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Hard-Pion Current-Algebra Calculation of Meson
Processes —N-Point Functions*
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Hard-pion techniques are presented for calculating T products of an arbitrary number of vector and
axial-vector currents under the assumptions of single 0-, m-, p-, and A~-meson saturation of intermediate
sums, chiral SU(2)XSU(2)-algebra commutation relations, conservation of vector current (CVC), and
partial conservation of axial-vector current (PCAC). The single-meson dominance hypothesis is shown to
imply that one calculates the T products, keeping only certain generalized tree and seagull diagrams.
Alternatively, the assumption can be replaced by requiring that one calculate with an "efkctive" inter-
action Lagrangian 2 r to lowest nonvanishing order. The conditions that the remaining hypotheses (current
commutation relations, CVC, and PCAC) impose on ZI are expressed in terms of functional differential
equations to determine the form of Z q. These equations are shown to be consistent with each other and may
in fact be integrated order by order, The gI needed to calculate any four-point function is given explicitly.

I. rmRODUCnom

+iURlN 0 the past two years, it has become apparent
that the assumption that the conserved vector

current (CVC) and the partially conserved axial-vector
current (PCAC) obey local current commutation
relations' represents a powerful tool for calculating
low-energy pion processes. The numerous successes of
these ideas in the "soft-pion" approximation, ' where one
assumes that the transition amplitude is slowly varying
as one limits the pion four-momentum q& to zero, has
tended to strengthen belief in their physical validity.
The soft-pion assumption itself, however, limits the
possibility of exploring the domain of applicability of
the current algebras. For, even if one accepts the
premises of the approximation, the continuation cannot
be expected to be gentle beyond a few hundred MeV
above threshold. Thus the soft-pion. calculations are
essentially approximate-threshold theorems and cannot
be applied to higher-energy data. Further, since the
Inass shell ls a point and not a contlnuumq the continua-
tion of the pion momenta OG its mass shell is not
unique. 3 This ambiguity is related to the value of the
so-called 0 term or equal-time axial-vector current
commutator L'r) „A&„A's].

One of the strengths of the solft-pion technique is
that one does not need to know the detailed dynamical
structure of the interaction to determine the scattering
amphtude to the desired approximation. This is due to
the fact that the hmit q& —+0 suppresses most of the
dynamical details. For example, consider the character-
istic 8-matrix element, (p; g,b out

I n, k,a in), which
contains one pion of isotopic type u in the "in" state
and one of type b in the "out" state. Contracting down

~ Research supported in part by the National Science Founda-
tion.' M. GCQ-Mann, Physics 1, 63 (1964).

2A summary of some of the achievements of the soft-pion
current-algebra analyses can be found in the talk by R. F. Dashen,
in Proceedings of the Thirteenth International Conference on High-
Energy %@clear Physics (University of California Press, Berkeley,
1967).

s L. S. Kisslinger, Phys. Rev. Letters 18, 861 (1N7).

both pions simultaneously, and using the fact that
B„A&, is proportional to an interpolating 6eld for the
pion, one 6nds in the usual fashion4 that the above
amplitude ls 1lgorously propol tidal to

d'xd'y e '&"e"&-(q&+m.s) (k'+m. ') { sq, 8(x—' y')—

where m is the pion mass. In Eq. (1.1) the mass-
shell limit q', k' —+ —m ' is understood. The soft-pion
approximation assumes, however, that one may
evaluate Kq. (1.1) by limiting q& and k& to zero, keeping
only the leading terms. Thus the 6rst term can be
evaluated by the current-algebra relation~ (neglecting
Schwinger terms)

b(zs y')[3' (x)—2"s(y)]=is s V" (x)8'(x—y) (1 2)

and is thus 0(q). The second term is of quadratic order
in the momenta (aside from any poles that might
develop in the matrix element at the unphysical point
q&=0=k&) and is generally negligibl'e compared to the
6rst term. ' The Adler consistency condition7 may be
used to show that the third term is comparable to the
second in magnitude and hence also negligible. It is
clear, however, that the dynamical details are hidden
in the unevaluated T-product term since it is this
term (rather than the commutator) that contributes on
the mass shell. However, in the soft-pion limit it may
be neglected.

The above discussion points up the fact that if one
wishes to eliminate the soft-pion approximation and

4 See, for example, S. Kcinberg, Phys. Rev. Letters 17, 616
(1966).' our currents are normalized as in Kq. (1.2) to obey the usual
chiral SU(2)&SU(2) algebra and PCAC is written as 8„A&
=F m 'q, where y is the pion Acid. Thus the experimental
value of Il is 94 MeV. We use a metric with signature +2.' An exception occurs for vr~ scattering as discussed in Ref. 4.

7 S.L. Adler, Phys. Rev. 137, 31022 (1965);139, 31638 (1965).
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deal only with "hard" or mass-shell pions, it is necessary
to make some sort of further dynamical assumption.
One possibility, erst proposed by %einberg in his
treatment of T products of two current operators, s

is that one saturate intermediate sums over states with
single x-, p-, and Aq-meson states. In previous work, ~ '0

vacuum-expectation values of T products of three
current operators have been constructed, using the
assumptions of CVC, PCAC, that the currents obey
the SU(2)XSU(2) chiral algebra without q-number
Schwinger terms (CCR), and the dynamical assumption
of single-meson saturation of intermediate states. These
T products allow one to calculate hard-meson vertex
functions involving the x, p, and Ag particles which
appear (as discussed in II) to be in good agreement
with experiment for a number of vertices having
momentum transfer ranging from 0 to 1 GeV. It is the
purpose of this paper to extend these ideas to treat T
products of an arbitrary number of current operators to
allow the calculation of meson scattering and production
amplitudes. It will be seen that in fact the higher
E-point functions can be calculated, assuming CVC,
PCAC, current commutation relations (CCR), and
single-meson saturation, and that the ability to do this
depends upon an internal consistency between these
physically disparate assumptions.

The usefulness of the T products of current operators
resides in the fact that these operators may be used. as
interpolating fields for the x, p, and Ag mesons. The
vector current V~, (x) can be viewed as being propor-
tional to a p-meson 6eld, while A& can be used to
interpolate the m and A~ 6elds. Thus the x-z scattering
amplitude is proportional to

d'xd'yd'sd'(v e '""e ""E(x)E(y)E(s)E(~)

)((Oi T(a„A".(x)f)„A"s(y)f),A .(s)8pAss(~))io)

y &Ag&iqcu (1 3)

where E(x)=——gs+te s. Similar rigorous expression
holds for other scattering and decay amplitudes. In the

8 S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
QR. Arnowitt, M. H. Friedman, and P. Nath, Phys. Rev.

Letters 19, 1085 (1967); Phys. Rev. 174, 1999 (1968) (hereafter
referred to as I};174, 2008 (1968) (hereafter referred to as II).IResults equivalent to those of Ref. 9 (for the v-p-Aq system)
but using different techniques have also been obtained by H.
Schnitzer and S. Weinherg /Phys. Rev. 164, 1828 (1967)g and
by S. G. Brown and G. B. West LPhys. Rev. Letters 19, 812
(1967);and Phys. Rev. 168, 1605 (1968)).Equivalent results for
higher point functions have been obtained by I. S. Gerstein and
H. J. Schnitzer, Phys. Rev. 170, 1638 (1968}.Similar results,
but using diferent physical assumptions, have been obtained by
J. Schwinger I Phys. Letters 248, 473 (1967)) Phys. Rev. 167,
1432 (1968)], J. Wess and B. Zumino LPhys. Rev. 163, 1'/2l
(1967)j, and B. %. Lee and H. T. Nieh I Phys. Rev. 166, 1507
(1968)g using a "phenomenological" Lagrangian approach; and by
Y. Das, V. S. Mathur, and S. Okubo t Phys, Rev. Letters 19, 812
(1967)j and D. A. Greffen t Phys. Rev. Letters 19, 770 (1967)j
using dispersion-relation techniques.

following paper, "an application of the results given here
will be made to x-x scattering. Theory and experiment
appear to be in good agreement from threshold to I GeV.

Section II consists of a review of the results of paper
I concerning the conditions imposed on the T products
of three currents by the single-meson saturation
assumption. These results are extended here to the
E-point functions in Sec. III. It will be seen that this
dynamical assumption can be rephrased in terms of
writing an cGcctivc Lagrangian which ls to bc used
only to lowest-order perturbation theory. The condition
of single-particle saturation thus reduces simply to the
statement that one only calculates tree and generalized
sea-gull diagrams. Section IV is concerned with the
constraints imposed on the effective Lagrangian by the
current-commutation relations, CVC, and PCAC
conditions. These requirements are expressed as a set
of functional di8ercntial equations to be satished by the
Lagrangian. Existence of solutions of these equations is
demonstrated in Appendix A and the general structure
of the resultant Lagrangian is discussed in Sec. V. A
power-series solution of the equations, good for any
E-point function, may be straightforwardly obtained.
A partial dosed-form integration of the equations is
given in Appendix B. The exphcit form of the CGective
Lagrangian appropriate for calculating any four-point
scattering amphtude is given in Appendix C.

II. SINGLE-MESON SATURATION CONDITION—
THREE-POINT FUNCTION

In previous work, ' a description was given of the
conditions imposed on T products of three currents by
the assumption that intermediate sums are saturated by
single x-, p-, and A~- meson states. It was seen there
that these conditions could be rephrased in terms of an
c8ective Lagrangian. In this section we review this
analysis for the convenience of the reader. (In Sec. III,
the extension to the case of S-point functions of vector
and axial-vector currents will be given. ) Consider, for
example, the T product

F s(x,y,s)—=(Oi T(A .(x)V .(s)As (y))io). (2.1)

This quantity may be expanded in terms of its six
time orderings. For the case x'& s'& y' one has

I."s= P(O)A-. [~)(~[V, )~)(~~As, [O). (2.2)

The only single-meson states that can enter in the sums
of Eq, (2.2) are the s and At states. For the s states,
Eq. (2.2) reduces to

F "s= Q d gtd gs(O~A ~s'grot)
@1~@9

y (wqtat i
V&,

) s qsas)(s. qsas i A ~s
i 0), (2.3)

»R. Arnowitt, M. H. Friedman, P. Nath, and R. Suitor,
following paper, Phys. Rev. 175, 1820 (1968).Some of the results
in this paper are reported in Phys. Rev. Letters 20, 4'/8 (1968).
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with a similar form for the A j state. Similarly, the time
ordering g) xe) se gives rise to the expression

In this case the state In) may be a zr or Ai state and

I
irz) must be a single-p state. A diagrammatic representa-

tion of these two time orderings is given in Figs. 1(a)
and 1(b). In addition to single-particle states of the

type considered above, I.orentz convariance (and hence

crossing) require that one also include all two-particle
intermediate states where one of the two mesons is a
"spectator, " i.e., its momentum is not summed over.
Thus for the time ordering of Kq. (2.2), one must also
include into the evaluation of F» the term

(Pqid qzd pi&OIA ~IzlqiGi, pqzbz)

v~

g(Ai) ~ m(Af)4 J-———— A
Ql

&a)

A

g g TI'(QA

~ A~

'TI'(Al) ~ ~

Q

(c)

p

Fxo. j.. (a) Diagram representing the time ordering xo&s'&y'
in the three-point function (0

~
T/A~, (z) U&, (z)Azz{y)$ ~0) for the

case of m or A1 intermediate states. The circles represent the
vacuum to one-particle matrix elements of the current, while the
solid triangles the one-particle matrix elements. (b) Diagram for
time ordering x'&y'&s with a ~ or A1 for the first intermediate
state and a p for the second. (c) Diagram with time ordering of (a)
for two-body intermediate state where ~ (or AI) is a "spectator. "
This diagram is the crossed diagram of (b).

