
VOI UME 175, NUMBER s is NoVEMhEk io68

Ayylication of Hard-Pion Four-Point Functions to
Pion-Pion Scattering'

R. AagomrTT, M. H. FRIEDMAN, P. NATH, AND R. SUITOR

Deportment of Physics, ¹rtheustern Unkersity, Boston, Mossochstsetts OZII5

(Received 10 June 1968)

Application of hard-pion four-point functions is made to mx scattering on the basis of the SU(2) &SU(2)
current algebra, a conserved vector current, a partially conserved axial-vector current, and the hypothesis
of single-meson dominance of intermediate states in T products. The calculation uses techniques previously
developed for exploiting the content of the current algebra and the subsidiary conditions for an Ã-point
process. The m3- scattering amplitude is shown to include, besides the well-knox' pole diagrams, a set of
seagull terms. The Weinberg scattering lengths and effective ranges are found to be accurate to vrithin a
iew percent, since the hard-pion corrections at threshold are only of O(m, '/m, s). In the low-energy region,
the scattering-phase shifts are seen to be generally small and essentially model-independent, while at the
E-meson mass vie Gnd by~ —ho~35'. All existing data (up to 1 GeV) can be Gtted by adjusting one model-
dependent parameter.

I. INTRODUCTIOÃ

~HE ~x' system plays an 1mpol tant role 1n thc
understanding of the strong interactions. Because

of its inherent simplicity, it has proved to be a testing
ground for dynamical theories such as 5-matrix theory. '
For a long time, the only well-known experimental
feature of the arm interaction has been the p resonance
which d.orninates the low-energy isospin 1, E-wave +g
amplitude. Information on other partial waves and,

lsospin chanIlcls has bccn almost noncx1stcnt. IQ

particular, the 5-wave I=0 scattering has been the

topic of rather extensive speculations in the past.
Fortunately, this situation appears to be changing

rapidly. ~4 The recent detailed analyses of pion-pro-
duction data undertaken by Walker et a3.' and by
Schlein and Malamud4 appear to support certain
consistent features for low-energy scattering in the
I=0, 2 channels. Indeed, there appears now to be
sufhcient ground to believe that the 5-wave I=0
phase shift does in fact rise through 90' leading to a
resonance (which we will ca11 the o meson) somewhere

between 700 MeV and 1 GeV. It also appears that the
I= 2 scattering is small and generally repulsive in the

5 wave in this energy domain.
With the development of the soft-pion current-

algebra methods, there has been a renewed. interest in

the 5-wave mg interaction since it appears in many
soft-pion current-algebra calculations. The good results

of the soft-pion analyses Lwhich include the Kt4 form

factors, low-energy sing1e-pion production, and the
evaluation of the pion-nucleon I=-,', ~ 5-wave scat-

~ Research supported in part by the National Science Foun-
dation.

'See, e.g., G. F. Chem and S. Mandelstam, Phys. Rev. 119,
467 (1960);Nuovo Cimento 19, 752 (1961);F. Zachariasen, Phys.
Rev. Letters 7, 112 (1961);G. F. Chew, ~b~d. 16, 60 (1966}.

'V. Hagopian, %. Selove, J. Alitti, J. P. Baton, M. Neveu-
Reue, R. Gessarolli, and A. Romano, Phys. Rev. Letters 14, 1077
(1965).

~%. D. Walker, J. Carroll, A. Gar6nkel, and 3. Y. Oh, Phys.
Rev. Letters 18, 630 (1967).

4 P. E.Schlein, Phys. Rev. Letters 19, 1052 (1967);E. Malamud
and P. E. Schlein, ihid 19, 1056 (19.6't).

tering lengths (in particuiar the relation crts
+2asts=o)j all require the assumption of a wea)c
low-cnergy xw interaction. Similarly, the soft-pion
current-algebra calculation produces the correct shape
dependence in the K~3m Dalitz plot' without the
need, of a mm interaction. Using soft-pion current-algebra
methods, Weinberg~ ~ has in fact obtained the re-
markably small values for the I=0 and I= 2 scattering
lengths of' u '=0 i5et ' and uo'= —0043m ' Sub-
sequent analysis by K.huri, ' based on additional
assumptions involving commutation relations of the
axial charges with the scalar and pseudoscalar densities,
yields essentially the same result. On the other hand,
Fulco and Wong, " using a dispersion-theoretic ap-
proach, have argued in favor of considerably larger
scatter1ng lengths to obta1n phase sh1fts comparable
to those in the data by Walker eI, aV They have com-
mented that because of the unphysical extrapolation
involved in the soft-pion calculation, the physical
scattering lengths may be consid. erably larger than the
Weinberg values. In this paper, wc will show that this
is not necessarily the case, and if one generalizes the
usual current-algebra analyses to the on-shell hard-
pion calculations, the Keinberg scattering lengths are
found to be valid within a few percent. Furthermore,
agreement can also be achieved with all the data from
threshold to 1 GeV for the 5- and Z-wave scattering
amplitudes. "

e S. Weinberg, Phys. Rev. Letters 17, 6]6 (1966).
6 H. D. I. Abarbanel, Phys. Rev. 153, 1547 {1967).
7 DiGerent but also quite small scattering lengths have been

obtained by J. Schwinger, Phys. Letters 248, O'l3 (196'I). This
calculation uses a di8erent assumption for chiral breakdown
based on a nonlinear representation of the chiral group.

8 %e use the experimental value of 94 MeV for the pion decay
constant I't .

9 N. N. Khuri, Phys. Rev. 158, 1477 (1967)."J.R. Fulco and D. Y. %ong, Phys. Rev. Letters 19, 1399
(1967).These results are, however, contradicted by other analyses;
see, e.g., H. Goldberg, Northeastern University Report (un-
pubHshed).

» A brief description of some of the results of this paper vras
given in R. Arnowitt, M. H. Friedman, P. Nath, and R. Suitor,
Phys. Rev. Letters 20, 475 (1968).
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APPL I CATION OF HARD —P ION FOUR —POI NT F UNCTIONS

The m~ calculation discussed in this paper represents
an application of current-algebra techniques recently
developed~ for calculating hard-pion E-point functions
involving w, p, A~, and 0 mesons. 1A'e 6nd that the
assumptions of single-meson dominance, the chiral
$~(2)XSU(2) current commutation relations, con-
served. vector current (CVC), and partially conserved
axial-vector current (PCAC) require the inclusion of
a specidc set of pole and seagull diagrams in the
calculation of a scattering amplitude. In Sec. II, we
review the general formalism for calculating vertex
functions and scattering amplitudes. Section III is
devoted to the calculation to the total x+ scattering
amplitude. In Sec. IV, we carry out the partial-wave
analysis for 5 and I' waves. These results are then
compared with the experimental data in Sec. V.

