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Regge Poles anti Finite-Energy Sum Rules for Kaon-Nucleon Scattering
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Generalized 6nite-energy sum rules (FKSR) for kaon-nucleon scattering are evaluated to determine the
t dependence and other properties of the relevant Regge-exchange amplitudes: P, I", A~, p, and ro. The
FESR's have been evaluated (a) with the available phase-shift analyses for the low-energy ICII system as
input and (b) in the resonance-saturation approximation with all the appropriate resonances of which J~ is
known. For the E+p system, the phase-shift analysis of Lea et al. has been used; for the EE system, the
multichannel effective-range analysis of Kim, and the resonance-plus-background analysis of Armenteros
st ot. Matching energies of gs= 2 GeV and ps= 2.15 GeV have been used for the cases (a) and (b), re-
spectively. In terms of the defiinite helicity Qip amplitudes, A. (which is the full forward amplitude at
k =0) and B, we And that assuming the p contribution to be known, the non-spin-Qip contributions for the
various Regge poles are similar to those deduced from high-energy 6ts; however, the spin-Qip contributions
of the high-energy fits are inconsistent with our FESR results For e. xample, the factorization ratio (vB/A)
for the A r, P, F', and co contributions, where i is (s-tt)/4M, is found to have the opposite sign to that used
in previous high-energy 6ts. As far as our results go, the FKSR's are consistent with the usual explanation
of the crossover phenomenon in terms of a single genuine co Regge pole, though we cannot regard this con-
clusion as very strong, because of the poor available input data. We hnd no evidence of a wrong-signature
nonsense zero in a for —t&0.8 (GeV/c)'; we 6nd (vB/A)„=+(1—3) for t&0 6—(GeV./c)'. There is some
evidence for an exchange degeneracy between the co and the E' for this ratio, because we also find evidence for
(vB/A)v, v =+1.There is some evidence for the no-compensation mechanism for the P', with ev =0 at

t~0 5(G—eV/c).', which, however, would make the c» and I" trajectories quite nondegenerate. I'or the
Ai, we find vB/A +10, which would be expected if the Ar, were degenerate with the p. Our determination
of the signs of the spin-Rip amplitudes B allows us to predict the E+p polarizations semiquantitatively;
our results agree with the available E p polarization data, while the previous Regge models gave the wrong
sign of this polarization. Our new signs for the B amplitudes also improve the agreement of the conventional
Regge model with the available E+n charge-exchange cross section without invoking a p contribution.
On the basis of getting good agreement between the FKSR results and the Regge expectations, we are able
to choose a particular set of low-energy input data as our favored one: We prefer Kim's coupling constants
gx' and gz' for the Born terms, a negligible FP (1385) coupling (as also found by Kim), and the nonresonant-
type solution IV for the E+p phase-shift analysis. We have also considered FKSR's for amplitudes with the
wrong crossing properties, generalizing the Schwarz superconvergence relations. A simple model to remove
the in6nities expected in the case of Schwarz FKSR s is seen to be in good agreement with the low-energy
data, at least at t=0.

amplitude only over a 6nite low-energy region to Regge-
pole parameters are very important tools in detecting
inadequacies of either the low-energy data or the Regge-
pole parameters (as determined by fits to high-energy
data alone) depending upon which of the two is known
better, The FKSR's can predict' some features of the
low- (high-) energy data, given only the high- (low-)
energy data. It is this aspect of the FKSR's that interests
us in this paper.

It is instructive to trace the essential history of the
origin of the I'"ESR's, Be Alfaro et a/. ' pointed out that
if an analytic function (for example, a scattering ampli-
tude at a fixed momentum transfer) f(v) satisfying a
dispersion relation

I. Dt'TRODUCTION
' 'F an amplitude decreases suKciently fast with in-

CI'casing energy~ onc can usc dlspclsloQ I'clatlons to
derive superconvergence relations (SCR) for this ampli-
tude. ' ' One may use a Regge-pole parametrization for
the asymptotic behavior of the scattering amplitude in
question. It has been shown recently, however, that one
can generalize SCR's to cases in which the amplitude
does not superconverge Pi.e. behave as (energy) ' '
where e)0 as energy —+oo $; one essentially subtracts
the supposedly known asymptotic part (given, for ex-

ample, by Regge poles) to write an SCR for the re-
mainder (full amplitude minus Regge part). These
Reggeized superconvergence relations or finite-energy
sum rules (FESR's) which relate integrals of the full " Imf(v')dv'

(v) =-
P' See, e.g., V. de Alfaro, S. Fubini, G. Furlan, and G. Rossetti,

Phys. Letters 21, 576 (1966).
~ G. V. Bass and C. Michael, Phys. Rev. 162, j.403 (j.967)

ref%'enccs therein,
, and 'R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1'tp'68

(1968).
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is subject to the asymptotic bound, for energy v —& ~,

it must satisfy the SCR

Imf(v) dv=0.

One can, of course, also derive similar SCR's for the
amplitudes v "f(v), where is is any positive integer, pro-
vided the asymptotic behavior permits that derivation.
Appealing to Regge-pole theory for the asymptotic be-
havior, if one chooses the appropriate crossing odd
amplitude which corresponds to the exchange of a
trajectory that lies sufficiently low to satisfy the condi-
tion p &—1 I Eq. (2)j, the SCR gives a sum rule for the
imaginary part of the amplitude. Hopefully, the high-
energy part gives a negligible contribution to Eq. (4)
which, therefore, gives a condition on the low-energy
imaginary parts only. Such sum rules have been studied
quite extensively. ' If the leading Regge term allows only
p& —1, but is known from high-energy its, one may
study the difference

I f(v) —the leading Regge term].
For instance, the P' Regge pole was predicted by Igi' by
a study of the difference of the s.E(+) amplitude in the
forward direction and the P Regge pole contribution to
this amplitude. More recently, Igi and Matsuda, '
Logunov, Soloviev, and Tavkhelidze, 6 and Dolen, Horn,

.and Schmid' have employed this technique further for
m-X scattering. The- FESR's can be derived, ' for ex-
ample, by starting with the SCR for the amplitude from
which the sum of all the Regge contributions with
p& —1 has been subtracted. These FESR's hold. quite
generally for any analytic function that can be expanded
at high energies v (~&a certain number vr at which one
believes this asymptotic behavior to have been estab-
lished) in terms of a Regge-pole parametrization. These
FESR's take the form'

&1
Pivr '

vo Imf (v t)
' (n;+I+1)V1 0

where the contribution of a single Regge pole i is given
by

p.(t) I;(o
(.t) = (a1—s-'-'i'&) (6)

sine n;(t)
4 K. Igi, Phys. Rev. Letters 9, 76 (1962); Phys. Rev. 130, 820

(i962).
~ K. Igi and S. Matsuda, Phys. Rev. 163, 1622 (1967); Phys.

Rev. Letters 18, 625 (196/l.
8 A. A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Phys.

Letters 24$, 181 (1967).

