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data than the previous older prediction because of the
change of sign of the ratio (oB/A) g,.

Other sly rules. We have considered generalized
Schwarz sum rules which evaluate the "oG l-shell"

amplitudes in the Khuri plane. We And the background
to be small in general, so that these relations are
satisfied with Regge-pole parameters alone. The t de-

pendence of these relation. s implies that the background

amplitude has cuts, however, and this limits the
applications, since further parameters to describe the
background will then be needed.
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Explicit constraints on the mass dependence of daughter Regge trajectories, near zero mass, are ob-
tained for fermion trajectories contributing to ~$ scattering. Both the analyticity and the group-theoretic
approaches are investigated. We Gnd agreement between these two methods, but disagreement between

our constrairits and those previously published. For the dependence on the mass 8' of the kth daughter

trajectory with parity designation &, we 6nd that os&+&(W)=o —h+A( oh+s)W+PB&+B&(o h)—
(o —h+1)+A'(o —h+$)gW'+ ~ ~ ~, where a, A, B&, and B& are constants over the family. For each of the
two methods, we stress the assumptions leading to the MacDowell symmetry evident above.

I. INTRODUCTION

' 'N a recent paper' it has been pointed out that two

~ ~ diGerent approaches to daughter Regge trajec-
tories, analyticity and group-theoretic, lead to the same

results for the scattering of spinless particles. Mathe-

matically the equivalence of these two approaches has

been established. ' Namely, in order to make the analy-

city requirement for scattering amplitudes compatible

with Lorentz invariance and Regge behavior, it is

necessary and sufhcient to classify singularities accord-

ing to the irreducible representations of the homogene-

ous Lorentz group Sl.(2,C). However, at the practical

level, the ways by which these approaches lead to a
given result dier considerably. At present their rela-

tionship is by no means trivial. ' In this paper we com-

pare these approaches for fermion trajectories, with

particular emphasis on the mass formula that they yield.

Even though the two methods agree, we find that each

of the methods seems to have some advantages over

the other. %e reserve a more detailed discussion of this
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' L. Jones and H. K. Shepard, Phys. Rev. 175, 2117 (1968).

point for later. The mass formula that we obtain does
not agree completely with that obtained previously by
Domokos and Suranyi, 4 hereafter referred to as DS,
using their group-theoretic method. In order to facilitate
comparison, our group-theoretic approach closely paral-
lels that of DS. In our approach this disagreement is
resolved by recognizing some subtleties associated with
the ipse of wave functions having nonphysical angular
momentum values.

In Sec. II we examine the implication of analyticity
on the sr% scattering amplitude near u=0 (u is the
square of the momentum transfer for exchange scatter-
ing) in some detail, using the method of Ref. 1. In Sec.
III we use our apparently modified version of the per-
turbation theory developed in DS to reproduce the re-
sults of Sec. II. Section IV contains some discussion
concerning the relative merit of the two approaches and
the degree to which the daughters are determined by
experiment.

II. ANALYTICITY APPROACH TO mN
SCATTERING AMPLITUDE

The xS scattering is dominated in the backward
region by the exchange of fermion trajectories. For this
reason we go to the I channel and de6ne the invariant

G. Domokos and P. Suranyi, in Proceedings of the Topical Con-
ference on High-Energy Collision of Hadrons (CERN, Geneva,
1968), Vol. 1, p. 494.
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OR= WE(A —MB)+W'3IIB

K=M(A MB—)+WEB,
(2.1)

which are closely akin to helicity amplitudes and are
simply related to the partial-wave amplitudes:

(f '+' —f ' ') —«'( )
J-i/2

Ol, =W Q (fs&+&+fs& &)e««s—(s),
J=1/2

amplitudes A and B by writing the transition matrix
elemerit as'

t&(P2)LA+Bv Q]N(Pi).