The basic framework of the present calculation is
provided by the following set of equal-time commu-
tation relations involving SU(2) triplets of vector and.
axial-vector currents, V&, and A&:

8(g—yo)LV' (a) Vp, (y)j=ie s Vp (ps)b'(x y)—
+c-No. S.T. , (2.1a)

&(*o—yo)L&o.(*),VP.(y)j='"s.~P.(*)64(*-y)
+c-No. S.T. , (2.1b)

8(ae—y') LV'.(x),A P, (y)$= ie.s,A P,(x)84(x—y)
+o-No. S.T. , (2.1c)

"effective" Lagrangian. '~ More precisely, let q„ei'„
u&„and 0 be a set of interpolating Heisenberg fields
for the sr, p, A I, and o mesons (a= 1, 2, 3 is the isotopic
index). Then the effective Lagrangian was seen to have
the form

Z =Z(o)+sr, (2.4)

where 8(@ is the free-meson Lagrangian and the inter-
action Lagrangian is a polynomial in the meson 6elds:

~1=&(s)+&(4)+' ' '
~ (2.5)

Here, Z(3) is cubic in the 6elds, Z(4) quartic, etc. If one
then adopts the convention that the coupling constants
of 8(3~ are of 6rst order, those in 4(4~ are of second order,
etc., then the prescription of single-meson saturation
implies that one calculates a scattering amplitude in-
volvlllg X 111 Rnd oil't mcsons llslllg 2 to (Ã —2)zl(i-
order perturbation theory. (This guarantees that only
tree and seagull diagrams appear for a given process. )
Thus, to calculate a vertex function (X=3), one need
only use the eGective Lagrangian to 6rst-order per-
turbation theory; a two-body scattering amplitude is
obtained by using 2 to second order, etc. In addition,
the above assumptions imply that the currents are
related to the Gelds by"

(2.6a)

~pp=g~app+&p&pq p. (2.6b)

Thus, the Geld-current identity" arises naturally here.
The free-meson Lagrangian g(0~ has the form

t)(s(,' y) [Ao—.(g),Ass(y)]=is. s,VP, (x)54(x y)—
+c-No. S.T. , (2.1d)

where "c-No. S.T." stands for c-number Schwinger
terms. The vector and axial-vector currents are as-
sumed to obey the conservation laws

~(o)=~&o)~+&&o)o+&&o)p+&oz,

where

&&» = —op" (~ o )+-'(o" (p —p)s s(p ')

~(o)p= o'"(()po')+s(o'"(r» sip o ) y

(2.7)

(2.8a)

(2.8b)

(2.2)

where F„ is the pion decay constant' and m the pion
mass. Besides these hypotheses, two other dynamical
assumptions were made in the analysis given in I and
III."The 6rst is the assumption that one may saturate
intermediate sums in the T products of current oper-
ators by single-meson states. This hypothesis is essen-
tially the hard-pion analog of the "gentleness" assump-
tion in soft-pion calculations and is a generalized
version of p dominance for E-point functions. It was
seen in I and III that single-meson saturation leads to
the following result. A T-matrix amplitude for a given
process is to be calculated by retaining all "tree" and
"seagull" diagrams from an appropriately constructed

~R. Arnowitt, M. H. Friedman, and P. Nath, Phys. Rev.
Letters 19, 1085 (1967); Phys. Rev. 174, 1999 (1968) (we will
refer to this paper as I).R. Arnowitt, M. H. Friedman, P. Nath,
and R. Suitor, preceding paper, Phys. . Rev. 175, 1802 (1968)
(we will refer to this paper as IG).

~(o)p= sG""p(~pspp ~p&pp)+s(sG" pGpvs
—Bsp 'vppopp), (2.8c)

~(o)A sH e(()papa ()pape)

+-,'(-,'HP".H„„. PNgsap. aP,). (2.8d)—
Tile Illasscs Rppcal'lllg lll Eqs. (2.8) Rle 'tllc physical
~, r, p, and A~ masses. The cubic part of the Lagrangian
was seen in I to have the form

&(s)= &(s)ppx+&&s) p, (2 9)

» One must also assume that the particle vertex functions can
be approximated by a polynomial in the momenta (which is
presumably good for suSciently low momentum transfers). Thus
the Lagrangian of Eqs. (2.10) allows for at most cubic structures
1n momentum,

14The constant, is dc6ned by the vacuum-p-meson matrix
element: (0

~

Vp (0) p,kb) =g,o,s)Esp(Is)j, wher. e N= $2ars(2s)sp»'—
and ~1' is the p polarization vector, Similarly, gz is de6ned by the
vacuuIQ-A I-meson InatI'Ix clcIQcQt:

(0]ap.(0) (a,p, b)=g&s.,prep(X)j.
"T, D. Lee, S. Keinberg, and S.Zumino, Phys. Rev. Letters

18, 1029 (1967).
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c(J(3)rpA s babe(2gr rpp bpceps+~rrp pp'apcbG a+2grpAspscipbO c+2ibrpA paG b~~pcc+2~rpAeps'prA c
AV+2~ryAoaagr bG c+gp pc&ae&p bG a+ 2gpAA&perbpb~~ c+ApAAoaaar bG c+ib pc pGacsG be c

+f1p AAGp pa+ A X c) y

and the 0 couplings are
(2.10a)

+is)r= sgrrrPsV'srr+ s4rrcip"aV'pe&+sgrpp&pe&ps&+ehrppG""eGpca&+sgrAArbpsrlpa&+e~rAA+p"a+scarp1 Is I lit
- 1 Py 1

+4rAO"sPpa&+Prpp&paG a&c+ibrAArlps~~ a&r+iicrA Pea+ arrr+ibrrrgs&P a'e+p)trrA&P aOs&p

+g...o'+X...oo„op. (2.10b)

A first-order Lagrangian formalism has been used- in
Eqs. (2.8) and (2.10).Thus, yp„o p, Gp"„and Bp", are
to be varied independently of the meson fields q„o,
~&„and u&, . The Lagrange equations thus determine
y~, in terms of the meson fields by

sea, = B„rp, 82—1/Bvpps.