X&zrqiai, ppiaz I
V",

I
zrqzaz)&irqzuz I

Aoz
I 0), (2.5a)

where the vector-current matrix element is to be
approximated by

&irqioi, ppiozl V"
I ilqzoz)

=b'(qi —qz)8...,(ppiazl Vz, l0). (2.5b)

Thus, actually one sums over the momentum of only a
single particle in each sum. The diagram representing
Kqs. (2.5) is shown in Fig. 1(c) and is the crossed
diagram to Fig. 1(b).

If one retains the single-meson states and all the two-

particle states in which one meson is a spectator, one

may obtain a covariant and crossing symmetric approx-

imation. In the various time orderings making up the
three-point T product one encounters only the vacuum-
one-particle matrix elements,

(OIA", (0) Iirq, b)=iN„8, zF q", (2.6a)

&OIAz. (0) IAi, q)b)o)=NAb. zgg Ae" (q), (2.6b)

&Ol VI', (0) I p&q~b~o) N b„g ez (q) (2 6c)

and the one-particle matrix elements of V& and A&„or
their crossing related vacuum —two-meson matrix
elements.

I
In Eqs. (2.6), N, etc., are the conventional

Bose normalizing factors and e)" is the vector-meson

polarization vector of helicity" o.]Thus Kqs. (2.6) are

essentially the defining equations for F, g&, and g, .
Single-particle saturation suggests that in the one-

particle matrix elements, the vector current links to
the particles only through the p meson while the axial-

vector current links to the particles only through
the x and A& mesons. One may write, without loss of

generality,

&Bqiol Vz. (0) I Cqzb)

= fze.z. ,az), (k)r" ir, c(qi, qz) jNaNc, (2.7a)
and

aq, al A, (O) I Cq b)=,z,[gh i(k)r»c(q„q, )
+.a(k)rz~. c(qi, qz)$N&Nc, (2.7b)

where, A&~ and ~A&), are the p and A~ propagators
(with physical p and Ai masses)

h~i(k) = (kz+trz z)-'(b~, +k~k, m -') (2.8a)

&uzi(k) —= (kz+m&z) '(b"i+k"k&,,mA '), (2.8b)

and 6—= (kz+m ') ' is the pion propagator. In Eqs.
(2.7), we use 8, C to be the particle labels (ir, p, or A i)
allowed by 6 parity and k&=—q&&—g2&. For low momen-

tum transfer, the particle vertex functions appearing
in Eqs. (2.7) presumably can be expanded in a power
series. For example, one might write for the x-p-x

vertex
I'"

z (qi, qz) = (qiz+qzz) (czi+otzk'+ ) (2.9)

and similarly for the other vertex functions.
It is now straightforward to introduce, in a phenom-

enological fashion, 6eld operators that reproduce the
matrix elements of Eqs. (2.6) and (2.7). Thus, let

&p, (x), vi', (x), and a&, (x) be ir, p, and A i in-field operators
that annihilate and create the corresponding physical
particles. Then clearly the right-hand sides of Eqs.
(2.6a) and (2.6b) will be reproduced if A z, is replaced by
gza"o+F 8"oi„and the right-hand side of Eq. (2.6c)
will be obtained if V&, is replaced by g,8& . The one-

particle matrix elements of Eq. (2.'7) can similarly be
obtained if V)", and A&, are replaced by operators
bilinear in the in-fields. Thus, for the m-p-x vertex case

"We normalize states so that i7 «)=/2m~(27f. ) p I where
~—= (g~+m~~)'12. The polarization vectors ~f' obey the conditions
'l fzq ql"=0 and ef'~~a ~ =5
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of Kq. (2.7a), Vp, (x) must be bilinear in (p„and to
reproduce explicitly the series form of Eq. (2.9) one
may use the operator

d'y p&P&, (X—y) Oabc[ni —&OO'+ ]
X p.(y)8,pb(y). (2.10)

Analogously, to obtain the 8=x, C= p matrix element
in Eq. (2.7b) one would use for A p, (x) the operator

d'y(A~"b(x y)D—3iP.(y)~'b(y)+

In general, then, all the matrix elements of Eqs. (2.6)
and (2.7) can phenomenologically be reproduced by
the choices

UP, (x)=gpss, + 0 b, d'yphab(x —y)

XLa,—n, CI'+ ] p(ay)» pb(y)+, (2.12a)

&"c(x)=gA(iso+Ra&PPa+ oabc

X(A&pb(*—y)gib. i "b+ j
+-~(x—y)Lvi(p. i "b+ ])+, (2 12b)

AEpb (x)(b', (x)
gA. Oabc[P1Va(X)O b(X)+ ' ' ']+ ' ' '

v (2.13b)

where the omitted terms represent the other bilinear
structures needed to obtain all the matrix elements of
Eqs. (2.7). Note that the form of the operators V".
and A&, automatically guarantees the crossing sym-
metry of the matrix elements.

It is more convenient to replace the in-field character-
ization of Vt", and A&, by one involving Heisenberg
fields. Thus let i)P, (x), (bP, (x), and (p (x) be a set of p,
A&, and x Heisenberg field operators obeying the
Heisenberg fieM equations

,Ep&(x)s".(x)
=g 0 b[o'1 & CI +'''j

X q. (x)aPO b(x)+ , (2.13a)

.E(x)y, (x)
=R. 'Q.—b,[pic.(x)spb(x)+ j+ (2.13c)

where „E&~ and ~E&~ are the p and AI Proca operators
$,Epb =(——Q'+ma') 8p, +8p8„5 and .E=—~'+o)b.'.
Then Eqs. (2.12) are clearly equivalent to the assump-
tion that

Vp. (x) =g,(p, (x),
A p, (x) =gA(bp, (x)+R.8 (p, (x),

(2.14a)

(2.14b)

cC =@Qv+ZOp+cCQA+2 (0) opA v

where the free-particle Lagrangian is

(2.15a)

provided we agree to solve the Heisenberg equations
(2.13) in an in-field expansion only to /rsvp order in the
"coupling constants" n;, P;, y;. Returning now to the
T product of Eq. (2.1),one may verify that the require-
ment of single-meson saturation in the intermediate
sums such as Eqs. (2.2), (2.4), (2.5), etc. , implies that
one is to evaluate the T product by adding up all
contributions where two of the currents are replaced by
the terms linear in the in-fields in Eqs. (2.12) and one
current by a bilinear structure. Equivalently, one
arrives at the anal result: Single-meson saturation
implies that one may evaluate Kq. (2.1) by replacing
the currents by the Heisenberg fields according to
Eq. (2.14) and then calculating the 7 product to first
order in the coupling constants ()(;, P;, y;, etc. , using the
field equations'0 (2.13).

The currents of Eqs. (2.12) [or equivalently those
obtained from the in-field expansion in Kqs. (2.13) and
(2.14)g are not, in general, local-field operators whose
commutators vanish for spacelik. e separations. This is
due to the presence of the nonlocal propagator factors
Aria"(x —y), php"(x —y), and h(x —y). On the other
hand, we wish to impose the requirement that V&, and
A&, obey a local-current algebra. This can clearly be
achieved by requiring that the Heisenberg operators
()p, (x), (bp, (x), and o), (x) be local-field operators. A
straightforward (and perhaps the only) way of guar-
anteeing this locality condition is to require that the
Heisenberg equations be derivable from a local-held
Lagrangian. Since bilinear source terms appear on the
right in Eqs. (2.13), the appropriate interaction
Lagrangian must therefore be cubic. We therefore chose
the following egecti()e Lagrurbgi(brb to simulate Eqs.
(2.13):

@Ov+vtvbp+vtvOA Pa~a(pa+ 2 ((p a'(ppa irbv (pa ) 2G a(~p()va ()visa)+AG aopva Or)bp O a()pa

a(~p(bva O)v)(b+pa+ aaIIpva O)ObA (b a(ipa v (2 15b)
and the interaction Lagrangian is

Z(b)opA 0 babel 2gcvpV' 0&Pc&pa+~sop(Ppa&PvbG o+2gopA&pa'Pb(i o+2lbopA'@ac b8pvc+2~opA&pa PvlXP c

+2~spA(bpaopvbG o+gppp&pa&vbG o+2gpAA&pa(bv& c

+~pAA(bpa(bv& c+IipppopvaG bGb c+IApAAGpva+ blab c] (2 15C)

"Note that the current-field association of Kq. (2.14) is merely a phenomenological consequence of the single-meson saturation
approximation rather than a fundamental postulate. Ln this respect our work differs from that of T. D. Lee, S. Weinberg, and 3,
Zumino, Phys. Rev. Letters 1S, 1029 (1967).
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In Eqs. (2.15) we have used (for later convenience) the
"first-order" form of the Lagrangian, where (p„,rp),

(G„„&„),and (&„„,a„) are to be varied independently to
yield coupled first-order differential field equations. "
The coupling constants g p A p etc., are, at this

point in the analysis, arbitrary and can, of course, be
related to the constants n;, P;, y, , etc., appearing in

Kqs. (2.12) and (2.13).Zlsi„z is the most general cubic
interaction Lagrangian involving the m, p, and A~ fields

without explicit derivatives. Since the number of
derivatives in 2(3) controls the number of derivatives on

the right-hand sides of Eq. (2.13), this restriction
controls the amount of momentum transfer assumed in

the vertex functions of Eq. (2.7)."It should be stressed
that no u priori fundamental significance is attached.
to the Lagrangian of Eqs. (2.15). Rather, it is intro-

duced as a convenient mathematical device to guarantee
locality of the current operators of Eqs. (2.14) and

(2.13). The single-meson saturation condition can now

be rephrased by requiring that the T product of Eq.
(2.1) is to be evaluated using the effective Lagrangian of

Eq. (2.15) [and the defining relations (2.14)] to jirst
order in the coupling constants.

III. SINGLE-MESON SATURATION CONDITION-
N-POINT FUNCTIONS

In this section we extend the previous results and

investigate the conditions imposed on T products of an
arbitrary number of current operators by the single-

meson saturation assumption. Ke begin by considering

A V
~(Al) W S' V

A ------+y (a)

v v"
Tr (AI) a Ii (Al) A '1I(AI)A----- --—------—--- -- —-A (b)

yf

J'
A~ (c)

Thus, (pp p ) (Go'„v; ), and (H0;,a; ) are the canonically
conjugate pairs of variables for the x, p, and A1 fields.

'5 An equivalent assumption on the amount of momentum
transfer appearing in the vertex functions is also explicitly made
j,n 1:he methods of Ref. 10,.