It is convenient to introduce new amplitudes 5R and X:

fs&+&(W) and p), &+&(W)/W2 is its residue. i The function
e&,„s bears the same relation to e&,„~ as Q i i to Pi A. t
this point the machinery of Ref. 1 can be turned on to
derive constraint equations for the u's and P's. We
sketch the steps here. One 6rst replaces the 8 functions
by their asymptotic expansions, '

(—1)~«~
t

1—sl
e~«i~(s) = -',v2I

tanI (u+-', )a.] k 2 1

F(2u+1) 1
X — O'+'I u, I, (2.6)

F(u+-,')F(u+ a) & 1—s)

where G&+& is a hypergeometric function:

G&+&(u,x) =F(—u+-,', —u+-'„—2u 2g)

where fs&+& is the scattering amplitude in the state of
total angular momentum J and parity —(—1)~~'&'.
The function e) „J is just the d) „Jof Wigner with half-
angle factors removed, '

e~««s(s) = iaV2(J+ 2) 'LPs+tt2'(s) %Ps tp'(s)] (2.3)

and

s—=cos8„=1+2ut/L(3f' —ti')' —2N(N'+p, ')+I'] (2.4)

= Q g &+&(u)x"
v=0

(—2)"( F(u+-,') l' F(2u —r+1)
g (+)(u)—

r! (F(u—r+a)) F(2u+1)

u+2
g„(—)(u) = g„(+)(u)

u—r+ 2

(2 't)

The "Reggeizing" process' essentially amounts to the
statement that fs&+&(W) can be continued as a mero-
morphic function in the right-half complex J plane. For
simplicity we assume that the boundary of meromorphy
can be pushed far to the left and that each fg&+&(J,W)
has only a single family of poles.

Our input assumptions shall be that (i) A and B are
analytic functions in u= W' near I=0 and (ii) A and B
have Regge asymptotic behavior continuable to N=O.
Since WE=-, (N+t!«r' —ti') is also analytic in I, it fol-
lows from (2.1) that these statements apply equally to
5K and X. We write the contribution to 5K and X due
to these poles as

OR(W', s)=Q»&+&t I'+' «G& 'I u-g&+&—

t=o &
'1—s)

+.»(—)P~&-&—«G&—
&I u„&—

&

'1—s)

WOt(W2 s) p y„(+)pa&+&—«G(+)I uy(+)
i=o

(2.8)

Note that the coefficient of G&+& in (2.6) is the same for
both 8's. One then rede6nes the residue functions and
rewrites (2.5) as

—p" '(W)"-««"' " '()]
WO1= Z IA"&(W)e««""" &(s)

Ic 0

+Pz(-)(W)e„~a& &(~)(s)]

where ua&+&(W) gives the position of the kth pole of

Our notation is such that pi, gi {p2,q2) are the initial (final)
momenta of the nucleon and pion. Q=)(q&+qm); )I, and 3E are the
pion and nucleon masses. The c.m. variables 8' and E are the total
energy and nucleon energy. The Mandelstam variables are
s= (pi —g2)', t = (g» —gs)', and I= (pi+pi)'= 8".Isospin labels are
suppressed throughout. Our partial-wave amplitudes do not have
the conventional normalization.

6 M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, 3145 (1964).

We have combined various factors, including the signature,
into Pi&+&(W).

where the reduced residue function»&+& is related to
the old Pt, &+& by

( 1)I»&+&+«~

»a& —~p„&+&(W)
tanL(u&, &"&+-,')&r]

F(2u&, &+&+1)
X y «-~a&+&-t (2 9)

F(u~(+)+ i)F(u~(k)+ a)
and

1'= (—1/»)L(t«f' —t ')'—»(tie'+t ')+~'7
= t/(1 —s) . (2.10)

BatemarI Mangscri pt Project, edited by A. Erdelyi (McGraw-
Hill Book Co., New York, 1953},Vol. I.
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Z (g--" )(~~(+)(W))Y~(+)(W)L&~(+)(W)j"
k 0

+g.-~( )(~~( )(W))Y»( )(W)L4( )(W)j'}
=0(W'" '), (2.12a)

Z &g. ..(-..)(W»".)(W)L~.(. (W)j
—

g ~(+)(o~(—)(W))Y~(-)(W)p~(-)(W)$ )

with
=O(W'"-~'), (2.12b)

l&, (+)(W)= W-'L i + (W) —&, (+)(0)]. (2.13)

The details of solving these equations are found in the
Appendix. The results are expressed in expansion pa-
rameters, defined with (2.11) taken into account:

ni(+) (W) =ni+na'W+-, '&&.g"8"+.
(2.14)

V) (+)(W) =Ya+Y~'W+ g7) "W'+

2" I'(a+-,')F(a+-,')F(2a —2k+2)
PI(: +0

k! F(a—k+-,')F(a—k+-,')F(2a —k+2)
(2.15)

2" d F(a+-,') ' F(2a —2k+2)
Y&

=—'Yo+Voo.'o
kI da F(a —k+xa) F(2a —k+2)

and'

(&.&,

' ——A (a.—k+-,'),
—,'ng" ——Bi+82(a—k) (a —k+1)+A'(a —k+-,'),
'This mass formula has been derived independently by J. 3.