For amplitudes that are odd under crossing symmetry,
this SCR takes the form of an integral over only positive
energies:

Imf(v)dv=0.

the various symbols having their usual meaning. For
meson-baryon scattering, we have chosen v to be
v = (s—I)j4M, where s, t, and I are the usual
Mandelstam variables and 3f is the nucleon mass. It is
important' to realize that the point y= —1 does not
have any special role for the FKSR's; every Regge-pole
contribution, irrespective of whether the trajectory lies
high or low, occurs in the same form in the FKSR.
Also, ' the various Regge poles contribute to the FESR
with the same weight as in the amplitude f(v). This
makes the FKSR's particularly suited to investigate the
properties of the Regge poles as they occur at high
energies by evaluating only low-energy integrals. One
should remember, however, that the derivation of the
FESR's assumes that for v) vr, f= fa~, v,i„only; if
the function f cannot be expanded in terms of a Regge-
pole parametrization, one has to reexamine the whole
issue all over again. For example, Regge cuts would have
to be represented approximately as a superposition of
poles, etc.

There is another side of development of the history
of the FESR's. So far, we have mentioned 6nite-energy
integrals over only Imf. It is possible to consider
FESR's for Ref or for combinations of Ref and Imf
also. Gilbert~ wrote down a similar dispersion relation
some years ago. More recently, Liu and Okubo' and
Olsson' and Barger and Phillips" have investigated such
FKSR's for mN scattering. The idea is to consider a
function G(v, t) which has analyticity properties very
similar to those of f(v, t) and which also depends on
another parameter m. For special values of m, Imo
reduces to Imf; otherwise, ImG involves both Ref and
Imf in general. For example, for t=0, one can use
G= (ti' —v ) "f, where y, is the meson mass and G has
the same singularity structure as f. The FESR's for G
have exactly the same form as for f above. We evaluate
these generalized FESR's involving both the real and
imaginary parts of the scattering amplitude for various
moments m; the added advantage of these FESR's for
m/ even integral is that they provide information on the
phase of the high-energy amplitude also.

Kaon-nucleon scattering, in its various charge and
hypercharge modes, is more complicated than pion-
nucleon scattering from the theoretical point of view; it
has the added disadvantage of poorer experimental
information. Regge-pole theory for EE scattering is less
well determined than for mE scattering; more types of
Regge poles are possible and less information at high
energies is available. FKSR's are, therefore, of special
importance in determining those characteristics of EE
Regge poles which cannot be determined otherwise,
from high-energy Regge fits alone. The absence of high-

7%:.Gilbert, Phys. Rev. 108, 1078 (1957).
Y. Liu and S. Okubo, Phys. Rev. Letters 19, 190 (1967).' M. 6. Olsson, Phys. Letters 26$, 310 (1968).' V. Barger and R. J. N. Phillips, Phys. Letters 26B, 730

(1968); C. Michael, Phys. Letters 26B, 392 (1968) gives further
evidence on B(+).
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energy data on polarization in any channel in elastic
EE scattering has led to ambiguities in the phases of the
Regge-pole amplitudes (especially the spin-Qip ampli-
tude 8) because data on high-energy da/dt alone cannot
determine these phases; this has led to predictions of
K p —+ K p polarization of the wrong sign as compared
to the recent polarization data" (though the energy of
this experiment is rather low for comparison with a
Regge-pole model). Our FESR analysis brings out this
inadequacy of the previous Regge 6ts, predicts the
phases of the amplitudes at high energies, and this then
leads to the correct sign and magnitude of the expected
polarization. The present analysis also conarms some of
the notions in current Regge phenomenology and pre-
dicts some ne%' ones.

In Sec. 2, we summarize some information on the
Regge poles relevant to the EE system. In Sec. 3, we
discuss the FESR's that we want to evaluate and also
our low-energy data input. In Sec. 4, the results of
evaluating the FKSR's are discussed along with some
relevant information from meson-meson scattering
FESR's. Section 5 is devoted to the discussion of some
other sum rules related to the Schwarz' superconver-
gence relations. Section 6 gives our predictions for
polarization in K+p elastic scattering and for the K+n
charge-exchange cross section, both of which have been
regarded as weak points of Regge-pole phenomenology.
The conclusions are given in Sec. 7. Some preliminary
results have been published elsewhere. "

f(E+n ~E'p) = 2f,+2fg„— (7f)

where f stands for either A or It; the subscripts refer to
the contributing Regge pole." Ke shall use the
amplitudes

f&"=AWK p K p)+f(E'p K'p) j
=fp+fp+ f~, (ga)

"C. Daum at a/. , Nucl. Phys. $6, 273 (1968).
I~ J.H. Schwarz, Phys. Rev. 159, 1269 (1967);162, 1@'1 (1967);

Nuovo Cimento 54A, 529 (1968).
"G. V. Bass and C. Michael, Phys. Rev. Letters 20, 1066

(1968}."W. Rarita, R.J.Riddell, Jr., C. B.Chiu, and R.J. ¹ Phillips,
Phys. Rev. 165, 1615 (1968).

'~ R. J. N. Phillips and %. Rarita, Phys. Rev. 139, B1336
(1965};Phys. Rev. Letters 15, 807 (1965).

2. REGGE POLES FOR J N SCATTERING

The usual invariant amplitudes'4 A ' (which we call A)
and 8 receive contributions from di6erent Regge poles"
in the t channel (KE +PE):—

f(K P~E P)=fp+fp+f +f.+f~ (7R)

f(K+p K+p) =fp+fp f f.+f~- —

f(K n~E n)=fp+fp+f- f. f~. —(7c—)

f(K+n +E+n)= fp-+ fp. f„+f, fg—„(7d—)
f(K p +E'n)=2-f, +-2'„ (7e)

and
f' '=-lLf(K p~-K p) f—(K+p~K+p)3

f8+f~ 1 (gb)

which receive contributions from Regge poles of positive
and negative signature, respectively. If one had good
experimental data on all the amplitudes on the left-hand
sign of Eq. (7), one could invert Eq. (7) to extract
information on all the four Regge contributions (I'+P),
co, p, and A2. One gets

4(fp+ fp )=fx ,+-fx,+fx +-fz', (9R)

4f~,=fx ,+fx-; fx —fz- '—, (9b)

4f =fz , fz-',—fx .—+fx-", (9c)

4f =fz fz;- +-fx . fz"-. ,-(9d)
4'= fz , tt.-fx' —z „, (9c)

4f~,= fz , zo.+-fx+. xo,

Since the amplitudes for EW scattering are not su5.-
ciently well determined, we cannot very reliably sepa-
rate the Regge contributions beyond that in Eq. (8).

