularities in the residue
functions are no longer present, owing to the appearance
of gt zero in the functions h(t; e,c) and h(t; b,d).

Near the threshold and pseudothreshold the kine-
matic threshold functions aors(t;u, o), A(t;b, d) tend to
zero. The Gegenbauer polynomial develops a pole of
order o, and the reduced kinematic residue "4 (/)
= (pp ) '+" aLa remains finite.

Before plocccding to cxamlQc thc LorcQtz-fRmlly
expansion; we 6xst note that the boost functions are
glvcn by

D 0 a+1(+a)—P'a(+a)—
2(o+1) sinhya

D Oa+I (+aa) —p'a (+aa)—
2 (o+1}sinhy"

The addition formula (55) gives, for the contribution
of a single Lorentz family (89),

f=G'(t)LI' h. ')+ -I"b .")

+oo«'(V o")+o.aoooi'"(V.~*)j (124)
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so

d, (s; a,b)
Slnh+og =

m +my —s

2fs~fÃ Q

We note that this is of precisely the same form as the
one we have obtained using the Freedman-Wang
prescription for Regge-pole cancellation (122). We see
tllat, thc lcad111g tcrlll lIl (125) will bc R good appl'oxl-
mation to the function V (y, q'), provided s))m, '+my'.
Moreover, a natural scaling factor for asymptotic
behavior has appeared —the product of the masses of
the two lightest particles.

V. GENERAL DISCUSSION AND CONCLUSIONS

We have shown that it is possible, within the frame-
work of Regge-pole theory, to obtain asymptotic
expaIlslons of the s-channel hellclty amplitudes fol
particles with arbitrary masses and spins, which
manifestly satisfy all kinematic constraints. The Regge
poles group together, with correlated residues, into
Lorentz families when the momentum transfer vanishes,
in order to preserve the usual Regge-type behavior at
high energies. In the case of elastic scattering, these
families may be identified with Lorentz poles, since our
helicity-amplitude expansion then coincides with those
proposed by Domokos, ml Freedman and Wang, ' and
Toiler."

Ke have also demonstrated that asymptotic behavior
may be determined either by adopting a prescription
similar to that used by Freedman and Wang in the
spinless case or by considering the expression for a
Lorentz-family sum. The latter procedure is to be pre-
ferred when examining forward scattering, since the
changes in power behavior which occur are then simply
expressed in terms of crossing-angle products. More-
over, the Lorentz-family expansion in the physical
region varies smoothly as a function of the external mass
ratios and momentum transfer. Vfe 6nd that, s-channel
helicity amplitudes behave in the following way at t= 0,
for large s,

g . -g~—k&l~—~i~!+i&—~i~l)~@~—k&l ~-6—i~I+i ~&+iol)
ed;eb

where the contribution arises from a Lorentz family
with a parent Regge pole at a=a(0) and conspiracy
parameter jo.

The group-theoretic approach suggests that we can
write the ordinary Regge residue as a linear combination
of kinematic residues 5" and a dynamical residue

1 h(s; a,b) m, '+mP —s '+'
2~ (v. )=-

a+1 2m.ml, h(s; a,b)

2 f s
as s~ .

I m.m, i

G"'"(t), depending upon the Lorentz-family parameter
ja. Provided that the function G"'"(t) becomes diagonal
in jo at k=0, and poles group into parity doublets for
nonzero jo, all kinematic constraints are automatically
satis6ed. This suggests imn1ediately the possibility of
systematically constructing models for Regge residue
function S.
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APPENDIX A: KINEMATIC FUNCTIONS

We consider the kinematic functions h(s; a,b) and p,
de6ned by Eqs. (6) and (8), to be positive in the s-
channel physical region We d.e6ne the principal sheets

of these functions to be such that they are real analytic,
i.e., Q(s)j*=y(s*) and I h(s;a, b)]*=A,(s*;a,b). This
implies that, for h(s; a,b), we must cut the s plane from

s=(m, +ml)' to s=(m, —ml)' and that for p, the s
plane is cut wherever s lies outside the physica, l regions
of the s, t,u plane.