Bronzan and C. K. Jones by a similar analyticity method (private
communication}.

The last factor in (2.9) is tacitly chosen so that the singu-
larity in Pi(+) is cancelled and all 3f, &i dependences
factor out of the constraint equations for O.I,

&+' and

yl, (+&. That we have made the correct choice is shown

by the fact that p&(+), as determined below, is analytic
in 8' and has no zero at 8'=0. Furthermore, I" is fac-
torizable into factors depending on masses in initial and
final states separately. This leads to the desired property
that Pq&+) will be factorizabie.

The next step is to examine (2.8) for large s, or,
equivalently, large —3, and demand that all terms with
inverse powers of I cancel. The justihcation of such
practice is found in Ref. I..' Some conclusions can be
drawn immediately: Unless Y(&(+)(0)=Y(&( &(0)=0, it is
necessary to have no(+'(0)=()(o' &(0)=a and o')(+)(0)
0-—k. This establishes the existence of two conspiring
families of trajectories, one of each parity. Furthermore,
assuming complete knowledge of 5R(Wm, s) and K(W', s),
(2.8) then determines a(), (+)(W) and yi(+)(W) uniquely.
The solution satis6es the MacDowell symmetry,

n&(+)(W) = nu(—'(—W), Ya(+)(W) =Yi (—&(—W). (2.11)

By looking at the coeKcient of t "(in')' in (2.8) one
obtains the following infinite set of constraint equations:

III. GROUP-THEORETIC APPROACH

The classi6cation of families of Regge trajectories
according to irreducible representations of the group
SL(2,C) has been considered by several authors over the
past few years. '4 "In particular, we follow closely the
work of DS in order to see where the previously indi-
cated discrepancy arises. The basis of this technique
may be found in the original DS article, ~ where enlight-
ening discussion on the use of "pseudostates" for
"particles" with nonphysical angular momentum is
given. Most of that discussion will not be reproduced
here. Our primary aim in this section will be to obtain
the formula relating the mass and the spin of these
pseudostates.

A particular irreducible representation of the SL(2,C)
algebra is speci6ed by the eigenvalues of the Casimir
operators. Since this algebra of six elements can be ex-
pressed as the direct sum of two SU(2) algebras, Ji and

J2, the irreducible representations of SL(2,C) may be
specified by (ji,jm), where j,(j;+1)is the eigenvalue of
of J;, i=1, 2. An equivalent specification is (e,ja),
where

(3.1)jl+j2 j0 ji j2 ~

For integer or half-integer values of jj.and j2 the repre-
sentation (ji,j2) has dimension (2ji+1)(2j&+1). The
specihcation of the states within the representation is
given by j, m;, the angular momentum quantum num-
bers associated with J' and J„where J=Ji+J2. That
this is an appropriate speci&cation for this problem will

be seen later. For the 6nite-dimensional representation
given above, the ranges of j and m; are

j=e, e—1, I—2, , ) j()j,
pg j jw $ j~2 I t 0 j

"M.Toiler, Nuovo Cimento 37, 63 (1965};M. Toiler, ~bid. 54,
295 I,j.968}, and references therein; D. Z. Freedman and J. M.
Wang, Phys. Rev. 160, 1560 (1967}."G. Domokos and P. Surd, nyi, Nucl. Phys. 54) 529 (j.964}.

where A, B~, and 82 are arbitrary constants and can be
solved in favor of o.o', no", and o.~". The last expression
disagrees with the mass formula of DS.

We summarize results obtained by the analyticity
approach.

(i) Regge poles again appear in families with the same
properties as those appearing in the spinless case. '

(ii) If the leading pole does not decouple at 1=0, it
is necessary to have two families of poles with opposite
parity conspiring at 1=0.

(iii) The two families are images of each other under
MacDowell symmetry. This follows from our assump-
tion that the invariant amplitudes A and 8 are analytic
i' I near N=O.