The zeros of the amplitudes A and 8 as a function of
f for a dehnite Regge pole are very conveniently studied

by the FESR approach. These zeros may arise from the
tra3ectory passing through some special 0.' values for
which the amplitude develops special properties (for
example, the a value may be physically impossible or the
Rmp11tudc 111Ry dcvclop a gllos't Rnd so oil). Tile FESR
determination of the 3 dependence of the amplitudes,
therefore, could help one to determine the behavior of
the trajectory near these zeros: whether it chooses sense

or chooses nonsense, what is the ghost-eliminating
mechanism, etc. Depending on which amplitude one is
considering, one may also determine whether or not the
relevant Regge trajectory goes through zero in the t
region studied by Boding whether or not the appropriate
integral over the relevant amplitude passes through zero
as a function of t; this is useful only if (a) the zero of

P;(t) on the right-hand side of Kq. (5) (if P;(t) be
pl'opol'tlollRl to soIIlc posl'tlvc powcl' of n;(t)j ls Ilo't

cancelled by the factor (n;+n+1) in the denominator
at the t value for which n;(t) =0, and if (b) the contribu-
tion of the particular pole for which n, (t) passes through
zero is not masked by that of the other poles in the
Regge summation. The various possible modes of be-
havior of the trajectory couplings have been given by
Chiu, Chu, and Wang"; we use their notation for the
diferent mechanisms of coupling.

I.et us summarize some relevant information on the
di6'erent Regge poles:

(u) a&. At a given lab energy, the experimental do/dt
for (pp +pp) and (E p--+ K p) near the forward di-
rection is bigger and steeper as a function of t than the

"C. B.Chiu, S.-V. Chu, and L.-L. Wang, Phys. Rev. 161, 1563
(19671.
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do/dt for (pp~ pp) and (E+p —+E+p), respectively,
and therefore the pp and pp (and similarly, E p and
E+p) do/dt's cross over near the forward direction at

—0.13 (we use units GeV = 1, tt = c= 1).The usual
explanation" "' of this crossover phenomenon in terms
of the co Regge pole can be shown, when combined with
the factorization theorem for the Regge-pole residues
and the real analyticity for the unfactored residues, to
lead to the conclusion that the co would essentially
"decouple from all physics" at t= t„.i.e., the or-exchange
residue functions vanish at t= t, for every helicity ampli-
tude in every reaction. This explanation has been
shown' to lead to dBIiculties in x photoproduction,
pp ~ s.op, because the data do not show any sign of a
dip in the measured do/dt at t t, . A recent FESR
calculation" for yp-+sop confirms this difliculty. It
would be of interest to see what evidence the FKSR's
give for EE scattering. The crossover phenomenon only
requires that the imaginary part of the helicity-nonQip
amplitude A for the co should vanish at t= t„ the usual
explanation, however, puts a much stronger constraint
on the co contribution; it requires the real and imaginary
parts of both A„and B„ to vanish at t=t, . It is of
interest to study the behavior of the real part of A and
both the real and imaginary parts of B for the trajectory
corresponding to the co quantum numbers in the t
channel (I=O, 6 negative, and J~=1 ). The FESR
calculation, if the input low-energy data were complete
and reliable, is capable of giving all this information and
also may determine the trajectory function n„(t). If, for
example, one finds that at t=t., only ImA„=O, but
ImB„/0, ReB„/0, and ReA„&0, one would tend to
believe the conjecture that the usual" "co Regge pole is
an eGective mixture of a genuine ~ Regge pole and some
other contribution ar such that Im(A„+A„-)= 0 at t= t„.
no such restriction being placed on Re(A„+A„-) or
Im(B„+B-) or Re(B„+B-),all of which may be non-
zero at I,=I, If the eGective co contribution in the
process 7p ~ ~'p and in E1V and EE scattering were
indeed from a genuine single Regge pole, the absence of
the zero at t= t, in the first process and the presence of
this zero in the later two processes could be understood
if one were to give up the factorization theorem. A
recent FKSR study" of the co Regge contribution in EÃ
scattering within the resonance saturation approxima-
tion shows, as partly expected, that the sum-rule
integrals for the amplitudes ImA„and ImvB do have
this zero at t t, . A possible suggestion of Ref. 19 was to
cast doubts on the factorization theorem. It seems
unjustified to conclude from this evidence of a zero in
only the lowest-moment sum rules for ImA„and ImB„
at t=t, that the factorization theorem could be over-

"V. Barger and L. Durand, III, Phys. Rev. Letters 19, f295
(f967).' P. Di Vecchia, F. Drago, and M. L. Paciello, Nuovo Cimento
SSA, 809 (f968).

19 P. Di Vecchia, F. Drago, and M. L. Paciello, Phys. Letters
26$, 530 (f968).

thrown. The point is that one should study the behavior
of ReA and ReB„also (and preferably, the higher
moment sum rules also for all the amplitudes ReA„,
ImA„, ReB, and ImB„) near t= t, in all the relevant
processes to arrive at such a conclusion. If one finds that
at t=t„ReA„W Oand/or ReB„WO for EX scattering,
one already knows that the effective ~ is more than a
single pole and that one should not expect factorization
to hold for such a mixture. Unfortunately, the resonance
saturation approximation does not give any reliable
information about the real parts of the amplitudes. We
return to our evaluation of the FKSR's in Sec. 3; we
hope to do better than the resonance approximation.

To our knowledge, the only high-energy Regge fit"
(to ES scattering) that takes the a& contribution into
account is unable to determine it very well; actually,
B„=O was used. "An FKSR calculation for EE scat-
tering, therefore, becomes very important for a study of
the co contribution: in particular to find whether B„is
really very small; also, one might learn something
about A„.

Contogouris et at."have determined the ~ trajectory
(n =0.45+0.9t) by studying, as a function of t and s,
the quantity

d0 da
X(s,t) = ('Ir+p ~ p+—p)+ (np~ p—p).

dh dt
do'——(s p~ p'I),

which receives contributions from co-like Regge poles.
The sr contribution to X(s,t) has a dip at t= —0.5
and this mainly determines the position of 0, =0.
While this is the only direct determination of n„(t)
(using high-energy data) known to us, the position of
n =0 (t= —0.5) needs confirmation. A careful analysis
of the xE +ptV data shows .tha—t the dip in X(s,t) which
could arise due to a peak in do/dt(~ p-+ p'n) or a dip
in do/dt(n-+p ~ p+p) arises mainly from the 4-GeV/c
data for do/dt(~+p —+ p+p); one would normally expect
it to show up also in the (ir p —& p p) data which, how-
ever, do not go to large enough

~
t~ to allow the con-

clusion of such a dip; the (s p +p'n) data also -do not
have a peak at about t= —0.5. Their analysis' also
shows this dip at only 4 GeV/c. A detailed Regge-pole
analysis of xX—+ plV and EE —+ E*»OX by Dass and
Froggatt" shows that the evidence for this dip is not
strong, though the X.' does get reduced slightly by using
n„=0.45+0.9$. One would like to get some confirmation
about this type of or trajectory. Actually, our FKSR
analysis does not show this zero in o.„.

Since one cannot very reliably separate the p and ~
contributions in our FKSR calculation because of the

"A. P. Contogouris, J. T. T. Van, and H. J. Lubatti, Phys.
Rev. Letters 19, 1352 (f967)."G. V. Dass and C. D. Froggatt (to be published in Nucl.
Phys. ).
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unsatisfactory state of the Ee data, we shall deduce the
properties of the co contribution from the difference

P ' f„—taking the p to be well-known from the high-
energy E1V fits" which make use of the (vr p —+ m'm)

and (pr P —-& r/Pe) data and factorization constraints. We
believe that the p Regge pole is well-determined by
high-energy fits, assuming that factorization is good for
the p contribution and the effects of p' contribution are
not very large.