Similarly, one has

G„„,= Bpe„, B„sp—, 282—r/BGp"„

(2.11)

(2.12)

2~ IJ p~=g~gp —gpg~

g„'m, '+gA'mA '=F„',
(2.13e)

(2.13f)

where X~—=gpm p 9 pgg is the anomalous moment of the
Al meson. Equation (2.13f) is the first Weinberg" sum
rulc. Ncltllcl' tile sccolld. Wclllbcl'g sulll 1'lllc (gA=gp)
nor the KSRF relation' gp~=2mp~E emerges as a
consequence of the current-algebra requirements. Thus
the coupling constants Xg, p, ppp and pppp and two of
the three parameters x, y, and s, where

a—=V2'm, /mA, y=—gA/g„s= g,/(F VZm, ), {—2.14)

are undetermined by the current algebra and must be

rc The eanornealiy conjugate pairs of variables are (a'o,r),
(bCCo, Sa), (GC;„e;e), and (& ' &C'e)~a"S. %'einberg, Phys. Rev. Letters 18, 507 (1967)."K. Kavrarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966). These calculations have been shove to be incomplete
and when the full content of the current algebra is exploited, the
analyses yield identities rather than a determination of g,. See
R. Arnogritt, M. H. Friedman, and P. Nath, Nucl. Phys. 55, 115
(1968).

etc."
Equations (2.6) allow one to make use of the field

equations and the field canonical commutation relations
to impose straightforwardly the current-algebra con-
ditions (2.1)-(2.3). These constraints control the
dynamics by determining some of the coupling con-
stants. Thus~ tlm z(3)~pg coupling constants are deter-
mined in I to obey the relations

g«p= gpAA gppp mp gp ~ (2 13a)

g ) I 1 gAs(F smAs)-11

+gA'm '{F 'mA')- )tA, (2.13b)

X,pA= —mA 'g, A ———F,m, '(g, gA) ', (2.13c)

g,mA'F, K pA= gAm, '()tA mA'm, '), —(2.13d)

obtained from experiment. One finds" '9 x—j., y—s—1,
and ) A~1/2. There are no data presently available for
determining p„p or pp~g. However, these constants
will not enter into any of the considerations of this
paper. "

A similar analysis is applied in I to the 0 couplings.
One finds

F„g, ,=m.9,b
—m. s)%.1, F,X, = —(Xr+X,),

F g.AA= (x'ys) '2mp'()1 —Xl),

~2~pg«a= —& p~IJ ~as,
(2.15)

where

)I 1= (gAmA ))trrA p
4= (gAmA )krrA p

(2.16)Xs—=Xr+F lb.

Thus, X~, X2, X3 and A..», X.~~, g„„X„,are uncon-
strained by the current algebra. Only the constants P ~,
A.2, and A.3 will enter into the considerations of this
paper. The coupling constants p, »„ppgg and X»,
A. gg, g „I,, may be considered to be "orthogonal"
to the current-algebra conditions. For, not only are
they not determined by these constraints (as is also
true of XA, ) 1, )I,s, Xs), but the current algebra does not
produce any relations at all involving these couplings.

The extension of the above discussion to quartic and
higher parts of PI is given in III. In order to carry out
this analysis, it is necessary to make a second dynamical
assumption, beyond the single-meson saturation as-
sumption. For, to determine scattering amplitudes it
is necessary to evaluate the so-called r commutator,
de6ned by"

As pointed. out by Keinberg, 22 o-, b has the important
physical significance of governing in part the breakdown
of chiral invariance. The current algebra, which allows

» R. Amos itt, M. H. Friedman, and P. Nath, Phys. Rev. 174,
2008 (1968).

I) We note, however, that they mould contribute to the p and
3& electromagnetic mass shifts and could conceivably be used to
cancel logarithmic in6nities and make these shifts Gnite.

» The y commutator does not enter into three-point functions
dne to isospin invariance. We note, however, that in SU(3)
extensions, analogous o terms @rill contribute even to the three-
point functions.

~ S. Weinberg, Phys, Rev. 166, 1568 (1968).
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for chiral breakdown, also does not determine 0,&„and
some additional assumption concerning it must be made.
Since, in other aspects of the analysis, single-meson
intermediate states, i.e., pole dominance has been
postulated, it is natural to assume that the 0 com-
mutator is also governed by a resonance pole (much as
one assumes B„A&, is dominated by the pion pole). The
only meson for this purpose with the right quantum-
numbers is the 0 meson itself. Thus in III, the assump-
tion was made that 0 &, (x) b, bo.(x). This postulate
has the appeal of relating chiral breakdown to a physical
agency, the 0 meson. In the soft-pion approximation,
it leads directly to the Weinberg xm S-wave scattering
lengths, ' and we will see below that the hard-pion
analysis changes this result by only a few percent.
Thus the 0 assumption appears to be in agreement with
existing data."

The 0-commutator assumption leads to one more
condition on the Z(3), couplings, i.e.,

One need retain only the 2&»+2&4& part of the gr
(since by convention the coupling constants of 2&„&
are of order n —2) and one is to use 2&4& to first-order
perturbation theory and Z(3) to second order. Thus,
the only parts of 8~4~ which will contribute to mm

scattering are the terms quartic in the pion Gelds.
These structures are given in Eq. (Ai) of the Appendix.

A convenient way of calculating the S-matrix element
(pie, Pid out~pi&i, gib in) is to contract one of the out-
going pions (e.g., the one of momentum pi& and isotopic
index d):

(pic,pid [ &f i&i,gib) = ip2&e„2(2x)'1-'~'

X d4x e '»*(Pic-Ije(x) ~ qia, &fib), (3.1)

where je(x) is the source term in the pion field equa-
tions, i.e.,

&&3= 1/&&i (2.18) (—p'+vs ')qe(x)= je(x) (3 2)

and allows one to construct the higher parts of Zl
consistent with the current algebra restrictions. The
explicit form of Z(4) is given in III. There exist a large
number of coupling constants "orthogonal" to the
current algebra in the same sense that pppp pppQ etc.,
of g(3) are. It is natural as a working hypothesis to set
these constants to zero (two of which would contribute
to xx scattering) since they appear to be unrelated to
the current-algebra principles. 24 This "minimal"
Lagrangian is restated in the Appendix. The ~m am-
plitude calculated from it will then depend only on
two constants, X~ and X2. Actually, at low energies, the
amplitude is insensitive to both X~ and X2. At inter-
mediate and high energies, X~ and P 2 enter only in the
combination &&—=&&i

—Am+2(m '/tw, ')X2. Thus the ampli-
tude will depend essentially on only one undetermined
coupling constant X, which will be seen to determine the
width of the r meson. We now turn to the evaluation
of the gx scattering amplitude.

III. +~ SCATTERING AMPLITUDE

As discussed in Sec. II, the effective Lagrangian
technique requires that the Lagrangian be used only
to second order in calculating a scattering amplitude.

Contributions to je(x) arise from both Z&» aild g&4&.