The process of analytic continuation in crossing from
the s channel to the t' channel takes us from a region
wh«e s=

IsI�
(1+ie) «R regi» ~h~~~ s= —

IsI�
(1+i~)

and for consistency the imaginary part of s must vanish
betloeen the normal and Pseldothresholds. Thus for

A(s; a,b) and h(s; o,d) we pass onto the second sheet
Rnd ~(s;a,b)= l~(s;a,b)I, ~(s;e,d)= I~(s;e,d) I

in thc
t-channel physical region.

Similarly, the function P is positive in each physical
region.

In general, when we consider functions of the param-
eters s,t,u all ambiguities are removed by giving these
parameters small "positive" imaginary parts above
corresponding thresholds and small "negative" imagi-

nary parts below the pseudothresholds. Confusion may
occul' 111 tile CRsc wllcl'c m )mg+m +me wllcll, fol'

example, the function h(s; a,b)A(s; e,d) has disjoint cuts,
but we note that formally particle (a) is unstable. A

small, imaginary part added to the mass m separates
the different threshold cuts "vertically" and permits us
to follow the trajectory of s through each cut from
above.

It is to be noted that with this crossing path one does
not "pass over" dynumical cuts in the s plane. This
convention does not affect the expressions for crossing
angles y'ven by Cohen-Tannoudji et c/."The expres-
sions only appear different because the threshold func-
tions which they de6ne change sign on crossing.
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APPENDIX B: ANALYTIC CONTINUATIONS OF
ROTATION GROUP REPRESENTATIONS

I et us first of all recall some properties of the half-

angle factors $iq (s) '4:

properties
5.i+(s)+5u, (z)=be(s)

6),.+(s)—B),.-(s)=e+' "-6, i,.(s). (BS)

P„i,(z) —(1+s)—g'(i+&((1 «)
—)[i—v[

For angles 8 in the range —m &8&x and integral or
half-integral parameters j, m, and m', we define"'~

where we always, in defining the principal sheet of the
function (1+s)~= $1—(—s)]~ cut the s plane from —1

to —~ and take
~
(1+s)

~
=(1+s) for s) —1. In this

case $ii (s) is a real analytic function for li,X' integral
or half integral. For large

~
s ~, we find

&+i'~l~&(i—v[ Re(s) y0
hi (s)=~s~ ""

sT(A/2)ii+i'i Re(s)(0

Im(s) ~0, (B1)

where X =max((X~, ~li'j). In addition we find as

(l~
i

s-' "i).') =dg, .&'(8) =d), ),.&(s),

( 1)X—i'g „,i(s)
—«8&0

0&8«

-I (j+X + 1)1(j—~„+1)-'i2
Av'(s) =

-I'(j+~-+1)1'(j—& +1)-
1+s~gi+x ~ ~1

(x [ ( ( (—1)-:&'-"'+~"-"'~&

2) k2)

where s= cos8.
The function dq&, .'(s) is defined for

~

1—z
~
(2 by

(B6)

g», (z) =(1—[s])-~ii+'~,

and we have the symmetry relation

4), (s) = ti i, (—z)

(B2)

(B3)

We also define new functions:

b"()=lLb'()~ """4- ()j, I () o (B4)

P(—j+P, , j+ y +'1;1+ /li —y']: (1—z)/2)x,(»)
1(1+[~—V/)

where F(a,b; c:s) is the ordinary hypergeometric func-

tion LHTF 2.8(1)j. There exists a unique analytic
continuation of this function into the whole s plane cut
from —1 to —~. When ~s~ is large, we find LHTF
2.10(3)]

where p„=-', ( ~

X+'A'
)
—

~

X—li'
~ ), which have the w here

P (2j+1)( 1)g(i—v+[i—i'[)
L4v'(s) =

P'(j+~-+1)1'(j+l -+1)1'(j—~ +1)i'(j—& +1)]'" 1+s&

p1+z i 2
xl & —j+l, ~ I., —2j: —. (Bg)

k 2 1
In the special case X=V=0, we find

I'(2j+1) p1+s ' ) 2 ~Doo'()=6'()=
LI'(j+1)j'E 2 k 1+s)

