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Application of hard-pion four-point functions is made to = scattering on the basis of the SU(2) X.SU (2)
current algebra, a conserved vector current, a partially conserved axial-vector current, and the hypothesis
of single-meson dominance of intermediate states in T" products. The calculation uses techniques previously
developed for exploiting the content of the current algebra and the subsidiary conditions for an N-point
process. The = scattering amplitude is shown to include, besides the well-known pole diagrams, a set of
seagull terms. The Weinberg scattering lengths and effective ranges are found to be accurate to within a
few percent, since the hard-pion corrections at threshold are only of O (m.2/m,?. In the low-energy region,
the scattering-phase shifts are seen to be generally small and essentially model-independent, while at the
K-meson mass we find 80 —82>235°. All existing data (up to 1 GeV) can be fitted by adjusting one model-

dependent parameter.

I. INTRODUCTION

HE 7= system plays an important role in the

understanding of the strong interactions. Because
of its inherent simplicity, it has proved to be a testing
ground for dynamical theories such as S-matrix theory.!
For a long time, the only well-known experimental
feature of the == interaction has been the p resonance
which dominates the low-energy isospin 1, P-wave nr
amplitude. Information on other partial waves and
isospin channels has been almost nonexistent. In
particular, the S-wave I=0 scattering has been the
topic of rather extensive speculations in the past.
Fortunately, this situation appears to be changing
rapidly.2 The recent detailed analyses of pion-pro-
duction data undertaken by Walker ef al® and by
Schlein and Malamud* appear to support certain
consistent features for low-energy scattering in the
I=0, 2 channels. Indeed, there appears now to be
sufficient ground to believe that the S-wave I=0
phase shift does in fact rise through 90° leading to a
resonance (which we will call the ¢ meson) somewhere
between 700 MeV and 1 GeV. It also appears that the
I=2 scattering is small and generally repulsive in the
S wave in this energy domain.

With the development of the soft-pion current-
algebra methods, there has been a renewed interest in
the S-wave or interaction since it appears in many
soft-pion current-algebra calculations. The good results
of the soft-pion analyses [which include the K form
factors, low-energy single-pion production, and the
evaluation of the pion-nucleon I=3, 3 S-wave scat-

* Research supported in part by the National Science Foun-
dation.

1See, e.g., G. F. Chew and S. Mandelstam, Phys. Rev. 119,
467 (1960); Nuovo Cimento 19, 752 (1961) ; F. Zachariasen, Phys.
Rev. Letters 7, 112 (1961); G. F. Chew, sbid. 16, 60 (1966).

2V. Hagopian, W. Selove, J. Alitti, J. P. Baton, M. Neveu-
Reue, R. Gessarolli, and A. Romano, Phys. Rev. Letters 14, 1077

1965).

( 3 W). D. Walker, J. Carroll, A. Garfinkel, and B. Y. Oh, Phys.
Rev. Letters 18, 630 (1967).

4+ P. E. Schlein, Phys. Rev. Letters 19, 1052 (1967) ; E. Malamud
and P. E. Schlein, ibid. 19, 1056 (1967).
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tering lengths (in particular, the relation @y
+2a3,=0)] all require the assumption of a weak
low-energy ww interaction.® Similarly, the soft-pion
current-algebra calculation produces the correct shape
dependence in the K — 3r Dalitz plot® without the
need of a = interaction. Using soft-pion current-algebra
methods, Weinberg®? has in fact obtained the re-
markably small values for the /=0 and I=2 scattering
lengths of® a®=0.15m," and @¢*=—0.043m,~ . Sub-
sequent analysis by Khuri,? based on additional
assumptions involving commutation relations of the
axial charges with the scalar and pseudoscalar densities,
yields essentially the same result. On the other hand,
Fulco and Wong,® using a dispersion-theoretic ap-
proach, have argued in favor of considerably larger
scattering lengths to obtain phase shifts comparable
to those in the data by Walker ef a/.2 They have com-
mented that because of the unphysical extrapolation
involved in the soft-pion calculation, the physical
scattering lengths may be considerably larger than the
Weinberg values. In this paper, we will show that this
is not necessarily the case, and if one generalizes the
usual current-algebra analyses to the on-shell hard-
pion calculations, the Weinberg scattering lengths are
found to be valid within a few percent. Furthermore,
agreement can also be achieved with all the data from
threshold to 1 GeV for the S- and P-wave scattering
amplitudes.!*

5 S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

6 H. D. 1. Abarbanel, Phys. Rev. 153, 1547 (1967).

7 Different but also quite small scattering lengths have been
obtained by J. Schwinger, Phys. Letters 24B, 473 (1967). This
calculation uses a different assumption for chiral breakdown
based on a nonlinear representation of the chiral group.

8 We use the experimental value of 94 MeV for the pion decay
constant Fr.

9 N. N. Khuri, Phys. Rev. 153, 1477 (1967).

1 7, R. Fulco and D. Y. Wong, Phys. Rev. Letters 19, 1399
(1967). These results are, however, contradicted by other analyses;
see, e.g., H. Goldberg, Northeastern University Report (un-
published).

11 A brief description of some of the results of this paper was
given in R. Arnowitt, M. H. Friedman, P. Nath, and R. Suitor,
Phys. Rev. Letters 20, 475 (1968).
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The 7= calculation discussed in this paper represents
an application of current-algebra techniques recently
developed® for calculating hard-pion N-point functions
involving , p, A1, and o mesons. We find that the
assumptions of single-meson dominance, the chiral
SU(2)XSU(2) current commutation relations, con-
served vector current (CVC), and partially conserved
axial-vector current (PCAC) require the inclusion of
a specific set of pole and seagull diagrams in the
calculation of a scattering amplitude. In Sec. II, we
review the general formalism for calculating vertex
functions and scattering amplitudes. Section IIT is
devoted to the calculation to the total == scattering
amplitude. In Sec. IV, we carry out the partial-wave
analysis for S and P waves. These results are then
compared with the experimental data in Sec. V.