A Y~
(A i LA ----'-- Y (d)

FIG. 2. (a) Four-point T product of Eq. {3.1) for the time
ordering x0&y'&s0&cP assuming single x-, AI-, or p-meson
intermediate states. (b) T product of Eq. (3.1) for the time
ordering g&s'&co0&x'. (c) Time ordering y &s &of&x with
two-body ~ (or Ai) —p states where the x (or A1) is a spectator
particle. (d) Diagram for time ordering x'&y'&s &oP with
0-meson intermediate state.

a characteristic four-point function

p»"(x,y,s(u)= &T—(A;(x)As~(y)V&. (s) V"'(co))& (3.1)

and proceed in a fashion similar to the analysis of Sec.
II. For the time ordering x'&y'&s')oP, one has

F'""= 2 &0I~ .I~&&~l~'~1m)

X&~I V".Ir)&rl V"~I0& (3 2)

Assuming single-m, -p, or -A ~ intermediate states implies

that the sum over n be restricted to single-x or single-A ~

states while the remaining two sums involve single-p

states. This situation is represented diagrammatically
in Fig. 2(a). Analogously, for the time ordering yo) s'

&~0)x' one has

F ti "=P,„,„&0IAsgln&&nl V Im)

(3 3)

The single-intermediate-meson condition requires all

sums to involve either a single ~ or A i meson, as shown

in Fig. 2(b) Lorentz convariance and crossing sym-

metry imply (as in the three-point functions) that one
also include all two-meson intermediate states where one
meson is a "spectator, " i.e., its momentum is not
summed over. Thus, for the time ordering of Eq. (3.3),
one would include the case where In& and

I
m) constitute

a two-particle ir-p state and
I r& is a estate.. One has for

this contribution

F» —g&OIAs~lir, qiai, p, pia2)

X( yql i j ppplbll el T)qi 2 j pyp2b2)

x&~ q~ 2; ~p~ 2I v".
I ~qa~~)&~qiana I ~'I0&, (3 4)

where the m- mesons in the erst two sums are spectators,
i.e., one ma1~es the approximation

(~,qiai, p,pibil V~.
I m, qia2, ppgb2)

=b'(qi —e)b~i~~(i, pibil V".I~,p2b~&, (35a)

&ir, q2llg,
'

p, p2b2 I
V"g

I
ir, qaGg)

= P(q, —q,)ba,a,&p,p,b, l
V"„I0). (3.5b)

The diagrammatic representation is given in Fig. 2(c)
and represents the crossed diagram to Fig. 2(a).

The intermediate-state analysis of Ii »" given above
is the direct generalization of the three-point analysis
of Sec. II. In addition, there exist two new classes of
states to be included here which are not found in the
vertex functions. First, there could exist intermediate
states in the sums of Kqs. (3.2), (3.3), etc., with angular
momentum zero and isospin zero or 2. Analysis of the
single and double x-meson production data in pion-
mucleon scattering now seems to indicate the existence
of a resonance with the quantum numbers J=O=I
(and positive G parity) somewhere between 700 MeV
and 1 GeV." It is natural then to include this particle

'6 W. D. Walker, J. Carroll, A. Garfinkel, and 8. Y. Oh, Phys.
Rev. t,etters 18, 630 (1967);P. E. Schlein, ibid. 119, 1052 (1967);
E~ . Malamud and P. E. Schlein, ~bid 19, 1056 i1967). .



(which we will refer to as the o' meson) in «r In«r-
mediate sums on the same basis that one includes the
s., p, and Ai mesons. " (We will see in Sec. IV that the
inclusion of the 0. meson is also strongly suggested by
the current-algebra conditions. ) Accepting the existence
of the I=0 0- meson implies that one must include it, in
intermediate sums in all places not forbidden by the
usual selection rules. An example is shown in Fig. 2(d).
This implies the existence of new vertex functions
involving the 0 particle and thus the particle labels 9,
C in Eqs. (2.7) must now be allowed to range over
o~ x'~ p~ A&.

The second class oI new states appearing in the
intermediate sums of four-point functions involves the
spectator particles. In three-point functions, there can
be at most two-particle intermediate states with one
spectator, and an example of this for a four-point
function was given in Fig. 2(c). However, the presence
of four current operators in F &&" allows one to consider
three-body intermediate states where Aeo of the mesons
are spectators, so that still at most one meson's momen-
tum is being summed over in a given intermediate
summation (and the single-particle saturation condition
Is 11ot violated ill thc lcIIla111111g Intermediate 8111118).
Thus, for the time ordering of Eq. (3.2), one can have
the intermediate states given by

F»"=p(0(A;( Ir,qiai)(ir, qiai( ASs) s.,qsas, A i,qsas)

X(ir,qsas,'Ai, qsas~ V"o~s,q4a4;Ai qsas;P pibt)
X{~,q,a„A„q,a„.p,p,b,

~

V. ",~0), (3.6a)

where we make the spectator approximations

(s,qiaii A

pixel,

qsasA I, qsas)
= 8'(qi qs) baia—s(0 i

A ~s
i A i,qsas) (3.6b)

(s,qsas,' A i,qsas
~

V"q
~
s',q4a4, qsas,' p,pibi)

= 8 (ils —114)basa4P (Qs—qs) basbas

X(Oi V&.
i p,pibi). (3.6c)

The diagrammatic representation of Eqs. (3.6) is given
in Fig. 3(a) and involves a direct four-point "vertex"
diagram. Such diagrams can also appear crossed as
in Fig. 3(b).

The above discussion characterizes all the possible
types of intermediate states for a four-point function
within the framework of a covariant, crossing-symmetric
single-particle saturation assumption. We next rephrase
this in terms of equivalent field operators. The terms
contributing to Ii »" of the type appearing in Figs.
2(a)—2(c) involve only the matrix elements of Eqs.
(2.6) and (2.7) which already have been discussed with
respect to the three-point functions. Thus, all terms. of
this type can be obtained by using the currents of

"Note that isospin invariance forbids the presence of an I=o
or I=2 S-wave meson in the intermediate sums for the 7 product
of three current operators. Thus the particle makes an explicit
appearance only in the four- or higher-point functions.

A-

O' AEV~

Fio. 3. (a) Diagram for time ordering of Eq. (3.1) with ae) yhz'&a/ when thoro particles (~ and A I mesons) are simultaneously
spectators. (h) Diagram (a) with s meson crossed.

(B,q iA, (0)i,q)=8„$ d, (k)I'" .(q,q)
+ 6(k)F&s„.(qi,qs))ÃIIJI7' . (3.7b)

Thus, to simulate Eq. (3.7a) for the case B=p, one
must add to the expansion of Eq. (2.12a) the term

d'3".~" (*—3')9 ".(3) (y)+ j (3 g)

where o(y) is the o-meson in-field. Similarly, bilinear
field structures (containing a single factor of o) are
needed to reproduce the other matrix elements of
Kqs. (3.7). Equivalently, one must add the term

to the right-hand side of the Heisenberg 6eld equation
(2.13a) with similar o field structures included in the
other equations (2.13). The locality requirement on
the 0 contributions to the current can then be guar-
anteed by requiring that structures such as Eq. (3.9)
arise from varying a local cubic Lagrangian. To include
the 0. meson we therefore add to the Lagrangian of
Eq. (2.15a) the additional general structure 2s.+2 tsi„
where

cCs~= o'~8po'+. s (0'~o'gg Ol~ o' ) p (3.10a)

Eq. (2.12) [or equivalently the Lagrangian of Kq.
(2.15)j. Since two vertex functions appear in each
possible diagram, one must now calculate the four-point
function to second order in the coupling constants (since
each vertex is linear in the coupling constants). In
order to include in the terms with intermediate o mesons
[e.g., Fig. 2(d)j one may introduce an I=0 scalar
Heisenberg-field operator o(x). Since (0~ Vl", ~o,q) and
(O~AI', ~o,q) vanish by isospin invariance, one needs
6eld operators only to simulate the vertex analogous
of Kqs. (2.7), i.e.,

(B,qiaj V&.(0) (o,qs)= .3. .6& (1)k
Xl'"II,.(qi, qs)&II&. , (3 7a)
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j.~ {3)tr= ggrrrr~ Page&~ g~g g w P ~PIAO&~ ggrpfs&"o&@~0'

+S~vppG aapvsO+SgvAAO sOps&+b4AA+ sJIpvsO

+4vAOParbss&p+4vArbasq&p &+Happ&paGP"s&v

+PvAA&pck arrv+4vvA qVsp+" sO'v+ibvvaga&P sOv

+g, ,ooo+) „,oo pop. (3.10b)

Equation (3.10b) is the most general cubic o-dependent

Lagrangian involving the oT, m, p, and A~ fields and
containing no derivatives in 6rst-order formalism. Thus,
all the diagrams contributing to the four-point functions
Ii »" of the type shown in Fig. 2 involving vertex
functions of o-, x, p, and A ~ mesons are to be calculated

by replacing the currents by the Heisenberg 6elds
according to Eq. (3.14) and then calculating the T
product to second order in the coupling constants using
the Lagrangian Zo+Z&sl„pA+2 isi..

The remaining contributions to the four-point
function within the framework of single-particle satura-
tion are the diagrams of Fig. 3 which involve the
three-particle matrix elements of the currents. Single-

particle saturation again implies that the currents link

to the particles only via the p, x, and A ~ mesons and so

one can write

(oi V .(0) iraq„cq„Dq, )
= f,hpb(k)Z"peon(ql, qs, qs)]NnNoNg), (3.11a)

(0~~ .(0)
~
aq„cq„Dq,&

=&~~Pb(k)Z"Aeon(qi, qs, qs)

+ 6(k)Zp &on(qi, qs, qs))N&NoN&, (3.11b)

where k —= (ql+q, +qs)" and 8, C, D represent o, sr, p,
or A, particles. Similar expressions hold for (8

~
Vp,

~
CD),

etc. , and are related to the forms of Kqs. (3.11) by
crossing. To simulate such matrix elements, one must
add additional structures to the right-hand side of
Eqs. (2.12) that are cubic in the in-6elds. For example,

Eq. (3.11a) for the case B=C=s., D= p requires
structures in V~ of the form

,ap„(x—y)Z'"(y —xl, y—xs, y—xs)

X o.(xs)o.(»)~-(xs), (3 12)

(Oi T(Vp,8 A,B~A~bV"A) i0). (3.13)

where Z"" is proportional to the Fourier transform of
Z p p To investigate the form of this contribution,
one may contract down the three particles appearing in

the matrix elements of Eqs. (3.11).Using the fact that
V~ is an interpolating 6eld for the p meson and A~

for the Ai and x mesons, one arrives at a structure
which is proportional to a four-point function. Thus,
for the case of Eq. (3.12), the matrix element of Kq.
(3.11a) depends upon

Z =2o+Z (bi+2 &4» (3.15a)

&o=&ov+&o.+&op+&oA, (3 15b)

Xi (s) = 2(s&apA+2 isis Lof Eqs. (2.15c) aild (3.10b)],
and Xi&i is the quartic Lagrangian of type (3.14).
Alternately, if we adopt the convention that the
coupling constants ai, o.2, of Z(4) are of second order

compared to those of Z(3~, the prescription is that one

calculate the four-point function using the effective

Lagrangian of Eq. (3.15) to secossd order in the coupling

constants.
The generalization of the above analysis to higher-

point functions is now straightforward. Thus, for the
6ve-point functions, single-particle saturation allows

three general types of diagrams to contribute; (a)

'g Actually, because we are using a first-order formalism, the
use of 1.(&) to second-order perturbation theory automatically
introduces some seagull terms {as well as the nonlocal contribu-
tions to Z"" mentioned in text). One can see this by examining the
6eM equations (4.5)—{4.8). Thus, in the p Proca equation (4.6b)
BZ(3)/8v„, contains a term proportional to the pion isospin current
e f„q f, rp&, . From Eq. {4.5a), one sees that the cubic local contribu-
tion c f„q f,(bg (3)

jhow

„,) will then arise in the source of the p equation
and produce seagull diagrams. Since at this stage Z(4) has
completely general coupling constants, there is no harm in
including these additional seaguli terms idepending on the
constants of 2(3)). It is also highly convenient to do so for the
current-algebra analysis of the next section.