(B9)

We now continue this function in j away from half-integer or integer values, and define the principal sheet to

have no cut for j large and positive. ' This function possesses symmetry properties for complex j similar to those

of the functions diaz
& for integral or half-integral j:

Dig. &'(s) = e+' &&+"&Di g '(—s), Im(s)~~0

1, Re(s))0
Di),. '(z~)=e"' ~"—"'~D . '(s)X Im(s) ~(0.

e+"~& Re (s)(0

(B10)

(B11)

We now define special linear combinations of these functions which occur in Regge theory:

sir'+(s) = 4v(z)Av'(z)+ (—1)'+""5~ v(s)A-i '(s),
&Xi '+(s) = bv(s)Dii, '(s)+(—1)"+""&, ), (s)DX i '(z),

~ In this section we shall use (HTF) to denote IEigher Transcendental I'functions, edited by A. Erdblyi (McGraw-Hill Book Co., New

York, 1953)."M. E. Rose, Elementary Theory of Angllar 3/Iomentum (John Wiley Bz Sons, Inc., New York, 1957).
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D» &+(s)=D». &(s)+s&'~"'Dq q. &(s), where f'= &1, Imp~0.

The functions E+ and D+, and E and D, are so constructed that they contain "even" or "odd" powders of g,
respectively, in an expansion for large ) s ~;

D&+(s) =sr'-&+&(as+erg '+ass-4+ )
pi+(s) —sj-&m-5k'($ +g g s+$y-4+. . .)

vrhere u; and b; are constants. Moreover, the E+ functions may be simply expressed in terms of tIM D+ functions:

~». '~(s) =&»'(s)D» +(s)+~»'(s)D» -(.).
The asymptotic behavior may be determined from that of the functions D» &'(s):

(814)

,s~ &'F(2j+1)e+'(t~)("'-x) 1, Re(s))0
D x'(s)= Im(s)(~0. (815)

LF(j+)I, +1)F(j+p +1)I'(j—X +1)I'(j—p +1)J" e+' ', Re(s)(0

In conclusion we state a property of the function d». J(8) for small 8;

d». '(())= (sin8) ~"+"'~, cos8 -+ %1.

This relation may be derived directly from the definition (86).
(816)

APPENDIX C: REPRESENTATIONS OP THE HOMOGENEOUS LORENTZ GROUP

Any element of the Lorentz group may be decomposed into a product of rotations, and boosts in the s direction. '4

We are concerned here vrith representations of these boosts vrith a spin basis, ~6 27

(sX
~
e—'rc»

~
sV)=b».d„.x &'0'(y) .

The parameters jo and 0 RI'e IelRted to tile elgenvalues of the Casimir operators of the homogengous I orient@

group by
,'J„„J„„=js+—o—1 and ,'e„g,pJ„„J—xp 2ioj s——, —

where the usual boost-rotation operators are

2&ijkjjk and E.i= Joj, .