(iv) At u/0 the higher symmetry is broken, so that
poles no longer have to be integrally spaced. However,
the most general solution is the mass formula (2.16), and
the residues behave according to (2.15).
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If j& and j2 are not integer or half-integer, the sequence
for j in (3.2) does not terminate at

I je I, and the irreduc-
ible representation is not 6nite-dimensional. In any
case, the basis states spanning the representation (ji,jz)
are denoted by

or, equivalently,
I(ji jz)' j rrs ) (3.3)

Irs, je, j,m;); j=re—k, k=O, 1, 2, . (3.4)

In the Bethe-Salpeter (BS) model as presented by
DS, corresponding to each Regge trajectory j=n(W),
there is a pseudostate p(W; n) that is an eigenstate of
the BS equation

H(W)f(W; cr) =0, (3.7)

P=Gp '+I, (3.8)

where Go ' is the inverse of the free two-particle propa-
gator and I is the sum of all T-matrix graphs having no
intermediate states identical to the two free particles.
For example, for the I-channel mE state in the c.m.
frame, Go ' in the momentum representation is given
by~

Go '(p W)=(~zoW+~ p ~)L(zW p)' p'j —(39)—

where
p= l(pi —ei)

The operator J, which occurs in the SL(2,C) algebra,
is to be associated with the total spin of the BS psuedo-
state. This includes intrinsic spin as well as the angular
momentum associated with the relative momentum, p.
The basis states (3.4) can be represented in terms of the
intrinsic spin coordinates and the angular coordinates
(including the boost angle) of p."

At S'/0 the BSoperator H is invariant under homog-
eneous Lorentz transformations of p, the four-vector
6=pi+qi, of which W is the fourth component in the

"G. Domokos, Phys. Rev. 159, 1387 (1967), especially Sec.
2 3, which gives these representations explicitly for the case of no
intrinsic spin.

The Wigner-Eckart theorem for the matrix elements
of an irreducible tensor T;, &'I &'» has been given by DS:

((ji',jr') i'~'I~~', -"""'"'I(jim's)' j~&
=C(jj"j', snsrs"m')((ji' jz')II2'""'""'ll(ji j2)&

X((ji',jz') j'll(ji jz)j (ji" jz")j"&.

Equation (3.5) defines the reduced matrix elements of
T&&'I»» in terms of a Clebsch-Gordan coeS.cient and a co-
e%cient related to the 9-j symbol,

&(ji',jz') j'll(ji jz)j (ji" jz")j"&
= L(2j+1)(2j"+1)(2ji'+1)(2jz'+1)]'"

c.m. frame, and the intrinsic spin. " However, for
he=0 (W=O in the c.m. frame), H transforms as an
invariant under the SL(2,C) transformation of p and
the intrinsic spin only. Therefore the solutions to (3.7)
with 8'= 0 fall into degenerate families corresponding to
irreducible representations of SL(2,C). We consider one
such family of pseudostates corresponding to a particu-
lar representation at 5'=0,

n=o, jp, j—=ne=o —k k=O 1 2 . (3.10)

Here a& is the generally nonintegral eigenvalue for (3.7).
If I in (3.8) contains only contributions from the

strong interactions, H is invariant under parity. How-
ever, under parity, "Ji r Js, so that

(3.11)

It follows that for every solution to (3.7) with designa-
tion (3.10) there is another with je replaced by —jo.
Definite-parity linear combinations of these states may
be expressed in terms of the definite-parity (sr =+) basis
states"

I~,M; j,w)=-,'v2(lrs, u; j,mrs;&

+ In, —M;j,rw;)), M=—
I jol . (3.12)

The deinite-parity pseudostates belonging to the
family (3.10) are

y„~(0; k, ~)=Z(aPr)
I ~,m; a—k, ~&. (3.13)

Because of the degeneracy of the family, the "radial"
function E(o,M) depends only on the quantum numbers
of the family.