'9%e have neglected disconnected diagrams in the above
analysis as they do not contribute to any of the physical scattering
amplitudes obtainable from the Ã-point functions.

As discussed above, the diagrammatic contribution to
this term will include the single-pole diagrams of I"ig. 2

obtained from second-order perturbation analysis using

Z(3~. This contribution corresponds to a monlocal piece
of Z"" due to the presence of the propagator factors for
the intermediate particle poles. In addition, for general-

ity, we will assume that Kq. (3.12) possesses a contribu-
tion loca/ in the 6eld variables. This can be achieved by
including into the e6ective Lagrangian a contribution

Z(4) quartic in the Heisenberg fields. Thus to simulate
an additional local contribution in Kq. (3.12) requires an

Z(4) of the form

+(4} rbl&P a9 pas b&vb+rbs&Pa&PpaG bsvb+ ' ' (3 14)

In calculating the contribution of Z(4» to the in-6eM

expansion of Eq. (3.12) it is understood that one carries
the analysis to only first order in the coupling constants

ul, as (since already this gives rise to structures
cubic in the in-fields), 2 iai clearly produces seagull-type

diagrams to the four-point functions. "%e will see in

Sec. IV that such terms are essential in satisfying the
current-algebra conditions.

The above discussion can now be summarized as
follows. The conditions of single-particle saturation
and locality of the current operators imply that one

may calculate four-point functions such as (3.1) by
replacing the currents by the fields according to Kqs.
(2.14) and then calculating the resulting T products
io /rsvp Nonsassssksssg order" using the Lagrangian
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XSU(2) current algebra, CVC, and PCAC. We note
that in the approach being adopted here, the Lagrangian
has been introduced merely as a covenient mathematical
tool for achieving local current operators. It is to be
emphasized that no assumption of chiral symmetry
or partial chiral symmetry has been imposed on Zg.
The physical conditions of CCR, CVC, and PCAC
determine the amount of chiral SU(2)XSU(2) sym-
metry remaining in the resulting T products.

The current commutation relations read

&(x'-y')LV'(x) V"s(y)j
= ie s,Vs. (x)b'(x —y)+c-No. S.T. , (4.2a)

~(~-y')LV'(*) A (y)j
=i eb.A",(x)84(x y)+—c No -S.T.. , (4.2b)

Pxo. 4. Possible diagrams for the 6ve-point function

(T(A,VI'sV", V"sAs.)).
(a) Tree diagrams involving only three-point vertices. (b) Tree
diagrams with one four-point vertex. (c) Five-point vertex (with
as many as three spectator particles in the intermediate states).

"tree" diagrams which involve a succession of three-
point vertices LFig. 4(a)j; (b) tree diagrams involving
one four-point vertex LFig. 4(b)j; and (c) five-point
diagrams (Fig. 4(c)j. Diagrams of types (a) and (b)
can be characterized using the Z(3) and Z(4) parts of
the effective Lagrangian previously constructed. For
type (c) one must, for generality, introduce an addi-
tional term (5) into the Lagrangian which is quartic
in the Gelds. This contributes a local Gve-point vertex
or "Rower" diagram. The total effective Lagrangian is
then. to be used to first nonvanishing order (discarding
disconnected diagrams) to calculate the T product.
More generally, for an E-point function, one has
appearing generalized tree diagrams containing 3-, 4-,
~ ~, E-point vertices characterized by interaction
Lagrangians Z(3), Z(4), ~, Z(N) and again one is to
calculate the T product to Grst nonvanishing order.
Equivalently, if we adopt the convention that the
coupling constants of Z(,) are of order r—2 relative to
2~3), then the T product is to be calculated using the
total effective Lagrangian to order E—2.

IV. CURRENT-ALGEBRA CONDITIONS

In the previous section, the general form of an eGec-
tive Lagrangian needed to reproduce the E-point func-
tions under the assumption of single-meson saturation
has been given. The total interaction Lagrangian Zl is a
polynomial of degree E in the Geld variables,

&z= &&s&+&t4&+ ' '+2 gr&, (4 1)

and is to be used to first nonvanishing order in perturba-
tion theory. The general form of Zts&=—Z&s&~,z+&&s&,
has been exhibited in Kqs. (2.15c) and (3.10b). In this
section we determine the constraints that are imposed
on Zz by the additional conditions of the chiral SU(2)

where "c-No. S.T." stands for c-number Schwinger
terms. The conservation conditions are

a„Vs.(x)=0, (4.3)

8„As,(x)=Iz m sy, (x). (4.4)

We begin by first reviewing the results of I and discuss
the constraints Kqs. (4.2)—(4.4) impose on the three-
point functions. For these T products, only t3)
contributes to 2&, and single-particle saturation requires
that one carry out the analysis only to Grst order in
the coupling constants. The perturbation expansion of
V&, and A& in terms of in-Gelds has been exhibited to
first order in Eqs. (2.12) (terms linear in the in-fields
are zeroth order, and those quadratic are first order).
In calculating the left-side commutators of Eqs. (4.2),
then, it is necessary only to include terms as high as
the cross terms between linear and quadratic pieces."
While a direct calculation using the in-Geld expansions
of Eqs. (2.12) is feasible, a much more convenient
method involves using the field equations and expressing
the current in a series increasingly nonlinear in the
Heisenberg cueoeical variables. "Thus, the Geld equations
for the general Lagrangian Zs+Zz, where Ze is given by
Eqs. (2.15b) and (3.10a), read, for the pion fields,

&Isa= r)sV'a ~Zz/~&p"I p

r)prZ&"e+rzsv ps= Mz/opa y

(4.5a)

(4.5b)

~ Actually, the commutators between two linear pieces are just
c-number Schwinger terms.

"That one can use the 6eld equations to directly calculate
current commutators for currents obeying Eqs. (2.14) was
previously pointed out in Ref. 13.

il(x' —y')LAs. (x),V&s(y)j
=i se.A (sx)8'( xy)+—c No -S.T.., (4.2c)

8(x —y)P A, ( x), As(y)j
ie,s,Vs, (x)8'(x—y)+c-No. S.T. , (4.2d)
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for the p fields,

G„„,=Bpp„, B—„pp, 2—bZz/bGp"„

BpGP"a+mp'pPp = b&r/»pp,

for the A i fields,

H„=Bpu„, B„ap—, 282—z/bH p", ,

B„HP",+mAPaP, = bZr/b&lz p,

and for the 0. fields,

o'p= Bpo BZz/bop i

—Bpop+mpo = bZz/bo.

(4.6a)

(4.6b)

(4.7a)

(4.7b)

(48 )

(4.8b)

Since (ppp„pp, ), (Gp;„p;,), (Hp;„a;,), and (o p, o) are
canonically conjugate pairs of variables, one has from
Eqs. (2.14) that V', and A', are linear in the canonical
variables. q,„G;;„H;;„andr; are constraint variables
which can be eliminated in terms of the other variables

by Eqs. (4.5a), (4.6a), (4.7a), and (4.8a). The remaining
quantities e', and u', are also constraint variables which

may be expressed in terms of the canonical variables
using the ran=0 components of Eqs. (4.6b) and (4.7b).
Thus, one can write the time components of currents
of Eqs. (2.14) as

V', (x)= gpmp 'B,Gp +gpm, 'biz/bpp„ (4.9 )

A'. (x)= (gAmA 'B;H p F.q p.)+gA—mA 'b&z/&zz~

+F.bgl/bq p, . (4.9b)

On the right-hand side, the first structures are clearly
linear in the canonical variables while the variational
derivative terms involve nonlinear structures of both
canonical and constraint variables. The latter can be
eliminated in terms of the canonical variables using
the constraint equations as described above. Since, in

fact, constraint variables appear also in the nonlinear
functional derivatives on the right-hand side of the
constraint equations, the constraint equations are
actually coupled algebraic equations which may be
solved by iteration. Inserting their solutions into
Eqs. (4.9) then expresses V', and A', in a power series

of canonical variables, each term being increasingly
higher order in the coupling constants. One has in this
fashion expressed V& and A&, completely in terms of
canonical variables and so the commutators of Eqs.
(4.2) can be directly evaluated.

The conservation laws can also be expressed in terms
of Heisenberg operators. Thus Kq. (43) becomes,
llpoll llslllg Eq. (4.6b),

Returning to the three-point functions where Zl
=Z(3), one must do the analysis only to Grst order in
the coupling constants. To this approximation V and
A', are quadratic functions of the canonical variables,
the bilinear pieces being first order in the coupling
constants of Z(3). As in the in-Geld expansion, one need
include only terms up to the cross terms between linear
and quadratic pieces" in the commutators of Eqs. (4.2).
Since these commutators will be linear in the coupling
constants, satisfaction of Eqs. (4.2) will thus produce
constraints on these quantities. Replacing Zl by Z(3)
in the conservation conditions (4.10) and (4.11) gives
additional conditions on the coupling constants. By
direct calculation' one finds that all the constants
excePt yppp and llpAA in the 21P1 pA of Eq. (2.15c) can be
expressed in terms of one independent constant, the
anomalous magnetic moment of the A i meson,

~A=g m ~ AA (4.12)

and three parameters

x=—v2mp/mA, y—=gA/g, , s= gp/%2mpF . (4.13)

We find

CI nl
=gp» =g~~n =mp gI

2 —1

gppA mA ~ppA mp (Fpx ys ) i

g X =x'y's'-'RA+2 (1—s')

F X,pA= —y(1—x'pXA),

2F~P~I A —y

(4.14)

The absence of q-number Schwinger terms imposes one

relation between x, y, and z, the first Weinberg sum rule'

xPyP. P—2.P+1=0. (4.15)

Fpgppp mg (XP ~k P)p1

F X.„=—(Xl+Xp),

F.g.AA = (x'yz) '2m, '(Z, -),), —
%2m&IJ«A = —x yzP~AA &

2

g~ni =0=&~un ~

(416)

Experimentally one has' x—y=z=i and RA~0.4+0.2.
Since the a. field does not enter directly into the currents,

the current commutators and conservation conditions

determine fewer of the coupling constants in Z(3), of

Kq. (3.10b). In I it is shown that six relations emerge

between ten of the 14 coupling constants of Z(3)„

gpmp 'Bp(b21/bpp, )=0, (4.10)

while Eqs. (4.5) and (4.7b) reduce the PCAC condition
to

gAmA 'B„(biz/bzz„. )+F„Bp(BZz/bop. )
=F.(BZz/b~. ). (4.11)

where p,—= (m /m, )P, and

~1= (gAmA )~

~2= (gAmA )4s A. |
Xp—=Xl+F rl.

(417)



The remaining four constants (X,pp, X,@~, g„„and
X„,) are totally unconstrained. "

Returning now to Eq. (4.9a), V', becomes (good to
first order in the coupling constants)

V a gpP)bp %GSks+gpp)bp Saba(g pap g bÃ00+gppp0kbGOkc

+g,~~(lkbII0k. —).,~~k(V H'Sk.)j, (4 18)

and an analogous result from Kq. (4.9b) holds for A0 .
Inserting in Eqs. (4.14) reduces V0, to the relatively
simple form

V 0= Ssbc/I&kbGOkc+(Ik&bkc+ 0'b/Ocf

+(&kI.gpp)bp 'Gok.+p g~ IS 0.00&0k.j (419R)

Similarly, using Kqs. (4.14)—(4.17) to eliminate the
coupling constants in the quadratic pieces of A', of
Eq. (4.9b) yields

&0.=g~ppb~ '~&ok. F.v 0 +—S.b.p II&ka&k.