II. REVIEW OF THE FORMALISM

The basic framework of the present calculation is
provided by the following set of equal-time commu-
tation relations involving SU(2) triplets of vector and
axial-vector currents, V#, and 4%,:

(0= LVa(x), V¥o(y) 1= teanc V¥e()0* (x—2)

+¢-No. S.T., (2.1a)
(2 =y )[A% (%), V*s(y) 1=teareA  e(x)8* (x—)

+¢-No. S.T., (2.1b)
8(2°—y)[V°a(%),4%0(y) J=ricarod o ()54 (x—y)

~+¢-No. S.T., (2.1¢)
3(a"— ) [A%(%),4#5(y) 1= teape Ve (%)8* (x— )

+¢-No. S.T., (2.1d)

where “c-No. S.T.” stands for ¢-number Schwinger
terms. The vector and axial-vector currents are as-
sumed to obey the conservation laws

9,Vh=0,
0, d¥#,= Mz @q ’

(2.2)
(2.3)

where F, is the pion decay constant® and m, the pion
mass. Besides these hypotheses, two other dynamical
assumptions were made in the analysis given in I and
II1.*2 The first is the assumption that one may saturate
intermediate sums in the T products of current oper-
ators by single-meson states. This hypothesis is essen-
tially the hard-pion analog of the “gentleness” assump-
tion in soft-pion calculations and is a generalized
version of p dominance for N-point functions. It was
seen in I and IIT that single-meson saturation leads to
the following result. A T-matrix amplitude for a given
process is to be calculated by retaining all “tree” and
“seagull” diagrams from an appropriately constructed

2 R. Arnowitt, M. H. Friedman, and P. Nath, Phys. Rev.
Letters 19, 1085 (1967); Phys. Rev. 174, 1999 (1968) (we will
refer to this paper as I). R. Arnowitt, M. H. Friedman, P. Nath,
and R. Suitor, preceding paper, Phys. Rev. 175, 1802 (1968)
(we will refer to this paper as III).
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“effective” Lagrangian.®* More precisely, let ¢4, 2%,
%, and o be a set of interpolating Heisenberg fields
for the , p, 41, and o mesons (e=1, 2, 3 is the isotopic
index). Then the effective Lagrangian was seen to have
the form

£=£(o)+£1, (24)

where £, is the free-meson Lagrangian and the inter-
action Lagrangian is a polynomial in the meson fields:

Lr=L@p+Lwt---. (2.5)

Here, £, is cubic in the fields, £y quartic, etc. If one
then adopts the convention that the coupling constants
of £3) are of first order, those in £ are of second order,
etc., then the prescription of single-meson saturation
implies that one calculates a scattering amplitude in-
volving NV “in” and “out” mesons using £ to (N —2)nd-
order perturbation theory. (This guarantees that only
tree and seagull diagrams appear for a given process.)
Thus, to calculate a vertex function (N =3), one need
only use the effective Lagrangian to first-order per-
turbation theory; a two-body scattering amplitude is
obtained by using £ to second order, etc. In addition,
the above assumptions imply that the currents are
related to the fields by

V“a= gp'v#a ) (2.63.)
A¥y=gaats+F 0% p,. (2.6b)

Thus, the field-current identity'® arises naturally here.
The free-meson Lagrangian £, has the form

Lo=Lrt Lot Lt Los, (2.7)
where
Loyr=— ¢*(0,00) 5 (0 2 Pua— M2 0a2) , (2.8a)
£ )= —0’”((9,,0')"’—% (0'"0'14_ m¢7202) ) (ZSb)
£ ©p= %Gﬂ'a (6,;0,,,, - al’”ﬂa) +% (%G'”aGﬂ va
— M Vyat%s),  (2.8¢)
Lya=—3H"5(0,0va— 0,0,4)
+3GHY Hyya—ma’a,00%,). (2.8d)

The masses appearing in Eqgs. (2.8) are the physical
, 7, p, and 4; masses. The cubic part of the Lagrangian
was seen in I to have the form

LE@=L@rat Lo, 2.9

13 One must also assume that the particle vertex functions can
be approximated by a polynomial in the momenta (which is
presumably good for sufficiently low momentum transfers). Thus
the Lagrangian of Eqs. (2.10) allows for at most cubic structures
in momentum. .

14 The constant g, is defined by the vacuum-—p-meson matrix
element: (0| V¥, (O)ﬁp,kb) =g 0 Ne* (k) ], where NV =[ 2wz (27)3 ]2/
and e is the p polarization vector. Similarly, g4 is defined by the
vacuum-A4;-meson matrix element:

(0] 4#4(0) [ A1,k,b)=gada N e (k)]

15 T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).
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where

ARNOWITT et

175

al.

L@yrpa= %fabc (Zgw rp(P"bﬁocvua“l')\r TpPuaPy bGV"c+ Zgprvuu‘Pbauc‘i‘ 2/-‘1rpA ‘PaG“ybljuvc+ 2}\1rpA7)ua Y L
+ 2)\1rpAaﬂa<vaGuvc+ gpppvuavv bG i c+ zgpA AVualy bI] l"uc"" )\pAAauaavbG l'Mc’*’llvpp1>Gwnz(;V)‘ bG)\“c

and the o couplings are

+ﬂpAAGuvaH V)‘kanc) 3 (2-103)

L0 =3LorrPaPa0 T3 NorroPa %ta""l'%gvpp'”“a'uﬂa”'l'%)‘vppGMaGﬂvaU'*'%gwAAa”aauaO"l‘ MNoasHP H o0
+X¢r1rAa“a (Puao'+ﬂapp7);mG“yaa'y'l"I‘aAAauaH“ya'a'v'i',“MrA ‘Puaprao'v""Naﬂﬂ‘Paﬁavaa'v"*‘)\mui Pal’ a0y

A first-order Lagrangian formalism has been used in
Eqgs. (2.8) and (2.10). Thus, ¢*,, o¥, G**,, and H*, are
to be varied independently of the meson fields ¢,, o,
v#,, and a#,. The Lagrange equations thus determine
¢*, in terms of the meson fields by

¢"a= an Pa— 631/8 ¢”a .
Similarly, one has
Guva= 0,0ya— 0,0pa— 20L1/6G*" ,

(2.11)

(2.12)
etc.1

Equations (2.6) allow one to make use of the field
equations and the field canonical commutation relations
to impose straightforwardly the current-algebra con-
ditions (2.1)-(2.3). These constraints control the
dynamics by determining some of the coupling con-
stants. Thus, the £@)r,4 coupling constants are deter-
mined in I to obey the relations

Grno=LpAAd=Lpop=M g, (2.13a)
Eohrro=[1—ga*(F*ma*)™]

+gatmP(FPmaty ™ N4, (2.13b)

Aepa=—m4a2gepa=—F.mr2(g,g4), (2.13c)

g F Kppa=gamPiAa—mam,;2), (2.13d)

2F pipa=ga8, — 88477, (2.13¢)

gimy i glima=F.2, (2.13f)

where Aa=g,m,~*\,44 1s the anomalous moment of the
Ay meson. Equation (2.13f) is the first Weinberg!” sum
rule. Neither the second Weinberg sum rule (ga=g,)
nor the KSRF relation'® g2=2m/F,*> emerges as a
consequence of the current-algebra requirements. Thus
the coupling constants N4, pppp, and p,a4 and two of
the three parameters #, ¥, and 2, where

x=V2m,/ma, y=ga/8, #=8/(FsV2m,), (2.14)
are undetermined by the current algebra and must be

16 The canonica)lly go?jugate )pairs of variables are (oo,0),

04, ®a) (Goias®ia), and (Hoia)Bia).
oy 5. Weinberg, Phys. Rev. Letters 18, 507 (1967).