(b) A p. This is the well-known Regge trajectory which
contributes to the process n=p ~ r/N.

Most of the m.E—+ qX and EX—+ EE Regge fits use
a curved or a rather flat (slope =0.4) A p trajectory with
no zero of e~, in the region —t= 0 —+ 0.8, while a recent
EE —+Eh Regge analysis" used a much steeper tra-
jectory (slope = 1).The occurrence of zeros in n&, causes
a ghost in the amplitude Az, and raises the question of
how this ghost is eliminated. Also, one can have many
choices for the behavior of the amplitude B~, near
ng, =0. Matsuda and Igi'4 evaluated FESR's for the
EÃ system for the A2 contribution in the resonance
saturation approximation. In the resonance approxima-
tion, however, f~,= fp [see Eqs. (9b) and (9c)]because
one does not include any E+p and K+e resonances. This
approximation Imfp=Imfg, (no 8=+1 resonances)
directly leads to results based on the argument of ex-

change degeneracy between the p and the A ~. However,
experimentally, Im(frr+v f/r+„) is n—ot identically zero;
this makes Imf, —1m', nonzero. The differences be-
tween the p and the A2 arising because of this will

therefore not be reproduced by the resonance approxi-
mation. For the co contribution, on the other hand, the
resonance approximation seems more reliable because it
only assumes that the background contribution to
Imfz „+Imfz v-equals Im-f&+v+Imf/r+

The high-energy fits to d/r/dt (mlV —+ r/E) a.nd
drr/dt(EN ~EX) do not determine the phase of the
amplitude Bg,. Because of a lack of polarization data in
these reactions, as pointed out in Sec. 1, the FESR's are
very useful in predicting the phases of A&, and &z,.
Indeed, the sign of (8/A)~, turns out to be opposite to
the one used in some high-energy fits. This, combined
with the further ill-determined signs of (8/A)„„. from
the high-energy fits led to a negative polarization for
& P —+E p scattering. With the signs we suggest for

8/A for the different contributions, one gets a positive
polarization which agrees with the available experi-
mental data. "

(c) P a&id P'. For the vacuum exchanges again, the
high-energy data do not determine the sign of 8/A and
our FESR analysis is able to pin down the sign of
(8v+8v )/(Av+Av ), though we cannot separate the
P and P' contributions unambiguously.

While the P trajectory is always assumed to be rather
Rat, some recent analyses' "indicate that n~. should go

"A. Derem and G. Smadja, Nucl. Phys. 83, 62g (1967)."M. Krammer and U. Maor, Nuovo Cimento 52A, 30g (1967).
24 S. Matsuda and K. Igi, Phys. Rev. Letters 19, 92g (1967);20,

(E) 781 (1968); CERN Topical Conference, 1968 (unpublished).

through zero at t —0.55 and the no-compensation
mechanism should be followed to parametrize the
amplitudes A v and 8v, this gives double dips (zeros)
in ImA&. and ImBI at at=0. Though our analysis
allows one to study only f&+& and not fv directly (ex-
cept in the resonance approximation), a dip in f/+& will

result (and indeed, it does) if P' did choose the no-
compensation mechanism.

(d) p. We assume that the p contribution is correctly
given by most of the high-energy fits and we do not take
into account any possible p' Regge pole.

3. THE FESR's

A. Generalities

For the FESR's, one needs amplitudes having definite
crossing symmetry and the f'+& are suitable for this
purpose. The amplitudes vA &+', 8(+', A( ), and vS& & are
all odd under crossing; we consider the generalized
FESR's for the amplitude

(10)

where m is a variable which could be nonintegral and
vp=//+f/4M The ene. rgy dependence of F(v, f) at high
energies is parametrized in the form

F(v, t) =Q, v(v p' v')' '"—& '&/'X, (f)—,

where F(v, f) may be one of the four amplitudes vAi+&,

8&+), A & ~, and vB' & for which 6=0, 2, 1, 1, respectively,
x, (t) is a real function of f, and o/;(t) is the Regge
trajectory function; the sum runs over the relevant

Regge terms [see Eq. (8)]. At high energies, the
parametrization in Eq. (11) resembles the usual Regge
expansion, ""so that one can directly use the high-

energy Regge parameters in Eq. (11). If one writes a
superconvergence relation for the difference of the full

amplitude and the Regge contribution and uses ana-

lyticity to match the amplitudes evaluated below v&

with the Regge parametrization evaluated above v~, the
set of generalized FESR's takes the form

Ima, (vi, t,es) (vi' vp')—
dv Ima(v, f,m) =Q, (12)

' rr, (f)++&+2—8 vi

where we have chosen the matching energy to be
pi ——1.53 (which corresponds to Qs= 2, pi,b= 1.46). The
derivation of these FESR's in Eq. (12) runs closely
parallel to the derivation of the sum rule Eq. (5) in

Sec. 1. For computational convenience, we have con-
sidered only integral m= —2 to 3 at t= 0 and nz=0 to 3
for t/0. In principle, one could consider nonintegral
values of ns also. Indeed, we have evaluated some
special sum rules for nonintegral moments; we come to
these in Sec. 5. For even m, the left-hand side of the
FESR (12) requires (—) /' ImF from the As threshold

to v~ together with the A and Z pole terms. For odd m,

(—) & +'&/' ReF is required in the region above the XX
threshold and the A and Z pole terms and ImP below
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this threshold. For E+p scattering, there are no contri-
butions below the physical EE threshold. Indeed, no
real parts are needed below the physical threshold; this
motivates our particular choice of vo and of the
weighting factor in Eq. (10). The above FESR's have
the advantage that by varying m one can study the
phase of the Regge amplitude; this is not possible in the
usual QRI'I'ow-I'csonRncc RppI'oxlIQRtlon.

For m= —2, t =0, our sum rule for the amplitude A & '
is the usual forward dispersion relation"; the sum rule
for 8&+& is the spin-Qip dispersion relation considered, in
some way, by Igi' (for ~X scattering) along with his
dispersion relation for the A'+' amplitude to predict theI". Note that these dispersion relations require the
amplitude evaluated at threshold and involve the
evaluation of a principal-value integral. Some of our
m=0, t=0 sum rules have already been considered. "
For example, Lusignoli et u/. have considered the sepa-
rate amplitudes v(A p+A ~ ), ~A~„A „and A„at /= 0;
Razmi and Ueda have evaluated the sum rules for m= 0,
t= 0 for the vA &+& and A & ) amplitudes and also for the
amplitudes A~+„+A~- and related them to the Regge
parameters of Phillips and Rarita"; Chan and Yen con-
sidered the k= 0 sum rule for A „used SU(3) symmetry
to relate the pEE vertex to the pwm vertex, and made
use of the xE charge-exchange data in addition to the
EE data to predict 6nally the coupling constants
gqx~' and gzxN'; Yoshimura also considered the forward
amplitude to investigate the symmetry of the factorized
residue functions for the p and the (&o, y) trajectories. To
our knowledge, FESR's for the other m values have not
been investigated for EE scattering so far.