+y(lkbGOkc+Fagp ()kgbGSkcj

+~cgA ~l()k+Oka&+)ll&P00& ~8'Ps&0 (4 19b)

We note that V' divers from the usual isotopic current
density by a divergence, so that J'de V0, (x) is correctly
the total isotopic spin. The divergence is necessary to
cxcludc g-No. Scllwlllgcl' tcrIIls. Eqlla'tlolls (4.14),
(4.15), and (4.17) represent the full content of the
current-algebra constraints (4.2)-(4.4) on the Lagran-
gian &0+8 (0& used to calculate the three-point functions.

We next extend the above results to the higher-point
functions. The discussion of Eqs. (4.5)-(4.11) is of
course valid for the general case with ZI now of the
form Eq. (4.1). As can be seen, for example, in Fig. 2,
the existence of the z(3~ piece in the 21 for the four-point
function is due to the presence of one-particle matrix
elements of the currents, e.g., (Ir ~dab~ p), etc., factors.
If one contracts the 0r and p mesons and uses (F 0&s ') '
X()aA a Rll(i (gp) V"0 Rs 'tllc I'csPcc'tlvc 1IltcrPolatlng
fields, such functions reduce to three-point functions.
Thus if single-particle saturation, CCR, CVC, and
PCAC are to be satis6ed for the vertex insertions in the
four-point functions, the 2(3~ to be used in this analysis
must be precisely the one determined above in the
three-point analysis. While the same argument would
nOt apply fol' tllC VCrtez (0rjASb~a) Sil&CC IIO Single
current can be used as an interpolating field for the 0
meson, one would expect that the r piece Z(3) to be
used in the three- and four-point functions are identical
if the latter is to satisfy the current-algebra conditions.
One may in fact show that this is so, though we shall not
give a formal demonstration here. We will, therefore,
choose the Z(3~ appearing in the effective Lagrangians
for the three- and four-point functions to be the same
quantity. Similarly, one is led to the result that the

"We have omitted from our analysis the I=2, 8-wave cr meson
since experimentally it does not appear to be present in the
energy range under analysis. The current-algebra relations for
three-point functions do not, however, forbid its presence and
the results analogous to Eq. (4.16) for such a particle are given in I.

z(3~ and 2~4~ of the 6ve-point function Lagrangian are
identical to the ones determined by the lower-point
cases, etc. In general, then, we will try to satisfy the
current-algebra conditions for the arbitrary T product
by finding a single Z~ with an infinite series of terms

&l=~(S)+&(0)+' '
0

which 18 of course to be Used to lowes't DonvanlshlDg
order (I.c., 'to order X—2) III R glvcll N-point fllllc'tlon.

(Only the first X—2 terms of Zl will contribute to the
calculation of the T product of X currents. ) Further, if
in the theory described by the Zl of Eq. (4.20), the
current-algebra conditions of Eqs. (4.2)-(4.4)
satis6ed rigorously, they will then clearly be satis6ed
up to order Ã—2 as required in the determination of a
given E-point function. (We note that one need not
cons1der the implicit g-DUDlber Schwinger terms 1D

the current commutation relations arising due to the
dynamics, since closed loops, etc., do not contribute
to the order needed in calculating a given S-point
function. )

In the series of Eq. (4.20) only Z(0) has been deter-
mined up to now. This has led to the determination in
Eq. (4.19) of V', and AS valid to first order in the
coupling constants. In the analysis leading to Eqs.
(4.14)-(4.17), the commutators of Eqs. (4.2) were
calculated only to linear order in the coupling constants
(i.e., only up to the cross terms between a linear term
and a zeroth-order term). It is interesting 6rst to ask
whether Eqs. (4.19) treated as the rigorous results for
V', and AS, can satisfy Eqs. (4.2) (when combined with
the relations V' =gp0', and Ak, =gg(kk, +F Bkq, which
rigorously express the spatial components of the
currents in terms of the canonical variables). By direct.
calculation, one can easily verify that in fact Eqs.
(4.19) do indeed rigorously satisfy Eqs. (4.2) provided
X3 is chosen to obey"

XS
——1/XI. (4.21)

'I The only commutator that is not automatically fulfilled by
Eqs. (4.19) ls S{xc—$0)fg (s') +00(p))=00 bc+ ($)S (s—g).

24 We remark that if an I=2 o meson is included, Eqs. (4.19)
cannot satisfy Eqs. (4.2). Within the framework of this paper,
Eqs. (4.19) appear to be essential to obtain a total ZI satisfying
the current-algebra conditions. Thus the current algebra suggests
the presence of an I=O cr meson and the absence of an /=2
meson, as also appears to be the case experimentally (Ref. 16).

Note that Eq. (4.21) implies that the current commuta-
tion relations forbid X» to vanish. Thus, at least some
of the 0 couplings cannot be zero. '4

The fact that the currents of Eqs. (4.19) (which were
obtained from Z(0) only) already satisfy the current
commutation relations suggests the possibility that
in fact these expressions are the correct currents of the
full Lagrangian (4.20). While this is not the only way
of constructing an effective Lagrangian, it appears to
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&r=&(»+—L. (4.23)

Inserting in the value of Z&pt from Eqs. (2.15c) and
(3.10) gives

V"c=gpprpp t7vG""c+gptlp ocac[gccpy" t ye+gpppvvsG""

+gpAAtrv& c+~cpAyvt@ c+gv pAybtr o]+gpPNp

X[g„,v .a+p„,G ".a.„]+g„prp, 'bL/bv~. -(4.24)

Now by Eqs. (4.5a) and (4.7b) one has

yvAp"e=&v(yAp"e) (b&—r/by"t)&p"o

+mA'ytac, yt (bZ—z/bap, ) (425. )
Inserting Eq. (4.25) and the Zt» coupling-constant
conditions (4.14)—(4.17) into Eq. (4.24) yields

V".= o.t.[y"t y.+v. t G"".+tr.~"".1+b.[gpprrp 'G""

F.gA to.t„y—oft",]+—[gpprrp
—'bL/bvp. +F gA

'

X o.t.f (bar/by" t)&"".+ yt (b&z/btrp. ))] (4 26)

The first two brackets of Eq. (4.26) are precisely
Eq. (4.19a) for V'.. Thus the condition that makes
Eq. (4.19a) a rigorous result is

bI/bv~= Fpprp'(g—Agp) to, to[(bZr/by"t)&P"e

+y (b~./b, .)]. (427 )

A similar analysis can be carried out for A &,.Thus using
Eq. (2.14b), the 6eld equations (4.5a) and (4.7b),
and the coupling-constant conditions (4.14)-(4.17) and
(4.21), the requirement that the expression for Al', of
Eq. (4.19b) be exact is

gAptpA '(bL/bap. )+F (hL/by„, )
Fcgp ocbe(btz/by b)G o

FgA t4(bar—/ba )o. (4.27b)

be the simplest possibility. "We therefore investigate
next what conditions must be imposed on the total Zl to
guarantee that Eqs. (4.19) are the rigorous currents.
For if a consistent set of conditions can be achieved, one
would have then obtained an effective Lagrangian
satisfying Eqs. (4.2). From Eqs. (2.14a) and (4.6b)
one Gnds

V",=gpprrp 'B„G"p,+gptptp '(bZ(»/bvp, +bL/bvp, ), (4.22)

where we have written

Any L, chosen to satisfy Eqs. (4.27) will automatically
satisfy the current commutation relations.

We turn next to consider the constraints on I due
to the conservation conditions (4.3) and (4.4). From
Eqs. (4.26) and (4.27a) one sees that Vp, consists of
the isotopic current plus an additional four-divergence.
The latter is conserved identically because of the
antisymmetry of 6&", and H&". Since the isotopic
current will be conserved provided merely that Zz is
an isotopic scalar, we see that Eq. (4.27a) also guaran-
tees Eq. (4.3). The PCAC condition (4.4) is not so
trivially satisfied, however. Inserting Eq. (4.23) into
Eq. (4.11) gives

bL/by, =8„[gA(tNA'F ) '(bZ(—»/bap, )+(b2(p)/byp. )]
+8„[g ( 'F ) '(bI/b )+(hL/b „,)]. (42g)

This may be simpliGed further by using the current
commutator condition (4.27b):

bL/by, =Bp[gA(mA'F ) '(bZ(»/bap )+(bZ(»/byp, )]
Bp[P gp

—to, t,.(Mz/by"t)Gp".

+F gA 'X (bZz/ba„, ) ] (4.29).

The 6rst term may be explicitly evaluated using the
known form of 2&» and the field equations (4.5)—(4.8).
For example, from Eq. (2.15c) one sees that there is a
contribution to bZ&at/bap, proportional to o, tcyvbGp"e

and by the Geld equations one has

bp(yvt&G" c) =bpyvtG" c+ yvt8pG""c

a„(bZz/by" t—)Gp",+rpr, 'y„t,v",

—y„,(bZ /bzv„, ). (4.30)

The terms in the second bracket of Eq. (4.29) may
ilarly be rearranged. For example, from Eq. (4.6b)

one has

~.[(»z/by"~)G".]
=Op(bdz/by"t)Gp", prpp'(bZz—/bye b)v",

(bxz/by, )(bZz—/bv„.). (4.31)

The other terms may be similarly treated, and after a
straightforward calculation, Eq. (4.29) reduces to the

rather lengthy result:

bL/by = & b [g (P gA) LL" tl(bzz/bGp" )+g (P gA) vpg(bZlz/btr )+'gA(F g ) G""b(Wdz/ba"" )

+gA(P-g ) tztpt(b&z/vpe)+err 'g tvpt, (b&r/bype)+gp -'ypt (b&z/bvpe)+g-p '(b&z/bypt)(b&r/bvpc)]

+[(P.X,)-ta (bZ,/by .) (P.X,) ty. (bZ,/ba—)+7,P.-ta(bxz/by. ) -X,P y .(bZ—z/ba )
hggA to p(b—Zz'/bapc)+PrrA9tgA ta"c(bZz/bo") XtgA '(bZz/brrp—c)(bZz/baP)] . (4.32)

Equation (4.32) represents the constraint imposed on
L, by the PCAC condition. The complexity of Eq.
(4.32) indicates the complexity of this requirement.

"The currents of Eqs. (4.19) are particularly simple by being
only quadratic in the canonical variables. This choice corresponds
to using the 0 meson itself to characterize chiral breakdown, as is
discussed in the conclusions. It is possible to add cubic (and higher)

V. PROPERTIES OF Lz

In the previous section, a set of conditions were

obtained [Eqs. (4.27) and (4.32)] which if satisfied

would guarantee that the effective Lagrangian obeyed

structures to Ao, to obtain more complicated chiral-breakdown
assumptions.
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Ri+R2 ——1. (5.1c)

In terms of n„, and p„„Eq. (4.27b) reduces to

bL/bn„, =
gp

'—c &„[R2(Wr/t'cs" b) (W—r/bp" &)jG"",
F.X]m—g'gg ')Ri(b-Zi/bnp. )+ (bZr/bp~) j. (5.2)

The transformation (5.1) is the most general linear one
that reduces the left-hand side of Eq. (4.27b) to a single
term and any value of Ri and R2 obeying Eq. (5.1c)
may be chosen.