We no~ de fine g=t,—'~ and obtain a series expansion for half-integral or integral jo,s,s', X and pure imaginary &

from the integral representation ' in terms of rotation-group representations, for
~
1—

g~ &1:

d- x'"(&)=&- Z (—1)~"'="-;x~P"";x,,0-'.-.~'"(*),

LF(+X+1)F( —)+1)F(+jo+1) ( —'+ ))' '
~et-, Xj0

F (s—)t—r+1)F(s+js—r+1)F(r+X—js+1)I'(r+ 1)

F(s+s' —r—r'+j s—X+1)F(r+r'+X—js+1)F(s'—o+1, r+r'+) —js+1;s+s'+2: 1—g)
f)r r', ee', x (&) (c6)

F(s+s'+2)xi& ' '" "+"&

-(2s+1)(2s'+1)F(1+s+o)I"(1+s'—o) sintr(o —s')-'ls

F(1+s—o)F(1+s'+o) sintr(tr —s)

The I' functions in,„.q;, restrict the range of sun1mation,

t'~ja=max(0~ js )t) &

r =min(s —)t, js+s).
"I & &oy«R De)»«go A»tarn anvil Str«h«e, &n«rnation«centr«or Theoretical Physics, Trieste, Report No. XC/6p/9

(unpublished}. There are several misprints in this paper.
~~ H. Joos, Fortschr. Ph~ik 10, 65 (1962}.',See, for example, Toiler's& wor& (Ref. 10). His normalization N„iis given hy t'(2r+t)(2z'+t)gvs any hi

symmetric than the,.ones we'use.
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Wc liow dccolnposc dses«se (x) Illto 'two pRI'ts,

d...«se (x)=D;,«~'e (x)+(—1) "D;,«-s™(x),
in such a way that the function has simple asymptotic properties for large

~
x(. We continue the expression for

d„.use (x) into the whole x plane cut along the real axis to & ea and use formulas (HTF 2.10) to obtain suitable
forms for Q„,„., 1'es(g) corresponding to D„I, '"(x).We find

F (s+s' —r—«'+ jo—X+1)F(a—s'+r+r'+) —jo)
+rs'; is'; I (g)

x ', {s 1 es—' x—+—je) (-g 1)s'+1—sF (a+s+ 1)

QIi s' —fT i, —s—0;s'—0. 1—r—r' —) go.'- —, j.—x &1 C8
1—g

end
F(r+r'+X —jo+1)F(s+a+ jo—X—r—r')0„'...', «se'(X) =-

gele-I-e"'-"+I» {1—x)"+I-'F(a+ s+ 1

x ) 1
gF S —0 1, —S—r 1—S—O'—Jo X f f: . i——pj. . C9

The function D„.«s' (x) for complex a is defined to be the continuation with Q„.,„.,
qs" (x) of the form (C8) for

) 1—g
) & 1 alld (C9) for

(
1—1/g ( & 1, with the ad.ditiollal factor (—1}

By using properties of the hypergeometric series (HTF 2.10) and the integral representation, it is possible to
obtain many symmetry properties of these functions:

D„.„s'{x)=D;.«s' (x)=D.:«-se (x)=(—1)-"D»e.(1/x)

If wc take illto Rccollllt thc lcstl'lctlolis (C7), wc filld tllat Des~lee (x) llas 'tllc Rsylllptotlc behavior

D, ,«ies(g)- [gpss(s-I-i«+s'ei) jg[~ oo

We then use relation (C10) to find

,«s'es(g) —
) g

(
ss(sI lX -eel) --( I—/g [~ oo

(C11)

Dooo"+'(x)=, ~1—x~ &1
a(x—1)

x-&&'+'&

a{x '-1) x

We consider the functions d„„«e'os+1(8),which occur in the reduced residue functions. The representation (C4) is

not sujtaMc since thLe sum over g js not finite for compIex g e obtain a digcrentirQ equatjon25 for the representa

tion functions and Gnat that it is possiMe to express them in the form

(1—x)' " 'F(—«, a —«+1—jo, 2a —2«+2:1—x)
dss —ss

'

+"(g)=~soi—
x'*&'+~'e-') F(2a—2«+2)

F(a+s+1—«)F(a+jo+1—«)F(a —jo+1—«)F(2a+2 —z)F(a+1—s) Ile

M„.= (2s+1) (2a —2«+1)
F (a—s+1—«)F (s+jo+1)I'(s—jo+1)F(s+a+ 2)F(1+«)