Thus, we write

i ~(x)=i ~&»(x)+i «4&(x) (3.3)

2&4& produces contributions to je(x) cubic in the field
variables and hence j&(q contributes only seagull
diagrams to Eq. (3.1). The use of a 6rst-order
Lagrangian formalism, however, implies the existence
of additional seagull contributions arising from jz~q.
For, from Eqs. (2.7)-(2.10), one has that je&» is a
quadratic function of the various meson Geld variables.
If one eliminates, by the Grst-order Geld equations, the
variables q„„o„„and G„„ from jz(3), then cubic
structures local in the Acids (and second order in the
coupling constants) will arise by Eqs. (2.11), (2.12),
etc. We write the pion source jz(x) then as a sum of
two terms, the "pole" part and the seagull part:

je(x)= je&'&(x)+j'"'(x) (3 4a)

where by Eqs. (2.7)-(2.10) the pole part is

= (2g I tin && n)e@ rsvp ~"q'/

+(g. —m '&&.„—mgp, )qua (3.4b)

and (keeping terms only up to second order) the total
seagull part (from both je&» and jr&4&) is

je =g~ap&&a~peefee~uaq'u~uq'IL&&"Ãf+(kp~~~gr~~+(~~) i&i~ k(~s) [~A (gA~ewz) in&

+2(g~m.h.,pm~ ')'+gg(m~) 'm 'K ~))qe(q, )'+h'p. X,.+~(F )
—

L(y.,„)—ig„~+1
—2(gg&..pm'-')'j) qea~q. a„q.—(F.)-2(&.,„)-'g...w(q. &&~q.)a„qe. (3.4c)

~ As pointed out by M. G. Olsson and L. Turner, Phys. Rev. Letters 20, 1121 (1968), the w~ scattering lengths enter importantly
in the process m+N —+ 2m+X. The present data appear to be consistent with the Weinberg value but not with the Schwinger value
(Ref. 7). See also the analysis of L. ¹ Chang, Phys. Rev. 162, 1497 (1967).

The two "orthogonal" constants which contribute to ~x scattering are retained in the hard-pion Ward identity analysis of four-
pointfunctions given byI. S. Gerstein and H. J. Schnitzer, Phys. Rev. , this issue, 175, 1876 {1968}.In the Ward-identity approach,it appears to be more natural to retain these two constants, and set the rest to zero.
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second order. Thus, upon inserting the solutions (to
6rst order) of Eqs. (3.5) and (3.6) into jstp& one obtains
the total j &P' valid to second order."These structures
give rise to the direct channel and crossed channel 0.

and p poles of Fig. 1 in Eq. (3.1) [as can be seen from
the fact that the p and 0- propagators arise upon solving
Kqs. (3.5) and (3.6)].

The computation of the scattering matrix is now
straightforward. It is convenient to deGne the function

M,g,,q according to

(peed, p2d i gyC, g2b) = —$(2's) 8 (gt+f2 —
py

—p2)

X[166)eteeegM pteeys(2r) ] Med, ab (3 7)

and introduce the invariants s, t, and I, where
Fxo. 1. {a)Pole diagrams which contribute to the ~m scattering.

Black dots represent the vertices computed from current algebra.
(b) Contribution to mm amplitude from seagull terms as demanded
by current algebra. The lrst diagram represents a set of terms
involving 7t--, p-, and A-dependent coupling constants alorie. The
second diagram represents those terms which involve 0-dependent
terms.

In Eqs. (3.4) we have made use of Eq. (2.15) to express
X, in terms of X„zand K z and only terms involving
the pion Geld in j&& 0) have been retained since only
these contribute to Eq. (3.1) to the required second
order.

The contribution of j&&8 & to the matrix element of
Eq. (3.1) can be immediately obtained by approxi-
mating the pion Geld by a free Geld. Since, however,
jz& ~ is only linear in the coupling constants, one must
expand the fields to one more order to get the required
second-order contribution. Thus, from Eqs. (2.7)—(2.10)
one finds that

[&»(—p'+ m, ')+Be8"]~.(x)

eabe[gwwe %be"a+ ~wwe8e(p"5 V' e)] y (3 5)

( II'+ —m')~(x) = ,'(g... -.m' ..t—.)e.y.
+ (2~ewe tl'eww) &p aq aa y (3 6)

where we have k.ept only those source terms on the
right-hand side that give contributions to Eq. (3.1) to

s ($1+$2) (pl+ p2)

t = —ht —pt)'= —42—p2)'
u= —(at —p )'= —(q2

—pt)'.
(3.8)

Sy virtue of isospin and crossing symmetry, Jtl can be
written as

(» )= L(gwwe) «e(g«e a e «e)]

s—t
+u+-+t +[g, —m, 'u,I—f8P

+ (-,'s —m.')X...][g.„.—sp...
+ (-,'s—m, ')X„,.] (3.10b)

S—1Str

and for the seagull piece the result

M,s, t, (s,t,u) =8,~8,~A (s,t,u)+8„8qsA (t,u,s)
+8,s8t„A (u, s,t) . (3.9)

We may divide A (s,t,u) into its pole and seagull parts:

A (s,t,u) =AP(s, t,u)+A (s,t,u) . (3.10a)

For the pole contribution one finds

Aso(s, t,u) = —p, [g...+X...(-,'s—m.')]+F.—'[—4m '(F ge
—'g .e+-,'mg'gg —9,e..xe.g—')

+ma'gg 'g, X, z ']+sF '[gg'mg '(P, g)' ,'+-,'tt, ~)„g——'+3F(F g, 'g-
+-',m~'gg-9 ...X..g—')]. (3.10c)

We note that the numerators of the p and cr poles are
not constants. This is due to the fact that Kqs. (2.10)
allow energy and momentum-transfer dependence in

the xwp and mxa. vertices.

M'(s, t) =A (t,u, s) —A (u, s,t), (4.1b)

M'(s, t) =A (t,u, s)+A (u,s, t) . (4.1c)

M contains the direct cr pole and crossed 0 and p poles,
3f' contains the direct p pole and crossed 0 and p poles,
while M'j,contains only the crossed poles. The seagull
terms contribute to all three amplitudes. One may

IV. PARTIAL-WAVE AMPLITUDE

The s-channel I=O, 1, 2 isospin amplitudes Mr(s, t)
can be obtained from A(s, t,u) according]to the usual
relation s "The second-order contributions obtained from expanding the

pion 6eld cp (x) to erst order do not contribute to the matrix
Me(s, t) =3A (s,t,u)+A (t,u, s)+A (u, s,t), (4.1a) element in Eq. (3.1).