For m=0 and t/0, however, the FESR analyses for
EÃ scattering have been used only in the resonance
SRtuI'RtloQ Rppl oxlQlatlon whcI'cln oQc cRQ cxpllcltly
separate the co,"'p,"and A2 "contributions. In addition
to the other de.culties mentioned in Sec. 2 about the
resonance approximation, one would always prefer to
use a more exact form of the low-energy amplitudes A
and 8 on the left-hand side of Eq. (12).

B. Inyut Data

We use phase-shift analyses for (E p~ E p) and
(E+p~E+p) scattering up to the matching energy
gs=2. For E+p scattering, Lea et a/." have found
several solutions in this energy region; we used a solu-
tion of type I which suggests an inelastic Pj~ resonance
and also a nonresonant solution of type IV. Solutions of
type II gave amplitudes A and 8 very similar to those
for type I, while solutions of type III are not favored by
the authors. '~ The forward-dispersion relation for the

"J.K. Kim, Phys. Rev. Letters 19, 1079 (1967); N. Zovko,
Phys. Letters 23, 143 (1966).

~6 M. S. K. Razmi and Y. Ueda, Phys. Rev. 162, 1738 (1967);
Nuovo Cimento 52A, 948 (1967);C. H. Chan and Y.L. Yen, Phys.
Rev. 165, 1565 (1968);M. Lusignoli, M. Restignoli, G. Viol, ini, A.
Borgese, and M. Colocci, Nuovo Cimento SIA, 1136 (1967); M.
Yoshimura, Tokyo Report, 1967 (unpublished)."A. T. Lea, B. R. Martin, and G. C. Oades, Phys. Rev. 165,
1770 (1968), and private communication.

amplitude A for E+p scattering is already built into
their analysis because they used ReA (1=0) calculated
from this dispersion relation as part of the data in their
x minimization. For E p scattering, the situation is
complicated by the presence of the Born terms (A and Z)
and inelastic channels (mh. and vrZ) below the KX
threshold. Fortunately, Kim" has done a multichannel
analysis of EN, mA, and xZ data using a E-matrix-
effective-range parametrization for the partial-wave
amplitudes; he used data from threshold up to E'l,b
=550 MeV/c. In the unphysical region, we use the
direct extrapolation of his parametrization though we
allow the F~*(1385)coupling to have its broken SU(3)
value'9 as well as the almost negligible value found by
Kim. This gives us an idea of what sort of errors to
expect from uncertainties in the parametrization of the
unphysical region. "For the A. and Z pole terms, we use
Kim's values25

gg'/4s ——13.5, gz'/4s =0.2, (13)

or alternatively, Zovko's values" of 5.7 and 1.'7, re-
spectively, for these couplings. %e take Zovko's values
to be typical of some" of the EX forward dispersion
relation results. For the region 780—1220 MeV/c,
Armenteros et u/. " have a preliminary phase-shift
analysis using simple backgrounds plus (Quite-width)
resonances. This still leaves the gaps (550-780 MeV/c)
and (1220-1460 MeV/c). Lacking any better procedure,
we extrapolated the energy-dependent 6ts of Armenteros
et al. 35 to the region 550-1460 MeV/c and con6rmed that
they still reproduced the experimental E p total cross
sections. "This extrapolation is wrong for each partial
wave separately because some of the background ampli-
tudes exceed the unitarity limit; for the full amplitudes
A and 8 which are resonance dominated, however, we

~8 J. K. Kim, Phys. Rev. Letters 19, 1074 {1967).» R. L. %arnock and G. Frye, Phys. Rev. 138, 8947 (1965}.
30 Also, we do not include any D waves below the EE threshold.

Otherwise, we construct the partial-wave amplitudes and the full
amplitudes A and 8 directly using his tabulated parameters
(Ref. 28}.

"See, e.g., M. Lusignoli, M. Restignoli, G. A. Snow, and G.
Violini, Nuovo Cimento 45A, 792 (1966).

O' In principle, one could extrapolate the older constant-
scattering-length parametrization of Kim (Ref. 33) into the
unphysical region instead of using the more recent effective-range
parametrization (Ref. 28). It has been shown, however, (Ref. 34)
that by using the stability of the couplings g~' and gz' as a criterion
for the compatibility of the extrapolated amplitude in the un-
physical region with the known total cross sections in the physical
region, one can reject the older parametrization {Ref.33) in favor
of t e new one (Ref. 28) which wc use.

O' J. K. Kim, Phys. Rev. Letters 14, 29 (1965)."C. H. Chan and F. T. Meiere, Phys. Rev. Letters 20, 568
(1968).

85 R. Armenteros, M. Ferro-Luzzi, D. W. G. Leith, R. Levi-
Setti, A. Minten, R. D. Tripp, H. Filthuth, V. Hepp, K. Klugc,
H. Schneider, R. Sarloutaud, P. Granout, J. Meyer, and J. P.
Porte, Nucl. Phys. 83, 592 (1967).

'6 In order to study how crucially our results depend on this
extrapolation, we changed, the matching energy to Qs= 1.9 which
coincides with the higher-energy end of the experiment of
Armenteros et al. (Ref. 3S) and also we changed the point where
the Armenteros et u/. parametrization takes over the Kim
parametrization to 670 MeV/c. Making both the changes does not
introduce any significant changes in our results.
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believe this extrapolation to be a fair approximation.
This is better than the narrow-resonance saturation
approximation which does not even reproduce the ex-
perimental total cross sections. The parametrization of
Armenteros et al. agrees approximately with the experi-
mental E P polarization of Cox ei af. sr from 1100 to
1350 MeV/c, which already involves an extrapolation.
This shows that our extrapolation may not be very bad
for the total amplitudes A and B.

The K e analysis of Armenteros et a/. 33 is less reliable
since it does not reproduce the total cross sections as
well. Also, the only E+e analysis is 0—813 MeV/c so
that, as pointed out above, we cannot appeal to the
neutron data to separate the isospin contributions
beyond those in Eq. (8). We do evaluate FESR's for
moments m=0, 2 for all the four contributions (P+P'),
A~, p, and ao in the narrow-width resonance saturation

approximation taking all the known resonances (of
which J is known) from Rosenfeld et al. s This takes
one up to an effective cutoff energy Qs=2. 15."If one
believes in the conjecture' that the Pomeranchuk
trajectory is mostly built from the nonresonating back-
ground at low energies, one can regard the E+P'
results in the resonance approximation to be a repre-
sentation of the I".

I.et us remind ourselves of the various possibilities in
the input data: (a) coupling strength of Ft*(1385)
[the Kim value or the broken SU(3) value]; (b) solu-

tion I or solution IV for E+p scattering; and (c) Zovko's
or Kim's values [the latter are very similar to SU(3)
valuesj for the pole-term couplings. Actually, we use the

SU(3) values for f=0.36 for the resonance-approxima-
tion results instead of the Rim values.