As 5' is increased from zero, the degeneracy of the
states (3.13) is broken because H is not invariant under
Lorentz transformations with 8' 6xed. However, H is
invariant under the SU(2) algebra J and under parity.
This is the reason that the j,ns; classiication of the
8'=0 degeneracy is proper. The j,m; states go con-
tinuously into eigensolutions for 8'/0 where the higher
symmetry is broken. We now ask what constraints are
placed on the Regge trajectory crz (W), originating at
8"=0 with a particular daughter number k. This
pseudostate, for 8'/0, can be expanded in terms of the
definite-parity SL(2,C) basis states (3.12). However, a
complete set of irreducible representations must be
summed over, since H is no longer an invariant. Be-
cause of the SU(2) invariance, only those states with
j=ere (W) for a particular value of W need be included.
We have

iP~, zr(W; kp')= P Rp»zr»(Wi o'~M&k~sr)
/I Ijgll

X lese (W)+k",M"; ere"(W)p.). (3.14)
"One must be careful to distinguish an invariant from a scalar

in the sense of M. E. Rose, 8/ementary Theory of Arigular Mo-
nseetum Qohn Wiley R Sons, Inc., New York, 1957), p. 81."Stephen Gasiorowicz, Eleraellary Particle Physics Qohn
Wiley 8z Sons, Inc. , New York, 1966), p. 84.

"We do not explicitly carry the ~ quantum number any
further.
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COIllpRI'lllg (3.14) slid (3.13) wc scc that

Rg, ar (W; o,M,kp)~. 8a a8aa a(R((I,M),
(3.15)

8"m0
n), (W) —&o —k.

The expansion (3.14) must be considered unconven-
tional, to say the least. Not only is it based on a non-
integer j value, but the j value changes with lV, and is
in fact the eigenvalue to be determined in the problem.
%c shall assume that the expansion is justi6able by con-
sidering the differential operators for Jp, JI', and J'
with appropriate boundary conditions to allow the par-
ticular j value that we desire. In general, this boundary
condition will not be the physical condition of single-
valuedness, '6 One might ask how the j value can change
as a rotationally invariant perturbation 8' is turned on.
The answer lies in the fact that we permit the boundary
conditions satisfied by the pseudostate to violate rota-
tional symmetry, and to change as j changes with 8'.

%c now obtain a perturbation expansion in powers of
8", being careful to include the 5' dependence of the
basis states. This is most easily done by working with
radial equations for the functions Ra ar (W; o,M,kp-)
of (3.14).II Using (3.7), we have

Ha ar' ' a(-(W& (I) (W)i~)
k"3f"

where, in terms of the states (3.12),

Hg aa~; a~ alI~(W;j~m)='(j+O', M';j, m ~H(l'V)

X
~
j+k", M";j,~). (3.17)

A restatement of the notation of (3.16) is perhaps in
order. The radial functions Ra"aa" (W; oM,k,)r) are the
n= j+k",

~ jo~ =M", components of the eigenstate of
(3.16) with eigenvalue j=nq (W), which goes as W-+0
to the n=o., ~ jo~ =M, j=o—k pseudostate, Everything
is to be expanded in powers of 8'.

H(W)=H(o)+H( )W+ H(s)WI+. . . (3 1g)

(Ia (W)=ok.+—n), 'W+-'n ~a"W'+ (3 19)

Ra-ar" (W; o,M,k,7r) = 8),"ahab-aIR(o, M)
+R)"ar- W+2Ra" ar" 'W + ' ' ' (3 20)

where the leading terms in (3.19) and {3.20) have been
chosen to satisfy (3.15). If we define

H(") ar', a"ar (j,~)
={j+k' M' j m~H(')~ j+k" M" j Ir) (321)

and we recall that H(0) is an Si.{2,C) invariant, i.e. ,

H")a ar'. )" ar" (jp')
= 8a a baa~ar»H( )(j+k,' M'), (3.22)

&(Rl.-a(-(W; o.,M,k,lr) =0, (3.16) we f(nd from (3.18) and (3.19) that

Hazard. yarns»(W&Qa (W))= baiairga(ia(i&H( (o' k+k
&

M )

8
+ H")a ar' a a(-(jar)+f')v)-4var-o(a" —H'"(j+k, M )

Bj —j=e'—k

8
+ H a ar par i(jp')+~ 2Qa —H liar's. Imari. (j Ir)+bkiaribariar, i

Bj

8
X nl "—H"'(j+k' M')+(nl ')' H("(j+k', M')

Bj Bj
-'W'+ (3 23)

Now (3.20) slid {3.23) give tllc pci"till'bRtloli cxpallsioll
of (3.16). We shall look at the first three equations ob-
talncd 111 this scI'lcs.