Equations (4.27a), (4.32), and (5.2) may now be
viewed as differential equations to determine the v&„
n"„and q, dependence of the function L dehned in
Eq. (4.23). One may straightforwardly attempt to
integrate these equations order by order. For example,
to determine Z(4), the contribution to Zz quartic in the
fields, one need only insert the known value of 2~3~
LEqs. (2.15c) and (3.10b)$ into the right-hand side of
these equations and integrate once. One may then
iterate to obtain 2&5&, etc., in a similar fashion. (For a
given Ã-point function, one needs to know Zz only up
to Z~~&.) Since one is dealing with a set of coupled
first-order differential equations, however, it is not a
priori obvious that they are consistent and that the
above integration procedure can actually be carried
out. That is, Eqs. (4.27a), (4.32), and (5.2) must obey
a set of integrability conditions on the second deriva-
tives of L. Thus, if one abbreviates these equations as

bL/bs„, =F„„bL/bn„=G„„bL/b p, =H„(5.3)

where F„„G~,and H stand for the right-hand sides
of Eqs. (4.27a), (5.2), and (4.32), one must have

bF„,/bi&" i, = bF„i/bv&„bG„./be"i, = bF„&/bni'„

bF„,/by&, bHi/bi&I'„et——c. (5.4)

S&sce the cerrerlt commltatioe coeChtions and the PCAC
requirement hawc no apparent interconnection, there is no
a priori guarantee that Eqs. (5.4) will be satisfied and
they must be checked explicitly. The veri6cation of
the integrability conditions is carried out in Appendix
A." The fact that they are satisfied appears to be

'6 The analysis in text is actually done for the c-number theory.
For the q-number theory, the products of operators appearing
on the right-hand sides of Eqs. (4.27a), (4.32), and (5.2) must be
replaced by one-half the anticommutator (to make it Hermitian)
and care must be taken to correctly keep the order of the operators.
I"Or Z(„~ with n, &5, however, multiple commute, tors crisp in the

the current commutation relations, CVC, and PCAC.
In this section we investigate some of the properties
the resultant interaction Lagrangian possesses.

The significance of Eq. (4.27b), the current commuta-
tion condition on A'„can be made more apparent by
introducing a new set of variables to replace at" and q», :

Ppa= g (mA gA ape Fs %pa) I

a„.= ,'(m„'—gg 'R,a„—,+.F, 'R2(p—„,), (5.1b)

where Ej and R2 are arbitrary constants normalized by

nontrivial and depends explicitly on the values of the
coupling constants determined in 2&3&, i.e., Eqs. (4.14)-
(4.17) and (4.21). This consistency between the
current commutation relations and PCAC supports the
possibility of the existence of a more fundamental
theory underlying both hypotheses.

With the integrability conditions satisfied, Eqs.
(4.27a), (4.32), and (5.2) can be solved to determine
the e&„n&„and q, dependence of L, at least in a
perturbation series2' Thus Zr=Q 2&„&, where Zt &

takes the form (for n&4)

@(n& F(n&(i' sq&peqa a j p ayG u&II aq&p )
+I,„&(P~.,G~".,o,o~,H~".). (5.5)

Here F~„~ is a known function depending only on the
constants appearing in Z(3), , Z(„&), whereas I( )
is a function of integration and hence arbitrary. Thus
a great deal of the Lagrangian for the higher-point
functions is rot determined by the current-algebra
conditions and additional physical assumptions must
be made to calculate further. The most obvious pos-
tulate to make is to assume a "minimal" choice for Z~
and set the functions I~„~ equal to zero. However, there
are certain pieces of I~„) for which this cannot be
done unambiguously. For as we have seen above, while
the current algebra determines the 0,&„dependence of
Zz, it does not determine n„, itself uniquely in terms of
of at", and pt",. Thus, one gets a solution of the type
(5.5) for every choice of the constant Ri of Eq. (5.1b)
and diferent values of E~ just correspond to diferent
choices of the function of integration I(„~. Setting
It & equal to zero for one value Ri gives a dhgercnt
Lagrangian than the choice I„=O for another value
of Ej. More precisely, one may decompose I(„~ into
two parts,

1(n& —~ (n)+~(e& ~ (5.6)
Here A &„& has the identical functional form (but with
arbitrary coupling constants) as pieces in F&„& contain-
ing nI', but with n&, replaced by p&,. The function 8

& &
is

the remaining arbitrary part of I~„~. As one varies the
values of Ej in F( ), the same Lagrangian can be
maintained by varying the coupling constants in A ~„~,
keeping B~ ) unchanged. Thus it is meaningful to say
that 8( ~=0 represents a "minimal" coupling choice
but any a priori choice of the coupling constants in
A t„& (such as zero) would be arbitrary. "As an example

q-number analysis of the integrability conditions. However, the
discussion of Appendix A shows that these cause no difBculty.

'7 Closed form solutions for the linear equations (4.27a) and
(5.2) are given in Appendix B. We have not been able to obtain
a closed-form integration of the nonlinear PCAC condition (4.32).

28A similar phenomenon occurs in g(g). Thus the constants
pppp and pp&A of Eq. (2.15c) do not enter at all in the coupling
constant constraints of Eqs. (4.14) and so the minimal choice
pppp=0=pprip can unambiguously be made. The last two terms of
Eq. (2.15c) are 8-type pieces. On the other hand, while Xg is not
determined by the current-algebra conditions, it is related to
many of the other coupling constants by the current algebra, and
so the choice A&=0 would be arbitrary. Experimentally, in fact,
one Gnds (Ref. 9) Xg 0.4~0.2. No experimental determination
of p»p or pp&& currently exists.
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of this phenomenon we consider the case of Z(4~ which
is given in Appendix C. Here, P(4) contains structures
of the form n„,G""bn",Q,„d and ot„,G""bj3",Gb„d, with

coupling constants fixed by the current-algebra condi-
tions. One must, therefore, include into 2(4) an A(4)
piece of the forin c,p„,G""bp",Gb„d, where ci is undeter-
mined (and is the arbitrariness of this part of the
function of integration). If one then fixes the value of
Ri, and eliminates u&, and P&, back in terms of o',
and y&„ these structures contribute terms to Z(4~ of
the form

iblvvuG bv' cGbpd+o2o'yuG bp oGipd

+aba„.G""ba",Gb„d, (5.7)

where a~, a~, and a3 depend on one undetermined
constant c&. Alternatively, there exist only two relations
between the three constants a~, a2, a3. As shown in

Appendix C, Z(4~ contains five such additional undeter-
mined constants, even for the minimal solution where

8(4~ has been set to zero. Four of them involve o.-meson

channels and so are currently not of physical interest.
However, the fifth additional constant, exhibited in

Eq. (5.7), will contribute to m-p scattering and hence
affects the value of the sr+-7t-' electromagnetic mass
difference. 29 Similar additional undetermined constants
appear in the higher parts of the Lagrangian, Z(5),
Z(6), etc.

VI. CONCLUSIONS

In the preceding sections, a hard-pion current-

algebra method has been described for calculating T
products of an arbitrary number of vector and axial-

vector current operators. The analysis was based on

the assumptions of single o.-, x-, p-, and Ai-meson
saturation of intermediate sums, the chiral SU(2)
)&SU(2) current commutation relations, CVC, and

PCAC. The single-meson saturation hypothesis implied

that the T products could be calculated from a set of
generalized tree diagrams and generalized seagull

diagrams (i.e., flower" diagrams). This result could

equivalently be rephrased in terms of an effective

Lagrangian. Thus, to calculate a given X-point function
one uses an effective interaction Lagrangian Zr (which

is a polynomial of order iV in the meson fields) to
lowest nonvanishing order. A priori, no symmetry
conditions were imposed on Z~. These arose from the
constraints of the current commutation relations, CVC,
and PCAC.

The current-algebra constraints on Z~ have been
represented by a set of differential equations to deter-
mine the form of that function. In arriving at this
result we have made one additional postulate of
"simplicity": that the time components V' and Ao be

'~ This eBect appears to have been omitted in the calculation of
the m+-mo mass difference of I. S. Gerstein, B.W. Lee, H. T. Nieh,
and H. J. Schnitzer, Phys. Rev. Letters 19, 1064 (1967). A
detailed hard-pion calculation of this mass difference will be
cwsidcred elsewhere,

.o-bb. b(ox) . (6.2)

The quadratic A', (x) of Kq. (4.19b) precisely produces

Eq. (6.2). While it is indeed possible to add cubic

(and presumably higher) structures to A', (x) which

will then give more general (nonpole) contributions to
a~b,"Eq. (6.2) has the physical appeal of relating chiral

breakdown to a physical particle, the o meson (just as

isospin breakdown is related to the existence of the
photon). The fact that the integrability conditions are
satisfied, implies that Eq. (6.2) is consistent with PCAC
and the current commutation relations. On the other

hand, one cannot consistently add an I=2, J=O pole
to o, b (and such a meson does not appear to exist

experimentally). Further, Eq. (6.2) leads, in the soft-

pion approximation, to the steinberg' S-wave m-x

scattering lengths, which now appear to be in agreement

with current data. "Finally, we note that an assumption
such as Kq. (6.2) is directly extendable to chiral SU(3)
currents.

As discussed in Sec. V, the differential equations for

Zq do not determine it uniquely, and a great deal of

ambiguity exists in the higher-point functions. Even
if one assumes a "minimal" coupling choice, there is

still an increasing number of undetermined coupling

constants as one goes higher and higher in the series

of 21. Additional physical assumptions, outside the
framework of current algebra, are needed to obtain

unique theoretical predictions. It is tempting to spec-

ulate that conditions on the high-energy behavior of

the theory might furnish the necessary hypotheses.
Thus, one might argue that vertices with particularly

large numbers of momentum factors in the numerator

' S. steinberg, Phys. Rev. 166, 1568 (1968}.
"The inclusion of cubic structures to Ao, allows one to relax

Eq. (4.21) and leave X& and X3 arbitrary. Conversely, if one imposes
Eq. (6.2) on the A', with cubic terms, one automatically gets
back Eqs. (4.19b) and (4.21).

"M. G. Olsson and L. Turner, Phys. Rev. Letters 20, 1127
(1968). The m.-w scattering lengths enter importantly at threshold
for the process 7i-+S ~ 2~+%. Current data appear to favor the
+einberg values,

at most quadratic in the meson-field canonical variables.
The physical significance of this assumption becomes
clearer from the result of Weinberg30 that the "o-

commutator"

8(x' —y')L&p, (x),A'b(y)]=ib4(x —y)o.b(x), (6.1)

where q
—=c 'B„Af', governs in part the breakdown of

chiral invariance. This commutator is not determined

by the current-algebra conditions, and some assumption

must be made about it to get a well-defined theory. In
view of the previous assumption of single-meson satura-
tion (which is a generalized pole-dominance hypothesis),
it is natural to assume that o,b(x) is dominated by a
resonance pole (just as B„A&, is dominated by the

pion pole). The only resonance with the proper quantum
numbers that appears to be available in the low-energy

domain is the I=0=J 0. meson itself. This would imply
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should be sct to zero. For example, in the part of Z(3~
of Eq. (2.15c)~ tllc tcrIII propol tloIlal to ir~pg (pgG""ya p pg

possesses more momentum factors (due to the gradients
in Gl'"), and H„„,) than the g,~ term. The assumption
thRt this tcrTIl Dlust VRQIshq 1.c.

q
that p~pg =0) then

yields, by the current-algebra conditions (4.14), the
result

A=gf i

which is just the second Weinberg sum rule. ' On similar
grounds, onc might Rssumc pppp =0=pI)gg~ which ls
essentially the "minimal" solution discussed in Sec. V.28

A morc ambitious idcR arises if one wishes to tRkc thc
CGectivc Lagrangian seriously. Thus, one may try to
determine the additional coupling constants in such a
way that the theory is rcnormalizable (or even 6nite).
This is not a priori inconceivable since the type of
theory that has arisen here is diferent from the con-
ventional 6eld theories in that Zl possesses an in6nitc
series of terms. Thus, the theory may furnish its own
in6nite sequence of counter terms. Of course, sugges-
tions of this type imply using Zl beyond its original
domain of validity (which was to only first nonvanishing
order of perturbation theory).