18 K, Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966). These calculations have been shown to be incomplete
and when the full content of the current algebra is exploited, the
analyses yield identities rather than a determination of ]§,. See
R. Arnowitt, M. H. Friedman, and P. Nath, Nucl. Phys. B5, 115
(1968).

+g¢¢v03+)\uaq0'0'p0‘“ . (2.10b)

obtained from experiment. One finds>® x221, y=2s~1,
and A 42<1/2. There are no data presently available for
determining g,,, or u,44. However, these constants
will not enter into any of the considerations of this
paper.®

A similar analysis is applied in I to the ¢ couplings.
One finds

Frga‘)r1r= m”2)\3__m7r2>\1’ Fw)\mrqr= - ()\1+ >\2) )
F«gvAA:" (xzyz)-zzm,;z()\l—')\z) ,

2.15
V?mpuvrA= ’_xzyz'u"’AA ’ ( )
Zopp= O=#vpp 7
where
M= (gama)Nora, M= (gama)Nsza, (2.16)

)\35 >\1+F1rl‘a1r:r .

Thus, A1, Ag, As and Noppy Aedd, Zosoy Aseo are uncon-
strained by the current algebra. Only the constants Ay,
N2, and A3 will enter into the considerations of this
paper. The coupling constants p,pp, pe44 and A,,p,
As44y §oooy Aeoe May be considered to be “orthogonal”
to the current-algebra conditions. For, not only are
they not determined by these constraints (as is also
true of A4, A1, Ag, A3), but the current algebra does not
produce any relations at all involving these couplings.

The extension of the above discussion to quartic and
higher parts of £; is given in III. In order to carry out
this analysis, it is necessary to make a second dynamical
assumption, beyond the single-meson saturation as-
sumption. For, to determine scattering amplitudes it
is necessary to evaluate the so-called ¢ commutator,
defined by

8(0—1°)[¢a(),4%(y) ]=16*(x—y)oar(x). (2.17)

As pointed out by Weinberg,? o,; has the important
physical significance of governing in part the breakdown
of chiral invariance. The current algebra, which allows

B R. Arnowitt, M. H. Friedman, and P. Nath, Phys. Rev. 174,
2008 (1968).

20 We note, however, that they would contribute to the p and
4, electromagnetic mass shifts and could conceivably be used to
cancel logarithmic infinities and make these shifts finite.

21 The ¢ commutator does not enter into three-point functions
due to isospin invariance. We note, however, that in SU{(3)
extensions, analogous ¢ terms will contribute even to the three-
point functions.

2 . Weinberg, Phys. Rev. 166, 1568 (1968).
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for chiral breakdown, also does not determine o,3, and
some additional assumption concerning it must be made.
Since, in other aspects of the analysis, single-meson
intermediate states, i.e., pole dominance has been
postulated, it is natural to assume that the ¢ com-
mutator is also governed by a resonance pole (much as
one assumes 9,4 *, is dominated by the pion pole). The
only meson for this purpose with the right quantum-
numbers is the o meson itself. Thus in III, the assump-
tion was made that o.3(x)~8,.0(x). This postulate
has the appeal of relating chiral breakdown to a physical
agency, the ¢ meson. In the soft-pion approximation,
it leads directly to the Weinberg = S-wave scattering
lengths,® and we will see below that the hard-pion
analysis changes this result by only a few percent.
Thus the ¢ assumption appears to be in agreement with
existing data.®

The o-commutator assumption leads to one more
condition on the £, couplings, i.e.,

As=1/\ (2.18)

and allows one to construct the higher parts of £;
consistent with the current algebra restrictions. The
explicit form of £ is given in III. There exist a large
number of coupling constants ‘“‘orthogonal” to the
current algebra in the same sense that u,,,, 4,44, €tc.,
of £s) are. It is natural as a working hypothesis to set
these constants to zero (two of which would contribute
to ow scattering) since they appear to be unrelated to
the current-algebra principles.?* This ‘“minimal”
Lagrangian is restated in the Appendix. The 7= am-
plitude calculated from it will then depend only on
two constants, A\; and A,. Actually, at low energies, the
amplitude is insensitive to both A\; and As. At inter-
mediate and high energies, \; and ), enter only in the
combination A=A~ A+ 2(m,2/m.*)Ae. Thus the ampli-
tude will depend essentially on only one undetermined
coupling constant A, which will be seen to determine the
width of the ¢ meson. We now turn to the evaluation
of the rr scattering amplitude.

III. == SCATTERING AMPLITUDE

As discussed in Sec. II, the effective Lagrangian
technique requires that the Lagrangian be used only
to second order in calculating a scattering amplitude.

APPLICATION OF HARD-PION FOUR-POINT FUNCTIONS
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One need retain only the £¢)+£(y part of the £;
(since by convention the coupling constants of £
are of order »—2) and one is to use £ to first-order
perturbation theory and £¢) to second order. Thus,
the only parts of £, which will contribute to =w
scattering are the terms quartic in the pion fields.
These structures are given in Eq. (A1) of the Appendix.

A convenient way of calculating the S-matrix element
(p1c,p2d out|qia,gqb in) is to contract one of the out-
going pions (e.g., the one of momentum pq* and isotopic
index d):

(p16,020 018,g2b) = i[ 2002 (2)3 ] /2
X / d*x e 72(pic] ja(x)| qra,qeb), (3.1)

where ji(x) is the source term in the pion field equa-
tions, i.e.,

(= PH+ma?) pa(x)= ja(x). (3.2)

Contributions to js(x) arise from both £ and £¢.
Thus, we write

Ja(®)= Jacs (%) + facn (). (3.3)

£¢4 produces contributions to j4(x) cubic in the field
variables and hence ji4 contributes only seagull
diagrams to Eq. (3.1). The use of a first-order
Lagrangian formalism, however, implies the existence
of additional seagull contributions arising from ).
For, from Egs. (2.7)-(2.10), one has that jag is a
quadratic function of the various meson field variables.
If one eliminates, by the first-order field equations, the
variables ¢ua, 04, and Gy, from jaa, then cubic
structures local in the fields (and second order in the
coupling constants) will arise by Egs. (2.11), (2.12),
etc. We write the pion source js(x) then as a sum of
two terms, the “pole” part and the seagull part:

Ja(®)= ja® (2)+ ja®P (x),
where by Eqgs. (2.7)-(2.10) the pole part is

jd(P) = (ngrp'—mpz)\np) Gdcﬂ)epa“§0/
+ (gvmr— mrzxarr—mvzﬂvwr) Qa0 (3.4b)

and (keeping terms only up to second order) the total
seagull part (from both jai) and jac) is

(3.4a)

jd(SG) = gwrﬂ)\rrpedfeeaﬂh Qoaau ¢ha“¢f+ {%ﬂvmrgarr‘i" (Fw)-_zmrz" % (Far)_zl:mA4 (gA)\ vrA)_2m02
+ 2 (gAmr)\uwAmA_z)2+ 84 (mA)_zmrzxﬂ'A]} Pd (¢a)2+ {%,U«nrr)\crr’i_% (FT)_2[ ()\ u’A)—lXawA'I" 1
-2 (gA)\VTAmA—z)z:I} ‘xada"‘pﬂauﬁpa_ (F'ir)—2()\arA)—1prA (<Pa3"§0¢)6,,<pd . (3.4(:)

 As pointed out by M. G. Olsson and L. Turner, Phys. Rev. Letters 20, 1121 (1968), the =r scattering lengths enter importantly
in the7grocess m+N — 2r+N. The present data appear to be consistent with the Weinberg value but not with the Schwinger value

(Ref.