These variations in the input data set mean eight
diferent evaluations of each FESR at each t value. We
use the difference, if any, of the results for different data
sets to estimate the errors shown in the figures, the
central value shown being the one for our favored data
set, to be discussed later.

C. Choice of v~

One would, in principle, like a high value of v~,

corresponding to says&, b 5GeV/c, for the assumption

of the Regge behavior having become established at v~

to be valid. We have no alternative to choosing v~

corresponding to gs 2 GeV because the low-energy

data do not allow one to do so either with the phase-

'7 C. R. Cox et al. , in Proceedings of the Heidelberg International
Conference on Elementary Particles 1967, edited by H. Filthuth
(Interscience Publishers, Inc. , New York, 2968) Contribution No.
253.

"A. H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-oaltieri,
L. R. Price, P. Soding, C. G. Wohl, M. Roos, and W. J. Willis,
Rev. Mod. Phys. 40, 77 (1968).

"Thisis diferent from gs=2 whichis our matching energy in
the case of the complete data input. The reason is that we have
included someresonances higherin mass than ps=2. At thepoint
Qs=2. 25, the higher known resonance next to the highest (in
mass) one that we have included should take over.

"H. Harari, Phys. Rev. Letters 20, 1395 (1968).

shift analysis or in the resonance approximation. Though
it is certainly desirable to choose a comparatively high

v&, one need not wait until phase-shift analysis for kaon
nucleon scattering extends to momenta as high as 5

GeV/c. Our value of vr ——1.53 is not too unreasonable if

one were to keep in mind the fact that the extrapolation
of the Regge amplitude down to v& should represent only

a local average of the amplitude and the wiggles

(resonances) start appearing only below gs 2. Some

other calculations" ""have also used low matching
energies like gs 2. A high vr would ensure that the
right-hand side of the FESR [Eq. (12)] did represent

the amplitude at that v~. The choice of a low v~ would

give one only the extrapolation (to v&) of the high-

energy Regge amplitude; this may or may not be the

amplitude at v~ because the low-energy wiggles might be
important at a low v~. Furthermore, lower-lying Regge
trajectories could be important for a low v&. In our case,
it seems that both these effects are rather small because

the agreement of the sum-rule results with the extrapo-
lations of the high-energy Regge amplitudes is quite

good in general [see Sec. 4 (A)], at least so far as the

question of the over-all normalization is concerned.

D. Sum Rules with Different Moments

The FESR's of Eq. (12) are not equally useful in the
form given above for all values of m. In principle, the
ones with large m are also equally valid, but their

usefulness decreases with increasing m because the

higher the m value, the greater is the weight given to the

input data immediately below v~ in the evaluation of the

FESR integral. One cannot make m too small either.
With m very small (negative and large), the low-energy

data around v= vo would be weighted heavily and the
sum-rule integrals would be far more sensitive to the

low-energy data than to Regge poles; such ones, for

example, might call for an accurate knowledge of high

partial waves near threshold and in the nearby un-

physical region. Since one has to resort to an extrapola-

tion procedure to know the amplitudes in the unphysical

region, it is better not to try to learn something about

Regge poles from the high-inverse-moment sum rules.

From this point of view, the choice vs p+t/4M ——is
better than vo

——0 because with the latter accurate in-

formation of the amplitude in the unphysical region

(e.g., analog of scattering length) would be required

down to vf)=0 as an input datum for the low-m sum

rules; with the former, this information at only the

physical threshold is needed. One needs to know the

amplitude at threshold for the m= —2 sum rules. Since

one does not have this information except for t=0 (1~0
is unphysical at threshold), we considered m= —2 only

for t=0. Suxnrnarizing, therefore, one should consider

sum rules with m~& 0 as appropriate for giving informa-

tion on Regge poles. Also, in general, the m=even
integral sum rules should be more reliable than the

"S,-Y. Chu and D. P. Roy, Phys. Rev. Letters 20, 958 (1968).
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m= odd integral ones because the latter (former) re-
quire real (imaginary) parts of the amplitudes in the
physical region.

E. Diferent t Values

In principle, 6xed-t dispersion relations are valid for
all physical t and because the FESR's are derived from
these, one should expect the FKSR's to be valid for all
the physical t values for which the high-energy Regge
expansion holds. Since the Regge poles in question are
the mesonic ones in the t channel, one expects the range
of validity to be approximately t=0 to —1. This im-
mediately requires one to know the input amplitudes
out to —t 1.While for comparatively high s, —t 1 is
in the physical scattering region where experiments can
give information on the scattering amplitude, one has
to resort to extrapolations in the case of the low-s
amplitudes that are input data for the FKSR integrals.
At the physical threshold, for example, —t=1 is well.
away from the only physical point t=0. Similarly, in
the unphysical region (below the EX threshold), one
has to resort to extrapolation in order to get the —t= 1
amplitudes. While the t=0 extrapolation into the
unphysical region can be put to some test" by forward
dispersion relations, no such reliable test exists for the
t/0 extrapolations. As —t increases, the range of s
values for which this extrapolation to unphysical t
values becomes necessary increases. This range is small
for t 0. Lacking any subtler method of analytic con-
tinuation in cos8„we have used the common Legendre
expansion of the scattering amplitudes to extrapolate to
unphysical t values the low-s amplitudes which are input
data for the sum-rule integrals.

There is a further complication, however. Suppose one
were to use ~0=0. It so happens that with the physical
masses, the effective v value for some terms can vanish
for quite low —t values. The A. pole term has v&~~0 for—t~~0.23 approximately; the Z pole term has &~~~0
for —t~~0.59 approximately; at —t=2, ~g, ~g, ~y, '(y385),
and vy, *(~4o5) are all negative. This leads to apparent
difhculties for the nonintegral and the inverse-moment
sum rules. Actually they can be circumvented in the
case of genuine FESR's by a proper treatment of the
relevant contributions but they do weight the input
data in a rather sensitive manner. For the sum rules to
be described in the Sec. 5, however, one cannot avoid
this problem and one has to have some prescription to
stay away from the t region where such things happen.
The choice v0= @+t/4M (and not ~0= 0) is very welcome
in this respect because now the dBBculty due, for ex-
ample, to v&= 0 does not arise; ~z cannot become equal
to vo for any real t. The so= 0 troubles creep in again at
t= —4iVp, , but this is at —t=1.9 and quite far away
from the region of interest to us. This point needs
special treatment in mE scattering because of the small
pion mass. There is another possibility, however.
s~~—~0~ can vanish when s~———vo., this happens at

1.05 and calls for a special treatment of the pole
term for this t value; we have not gone beyond —t& 1 in
practice. Not aH sum rules (for any m), therefore, are
equally simple and. valid in their innocent form of
Kq. (12) for all t. For the genuine FKSR's which we have
dealt with so far, the trouble due to uj, = —vo can be
circumvented by a proper analytic treatment of the
pole; this can be seen by looking at the contour along
which the original FESR is evaluated, and deforming it
in a harmless manner. For some other sum rules (see
Sec. 5), one has to stay away from this point and also
use proper dehnitions of the sum rules; luckily, this does
not happen for —/ & 1.One should note that the A. pole
term is the lowest-s contribution and creates difhculties
at the lowest —t value. If one can take care of these
difhculties or if one does not go as far as the point at
which the A. pole term starts calling for a sensitive
treatment, one has automatically guarded oneself
against the similar troubles from the other (higher s)
contrlbutlo'ns.