As was pointed out in Sec. I, one of the uses of the
T products of currents comes from the fact that the
currents themselves represent interpolating 6elds for
the mesons. Thus the T products are essentially
scattering amplitudes. Having obtained the effective
Lagrangian, however, one may discard the currents
completely and calculate scattering and production
processes directly from the Lagrangian, using the
phenomenological Heisenberg meson fields appearing
there. In a certain sense then, the currents have
disappeared from the 6nal form of the theory.

It is of interest to compare the results given here with
other discussions. The work closest in spirit to this
paper is the Ward's identity analysis of Gerstein and
Schnitzer" which is also based on the same current-
algebra conditions of Kqs. (4.2)—(4.4). However, there
exist several differences in assumptions independent of
the current algebra. Thus, these authors are able to
obtain general amplitudes without imposing single-
meson saturation, but omit the 0- meson when they
latcI' IQRkc this RssuInptlon 1Q their x'-x' Rnd x'-p scRttcr-
ing amplitudes. "Consequently, a nonpole assumption
instead of Eq. (6.2) ls made fol 'tllc o' commutator.
Finally, two of the "nonminimal" couplings of Z(4),

are retained while a definite value is assigned to the
constant ar of Kqs. (C4) and (CS) (which is arbitrary
in our analysis for reasons discussed in Sec. V).

The "phenomenological" Lagrangian approach" gives
similar resu1ts to those obtained here, though it is
based on R different sct of principles. These authors

'3 This corresponds to taking the limit m, -+ cc in the amplitudes
obtained from the Z(4) of this paper.

assume a priori a chiral-invariant Lagrangian and a
postulate for breakdown of this symmetry equivalent
to a nonpole choice for the 0- commutator. "In contrast,
the analysis given here assumes only that chiral
lnvarlancc rcqu1rcd by thc current-algebra condltlons.
As a consequence, the Z(3) and 4(4) so obtained have R

number of additional chiral-asymmetric and chiral-
symmetric couplings not included in the phenomenolog-
ical Lagrangians. Whether these couplings are required
in nature remains to be seen."

where Z( ) is of eth order in the fields, In the following
it is convenient to introduce the symbol D„ to represent
the functional derivative of Z(„).Thus

D.G„„.=bZ, „)/bG»".-, etc. (A2)

Similarly, second derivatives of Z(„~ will be denoted by
D„ followed by two field variables, e.g.,

1) 82( ))
he"l, I

(A3)

We will also use the symbol 3, or A„ to represent any
isotopic and Lorentz component of the three 6elds
v„, 0,„,and q, while A, or A & will denote a component

Consider now, for generality, the quantum case
where the product of factors in the diGerential equations
(4.27a), (4.32), and (5.2) are to be symmetrized (to
ensure Hermiticity). Inserting in Eq. (AI), one obtains

"The use by these authors of a nonlinear relation between
currents and 6elds is not a fundamental distinction as one is
always free to make a change of Geld variables to restore the
linear current-field identity. The o meson is not included in any
of the papers of Ref. 10 (and hence a o-pole assumption for g f,

is not assumed} but could be included in a chiral symmetric way.
Ke also note that while a priori chiral invariance would require
only the integrated current algebra to hold, the phenomenological
Lagrangians actually satisfy the local current commutation
relations with only c-number Schwinger terms I B. Zumino
(private communication) j."We note that some of these additional couplings can be used
to make the meson electromagnetic mass shifts Gnite.

APPENDIX A: INTEGRABILITY OF CURRENT-
ALGEBRA CONDITIONS

In Sec. IV it was shown that one could reexpress the
current commutation relations and conservation condi-
'tions (4.2)—(4.4) Rs first-order functional dlffcrcntlal
equations to be satisfied by the interaction Lagrangian
ZI. These equations, (4.23), (4.27a), (4.32), and (5.2),
determine the e"„y„and nl', dependence of Zr Lwhere
rr&, is defined in Kq. (5.1b)1. In this Appendix, we verify
that in fact the coupled differential equations correctly
obey the integrability conditions (5.4), at lea, st for the
classical theory.

As d1scusscd III Scc. V, Eqs. (4.27R) (4.32), Rlld (5.2)
determine Zl in a, power series in the 6eld variables,
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D„A,=F„„e&4
where

F»=Q C», g,'(A„-D iAg)

(A4a)

n-3

+P K»gg Q —,'{D„„A„Dr~iAg) (A4b)

a set of diGerential equations to determine the A,
dependence of 2(„).These have the general form

(5) and (6) are satisfied for the case gg=4. To verify

them for e& 5 we will proceed by induction and assume

that Kqs. (AS) and (A6) hold for all ggg between

3(ggg(gg —1 and from this establish that Eqs. (AS)
holds for m= e.

Differentiating Eqs. (4) yields

D„(A„A,)=g C»„-', (A„D„ i(AQ, ))+F„, „(A7a)
s, t

s, t r=2
F„„»=PC»~gD„ iAg

tand C~„, K~„=K~„are a set of numerical coeKcients.
[The second sum in Eq. (A4b) is defined to be zero for
the case tg=4.] We wish to show that Eqs. (A4)
satisfy the integrability conditions

+g K»„P (D„„(A,A,), Dr~iAg) . (A7b)
s, t

D (A~A») i~ Q C» gC» (A {A„D„»(AgA )})

By hypothesis, D„ i(A+g)=D„ i(A,A„) and since

f')F„»/BA, = bF„„/8A„ (ASa) e—1)4 one may differentiate Eqs. (4) with respect to
At to eliminate this quantity. One 6nds

i.e., that these equations are consistent with the
requirement

D„(A,A,) =D„(A,A, ) . (A6)

Now, Zigi =Z&g&,g+Z&g&, has been explicitly exhibited
in Eqs. (2.15c) and (3.10b) and so, of course, Kq. (A6)
holds for m=3. Using this Z(3), one may integrate
Eqs. (A4) for the case gg=4 to find a single function

g(4) satisfying the equations. This solution is explicitly
exhibited in Appendix C. Thus, by construction Eqs.

D„(A»A~) =D„(A„A,) .

This would then imply that one could integrate Eq.
(A4a) to obtain a single function 2i i satisfying these
equations. Consequently, Eqs. (AS) would also imply

s, t, u, v

+-', Q C»„(A„F i,g„)+F,„». (AS)

For the linear conditions, Eqs. (4.27a) and (5.2), one

has that F=0 and so Eq. (ASa) reduces to

PC»„Cg,[[A„A„],D„»(AgA, ))=0. (A9)

This condition is thus automatically satis6ed for the
c-number theory. The analysis involving the nonlinear

PCAC condition is more complicated since Ii is nonzero.

Inserting Eq. (A7b) into Kq. (AS) yields

D„(A„A,)—D„(A,A„)=-', g C»„Cg„,[[A„A„],D„ i(A,A,)]+-,'g(C»„C~,„—Cg„C», ){A, D„~„}
stu

+» Q (C'„K"„, C&,gK»„,)(Ag)—Q(D„„ iA,A„) Dr+iA„))+Q(C»„g C&»g)D~ iAg—
st uv r=2

+Q K»rg Q {D„„(A„A,), D„+iA,} QK) gg Q {D„—„(A,A,), D,+iAg}. (A10)
st r=2 st 2

Using again the hypotheses that D„„(A,A,) =D„„(A,A,) implies

n—4n—8

+Kg„g(D„,(A,A,), D+ Ag}= ',P Kgrg Q{+C»-„,(A„, D„„,(A,A,)), D+iA, }
st s, t r=2 uv

n—4

+Q Kgrg Q {F~ „„,Dr+iAg)+Q K".g(Dg(A, A,), D~ »Ag}. (A11)
s, t r=2 s, t

Thus, the third and last two terms of Kq. (A10) may be combined. Inserting in the value of F from Eq. (A7b)

then reduces Eq. (A10) to

D (AQ») —D (A,A„)=-', Q (C',gC"g —C".,C'g ){A., D»A }+Q(C'„g C",g)(D. gAg)+Q—(K»ggD»(A—»A, )
s, t, u

n—4

Kg ggDg(A»Ag)) D„—»Ag)+Q(K»ggC&g„K", gK', „)Q (D~—r iAu) DryiAg}—-
stu

+~ [[-;C.,A,+K.,DA. , —,C.,A.+K ..DA.j, D(A,A.)j. „(A»)
stuv
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Pr—ala(» l a),

al&( )lb)(bl&(N-+ ) la b+1)

(A14)

where the terms in the 2's above can be taken to be
free since the terms have been expanded to the proper
order in the coupling constant. The digerer)ce between
terms (A14) calculated for 2o) and those calculated
for 2&2) will have c numbers replacing two of the Geld
operators (arising from a canonical commutator), e.g.,

(Z a
l &(ar 2) l a) X—c No--

or

or
(N —al2(,—2) lb)(bi&or —o+b) la b+1))Xc No

9'—al&«) l»(b l&(~-.) la —b+1)Xc-No.

All such terms vanish since the Geld operators in 2
have already been replaced by free-field operators. Thus
whether or not a term in 2 has a given ordering cannot
acct a calculation.

where the subscript e—2 on the last term implies that
one take only those parts of the double commutator
containing e—2 Geld variables. Equation (A12) clearly
reduces to the special case (A9) when F=0.

The veri6cation that the right-hand side of Eq.
(A12) (aside from the double commutator) vanish is
now straightforward. It is necessary to use only the
relations (4.14)—(4.17) and (4.21) between the coupling
constants of Z(3~. Thus, for the case A,= p, and
A~= (ob, the right-hand side of Eq. (A12) reduces to
(neglecting the double commutator)

(F.) '[H ".(D ~„,b)+G"".(D 2G„,b)+ o"a(aa 2o,b)—
+a".(D ba, b)+v. (D 2vb)

+~.(D=2~.b)l La~—bj (A»)
Since Eq. (A13) is manifestly antisymmetric in a and b

one may multiply it by e,~,. The result is then propor-
tional to the first-order change in Z(„2) under an
isotopic rotation. Thus Eq. (A13) vanishes by the
isotopic invariance of Z(„2), i.e., by the CVC require-
ment for the lower-order Lagrangian.

The double commutator term in Eq. (A12) results
from the fact that although the c-number equations
are satisfied, an order of operators in a term in
which satisGes one requirement (e.g., the requirement
that the canonical expansion for V& contain terms at
most quadratic in field operators) might not satisfy
another requirement (e.g., the same requirement for
Vab, bWa).

However, the order of operators in a term in the
effective 2 does not affect a calculation made according
to the prescription resulting from the assumptions of
this paper. Consider a calculation made with two
Lagrangians, 2&'& and 8&" where 8(" is identical to
8('~ except for the ordering of certain terms. A calcula-
tion of an S-point process to order X—2 is a calculation
of terms like

APPENDIX B: CLOSED-FORM SOLUTIONS

In Sec. V, the general structure of the current-algebra
differential equations (4.27a), (4.27b), and (4.32) was
discussed. The analysis given there showed the nature
of the power-series solutions. Actually, the two current
commutation equations (4.27a) and (4.27b) can be
solved in closed form (at least for the classical theory).
We present here the results of this integration.