. See also the analysis of L. N. Chang, Phys. Rev. 162, 1497 (1967).

2 The two “orthogonal” constants which contribute to rr scattering are retained in the hard-pion Ward identity analysis of four-
point functions given by I. S. Gerstein and H. J. Schnitzer, Phys. Rev., this issue, 175, 1876 (1968). In the Ward-identity approach,
it appears to be more natural to retain these two constants, and set the rest to zero.
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Fic. 1. (a) Pole diagrams which contribute to the == scattering.
Black dots represent the vertices computed from current algebra.
(b) Contribution to =7 amplitude from seagull terms as demanded
by current algebra. The first diagram represents a set of terms
involving -, p-, and 4-dependent coupling constants alone. The
second diagram represents those terms which involve o-dependent
terms.

In Egs. (3.4) we have made use of Eq. (2.15) to express
Aonr i terms of Aera and X,r4 and only terms involving
the pion field in 7;®® have been retained since only
these contribute to Eq. (3.1) to the required second
order.

The contribution of 74 to the matrix element of
Eq. (3.1) can be immediately obtained by approxi-
mating the pion field by a free field. Since, however,
7a® is only linear in the coupling constants, one must
expand the fields to one more order to get the required
second-order contribution. Thus, from Egs. (2.7)-(2.10)
one finds that

[ (— OPm?)+ %0 Jona ()

= _Eabc[grrpﬁab‘f’"c'{")\vmpav(ﬂ"“bﬁovc)] ’ (3'5)
('—' D2+ma2)0' (x) = % (gvmr_ mrzﬂﬂwr) PaPa
+ (%}\vrw_ﬂvmr) ﬂo“aﬂopa ) (3-6)

where we have kept only those source terms on the
right-hand side that give contributions to Eq. (3.1) to
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second order. Thus, upon inserting the solutions (to
first order) of Egs. (3.5) and (3.6) into 74 one obtains
the total j4® valid to second order.?s These structures
give rise to the direct channel and crossed channel ¢
and p poles of Fig. 1 in Eq. (3.1) [as can be seen from
the fact that the p and o propagators arise upon solving
Egs. (3.5) and (3.6)].

The computation of the scattering matrix is now
straightforward. It is convenient to define the function

M ;4,0 according to

(p16,p2d| q18,g2b) = — i (2m)*8* (q1+ga— p1—p2)
X[lﬁwawqgwp1wp2(ZT)B:I_IIZMcd,ab (3'7)
and introduce the invariants s, ¢, and %, where
s=—(q1tg2)*=— (pr+p2)?,
t=—(q—p)*=—(g2—p2)?,
u=— (q1—p2)*=— (g2— p1)*.

By virtue of isospin and crossing symmetry, M can be
written as

M oaab(5,5,8) = 8,18 0ad (5,8,0) +8,2c00aA (t,18,5)
+80a00.4 (u,5,8).  (3.9)

We may divide 4 (s,t,%) into its pole and seagull parts:
A(stu)=AP(s,t,u)+ASC(stu).  (3.10a)

(3.8)

For the pole contribution one finds

AP (stu)= { L(grrnp)?—tNrrp(grmp— i‘mﬂz)‘np)]

s—i
X

+u A t] +I:ga1r1r_ mazﬂarw
U—m

+ (%s_mwz))\arr][gawr— Sthorr
+ (%s_mwz)xwwr]‘—z (3.10b)

S— My

and for the seagull piece the result

ASG(s,t,u) = _Harﬂ'[gwr-zr'l‘)\vww(%s_m7r2)]+F1r_l[_4m1r2(ngp_lgw1rp+%mA2gA_1)\v1rr>\urA_l)

+mA2gA_1gv1r1r>\n1rA—l:|+SFW_2[gA2mA_4()\a'1rA)2_%+%Xo'7rA)\a1rA.‘l+3F1r(F1rgp._1g1r1rp

We note that the numerators of the p and o poles are
not constants. This is due to the fact that Eqgs. (2.10)
allow energy and momentum-transfer ‘dependence in
the 7rp and wwo vertices.

IV. PARTIAL-WAVE AMPLITUDE

The s-channel I=0, 1, 2 isospin amplitudes M(s,)
can be obtained from A (s,t,u) accordingfto the usual
relations

Mm° (S,t) =34 (S,t,u) +4 (t,u,s) +A (u,s,t) ’ (4.13.)

(3.10¢)

+%mA2gA—1)\tnr7r)\mrA~1):l .
M(s,t)=A (tu,s)—A(u,s,t), (4.1b)
M2(s,t)=A (t,u,5)+A (u,s,t). (4.1c)

M? contains the direct o pole and crossed ¢ and p poles,
M?* contains the direct p pole and crossed ¢ and p poles,
while MZ%jcontains only the crossed poles. The seagull
terms contribute to all three amplitudes. One may

. The second-order contributions obtained from expanding the
pion field ¢a(x) to first order do not contribute to the matrix
element in Eq. (3.1).
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expand M7 in partial-wave amplitudes:
MI(s)=—16r 21 2IH+1)Pi(2)AN:(s), (4.2a)

where
AT (s)=s"2kexpidl;(s)] sind?;(s)
1

=— (327)1 / dz Pi(5)M(s,0).  (4.2b)
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In Egs. (4.2), zis the cosine of the s-channel scattering
angle in the center-of-mass system and 2k= (s— 4m,2)1/2
is the relative momentum in this system.