A'&(s) =s—'t'k-'(expi8'~(s) j sins'&(s)

= —(32s)-' ds P&(s)M'(s, t). (4.2b)

expand Ml in partial-wave amplitudes:

Mr(st)= —16~+, (21+1)Z,(s)Ar (s), (4.2a)

where

In Eqs. (4.2), s is the cosine of the s-channel scattering
angle in the center-of-mass system and 2k=—(s—4m ')'&'

is the relative momentum in this system.
As a consequence of Bose statistics, the only nonzero

5- and E-wave amplitudes are 200 A~o and A'g. These
quantities can be obtained directly from Eqs. (3.10),
(4.1), and (4.2) and we record their values here. The
g-wave I=0 RDlplltudc 18 glvcn by

—16~so,=-;~.sF.s{~,s(~,—X,+2. X,)&(e—~.s) '+P(l&,—~,)&—4e.(X, '+~,)~,—4j
+egg;sL(gg —js)s+2+2gg 9&2—2(Xg—Xm)kgj}+F~ 2{2(1 x4—y ~X~)~ss

X (2s+rrt„' 4rN —')s'x, D@(x,)+-,'m, '(X~ Xs+—2e.X2)','x.L&'-&(x,)—2','
+m '$4 (1—x'y'~~Kg) (1+s'—x'y's'~~kg)+ (Xg—X2)'+ 2(1—XP)—2e,hssj

—;.Li+2(1-~&',-~.)(3+.*-~y'',-~.)+-,(~,-~,) +~;~,-(4-~,)~,j}
+F s{Sm 2+m 2L—5+x yap+5(X&+Xg ')Xm+2XP —2Xg 'X2—2XyXQ

+sL—~ex'y'Xg+XP —Xg 92—XgX2j}. (4.3)

—16sA' =F '{—(1 xy' '—Xg)'s'-(2s+xt '—kn~')-,'x,l.&x (x,)+-,'m. '(X&—X2+2e,hg)'

&(-,'x,l &'& (x,)—2rl,s+m, 'L—2 (1—x'y'-,'Xz) (1+s'—x'y's'r'Xz)+ (X&—Xm)'

+2(1—) P)—2e,Xu') —-,'sL1 —(1—x4y'-,'Xg) (3+s'—x'y's'-,'Xg)+-,'(Xg—X2)'+Kg 'Xs
—(Xg—Xg)X&$}+F '{2m,'+vs '(—2——,'~9g+2XP) ——,'s( —4e~~+XP—l« 'Xs—Xylem)}, (4.4)

where e,=—m, '/m, ', x,=—4k /m, ', x,—=4k /m, ', and —,g, = 1—P' ln(1+$). The parameters x, y, s are def&ned in
Eq. (2.14).In Eq. (4.3), the fn'st curly bracket arises from the direct o. pole, the second is from the crosse&l channel
&r and p poles, and the third from the seaguH diagrams. In Eq. (4.4) the 6rst curly bracket comes from the crossed
channel 0 and p poles, while the second gives the contribution of the seagull terms. No direct pole occurs in this
channel as no I=2, J=O meson appears to exist in the low-energy domain we are considering.

The E-wave amplitude is given by

—12~k- A,=F.—(1—ay -,'X,){(1—~ -,'X&)s ~ (e—~ )- —(1—s+yymsm-X„) }+F-~{(1—,4ym y, )mss

)&pm, '(s+,m,' 2m ')x,L&'—&(x,) sos, '+2e,—j——,(1—x4y'~Kg) —e,X&X,——,(1+yp—y,),,—y )„—)
+ (Xg—X2+2e Xm)'x L&'& (x.)}—-',F~-'{——,'x4y'Xg+Xg(Xg —Xe)—X2Xg-'} (4 Sa)

where

V& &(~)-=~+»r'-(6~'+12~') h (1+&). (4.»)
The first curly bracket in Eq. (4.5a) comes from the
direct channel p pole, the. second from the crossed
chRnncl 0 and p poles, Rnd thc third froIQ thc scagull
diagrams. The functions 1.&'&($) has been' dined so
that L&'&(0) =1

%e consider in this section the comparison of the
above results with experiment in the energy range from
threshold to j. GCV.

A. S-Wave Amylitud. es

(f) threshold purumeters. The scattering length uit
and elective range rI~ are conventionally dcincd by
the thrcshoM expansion

2m k" Re(A'))-'= (ur&)
—'+-'r'&km+ ~ ~ (5.1)

Neglecting small terms of order (e )', the g-wave
scattering lengths obtained from Eqs. (4.3) and (4.4)

32~re u'o= "/rs 'F '{1+(1/'/) e.L12X&(X'g—X2)

+5&Pj}~ (5 2)

(5.3)32ses u'0 ———2rN 'F -'(1—e.),ss),

while the CBectivc ranges are given by

2sm (u'0)'r'0 ———F —'fi+ e.(X&—4) (3) g
—24)

—2e,(i—x'y'~kg)'z'j, (5 4)

(5.6)

4nm (u'0)'r'O=F 'Ll+e, (Xg—X2)X2
—2e, (i—~gag)'s'j, (5.5)

where e,—=m, '/m, ,'. The leading terms in Eqs. (5.2)-
(5.5) (obtained by neglecting e and. e, corrections) are
precisely the soft-pion threshold results obtained by
%einberg. 5 As discussed in Sec. II, analysis of meson
vertex functions'2 " yields x~y~s 1 and
Since e,=—nz '/re, ' and. e 1/30, the h«d-pion cor-
rections to the thrcshoM parameters are only a few
percent unless Xj and ) 2 are Rnomalously 1arge. %C will
sce below that in fact the combination
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8=—&'o—&0—35' (5.8)

This result varies by no more than about 10% as hs

&~o The existence of the some of these threshold cancellations
has been noted previously by S. %einberg, Phys. Rev. 16{j,I5&8
(1968).

which governs the r width, has the experimental value
1. No direct separate measurement of ) q and X2

exists. However, thc soft-pion analyses of threshoM
single-pion production by Chang and by Olsson and
Turner~ are consistent with the %einberg scattering
lengths and imply no major deviation from these values.
It would bc of 1Dtclcst to have a hard-pion calculation
of this process performed since, if the data improve, it
would represent a method of determining the 7rvr

parameters. In the following considerations we will

assume that Xq and ) 2 are separately =1.
An interesting property of the amplitudes (4.3) and

(4.4) is the large amount of cancellation that occurs at
threshold. Thus both A'0 and A'o contain terms of
O(ec.'/F ') which are =5—10 times as large as the
leading tts~s/F~s terms appearing in Eqs. (5.2) and

(5.3). It is the cancellation of these structures at
threshold that gives rise to the smallness of the 5-wave
scattering lengths. Further, all the model-dependent
parameters X~, X2, Xg, x, y, and z cancel from the re-
maining leading m s/F s term in ar& and similarly from
the leading F ' term of m, (u'~)sr'~. These cancellations
reQect the strong interdependence between the pole
and seaguB parts of the amplitude required by the
current-algebra constraints. "