It is convenient to introduce the following notation
for commonly occurring quantities:

o'=) g—(F ) 'o, (p,'=—F —'q. ,
GIpv —rr —1Gpv IIP)((v —1+)(bva=gp a p a=ga a p

(ob= g„'/(F mg)'= x'ys'.

We will also make use of the isotopic-tensor quantities

cpac= &abc cpb i G ac= &abcG b i H ac: eabcH a b . (82)

In the discussion of Sec. V it was pointed out that the
series solution of the functional differential equations is
facilitated by replacing y„, and a„, by a new set of
variables P„, and o(„, deGned in Eqs. (5.1). Equations
(4.27a) and (5.2) then determine the o„, and o(a,
dependence of Zr, leaving the P„, dependence incom-
pletely specified. A nonlinear generalization of Eqs.
(5.1) is arrived at by introducing the variables ))„,and
f„,deGned by

= 2(mg gg (1+0'(o ) Lac +2(ps ) p v)i ]
+F —'(1—G)-'„„.,l (p",+F mc'gc 'H"'.cobe)), (33a)

,'(gym' '(1+-o'(o ')(cp„,+F mc'gc 'H„„oo"e)
—F (1—(")„„„La",+ ', (ys')-'(p, -o(re]) . (83b)

Here (1—G) ' means the matrix inverse, i.e.,

(34)

Expanding ))„,and t'„, in a power series in the Gelds gives

and
"&aa—2 (mA gA aaa+Fc cpaa)+ (Hsa)

f aa FcgAmA 2 (mA gA aaa Fc paa)+ . (ll5b)

Thus, t „ is the generalization of p„, while ))„, is the
generalization of e„.As in the discussion of Sec. V,
the choice of p„ is not unique and we have chosen here
(for convenience) the analog of E)——R2 ——2 in Eq.
(5.1b).

Equations (4.27a) and (4.27b) will now determine
the oa, and ))o, dependence of Zr (and leave the f'„,
dependence incompletely speciGed). In dealing with
these equations, it is convenient to rearrange them
slightly by adding Z(3) and a piece of the free Lagrangian
Z(o) to I.Thus, for the (0) of Eqs. (2.15b) and (3.10a)
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8z'/bop. = m—,'(1 G—)p bo"b, (8g)

f)Z'/62)p. =gpbmp '(1 G)p„—.be)"b+2gp(xbyF ) '

X (1+o'~-')-'1'„.+) I 'b.o, (89)

These equations may be directly integrated to yield
the total Lagrangian

where Z(0) ~ contains those pieces of the free Lagrangian
having no derivatives of 6cld variables and g(0)2 those
terms depending on derivatives. Then, if we define

@ =atI01+gAFv 22 gapa++I I

Eqs. (4.27) reduce to

vtI(0)2 gAFC 0' gapa 2mp (1 (-v) ab&pa&vb

+,'g, '-m, '(1 G—)P".br)p, ri„b+2gp(x2yF ) '
X(1+o'(d ') '2)p, )~Kg 'p, e)„,op

+f(q.,Gp".,H„„.,t'~,o,op),

where f is an arbitrary function of integration.
The quadratic part of fmay be chosen so that 2 has

the correct total free Lagrangian contribution Z(0).
Similarly, the cubic pieces are to be chosen so that Z
has the total Z(2) of Eqs. (2.15c) and (3.10a). The
&p, dependence of the remainder of f is determined by
the PCAC equation (4.32). In dealing with this equation
it is slightly more convenient to introduce the quantity

(811)

Equation (432) then becomes

(1 a')Dai) '—g, b,[H'—p"bDG'p", +G'p"bDH'p", +g,gA 'vpbDap, +gdg, 'apbDop. +F m, 'g, 'opbDa()„,

+Fdgp 4(' bD" e+Fdgp (Da)' b)(Dopa)] )II &"Da()pa+ 0's Do +)(IppaDop

+F ) igA 'opDa„, —FmA2Xg—gA 'ap j7op+liIF gA '(Dap, )(Do„)
=O,b,3mp2F gp 'Opb(pp, +3mA9IFegA 'ap, ap+()(I '—)(I)(OgppF 2m 222,', (812)

X (H P"CV'b Pd H pya G "aV'b 0'd G pya)]

X[(1—')'+2 "] ' (814)

and Eq. (814) with G„„,and H„„, interchanged. These
terms may be added to Eq. (810) and represent a
partial determination of the function of integration f.

APPENDIX C: FORM OF Z(4)

In this Appendix we record the form of the minimal"
solution of the current-algebra conditions (4.27R),
(5.2), and (4.32) (as de6ned in Sec. V) for the quartic
part of the interaction Legrangian z(4). This quantity
ls obtained by Inserting in thc known value of g(3) on
the right-hand side of Eqs. (4.27R), (5.2), and (4.32)

where Dy, = o2"/fag„—etc. The nonlinearity and general

complexity of this equation makes it rather intractible.
Kc note, however, that the following structures are
solutions of the homogeneous equation:

h(o' —-,'o"—
—2,a)2"),

where h(x) is an arbitrary function,

&(4)=&(4)V+&(4)A+ (4)PCAC ~ (C2)

Here Z(4) p is the contribution required by the current
co111IIlli'ta'tlo11 relations colidltioll (4.27R) oil 'tile vec'tol'

current V&„Z(4)~ is the additional contribution required
by tile clll'1'eIit coI1111111'tRtioII 1'elRt1011s coIiditlo11 (4.271))
on the axial current A~, and Z(4)pyric is the additional
q, dependence needed to satisfy the PCAC equation
(4.32). We find for 2(4))y the expression

and integrating once. A convenient procedure is to 6rst
integrate the current commutation equations (4.27a)
and (5.2). As discussed in Sec. V, these equations
determine the op, and (2p, dePendence of Z(4) [where
(2p. is def(ned in Eqs. (5.1)].One obtains the result in
terms of an arbitrary function of integration

f(~.A. Gp-».- o o.) (C1)

For g «), this function is of course quartic in the 6elds
and the arbitrariness resides in the value of the coupling
constants. The 22, dependence of f is then determined

by inserting this solution into the PCAC equation
(4.32).

Kc divHic thc total Z(4) into thlcc pieces,

@(4)F=gsbedade)(epA(gppp'RCV bOpaH d+~pdd~vaPbapaG d+2gepAOyaÃb& a'()d 4pAOvaa()bppaG "d )Iddp'VysH" bp CG)Ipd

+2)(dpA&yaH~ b~ CH)Ipd+4pA&vaH ba CG)Ipd)+&abc)(vpA[gdAA&gamba"CO+~dad&psai)ba)2 CO

+ ()4CAA+)bded)Opa PbH cO)I ~de'eiyI» b9 pcO ~ A'4cH CCbapcO PCICA'4CH bHpbca ] (C3)

The value of the 2(2) coupling constants appearing in Eq. (C3) can be found in Eqs. (4.14)—(4.17) and (4.21).
The additional pieces of Z(4) needed to satisfy Eq. (4.27b) is

aC(4)A gabcgcde(alpyaG bg CG)Ipd+a2avsG bP G)pd+Caba IGba vCaG)Ipd)+&abc(hlA GbCgpcav+bbaysG ba()pao'

+f)bavsG bapcO)+[&abc(OIC()yaG bHp)ICO +&2avaG "bHp)ICO)+(dia aapaO +d'2(() ac()psO +dba"aa()pgO)'
+(&iapaH""soytr+o24'psH" saver)]+&abc(hid'vaG "bV'e&p+hbavsG" baI)cop)+(4apaa))sop&+4&pea()go po). (C4)''



HARD —P ION E—POINT F UNCTIONS

The 17 new constants appearing in Eq. (C4) are
constrained by ten equations. These are

(CSe)

gA212A &2+2''col= Frrgp ~rrcp r

2gA2IA O2+FcO2= Frrgp }lcpA r

gA222A fI2+2Frr~l Frrgp 4rrc+FcgA ~l~rrpA r

2gA222A fI2+FA2 F gp ~ A. F gA, l11~pAA

gA2NA &2+FcA= Fcgp IlcrrA r

2gA2ÃA dl+Frr/52 — FpgA ~1gcAA. r

gA2PIA d2+2Frr~2 FcgA. ~lkrrrA r

(CSa)

(C5d)

gApp»k ~2+Fc~l= Frrgp 14ccrr r

gA212A '4+F.4= —F.gA '4&..A . (Csg)

At this stage in the analysis there are then seven new
undetermined coupling constan ts. This addi t1onal

ambiguity in Zl is due to the ambiguity in the de6nition
of Q,„„asis duscussed in Sec. V.

Thc final pa1't of z(4), I'cqulI'cd by PCAC, ls

Z I41pcxc = &c»c&cAc[ 2gp (FcgA) IAppp V'c+»Gp cGppA gA(F cgp) &pAA &cG»Gp c+»~
—2g, (F.gA) Ip, AAqp. Bp"»ffp"I, A)+4[gA2(214A2gp) I& pA gppp»A

—2&.pA gAplA—2414.AA)V.P;&p"»P.»

+2LF-'g. 'g-. F-»—--3~ 13".)' 2LF—-'g. 'g- + lF-(l ) 9--l(~.)'(P. )',
+{—.(F.~)-g...(A)+-:[g.(F.g )-"...—:(F.~.)-4„j(..) G" G. ;L:(F—~,)--4.
+g, (F-gA) 'I -pAMV")'&""~"»+2g.(F.gA) '~: A( 2~"".)'—2gA(F-g. ) '4;A(2.G"".)'}
+{2LF 9lg„—3(F xl) Ig...l(22,)20'+2)(F xl) 'p„,—gA 91k. A

—(F.xl)
—Ix...j(s,)20pop}

+LFrr ~l~rrpA+2gA(Frrgp) ~cAA 2gp(FcgA) ~cpp j&c»cVPcGpp»Ef ca'r (C6)

where P„, ls defined ln Eq. (5.1a). In additlonr foul of
the coupling constants of Eq. (C5) are determined by
the PCAC condition:

kl —— gA(F.g,) —'P...A+ (F XI) IX..p—
+gA 9P.,A, (C7a)

4= gA(F.g,) II —.AA —(P.&i) '7.,A

—
gA '4~pAA, (C7b)

4= (F.&I) '}1.A+F. 14&..A
—

gA 91g.AA

+2gA 21$A9 IXccc r (C8R)

l2 ——(F ),I) IX „+F 9~ „—gA 9IK
—2F 9 IX„.. (C8b)

Eqllatlolls (C7) arid (C8) lllay be sccll 'to be collsls'te11't

with Eqs. (CSf) and (CSg) Lupon using the coupling-
constant conditions Eqs. (4.14)—(4.17) and (4,21)$.
Thus, there remain only five undetermined constants
in 2I41 (aside from those arising from 2421).

Equations (C2)—(C8) represent the "minimal" ZI41
consistent with the current commutation relations,
CVC, arid PCAC. To this one is free to add any quartic
function of Pp„Gp„, Hp„„o, and 0„. While even the
minimal interaction Lagrangian is quite complicated,
it should be remeInbered that the four-point functions
which 2 121+2141 describe, govern meson-meson scatter-
ing through 19 channels.