+ (&—M) (f(i-u+(~)
M—8'

f(&+&) (~))— -(14)
M+8'

where k is the c.m. momentum, 8 is the c.m. scattering
angle, s=W', and E= (k'+M')'('. The amplitude A'
(which we have caHed A throughout) is related to the
amplitudes A and 8 by the equation"

A = 'A= +Au /B(1 —x), x= t/4M'. —

In terms of A and 8, experimental quantities are given
by14

op.,(s) = (1/p) ImA (s, t = 0), (16a)

do 1 3f '- fp+sxi—(»~)=—— (1—*)IA I'—~l IIBI', (16b)
dt ms 4k k1—xi

E(»t) =—sin8 Im(AB*)

16x+s do/Ch
(16c)

~ See, e.g., Ref. 2.

4. RESULTS AND DISCUSSIOÃ

Before coming to results of our evaluation of the
FKSR's of Kq. (12), we record some formulas which we
have used. The spin-fHp amplitude 8 and the usual
non-spin-Qip amplitude A are given in terms of the
partial-wave amplitudes f~+ referring to J'=1+—', for a
given s-channel isospin state as4'

B(»t) 4r
=—P P)'(cos8) (E+3II)(f) (s)—f(+(s))

A(»t) k' i=i
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where P is the pion lab momentum and E(s,t) is the
polarization defined relative to the normal (q;Xqr) to
the scattering plane, q; and qy being the initial and 6nal
pion momenta.

Coming to the contributions of the various Born
diagrams $A, Z, Ye*(1405)„and F'r*(1385)] to the
amplitudes A and 8, one gets"

gsxx (~—ms) gsxNAs'=, Bss= —, (17a)
tÃg —s tSp —S -2-

s s s

C&)

gzx g'(3f mr)—
A g'=

g
(17b)

18', —S

gy, xx'(~+mr, *)
~Fp*(1405)—0

gFp+KN
~F0+(1405}

0—
5$ype —s

(17c)

-2-
ii

/,
vrhere the normalization of the coupling constants is

ger x'/4x= 14.6 and. the superscripts refer to the total
isospin in the s channel. The coupling constants g~~~'
and gq~~' are for a pseudoscalar-type meson-baryon
vertex and their SU(3) synnnetry values are given in
terms of g x and the F Dmixing param-eter f by

gs'= gsxar'=—s(1+2f)'g.z', (18a)

gz
—=gzxx = (1 2f) g~x—, (18b)

where the currently quoted value of f is 036. The
e6ective Lagrangian for the I'0*EN vertex is

2=gy, "xxYs*NK+Hc.
where the constant gr, *xx'/4 casn be determined by
relating the Lagrangian calculation with the dispersion-
theoretic calculation. In the latter, one introduces a 5

function in the appropriate absorptive parts appearing
in the dispersion relation and can compare the pole
residue obtained in this way with the coupling constant.
In the case of I'0*, however, one has to extrapolate
below the physical KcV threshold. Karnock and Frye'9

did this vQth the Dalltz-Tuan model and we use their

-ls-
-20

-2 0 2

-6 to-$2

s s s

Moment m

I s

0 2

FIG. 1. Evaluation of Kq. (12) (units, GeV=1) at 5=0 for
different moments m and amplitudes Ii. This is the same as Fig. 1
of Ref. 13.The points are the sum-rule results for our favored data
set PKirn's corrected lRef. 43) coupling constants and unphysical
region and a nonresonant IC+p solutionj, with the error bars
showing the extent of the values obtained using the other choices
discussed in the text. The continuous curves represent the extrapo-
lations (to our matching energy ps= 2} of high-energy Regge 6ts
of solution 2 of Phillips and Rarita (Ref. 15) for A&+&, A& &, and
8( & (Bco=—0). For B~+&, we use the FKSR result of Barger and
Phillips (Ref. 10) and the Regge 6t of Derem and Smadja
(Ref. 22).

value gy, +/kr=0 32 For. th. e Yre(1385), we use their
broken SU(3) value, gy, 'x~s/4s. = 1 9/3P, w. here the
relevant Lagrangian is

gy, *xx(Yr*)+Bg+H.c..

Again, the structure of the Y»* Born term could be de-

termined by means of the dispersion-theoretic calcula-

tion. One gets'4

gr, .xmas 1 L(my, *+M)'—p']P(my, .—M)' —iu' —2%mr, *])

{mr,es—s) 2 6%iP'1+ )

gFi+KX f(M+my, .)'—p']
A y,e'= t(M+ my, e)+-

(mr, e' —s) 2 6my, ~'

x f of+~r, .)L(~, —u)' —~'j—N. , (~'+~'—~,")&). 09b)

43 The conventional Horn terms used in many calculations on ZN forward dispersion relations have a factor M„/MY for the A

and Z pole terms, relative to the usual definition of the coupling constants. This has been noted, among others, by Chan and

Meiere (Ref. 34).
44ThÃÃ1*(1385) contribution to Ag, and A, in Ref. 24 has the wrong t dependence. See S. Matsuda and K. Igi, phys, Rev.

Letters 20, 'j81 (K) (1968}.On reevaluation, their Ag, sum rule results change.
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The values of the Fs*(1405) and Ft*(1385) coupling
constants that we use may not be extremely accurate,
but they are sufftciently good for our purpose: (a) We
have used both of them in the resonance approximation
calculation (of which the results are only qualitative
anyway), and (b) we have used the Ft*(1385) con-
tribution also to provide estimates of errors due to
parametrization of the unphysical region in the calcula-
tion with the phase-shift analyses input.

In order to evaluate the contributions of the reso-
nances decaying physically into the EE channel, one
has only to use Eq. (14) above along with the following:

0.5

-0.5-

0.5

Im A

m=0

Re (J'-nfl A

m=1

(b)

L

ImP 8
m 0

Re (4 Piia-
m 1

e"&+ sinb)~
(20)

si
a-

'~ 1

I,t/2k trl, t
Imfi~(s)=Im ~ 8(M—Qs), (21)1~p

-0.5-

(c)

by+ being the elastic-scattering phase shif t for the ap-
propriate partial wave. 1.0

rm(8-q) A'

m~2

Im(4-d') 98
m~2 1.0

I I

Im gA'" 1m 8'+1

m 0

- 4

0.5

(e)

f f f ~

- 0.5

-0,2

(b)
-2
0

I

0 -0.2 "Q4 -0.6 -08 0 -0.2 -0.4 -0.6 -0.8
t (GeV/c)

FIG. 3. Evaluation of Eq. (12) (units, GeV = 1) for m =0, 1,
and 2 for the amplitudes A & & and 8( & for 0&—t& 1. The points
and error bars have the same meaning as for Fig. 1~ The dashed
curve is the p contribution as deduced by an extrapolation (to
"i/s =2) of solution 1 of Ref. 22. The full-line curves represent the
expected Regge contributions to the (—) amplitudes at gs =2, our
matching energy. For A „,we used solution 1 of Phillips and Rarita
as such; for B„,we used (vB/A) „=1.5.