As a consequence of Bose statistics, the only nonzero
S- and P-wave amplitudes are 4%, 42, and A%. These
quantities can be obtained directly from Egs. (3.10),
(4.1), and (4.2) and we record their values here. The
S-wave I=0 amplitude is given by

el 161I'.A.°o= %m.ﬁF.”{m,z ()\1— )\2+ 25,)\2)2 (s--m,”)"1+ I: ()\1"' )\2)2—' 46, ()\1_1+ )\2))\2— 4]
-+ sm,‘z[: ()\1— )\2)2'{— 2420 —2 ()\1— )\2))\1]} +F.,,-_2{ 2 (1 — x4y2%)\A)222
X 2s+m2—4m2)3x, L (x,)+3m2 (A\—Not2e,M2) 3%, L (2,) — 2m.,2
+ma2 41— 242 4) (14 22— 2492225\ 4)+ (\1—A2)2 4 2(1— M2) — 2e, M%)
-_ %SI:1+ 2 (1 —_ x“y%)\A) (3+z2—x4y222%)\,1)+%()\1— )\2)2-’—)\1—1)\2—' ()\1— )\2))\1]}
+F,‘2{5m,2+m,2|:— 5—I—x4y2)\A+5 ()\1+)\1_1))\2+ 2)\12—‘ 2)\1—1)\2'— 2)\1)\2]

For the I=2, S-wave amplitude we find that

+s[— 3ty a2 A=A ). (43)

—167A2%=F,2{— (1— %%\ 4)?2 (2s-+m2—4m.?)32,LO (x,) - 3m2 \1— Aot 26,02)?
X1x,LO (x,)— 2m 2+ m2[—2(1— 2%y2iN ) (14 22— 22922220 1)+ (\1— Ao)?

+2(1—22)— 2e A2 ]— 351 — (1—2ty20 ) B+ 22— 2422220 4)+ 3 (M— M)+ AT
- ()\1—>\2))\1:|}+F,—2{ 2m,2+m,2(—2—%x4y2)\,4+2>\12 —%s —%MA-F)\lz—)u—l)\z—)\l)\z)} s (44)

where e,=m.2/mp2, xs=4k%/mz?, x,=4k*/m,?2, and 3tLO=1—¢"1In(1+4£). The parameters #, ¥, z are defined in
Eq. (2.14). In Eq. (4.3), the first curly bracket arises from the direct ¢ pole, the second is from the crossed channel
o and p poles, and the third from the seagull diagrams. In Eq. (4.4) the first curly bracket comes from the crossed
channel ¢ and p poles, while the second gives the contribution of the seagull terms. No direct pole occurs in this

channel as no I=2, J=0 meson appears to exist in the low-energy domain we are considering.

The P-wave amplitude is given by

2ty F (= a0 { (L — sy a)ebm (s — i (1= o))+ 3 (1 — oty )
X[, 2(s+5m 2 —2m2)2, LD (a0,) — s, 72+ 2€, ]— 5 (1 — 249210 4) — €A ihe— F (1 A2 —Ahe— oA 7Y)

+ ()\1—">\2+ 26,)\2)296,.[4(1) (x,)} - %FW-2{ - %x4y2>\4+)\1 ()\1"‘ )\2) ’—>\2)\1_1} )

where
ELOV(§)=£4+1281— (65741262 In(14-8).  (4.5b)

The first curly bracket in Eq. (4.5a) comes from the
direct channel p pole, the second from the crossed
channel ¢ and p poles, and the third from the seagull
diagrams. The functions L® (&) has been defined so
that L®O(0)=1.

V. COMPARISON WITH EXPERIMENT

We consider in this section the comparison of the
above results with experiment in the energy range from
threshold to 1 GeV.

A. S-Wave Amplitudes

(1) Threshold parameters. The scattering length of;
and effective range #7; are conventionally defined by
the threshold expansion

Il Re(AT) "= (al ) +irlp+---.  (5.1)

Neglecting small terms of order (e)?, the S-wave
scattering lengths obtained from Egs. (4.3) and (4.4)

(4.53)

are

32wm,a%= 7m,,2F,'2{ 1+ (1/7) e,[lZ)\l()\i— )\z) ‘
+502]), (5.2)

32nmrato= —2m2F 2 (1— e \?) , (5.3)

while the effective ranges are given by

21my(a%)2%0= —F2[ 1+ e, (A1—N2) (31— 2)\,)
—2e,(1—a2I0 )22, (5.4)

drma(020)r20=F+ 1+ e (M—No)hs
—2¢,(1—a%21Na)%%], (5.5)

where e,=m,?/m,?. The leading terms in Egs. (5.2)-
(5.5) (obtained by neglecting e, and ¢, corrections) are
precisely the soft-pion threshold results obtained by
Weinberg.5 As discussed in Sec. I, analysis of meson
vertex functions®!® yields a~~y~~g~1 and N3,
Since e,=m.2/m.? and e~~1/30, the hard-pion cor-
rections to the threshold parameters are only a few
percent unless Ay and A\, are anomalously large. We will
see below that in fact the combination

)\'E)\1—)\2+2€¢>\2 y (5.6)



1826

which governs the ¢ width, has the experimental value
A1, No direct separate measurement of \; and A
exists. However, the soft-pion analyses of threshold
single-pion production by Chang and by Olsson and
Turner® are consistent with the Weinberg scattering
lengths and imply no major deviation from these values.
It would be of interest to have a hard-pion calculation
of this process performed since, if the data improve, it
would represent a method of determining the =
parameters. In the following considerations we will
assume that \; and \; are separately =1.

An interesting property of the amplitudes (4.3) and
(4.4) is the large amount of cancellation that occurs at
threshold. Thus both 4% and A2 contain terms of
O(m,2/F,?) which are =5-10 times as large as the
leading m,2/F,? terms appearing in Egs. (5.2) and
(5.3). It is the cancellation of these structures at
threshold that gives rise to the smallness of the S-wave
scattering lengths. Further, all the model-dependent
parameters A1, A2, M4, %, ¥, and z cancel from the re-
maining leading #,%/F.* term in a’; and similarly from
the leading F,2 term of m,(a?;)*!;. These cancellations
reflect the strong interdependence between the pole
and seagull parts of the amplitude required by the
current-algebra constraints.?8

(2) Low-energy region. The expansion (5.1) is valid
only in a very small region around threshold. This is,
in fact, a low-energy spurious zero in (4%p)~! in the
effective-range approximation. On the other hand, the
expansion of 47 itself,

ATy=2m[a’o—5 (@’ o)r'ek?+- -],

converges reasonably rapidly in the low-energy region.
The “shape parameter” coefficients of the k* and higher
terms in the series depend on A\; and A only in the
combination X of Eq. (5.6) [as the A; and s contri-
butions to the higher terms arise only from the expan-
sion of (s—m,2)~! and L°(x,) in Egs. (4.3) and (4.4)].
For A< 3, the first two terms in Eq. (5.7) represent a
good approximation to the rigorous amplitudes for
4/5s< 500 MeV. Since, as discussed above, the scattering
lengths and effective ranges depend only weakly on A\
and \g, the results are essentially model-independent
in this region. As pointed out by Weinberg,’ a strong
low-energy w7 interaction appears to be inconsistent
with the success of the various soft-pion current-algebra
calculations where nr interactions are neglected. The
hard-pion calculation yields 8%520° and |8%] $10°
for 4/s<450 MeV in agreement with the above re-
quirement.}
At the K-meson mass, Egs. (4.3) and (4.4) give

o= 500— 520’_\_.’350 o

(5.7

(5.8)

This result varies by no more than about 109, as A2

® 2 The existence of the some of these threshold cancellations
has been noted previously by S. Weinberg, Phys. Rev. 166, 1568

(1968).
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varies from 1 to 3 and m, from 700 MeV to 1 GeV. It
is thus essentially model-independent. Thus* for
N=1,N\y=0, m,=930 MeV we find §=35°; for \2=0.75,
Ae=0, m,=730 MeV, 6=36°; and for \2=0, =0,
8=31°. Several estimates of § obtained from K°-K°
decay parameters exist in the literature. The Yen
type-I solution?® gives = (30_5;*25)° while the analysis
of Glashow?® yields 6= (352£25)° consistent with our
value. While the determinations of § still have rather
large errors, it does now appear that § is positive.