(2) Iom energy rsgio-w The .expansion (5.1) is valid

only in a very smaB region around threshold. This is,
in fact, a low-energy spurious zero in (Ars) ' in the
CQective-range approximation. On the other hand, the
expansion of AIO itself,

&'a=2tn, l
o'o—s (o'o)'r'oP+ j, (5.y)

converges reasonably rapidly in the low-energy region.
The "shape parameter" coeScicnts of the 0' and higher
terms in the series depend on 'A~ and X2 only in the
combination X of Eq. (5.6) Las the ) r and Xs contri-
butions to the higher terms arise only from the expan-
sion of (s—m,s)—' and Le(z.) in Eqs. (43) and (4.4)j.
For )ts&3, the first two terms in Eq. (5.'/) represent a
good approximation to the rigorous amplitudes for
ps&500 MeV. Since, as discussed above, the scattering
lengths and CBcctive ranges depend only weakly on X~

and X2, the results are essentially model-independent
in this region. As pointed out by Kcinberg, ' a strong
low-energy xx interaction appears to be inconsistent
with the success of the various soft-pion current-algebra
calculations where x+ interactions are neglected. The
hard-pion calculation yields 1) &es20' and IPsl&1o'
for ps&450 MeV in agreement with the above re-

quirement. lj

At the X-meson mass, Eqs. (4.3) and. (4.4) give

varies from 1 to 3 and m, from 7'00 MeV to 1 GCV. It
is thus essentially model-independent. Thus, " for
9= j., )2=0, m, =930MeV we 6nd 8=35'; for X'=0.75,
X~=0, m, =730 MCV, 8=36'; and for X =0, X2=0,
h=31'. Several estimates of b obtained from Ko-go

decay parameters exist in the literature. The Yen
type-I solution" gives 8= (30 st+")' while the analysis
of Glashow" yields 8= (35+25)' consistent with our
value. While the determinations of 8 still have rather
large errors, it does now appear that 5 is positive.

(3) Resorbent region. As one goes to higher energies
and approaches the 0. resonance, one must make usc of
the full expressions of Eqs. (4.3) and (4.4) for the
amplitudes. Here, the 0. pole dominates the I=0
channel and the threshold terms of Kq. (5.7) make
only a small contribution. Since, further, X~ and X2

enter only weakly in the scattering length and cGcctive
range, the amplitude is cRcctivcly controlled by the
single parameter X' (and the o mass value). For sim-
plicity, we will set ) 2 to zero in the following discussions.

The extraction of the phase shifts from the current-
algebra results is not straightforward in this energy
region, however, since unitarity has not been imposed.
How to impose unitarity within the framework of
current algebra remains an important problem for
future consideration. Here, we will take the simplest
procedure of imposing two-body unitarity on each
partial-wave amplitude separately, i.e., we will assume
that Eqs. (4.3) and (4.4) yield correct results for
Re(Ars) ' but must be appropriately modified for
Im(Are)-' to restore unitarity. Effectively, this implies
that one replace ks 'lepers by tanhrs in Eqs. (4.3) and
(4 4) 80

%'e consider first the analysis of the experimental
data of Walker et ul. ' These results imply m,—930
MeV. The theoretical curves for several values of X'

are plotted in Fig. 2(a). Good fits with the data for
both I=O and I=2 phase shifts can be obtained for
X'—1 to 3, except in the low-energy I=O channel.
However, very likely, the experimental analysis over-
estimates the phase shift in this region since the
peripheral pion-exchange diagram no longer dominates
the pion-production process at low energies. In fact, as
pointed out above, the soft-pion analyses of single-pion

'7 Since the phase shifts are still fairly small for q'/2&go{) Me@
it does not matter much whether one approximates ks '/'AI» by
Bro, sInbro, or tanbro. The results are quoted for the "unitarized"
choice of tangelo."E.Yen, Phys. Rev. Letters 18, 513 (1967).

@S.Glashow, Phys. Rev. Letters Is, 524 (196'l).' While one cannot of course make any clear-cut justi6cation
for this step, one may argue as foBows. The current-algebra
results of Eqs. (4.8) and (4.4) are rigorously crossing-symmetric.
In the low-energy region, where 8 o is small the replacement of
ks '/'Alo by tanb~o produces only a very small change in the
amplitude and thus gives rise to an amplitude that is both crossing-
symmetric and unitary to a good approximation. At higher
energies, this procedure of course maintains unitarity but in
general destroys crossing. Close to the a resonance, however, the
pole may be expected to dominate and the loss of crossing to
produce small effects. Thus, one presumably may be making an
error inly in the in-between region.
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FIG. 2. 8-wave phase
shifts (upper curve for
I=0, lower curve for
5=2). (a} tn, =930
MeV the experimental
points are from %allMr
e5 gt (Ref. 3). (b)
m =730 MeV; the ex-
perimental points are
the Malamud and
Schlein "up-up" solu-
tion (Ref. 4).
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(5.9)I',=3)t'(m. )'(128m.F,') '.
Th 0 mesomeson of Malamud and Schleinus for the

F,=245 MeV, m. = 730 MeV, ) =0.'=0.75' 5.10

and for the 0. meson of Walker et il.
I',=650 MCV, ns, =930MCV, ) e=0.9. {5.11)

ral one expects an 8-wave resonance to have a
relative y a g

'
d t sen

barrier. On the other han, e r

hold" which includes both theproduction at thresi~o, w i
peripheral and seagull diagrams, are consis en

~730 MCV. Theoretical curves for various v
of V are plotted in Fig

the "u -up" solution. Reasona e s arbeing p-
d fol X'~i. Tlic t coic ica

81rend of the experimental points,follow the general tren o e
ce the "oscillations o e a

particularly the somewhat remarkab e rea a

d . 6 can calculate I', directly from Eq.decay. ne can

ance ole would become unreasonablemeson as a resonance po e wo
r 2 ~.2&. 1.The fact that va ues o ex

1 this criterion too seriouslyfit the data without violating is cri
resents a theoretical consistency of the ana ysis. n

the current-algebra analysis does not e ni e y
either of the phase-shift analyses.

the 0-meson pole plays anAs mentioned above, e 0- an
important role in the hig - gy

' . ni h-ener region. is can
st clearl by deleting the 0 meson rom

of doing this is to remove the pole to in ni y, i
5$~ ~ 00 in thcsc folQlulas. Kc 6nd then

'—4m '—16m A'e —+ (2/F '}(1—-', ) g)'(2s+m, '—4m

X{1—m, '(s—4m ')-' 1n[1+mp-'
X(s—4 e)j&+( .'/F. ')I 8—2) &

X (1—
ghee) j——', (s/F, ')L9—) g

X (1—~t)„)j, (5.12)

—16eA' -+ —(1/F ') (2s+m, '—4m ') (1—-'&~}'

X(1—m, '(s—4m, ') ' InI 1+m
X (s 4m ')g—) (m '/F—')L4—)tz

X(1—e) ~)j—(s/F-')L —e+-') ~
X (1—

ghee) $. (5.13)
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I'"IG. 4, 8-wave phase
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poles only. (s) n1, =930
MeV, ) '=1.The experi-
mental points are from
Walker et al. (Ref. 3).
(b) m, = 730 MeV,

I.The experimental
points are the Malamud
and Schlein "up-up"
solution (Ref. 4).