The zeroth-order equation

The first-order cquatlon

H' )(& k+k', M')Ra, ar '+ H(—I)a ar&, aai(j p')

H(') (o,M)R(o, M) =0

gives the ladlal wave function foI' the family an
an clgcnvaluc, thc posltlon 0 of the parent pole.

(3.24)

8
+4 a4r aao(a" H"'(j+k, M)—

Bj
R(o,M) =0 (3.25)

16 e thank K. Johnson for discussion related to this point.
17lf one does perturbation theory based on the fuB four-

dimensional equation (8.7), the S'-dependent boundary conditions
on the angular part of P force one to include the boundary pertur-
bations whenever the Hermiticity property of H is used.

may be solved for (Ia~' and R„,aa, ', (k',M') ~(k,M), by
taking Rpprop»a«ma«ix elements and using (3.24).
~e lnt«duce the not8 tion fol the I'adial matrix element
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of an operator 8:
(f&)=—(R(o;M),eR((r,M)),

n» (H &&r&r; »M(&r k& rr)

The one missing first-order result Ek~' is seen to be
zero by expanding the normalization condition for the
pseudostate. We use

(P.,»&(W;

kyar)

pj's. ,&)r(W; kp)) = 1. (3.29)

H&'&(o —k+k', M')

XH&"&, jr'ssr(o k&r)R—(o,M), (3 28)

(k',M') W (k,M).

In (3.28) the existence of a radial Green's function has

been assumed. "
Finally, from the coeff(cient of W' in (3.16), we only

want the result for nk ", which the reader may verify,
using (3.24) and (3.28), to be

aH &'&((r M) 1
Qk x B&'&(« &&, «, ) — B&"«&,«&( —

&, ))
80 (k', 3II')Q(k, M) H&'&(0 —k+k' M')

82 8
(H—s»r ssr((r —k m)) —(nL ')' H ((r&M) —2ns ' H—' s&»&s&)r(j,p) '~ (3.30)

80' ~j y ak

H&"s s (j ~)=+(j+s)k(j+k) (3.32)

(k', M')Q(k, $)

H& &s &s&sI&(j &r)
H&o&(j+k' M')

XH&»s&&&r& stan(j m) —H&s&$& $1(j rr)

gr(i +k)+i (i +1)gs(j+k) (3 33)

The source of the & sign appearing in (3.32) is discussed
in more detail at the end of this section when we con-

18 Our H(» and H(') correspond to Hw and Hwg of DS. We do
not have to consider transformation properties of H, H,~, etc.,
as in DS, since we diGerentiate with respect to j only after the
angular matrix elements have been evaluated.

In order to decide how the results (3.27) and (3.30) de-

pend on the daughter index k, we must use the known
transformation properties of H&'& under SL(2,C) to-
gether with (3.5).

Since H(W) is invariant under Lorentz transforma-
tions of P, 6, and the intrinsic spin variables, H&s& is
invariant under SL(2,C) transformations of p and in-

trinsic spin, while H(" and H(') must transform like W
and W, respectively. Since W is the timelike component
of a four-vector, it transforms according to (jr,js)j
= (-'„1s)0. Therefore, we have the SL(2,C) irreducible
tensor representations"

a(» ~-'-'~0
(3.31)

H(s& L(11)8(11)]0=(0P)0@(11)0

The selection rules corresponding to (3.31) may be ob-
tained from (3.5) and are tabulated in DS. The j=o —k
dependence of the matrix elements (3.21) between states
given by (3.12) is obtained by using the irreducible
tensor properties (3.31) and the Wigner-Eckart theorem
(3.5). We give the explicit results for the mA)' system
taking M=-', :

sider the MacDowell symmetry. The two terms on the
left-hand side of (3.33) actually each separately have
the j dependence of the right-hand side. We see by
(3.30) that we also need"

8—H'"».»(j ~)=~Lk(j+k)+(j+s)k'(j+k)3 (3 34)
Bj

Here h, gi, and g2 are radial operators depending only on
the family designation (o, M= s). Substituting (3.32)—
(3.34) into (3.27) and (3.30) gives results agreeing with
the analyticity results (2.16), with the MacDowell
symmetry explicitly exhibited:

ns&+&'= ns& &'=—A ((r k+-')—
(3.35)

ns&+&"= Br+Bs(a—k)(o —k+1)+As((r —k+-', ).
The constants A, 8&, and 82 may be obtained in terms
of the matrix elements of h, g~, and g2. For instance,