(3) Resonant region. As one goes to higher energies
and approaches the o resonance, one must make use of
the full expressions of Egs. (4.3) and (4.4) for the
amplitudes. Here, the ¢ pole dominates the I=0
channel and the threshold terms of Eq. (5.7) make
only a small contribution. Since, further, A; and A,
enter only weakly in the scattering length and effective
range, the amplitude is effectively controlled by the
single parameter A (and the ¢ mass value). For sim-
plicity, we will set A; to zero in the following discussions.

The extraction of the phase shifts from the current-
algebra results is not straightforward in this energy
region, however, since unitarity has not been imposed.
How to impose unitarity within the framework of
current algebra remains an important problem for
future consideration. Here, we will take the simplest
procedure of imposing two-body unitarity on each
partial-wave amplitude separately, i.e., we will assume
that Egs. (4.3) and (4.4) yield correct results for
Re(A%)™* but must be appropriately modified for
Im(AZo)! to restore unitarity. Effectively, this implies
that one replace ks~/247y by tané’q in Egs. (4.3) and
(4.4)

We consider first the analysis of the experimental
data of Walker e al.} These results imply 7,22930
MeV. The theoretical curves for several values of N2
are plotted in Fig. 2(a). Good fits with the data for
both I'=0 and I=2 phase shifts can be obtained for
N1 to 3, except in the low-energy I=0 channel.
However, very likely, the experimental analysis over-
estimates the phase shift in this region since the
peripheral pion-exchange diagram no longer dominates
the pion-production process at low energies. In fact, as
pointed out above, the soft-pion analyses of single-pion

%7 Since the phase shifts are still fairly small for s12500 MeV
it does not matter much whether one approximates ks247, by
8%y, sindly, or tandly. The results are quoted for the “unitarized”
choice of tand/,.

28 E. Yen, Phys. Rev. Letters 18, 513 (1967).

2 S, Glashow, Phys. Rev. Letters 18, 524 (1967).

% While one cannot of course make any clear-cut justification
for this step, one may argue as follows. The current-algebra
results of Eqs. (4.3) and (4.4) are rigorously crossing-symmetric.
In the low-energy region, where 87y is small the replacement of
ksT1241, by tand’y produces only a very small change in the
amplitude and thus gives rise to an amplitude that is both crossing-
symmetric and unitary to a good approximation. At higher
energies, this procedure of course maintains unitarity but in
general destroys crossing. Close to the o resonance, however, the
pole may be expected to dominate and the loss of crossing to
produce small effects. Thus, one presumably may be making an
error only in the in-between region.
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S Wave r-rr Phase Shifts
mg = 930 MeV
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Fic. 2. S-wave phase
shifts (upper curve for
I=0, lower curve for
I=2). (a) m,=930
MeV; the experimental
points are from Walker
et al. (Ref. 3). (b)
me=1730 MeV; the ex-
perimental points are
the Malamud and
Schlein “up-up” solu- |
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PHASE SHIFT
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2
N =O.75\

tion (Ref. 4).

(a)

production at threshold,?® which includes botk the
peripheral and seagull diagrams, are consistent with
the data there.

We consider next the alternate results of Malamud
and Schlein Here, the analysis of the data implies
ms>730 MeV. Theoretical curves for various values
of A? are plotted in Fig. 2(b), the experimental points
being the ‘“‘up-up” solution. Reasonable fits are ob-
tained for AM~~1. The theoretical curves appear to
follow the general trend of the experimental points,?
but do not reproduce the “oscillations” of the data,
particularly the somewhat remarkable break at ~750
MeV in the I=2 curve.

The parameter A governs the width T'; of the ¢ — 27
decay. One can calculate T'; directly from Eq. (2.10b).
We find

2

2 3 ¢ =10

50 /

1 1 1 1 1 ] 1 1 1 ]

300 400 500 600 700 800 900 600 700 800 900 1000
ENERGY IN MeV

(®)

meson as a resonance pole would become unreasonable
unless I';2/m,2< 1. The fact that values of A2 exist that
fit the data without violating this criterion too seriously
represents a theoretical consistency of the analysis. In
general, it appears that the experimental situation.in
this energy domain is still quite ambiguous and that
the current-algebra analysis does not definitely prefer
either of the phase-shift analyses.

As mentioned above, the o-meson pole plays an
important role in the high-energy region. This can be
seen most clearly by deleting the ¢ meson from the
amplitudes of Egs. (4.3) and (4.4). The simplest way
of doing this is to remove the pole to infinity,® i.e., let
me—> o in these formulas. We find then

—1674%— (2/F ) (1—I\0)2(2s+m,2— dm.2)

T'o=3N(m,)* (1287 F %)L, (5.9) X{1—m2(s—4m, 2! In[14-m2
Thus for the ¢ meson of Malamud and Schlein X (s—dm.*) 1} + (f”"z/ F+)[8—2\a
- X (A—a) - 3(/FAONa
T,=245MeV, m,=730MeV, N=0.75; (5.10) X1=9a], (5.12)
and for the ¢ meson of Walker et al. —16m4% — — (1/F.2) (2s4+-m2—dm.2) (1—1n.)2
I,=650 MeV, m,=930MeV, N=0.9. (5.11) X{1—m2(s—4m2)~' In[14m,2
In general, one expects an S-wave resonance to have a X (s—zim,z) = (m":/ F ”23[41— M
relatively large width due to the absence of a centrifugal X(A=8a)]— (s/FA[—3+ira
barrier. On the other hand, the treatment of the o X{A—ENa)]. (5.13)
S Wave w-n Phase Shifts (a) | (b)
8 eop " PRI
F1c. 3. S-wave phase g S I P! ¥
shifts in the limit 9 0k
my — . These ampli- 3
tudes are independent of  z { pid
the value of A; and A.. 80 [ } } } 1 ; i} .
(a) The experimental e . ! { & | 3 A
points are from Walker z a0l t t ] /i///——-—
et al. (Ref. 3). (b) The © ' t
experimental points are w P
the Malamud and @2 o 3 2
Schlein ‘“up-up” solu- X 62 ; t Wo
tion (Ref. 45. °y 1 1 ] 2 1 L L ] | T
300 400 500 600 700 800 800 600 700 800 900 1000
ENERGY IN MeV