Note that the 0 coupling consta, nts Xl and, )~ have
disappeared from the amplitudes in this limit. Equations
(5.12) and (5.13) are plotted in Fig. 3 and are seen to
bc in sharp disagreement with both sets of data.
EssentiaHy, deleting the 0 meson in the ha, rd-pion
amplitude yields a result that is not much improved
over the original soft-pion amplitude. ' On the other
hand, it would not be correct to say that the current-
algebra conditions produce no signi6cant CGects beyond.
the threshold region. The hard-pion amplitudes (43)
and (4.4) have two additional sets of terms character-
istic of the current algebra and not found in a simple-
pole picture of the scattering: the scaguD terms and
thc cQcI'gy and momcntuxIl-transfer dependence in thc
nuH1erator functions of thc p and 0' poles. Thcsc addi-
tional terms tend. to largely cancel the crossed p and,
0' pole contllbutlons In ihe I=O channclq lcavHlg the
direct ~ pole as the domina, nt structure in the high-
energy region. This can be seen by considering an
ampHtudc consisting purely of direct and crossed
"dispersion theoretical" p and o poles (i.e., poles with
constant residues):

—16~~s,'=3P, (s—~.')-'+{2Ps(4 .'—~)-'

y jnL1+(s—4m ')m.-']+4ns
+4N (2s+m s—4m ')(4m '—s) '

&&lnL1+(s—4 .s)~ $}, (5.14)

—6 "=2p (4 .'- ) l.L1+( -4 .') .-'3
2ns 2es(2s+m—,' 4—1n ') (4m ' s)— —

&(lnL1+ (s—4111 ')nz, 'j, (5.15)

es= m,s(2P„s)-'(1—-„'X~)',

p.=m.'(4p.)-9P. —

These ampHtudes no longer obey the. current-algebra
conditions as the sea,gull parts and energy dependence
in the Qumerators were needed for their satisfaction.
From Fig. 4 one ca,n see that the agreement with the
data is considerably worsened, the theoretical curve
overshooting the data for the m, =930 MCV case below

the resonance due to the failure now of the above-
mentioned cancellation. (As mentioned, above, the
analysis most likely already overestimates the phase
slllfts at 'tllc low-cIlclgy clld. ) 811nllal'ly tile c111'vcs
overshoot the data above the resonance for the m = 730
MCV analysis.

S. P-Wave AmyHtcdes

The E-wave amplitude of Eqs. (4.5) may be expanded.
near threshold to obtain the scattering length and
effective range as defmed by Eq. (5.1). We find for
these parainetcrs

24rtw a'I=F -'Li+ e„hs(XI—Xs)

+6e,(1—x'y'-,'Xg)'s'j, (5.17)

2mm m,s(a'I)'r'I= —F -sL(1—x'y'-,'X~)'s'

X (1+4ep)—(m, '/6m '))1sg. (5.18)

The leading term. in thc scattering length is again
precisely the soft-pion result, ' thoUgh herc the e, cor-
rections are a Httle larger than usual. The leading
terms of the eRective range depend on x, y, r, , )g, and
fÃ showIng that this is intrinsicaHy a hald-pion lcsult'
While the total amplitude (when unitarized) has a
resonance at the p mass (from the direct-channel p
pole), it is interesting to note that the effective-range
approximation (5.1) does not produce a resonance at
the p mass. ss Thus for the case m. = 730 MCV, X'= 0.75,
Kg=0.5, s=y= s= 1, Eq. (5.1) Imphcs a 1'csonancc R't

s= 1.2intp'. The fact that one is at all close to the p is
due to the numerical "accident" that X~ is so small.

Tile amplitude Ecl. (4.5) call bc unltarlzed ln tllc
fashion used for the 5 waves. Away from the imlncdiatc
region of threshold, this unitarized amplitude is well
approximated by a simple direct-channel p pole. This
can be scen in Fig. 5 where the total amplitude is plotted
in curve A while curve 3 represents that amphtudc

"That one should choose r'1 so that the effective-range approxi-
mation resonates at the p mass has been suggested by L. S. Brown
and R. L. GoMe, Phys. Rev. Letters 20, 346 (j.968).
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with the p pole deleted. In the I=0 S-wave case, the
seagull terms and crossed p and 0 pole terms electively
canceled at high energies making the direct-channel 0
pole dominant in that region. For the P-wave case,
both the seagull and crossed-pole pieces are fairly
small in the entire region below the p resonance. Above
the p they tend to become larger but again substantially
cancel, leaving the direct p pole as the dominant term
in the entire energy range. Thus if we delete the seagull
pieces (and the energy dependence of the numerators
in the pole terms) we obtain the amplitude

—16grA', '=-,'ep(s —4m~') (s—m ')
+(2Pp(4m —s) ((1+2m '(s—4m~') ')
Xln(1+(s—4m ')m. ')—2g
+2no(2s+mp' 4m ')(4m '——s) '
)(t (1+2m'(s —4m ') ')

)&in(1+(s—4m ')m ')—2g}, (5.19)

where Po and no are dined in Eq. (5.16). The phase
shift obtained from unitarizing Eq. (5.19) is plotted

on graph C of Fig. 5. A signi6cant deviation from the
total amplitude above the p results. The cancellation
between seagull and crossed-pole contributions repre-
sents a remark. able feature of the hard-pion current-
algebra amplitudes. Experimentally, the P-wave ampli-
tude above 400 MeV is found to be well represented by
a simple Breit-Wigner form. ~ Thus the hard-pion
theory and experiment are in good agreement here.

Note added in proof. Recently, Gutay e& a)).3' have
given a general analysis of x-m. phase-shift data. They
point out that there exists an ambiguity in extracting
phase shifts from the data resulting in three roughly
equally probable I=0=J sets of solutions related
according to

(Irr)~ 0 2')r E(&)~ 0 ~ &j ~ (rr)~ 0 (r)~ 0

'4 We note that this form need not be a priori assumed but can
in fact be deduced as a result of the phase-shift analysis; P. E.
Schlein (private communication).