(3.36)

As we have indicated, (3.35) is consistent with the
MacDowell symmetry (2.11). This fact arises solely
from our observation that the BSoperator H is invariant
under parity. This led to the expansion of the positive-
(negative-) parity pseudostates in terms of the sym-
metrized (antisymmetrized) basis states (3.12). The
selection rules for H(", and for the coefFicients of all
odd powers of W in H(W), are such as to couple the
state (o, j()———',) to the state (o, j()———-,'), but not to it-
self. In this way the & sign of (3.12) appears in (3.32)
and finally as a sign difference between O,k(+)' and nk(—)'.

"The discrepancy between DS and our results arises because of
a difference in the term equivalent to (3.33). DS uses H ~. (~,~)0,
whereas we find an additional (0,0)0 contribution in our corre-
spor&di»g term BH&'&/&&j .
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TABLE I. Comparison of the predicted resonances with their
experimentally determined values. ' The choice cr = —0.37 is made
arbitrarily.

Resonances

+11
~16
D1$
+13
D13
&17
J1,ll
+1,15
+11

0
0
0
i
i
i
i
i
2

Theor. (MeV)

940b
i692b
i650
i960
i660
22i0
2650b
3030
i770

Expt. yreV)'

940
i692
iQ'8
1863
i526
2260
2650
3030
i750

a C. Lovelace, in Proceedings of the HeideSerg International Conference on
Elementary Particles, edited by H. Filthuth (Interscience Publishers, Inc.,
New York, 1968), p. V9; A. H. Rosenfeld et a/. , Rev. Mod. Phys. 40, 7'I
(1968).

b Input data.

IV. DISCUSSION

We have seen how the two approaches give rise to
the same results in very diferent manners. The analytic-
ity approach is most eScient in deriving mass formulas
for the boson and fermion trajectories and the corre-
sponding residue functions. However, it is not clear that
the determination of the former is always independent
of the latter, although it is found to be true in the two
eases that have been studied. Another point is the iden-
ti6eation of the 3f quantum number. The analyticity
approach has so far been applied to the cases of scalar-
scalar and scalar-spinor scatterings, where all integral or
half-integral M-valued trajectories can participate.
Without working out eases with general spin it is not
clear to us how one shouM attach the M quantum num-
ber to trajectories. For this reason the restriction im-
posed by factorization when a given trajectory contrib-
utes to two or more helicity amplitudes is also not
obvious. The group-theoretic approach, on the other
hand, remedies all these shortcomings at the expense of
having to use a BS equation model and slightly more
cumbersome algebra. We do not believe that the ad-
vantages of the group-theoretic approach have been
fully exploited. More investigation is needed in this
direction.

Finally, a remark about comparison with available
experimental data is in order. In DS an excellent 6t is
obtained for the case of the I= ~, 6 family, and a less
successful 6t for the I=~„X family. Since A &0 only
for the E family, we need only reexamine this case. It
should be pointed out from the outset that the behavior
of the higher daughter trajectories depend on the pa-
rameters a, A, 81, and B~ far more sensitively than that
of the parent. One can change these parameters slightly
so as to retain a reasonable fit for the parent while
causing wiM Auetuations of the daughter trajectories.
For instance, using the same input data as in DS, we
find" 0-= —0.33, A =0.65 BeV ', 81= I.06 Bev ', and

~OThe parent trajectory data are taken from a recent 6t by
V. Noirit M. Rimpault, and Y. Saillard, Phys. Letters 268,
45~4 (1968), Slid tlM first dallghto1' Io clotorIIltIlod bl' fol'c1og the
k = i trajectory through D»(i526},

8~=0.33 BeV 2. The crucial difference here is that 82
has changed sign from the value —0.33 in DS, so that
all the higher daughters, instead of avoiding the physical
region, crowd the region of low-lying resonances. It is
possible to 6t most of the resonances on various tra-
jectories, but always at the expense of introducing more
unobserved resonances. To give an example, we arbi-
trarily choose 0 = —0.37. By forcing the k =0 trajectory
through Pll(940), the nucleon, and FI~(1690), and the
k = 1 trajectory through Il,ll(2650), we find that
2=0.3I, 81= j..04, and 82= —0.08. We favor this fit
because it gives small values of A and 82, which mea-
sure the strength of symmetry breaking at O'WO. Table
I shows the comparison of the predicted resonances with
their experimentally determined values. We emphasize,
however, that such fitting should not be taken seriously,
since the above is but one example out of many other
possible fittings, all having various degrees of success.
Our belief is that the presently available data are not
accurate enough to give a convincing test of the mass
formula (2.16).