(C14)

(C15)

D"(x)d.. .«s"+I(g)

=Ds—X)(s+X+1)(a—X—«) (a+I +1—.)jlie

Xd,. „«+IIe~'(x)—p(s+X) (s—X+1)(a —«+X)

X(a —X+ I—«))'"d„„«"+'(g), (C16)

D"(x)= —2X(1—x}xilo—
dS

+1jo(a+1)+Qx'"+P.—jo(a+1)jx-'". (C17)

%c note that since -~ is a negative integer the hyper-
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APPENDIX D'. ADDITION FORMULAgeometric function in the expression (C14) reduces to
a polynomial in (1—x) of degree ii. We shaH be using
these functions in the kinematic residues and it proves
convenient to de6ne a "reduced" function

We use the following equation connecting Lorentz
transformations in the x-s plane:

~
—sX38~-sJ'28~—M 36' ~-t'J 2'—sE;eye—iJ2$'

which is real analytic in the cut x'I' plane.
From the properties of the hypergeometric series

(HTF 2.10), we find cos-,'8 —sin-,'8-
g
—iKgy ~

sin~8 cos28d .~io~(x) —i +xi(a+aid . —los(i/x)

D1
(C18)

By considering these group elements represented as
2+2 matrices~

Moreover,

&io&r(&+os ix) ( 1)jo—xd, &joe(x)

one obtains the relations between the angles stated in
Sec. 2 P(56) and (5'7)j. We now take

~ joan) matrix
elements of the Eq. (D1), where o is an integer:

d ~jo~(~+orix) —soli(a+s+jo —x)d . ~joe(1/x) (C]9)

By considering properties of the operator D", we find
for all X

(1 x) day —gag
' + (x) (1 x)

ai;(1—x)-~~' as x~1. (C20)

As x~ ~,0 we have similar asymptotic behavior to
that of the functions D„.i,&"(x):

d,. „),io'+'(x)= ix(-&~i'+"~, )x( —& ~
'+()-I (C21)

In addition, these functions possess similar symmetry
pl oper tlesq

(C22)

(2o —2ii+1)1'(20—2—a)i"(ii+ 1)
os+1(x) (1)g

(++1)
I'(o —«+ 1)I'(0+-',—ii)

X
I'(20 —2ii+ 2)I'(0+-', )

In conclusion we remark that in the case jo=s= X =0
the hypergeometric function (C14) may be simply
expressed in terms of Gegenbauer polynomials C„~;
We 6nd, using PITF 10.9(20)j,

=Z d-.'(&)d-"'"(»d.-"V') (D2)

For b, b', and y pure imaginary, we have essentially just
invoked the "group property" for representations of the
covering group of the four-dimensional rotation group.
We now note that the functions d„io'(8) (C4) are
nonzero provided that jo&j,s&0 —I. For this reason,
we rewrite the left-hand side of Eq. (D2) in the form

Z d"-i--'"(6)d- '(~)d.-~-- - '"(h).

Then, by using the functions D„.q&"(x) and Di, i, , &(x)
defined in Appendixes 8 and C, we obtain a modi6ed
expression for arbitrary 0..In particular, in the s-channel
physical region the addition formula takes the form"
(55). It should be noted that the functions D"' and D'
are determined uniquely by demanding that they have
maximum symmetiy and lead to similar asymptotic
behavior of the left- and right-hand sides of Eq. (55)
for large values of s.

We should like to remark that this additj. on formula
for the O(4) group has been given by Domokos" in the
special case m'=s'= jo=s=m=0 when it ieduces to .

2 do~o" (&)doo'(~)dioo" (&') =dooo" (v) .

"The addition formula as stated here holds up to spin-de-
pendent phase factors (—1)"' since for simplicity vie only
specify angles up to a rotation through 2m. That is all we need
for our present analysis.