31 Fits of about the same quality can also be obtained to the less preferred “down-up” solution of Malamud and Schlein (Ref. 4).
# The 7= amplitudes given in Ref. 24 have deleted the ¢ meson in this fashion.
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S Wave w~n Phase Shifts (b) mg= 730 Mev, 'ﬁ=l
Pole Contributions
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u F16. 4. S-wave phase
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z Walker et al. (Ref. 3).
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T oE ; 502 ' $ and Schlein ‘“up-up”
§ S S w solution (Ref. 4).
0
1 ] L 1 1 ] ] 1 L ]
300 400 500 600 700 800 900 600 700 _ 800 900 _ 1000
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Note that the o coupling constants A; and Ay have
disappeared from the amplitudes in this limit. Equations
(5.12) and (5.13) are plotted in Fig. 3 and are seen to
be in sharp disagreement with both sets of data.
Essentially, deleting the ¢ meson in the hard-pion
amplitude yields a result that is not much improved
over the original soft-pion amplitude.® On the other
hand, it would not be correct to say that the current-
algebra conditions produce no significant effects beyond
the threshold region. The hard-pion amplitudes (4.3)
and (4.4) have two additional sets of terms character-
istic of the current algebra and not found in a simple-
pole picture of the scattering: the seagull terms and
the energy and momentum-transfer dependence in the
numerator functions of the p and ¢ poles. These addi-
tional terms tend to largely cancel the crossed p and
o pole contributions in the I=0 channel, leaving the
direct ¢ pole as the dominant structure in the high-
energy region. This can be seen by considering an
amplitude consisting purely of direct and crossed
“dispersion theoretical” p and o poles (i.e., poles with
constant residues):

— 16740 = 380(s— 12+ { 280 (4m2— 5)~1
XIn[14 (s—4m,2)ym,~2 ]+ 4no
+Ano(2s+m2—4m2) (4ma2—s)2

XIn[1+ (s—4m 2m, 2]},

—16wA2) =2Bo(4m,2—s) In[ 1+ (s—4mH)m, %]

—2n0— 210(2s+m 2 —4m,2) (4.2 —s)
XIn[ 14 (s—4m.D)m,; ],

(5.14)

(5.15)
where
o= mﬂz(Zsz)—l (1 - %)‘Ay )
60—.—;‘_" m¢4 (4F,,)"17\2 .

These amplitudes no longer obey the current-algebra
conditions as the seagull parts and energy dependence
in the numerators were needed for their satisfaction.
From Fig. 4 one can see that the agreement with the
data is considerably worsened, the theoretical curve
overshooting the data for the m,=930 MeV case below

(5.16)

the resonance due to the failure now of the above-
mentioned cancellation. (As mentioned above, the
analysis most likely already overestimates the phase
shifts at the low-energy end.) Similarly, the curves
overshoot the data above the resonance for the m,= 730
MeV analysis.

B. P-Wave Amplitudes

The P-wave amplitude of Egs. (4.5) may be expanded
near threshold to obtain the scattering length and
effective range as defined by Eq. (5.1). We find for
these parameters

244rm,,a11= F,r_z[:l-*- e‘,}\z ()\1—' )\2)

466, (1—ay2iN0)%2], (5.17)
2amam (') = — F. 2 (1—a%y?i\ )%
X (14-4¢)— (m,2/om2N].  (5.18)

The leading term in the scattering length is again
precisely the soft-pion result,’ though here the ¢, cor-
rections are a little larger than usual. The leading
terms of the effective range depend on x, v, 2, A4, and
m,, showing that this is intrinsically a hard-pion result.
While the total amplitude (when unitarized) has a
resonance at the p mass (from the direct-channel p
pole), it is interesting to note that the effective-range
approximation (5.1) does not produce a resonance at
the p mass.® Thus for the case m,="730 MeV, \2=0.75,
A=0.5, x=y=2=1, Eq. (5.1) implies a resonance at
s=1.21m,2. The fact that one is at all close to the p is
due to the numerical “accident” that A4 is so small.
The amplitude Eq. (4.5) can be unitarized in the
fashion used for the .S waves. Away from the immediate
region of threshold, this unitarized amplitude is well
approximated by a simple direct-channel p pole. This
can be seen in Fig. § where the total amplitude is plotted
in curve A while curve B represents that amplitude

# That one should choose 71; so that the effective-range approxi-
mation resonates at the p mass has been suggested by L. S. Brown
and R. L. Goble, Phys. Rev. Letters 20, 346 (1968).
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F1G. 5. P-wave phase shift. Curve A
is the total theoretical amplitude.
Curve B is the total amplitude with
direct-channel p pole deleted. Curve
C is the amplitude obtained from
direct-channel p and crossed-channel
p and o poles only.
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with the p pole deleted. In the I=0 S-wave case, the
seagull terms and crossed p and ¢ pole terms effectively
canceled at high energies making the direct-channel o
pole dominant in that region. For the P-wave case,
both the seagull and crossed-pole pieces are fairly
small in the entire region below the p resonance. Above
the p they tend to become larger but again substantially
cancel, leaving the direct p pole as the dominant term
in the entire energy range. Thus if we delete the seagull
pieces (and the energy dependence of the numerators
in the pole terms) we obtain the amplitude

—16wAY =2no(s—4m,2) (s—m,2)
+{2B0(4m2— s) [ (14 2m.2 (s—dm,2)~1)
XIn(1+ (s— 4m2)m,~2)—2]
+2n0(2s+m2—4m.2) (dm2—s)~!
XLQA+2m2(s—4m,2)™)

XIn(14 (s—4m.Dm;2)—27]}, (5.19)

where B¢ and #, are defined in Eq. (5.16). The phase
shift obtained from unitarizing Eq. (5.19) is plotted

500 600

ENERGY N

700
MeV

800 900 1000

on graph C of Fig. 5. A significant deviation from the
total amplitude above the p results. The cancellation
between seagull and crossed-pole contributions repre-
sents a remarkable feature of the hard-pion current-
algebra amplitudes. Experimentally, the P-wave ampli-
tude above 400 MeV is found to be well represented by
a simple Breit-Wigner form.* Thus the hard-pion
theory and experiment are in good agreement here.

Note added in proof. Recently, Gutay et al.35 have
given a general analysis of 7-r phase-shift data. They
point out that there exists an ambiguity in extracting
phase shifts from the data resulting in three roughly
equally probable I=0=J sets of solutions related
according to

arn®o=31—[0y®—84], ando= r¥%—-.

# We note that this form need not be & priori assumed but can
in fact be deduced as a result of the phase-shift analysis; P. E.
Schlein (private communication).

L. J. Gutay, D. D. Carmony, P. L. Czonka, F. J. Loeffler,
and F. T. Meiere, Phys. Rev. (to be published).
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Fic. 6. S-wave phase shifts &%.