1Vote added iw proof. Two articles bearing on the mass
formula discrepancy have come to our attention since
submission of this article. A brief account of a group-
theoretic derivation of a mass formula in agreement with
our (2.16) has been given by G. Domokos, S. KOvesi-
Domokos and P. Suranyi, Nuovo pimento 56A, 233
(1968). A mass formula in agreement with Ref. 4 has
been obtained by N. W. McFadyen, Phys. Rev. 171,
1691 (1968).
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Q g 1t I(o k)ylnl, "'-0, —I&~I+1——
k 0

(A1)

Q g y'+'(o —k)y~p"'+'=0, e~&1+1, (A2)
k 0

where we have substituted o-—k for o.~ and +o.t,' for
b~'+'(0). To facilitate solution of these equations we
introduce the triangular matrix T by

T„1——
g l, & 1(o—k), m~&k

Since T = I, T—I is also triangular and has zero diag-

APPENDIX

Equations (2.12) call be solved 1teratlveiy by sllb-
stituting (2.14) and collecting powers of W'. However,
such a process is laborious; we present here a more sys-
tematic solution.

The first set of equations that we treat are obtained
by setting W= 0 in (2.12):
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onal elements. It follows that any finite element of T ' More equations can be obtained by applying (d/dW)"
can be computed by a finite number of terms in the to (2.12) before setting W=O. We apply, e.g. , d/de' to
expansion (2.12b):

T '= 1—(T—1)+(T—1)'—(T—1)'+
Thus the solution to the equation

g T„oxo 0, ——n~&l+1
k=o

is that xo be any linear combination of the 6rst l+1
columns of T '. Taking l= 0 in (A1) and (A2), we have

Z (g.-o'+"(o—k)vino"'+'+g. k'+'(n —k)
k 0

Xfyo'no"'+lvono"' 'no"j}=0, e~& l+1
or

m o —e+-',—Z g.-~'+'(o —k)vino™1+Z T.o
dg k~0 o —k+o

vo=vo(T ')oo,

+00'0
(T ')oo.

o —k+-', o+-,'
(A3)

X vo'no"'+lvono'" 'no"—~one"'+' =0, n& l+1.
d0

The first term vanishes because of (A2). Setting l=0
and 1, we have

Comparing these two, we have, without even knowing
~1

no' =no'(o —k+-,')/(o+-,') .

It is necessary, however, to know T ' in order to com-
pute yq.

With the help of the following identities,

d o —k+-',
vo'—(vino') =vo' (T ')oo,

da o+si-

dory
no"—2no' = const+ constno".

dg

(A6)

(A7)

m /'m)
i(—1)'B(p—r, q)=( —1) B(p—rio, q+m),,=o kr)

(—1)"rB(p—r, q) = (—1)"mB(p m, q—+rw —1),
0

where
I'(p) I'(q)

B(P,q) = xi '(1—x)™dx
1(p+q)

(T ')o =
I (n „+.i)

(k—io)! I"(o —k+-,')
I'(o m+ ', ) —I'(2o——2k+2)

X . (AS)
I'(o—k+ oo) I'(2o —k —I+2)

is the B function, and the definition (2.7), the reader can
easily verify that

In deriving (A/) it is not necessary to make use of the
explicit form for T '; instead, we have used a fact im-
plied by (Ai), i.e., the most general solution to

g T„ovoxo=0, ro&~ l+1
k 0

is xo= (P&(no"), where (P& is any polynomial of degree l.
Equations (A3), (A4), (A6), and (A7) together with
(AS) lead to results (2.15) and (2.16).

We remark that since (Ai) and (A2) overdetermine
the constants yI, and n~', it is necessary to show that
(Ai) and (A2) with higher values of l are all consistent
with the solution determined with l= 0. The consistency
is ensured by the above-mentioned fact and another
fact, which the reader can also verify, that the rth
column of T ', (T ')o„ i, multiplied by nz", can be ex-
pressed as some linear combination of the rth and
(r+ 1)th columns.