I" L. J. Gutay, D. D. Carmony, P. L. Czonka, F. J. Loefner,
and F. T. Meiere, Phys. Rev. (to be published).
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Since ~rr )5 p &0, it is inconsistent with the current-

algebra solution. The theoretical curves are plotted

against (r )5 p and (rr r )~'p in Fig. 6. A further analysis by
Maratech et u/. 36 in the region 500—900 MeV has resolved

the ambiguity between rb'p and zrz5 p in favor of the
Set-I solution. At the E-meson mass, these authors also

find bPp —5'p =30'+ 10' in good agreement with our

Eq. (5.8).

APPENDIX

We give below the explicit form of the "minimal" Z (4) derived in III. All terms contributing to a given scattering

process are displayed together below.

(1) mr+w -+ Tr+Tr:

@(4)— S (Pa~(l) gapa(&pa ) 2[gp gvvp+2 (~ah) &avv](S a) ((p b) +2[gp gvap &a &lfbvvv](4pa Ipa) ~ (A1)

(2) Al —& 3m and w+~ ~ w+A 1.
Z(4) =Pa [gA (N(A gp) ~a pA gp~A I(v pA gA bA ~1PIvAA] &Pa &Pap+ b (Pvb Fa N4A gA [+ gp g p

+SP.(&1) '&-.j(&P.(P ) (4P.b(Pb)+4NA'gA '[~-g 'g- —&1(I(.-j((P.)'(&Pb(P») (A2)

(3) Tr+p —+ n+p and p ~ Tr+~+y(I= 1):

eC(4) = &a bc&cpegp ~xpAgr xpA&pa pP c pd &~m pA&&x pA&va 0 b V pcc d I ~1+vaG b p c~'Aydg ggA g~ mgp/ pvpA g 'pa~ a/I 1

+!Lg.(~-g,)-"-,.-!(&.~(.)-'~(.„j(Sp.)'G" G.,b. {A3)

(4) m+ A 1-+ w +A 1
..

L(4) = mA (PvgA) [gA {~Agp) ~vpA gp~A ~vpA gAbA (lgvAA j(+pa&pyb+ (ppaOvb) (paII b

+-',TNA'gA '[p gp 'gavvp ~v&1(lpaa j((b a pa) g~A gA fgv gp gvvp+V'a(4) &pay j(pa) (O"b)

2[4 (pa~1) ~vAA+gp{~agA) 44apA)(4Pa) + ~pyb+ggp(~vgA) 14vpA(&Pa+ a) ' (™)
36 S. Marateck, V. Hagopian, %. Selove, L. Jacobs, F. Oppenheimer, W. Schultz, Ip. J. Gutay, D. H. Miller, J. Prentice, E. West,

end ~. D. Welker (report of work prior to publication).



APPLICATION OF HARD —PION FOUR-POINT FUNCTIONS

(5) lr+p~ p+Al and p+p-v lr+Al.

@(4)= &sbe&odePepAgppp&vagbOpcff d+hepAhpAA Ra'(PbapcG d hepAheep&vsff bcP cGXpd+abavaG b(P cGbpd

Qgp(FegA) pPPP(ps+ bGP cGPvd gA(Fegp) P'PAA psG bGP cfreedom (A3)

(6) lr+A1 -+ A 1+A l.

@(4) '4be&cde) ggp(FegA) b(pAA]&p fsf b+p cHpvd+mA gA LgA (mA gp) hopA gpmA %epA gAmA XlpeAA j
q a„.HP"ba, b. (A6)

(~) p+Al p+Al:

+(4) = '4be&cdep2(hePA) Ovaff «bo c+Xpd+hePA~epAOvaff ba cGlpd+a8avsG ba oGXpd j~

(8) lr+o ) x+o".

Z(4) ds—p .y op+, [F hlg...—3(F hl) 'g...](cp)'o'+-, P(F hl) p. .—gA hlh. A

—(F hl) 'h„j((P,)'oaop+((F hl) lh„+F, 'hler„, gA
l—hi%, „A 2F —lhlh. .-. t(PP, 4P,opg. (A8)

(9) Al+o v Al+o".

Z(4}=dla"aapaO' +olapsHP "aO'vO'.

(10) x+o ~A(+a andlr+Al —bo'+o'.

Z(4)=dbap. y„.a'+ebq„.HP".o,o+DF.hl) %..A+-F llh..A -gA lhlg.—AA+-2gA 'mAbhlh„-. )ap.q.o„o. (A10)

(11) x+A 1 -+ p+o. '.

av(4) = &abc/" epAgeAA()pscpba c&+&'epA(PeAA+peee)&pa(pbee c&X «ePA«eee&csee b Ppc&+ebavaG b PpcO5''
+ClcPvaG bffpkc(v +$ gA(Fegp) IleAA —(Fehl) XepA gA hlhpAA jdabeavsG b(Pc(rp

+Pc hlgepA+2gA(Fegp) heAA 2gp(FegA) happ jdsbccPsGpvb+ c& ~

(12) x+cr -+ p+o. ; ++o -+ cr+p:

(A11)

+{4)= &sbcPepA4eA&pa&Pbbs cO+~19 vsG b Ppc&j+( gA(Fegp) )4eeA+ (Fohl) heep+gA hlhepA)

X&abccpvaG "bopeep ~ (A12)
(13) Al+Al~ o+p; Al+p~A1+o:

~{4} dobe' hepA~eeA&vsff ~bapc& hc pAPeeAOvarf b+pbc& +f)bavaG bapc&$+ ~bavaG be abc& ~ (A13)

There is no contribution from the minimal Z(4) for the following processes: p+p-P p+p; Al+Al-b Al+Al,
p+p~ p+&j p+&~ p+oj &+&~ &+(v

The constants u;, b;, c;, d;, e; appearing above are restricted by the foHovring equations:

2F al+gAmA 'ab Fg, 'h, =0-,
Feab+2gAmA ab+Eegp XepA=Ov

2F,bl+gAmA 'bl F,g, h...-F—mA '-h..A"h.—,A=0, -
Febl+2gAmA bb Fegp ~eeA+FemA heeAhpAA

Fe&1+gAmA &1 Fegp peeA=—0&

2gAmA "1+Fdb+FemA heeAgeAA=0,

2Fedl+ gAmA db+FcmA heeA4eA =0 v

F ol+gAmA 'ol+F„mA 9,.A'=0.

(A14a)

(A14b)

(A14c)

(A14d)

(A14e)

(A14f)

(A14g)

(A14h)