.48 52 .58 .60 64 .68 .72 76 .80 .84 .e8 92 .96 *IOO 104 1.08 '

L2

Data points taken from the analysis of Gutay et al. (Ref. 35). Curve A represents

theoretical predictions with m,=730 MeV, A2=1.0, curve B with n,= 730 MeV, A2=0.75, curve C with 7,=930 MeV, A\*=0.75, and

curve D with m,= 0.

Since ¢1)8%<0, it is inconsistent with the current-
algebra solution. The theoretical curves are plotted
against )% and (r75% in Fig. 6. A further analysis by
Maratech ef al.% in the region 500-900 MeV has resolved

the ambiguity between ;8% and r776% in favor of the
Set-I solution. At the K-meson mass, these authors also
find 8%—8%=30°10° in good agreement with our
Eq. (5.8).

APPENDIX

We give below the explicit form of the “minimal” £ derived in ITI. All terms contributing to a given scattering

process are displayed together below.

Q) 7w —rtm:

Lw= ——%(F,r)\l)_lg,,,,(<pa2)2—-%I:gp_lg",,—i-%(F,)\l)_l)\”,,](<pa)2(<p“b)2+%I:g,,—lg,,,,,,-F,,‘l)\w,”]((pa“¢a)2.

(2) 41— 37 and 77— 7+ A1

Loy=Frga2(m42g,) Nrpa—gsMmaNrpa— gam 4 Nitto1 4] 0aPuaH ¥ s 00— F ' ma’g s [F 85 8o

(3) m+p— m+pand p— wtr+y(I=1):
L= eabcecde[%)‘MAgrﬂAvua ‘Pb’v"c‘Pd—)"lrpAX‘npAvva ¢b¢MGG“vd+ a1 Savan”b‘P)cG)\Md]_%gA (ngp)_llhrm(% 'wa)2

4) v+A41— nt+A4s:

Loy=—ma(Frga)[g42(magp) Nrpa—8 M N rpa—gama Mpoas(@ua @obF Pualvs) 0Py
+ %mAng—ll:Fr2gp—1g1r1rp_ Fw)\ludw‘n‘] (al‘w (pa)z_ %mA2gA—1[F7ngp_lg1r1rp+%F‘;r()\l)_l)\o'ww] ( <pa)2 (a‘”l))2

(A1)

+ %Fn’ ()\1)_1)\0'”-] (a”a ‘Pa) ((Pub<Pb)+mA2gA_1[F1rgp_1g7er_ )‘lll'rnrﬂ'] ( ‘Pa)2 (a”b(h;b) . (Az)
+%[g11 (Fmrgp)_lnuarpA - % (Fw)\l)_l)\np] (‘Pa)ZGWbGuvb . (A3)

(A%)

- %[’i’ (FF)‘I)—I)‘WAA+gP (Fﬂ'gA)-—ll""’pr] ( ‘Pu)szbHuvb+ %gp(FrgA)——l/J"npA ( (Pa]?‘“‘a>2 .

38 S, Marateck, V. Hagopian, W. Selove, L. Jacobs, F. Oppenheimer, W. Schultz, L. J. Gutay, D. H. Miller, J. Prentice, E. West,

and W. D. Walker (report of work prior to publication).
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(5) m+p— pt+Arand ptp— 7+4:1:
L= éabeeade[)\ﬂpzigpppvva PpVuc #a+ )\'n—pA>\pAA'Uva ¢bach”vd_7\rpA}\rrpvva mbﬂoxcG)\ud'i'a?.avaGmb‘P)‘cG)md
— 380 (Fr84) 1000 0all ¥ 4G (G pva— g4 (F x8,o) o 44 0sG*" 4GP H pya].  (AS)
(6) 1!'+A1 i d A1+A1:

L= €apebcac — 38 (Frga) paa ol oH P H pyat-ma’ga [ g2 (ma2g,) Nrpa—gomaNrpa—gama\ipioa4 ]
‘PaanaHmbavb . (A6)
(7) p+A41— p+4;:

L= eaveccac 3 (Mrpa)0raH 30" HypatNrpahrp aVsaH 50 Gruat0335aG™#50 G - (A7)
8) 7+ — 7t+o:
Ly=d20*a0ua0*+ 3 F e Ngorr— 3(F M) Loos ) (00)202+ 3L (Frhi) Worr—ga AN ora
— (FM) ™ Nooo ) (@a) 20 0L (F M) NoxntFr N iitore— g4 MAora—2F N1 soor J0*a0a0uo.  (A8)
9) A1to— At
Ly =0d18"40,00%+ €10, HP 40,0, (A9)
(10) 7+ — A1+o and 7+ 4, —> o+
L= 30" 0ua0?+ €204 H " 40,0+ (Feh1) RoratFr Ndora—ga Mgoaa+ 2847 M AN N g0 J0 ot o (A10)
(11) 7+4:1— p+o:
L= €abe| Mrpagoa 4Vua 080”0+ Nrpa (Woa st Borr)Vua @ P corn—NrpaNoraVsald P 00+ 203G 5 0pe0 |
F 100G H oo™+ [ — 4 (Fxgo) Woaa— (Fah) ™ Arpa— g4 NN 44 J€abo@raG "5 0eT s
FF N prpat384(Frgo) Noaa— 380 (Frga) ™ Noppease 0aGursH* 0. (A11)
12) 747 — pto;7to— 7+p:

Lw= fabc[)\rprarAvpa Qob‘PﬂaU"l_bl QavaGmbSopca']'i“ I:_ 84 (ngp)—lﬂvrA’i‘ (Fr)\l)—l)\wrp'l‘gA_l)\erpA]

Xeabcﬂom v“bﬂacau' (Alz)
(13) Ay H+A4,— 0+4p; A1tp— A1+o: '

£(4) = eabc['—}\prerAvvaHV“bauca'—)\rpAﬂurA'vvaH y”bHu)\cU)\‘i' b3avaGmbayc(7]+ C2lyq4 wpr)\cO'x- (A13)
There is no contribution from the minimal £ for the following processes: p+p— p+p; A1+A41— A1+ A4;;

p+o— pto; pto— pto; oo — oto.
The constants a;, bi, ¢, di, €; appearing above are restricted by the following equations:

2F cayt-gama2as—F 28, Nprp =0, (Al4a)
Fato+2gam a3+ Frg, Nr0u=0, (A14b)
2F b1+ amas—F g, Nonn—F i a Aoz ahe,a=0, (Al4c)
Fobot2gama2bs—F g, Nona+Foma N grar,44=0, (A14d)
Frcitgama2co—F g, pora=0, (Al4e)
28 ama %+ Fods+Foma ™ Nonagoas=0, (A14f)
2F rdstgamads+Fem s N oralora =0, (Al4g)

Frertgama2es+FamaNera?=0. (A14h)