-0.6-

(c)
Re{s'-4)oAi

m=1

--2

- -3

Re(s-g B
m~1

Now we turn to our results. We Grst discuss the case
of the data input involving the phase shift and then, the
resonance saturation results.

Im g'- 4O A +

m~2
Im(V -g) el+1

(e)

0 -0,2 -OA O.S -08 0 -0.2 -L4 "0.6 "08
t (GeV/c )'

FrG. 2. Evaluation of Eq. (12) (units, GeV = 1) for nz =0, 1,
and 2 for the amplitudes A &+) and 8&+& for 0&—t& 1. The points
and error bars have the same meaning as for Fig. 1. The dashed
curve is the A 2 contribution as deduced by an extrapolation (togs =2) of solution 1 of Ref. 22. The full-line curves represent the
expected Regge contributions to the (+) amplitudes at Qs =2, our
matching energy. For A ~, A ~ we used solution 1 of Phillips and
Rarita as such; for Bp, Bp, we used (vB/A) p, p =1.

A. 1=0

For t=0, we plot the results of evaluating the left-
hand side of Eq. (12) versus trs; this gives one a feeling
for the relative importance of the diHerent moments m
and the phase of the amplitude in question. We recall
that FESR's with m odd involve the real part and those
with m even involve the imaginary part of the ampli-
tude. For even m, the sum rules for the amplitude
could be evaluated directly by using total cross sections
when a higher matching energy might be employed.
Some earlier work for the m =0 sum rules has been
mentioned already in Sec. 3. The vertical error bars in
Fig. 1 give an estimate of the difference arising from
using diff erent input low-energy data, the central dots
are for our favored set which has the Kim couplings for
the A and Z pole terms, a negligible F~* coupling if as in
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Kim's solution" ) and a nonresonant E+p solution. This
notation has been followed in Figs. 2 and 3, also. The
smooth curves in Fig. 1 represent extrapolations to 1.53
GeV of high-energy Regge fits to the 6—20 GeV data. %e
used solution 2 of Phillips and Rarita. " (Using solution
1 would make very slight diBerences in the comparison
of the Regge curve with our points. ) For &A&+& and A& &,

the Phillips-Rarita parameters show a good agreement
with our points remembering that a confrontation of
data below 1.53 GeV and above 6 GeV is what is being
presented. For pB&—), the Phillips-Rarita solution had
~B/A=+11 for the p and B„=O; these 6t with our
results approximately, the real part (m odd) results not
being in good agreement. As pointed out earlier, the
reason for their" choice 8„=0is that the high-energy
data were not good enough to determine it well.

Hopefully, the agreement could be improved by taking
B„&0.Indeed, we do use (&B/A) =1.5 as a typical
expected sample value in all the subsequent comparisons
of the sum-rule results with the extrapolations to u~ of
the high-energy Regge fits; we were led to this choice of
(&B/A)„by a comparison of the sum-rule results for
8& ) and the known p contribution. For 8&+&, reasonable
agreement can be obtained only by using the more
recent" result of an analysis of the process E p +E'm-
that vB/A =+8.3 for the A2 (rather than —8 as in
the Phillips and Rarita" analyses) and also the recent
FESR result" in n X scattering that vB/A =+1 (rather
than negative as in the Philhps-Rarita analyses ') for
the P and P' The fact .that our results require»B/A
=positive for all the contributions to the (+) ampli-
tudes is very important (especially for the Am) and we

return to it in Sec.6.That high-energy data alone cannot
determine the sign of & B/A is clearly brought out by the
four solutions that Reeder and Sarma4' obtain for the
A2 trajectory couplings. This ambiguity in the determi-
nation of the sign of &B/A is removed by our analysis
and we are able to pick out their solution 3 (which
resembles the Derem-Smadja solution, "but diBers from
the Phillips-Rarita solutions" ) as our favored one. As
noted by Reeder and Sarma, this has definite experi-
mental consequences for the polarization in E p +K'm-
(and actually, also for the E+p + E+p processes which

are more easily accessible for polarization measure-
ments; see Sec. 6); their4' neutron polarization near the
forward direction is about —50% for solution 3 as
compared to about —100% for the solutions having the
opposite sign of uB/A.

One sees that the agreement of our results with the
extrapolation of the high-energy Regge 6ts is not very
good (especially for the B amplitudes) for m= —2 and
—1. For m= —2, the FESR for A& & (which is the
forward-dispersion relation evaluated, for example, by
Kim") is much more sensitive to low-energy data and to
coupling constants (g~' and gz') than it is to the Regge

4'D. D. Rceder and K. V. L, Sarma, Phys. Rcv. 172, 3.566
I,'&968).

contribution. Indeed, we regard our FESR's for m = —2
and m= —1 (which we evaluate only for 1=0) as
providing a consistency check on the input data set
rather than teaching us something about the relevant
Regge poles. Actually, Fig. 1 shows that there is some
inconsistency in our data set since one can see that our
tn= —2 results for the 8 amplitudes cannot be at-
tributed to lower-lying Regge contributions, but imply
some error in the I' waves near threshold, or in Rim's
treatment of the unphysical region which we adopt, etc.
It is precisely these 8 amplitudes which are much more
sensitive to the Born-term coupling constants than are
the A amplitudes.

B. Favored Data Set

A g'= (M my+ & g/(1 x) )Bg—'. —(22)

The 8 amplitudes, therefore, are more important

than the A amplitudes as a guide to the choice of the

favored set. The third type of variation that we have

considered LI'&,*(1385) contributiong can contribute to
both the A&+' and 8&+~ amplitudes almost equally

One should consider several independent sum rules in

choosing one's "favored data set" and, in particular, in
determining the coupling constants gq' and g~' because
of the sensitivity of diRerent sum rules to diferent
aspects of the input data. For example, the forward
dispersion relation (the A ~ & sum rule for m = —

2& 1=0)
is nearly as well satis6ed by Zovko's coupling constants
plus a "broken SU(3)"value for I',~(1385) coupling as
with our favored set. Our choice of the favored set was
based on a study of the whole family of our sum rules.

It is obvious that since total cross-section data are
ingredients of the E+p phase-shift analysis that we use

as our data input, one does not expect our results using
the E+p solutions I and IV to be signi6cantly different
for the A amplitudes. For ImA(+', especially at t=o,
this is strictly true because of the optical theorem; for
ReAH& also, it is true because of the fact that the
forward-dispersion relation was built into the E+p
analysis of Lea et al."Indeed, we find that the FESR
results for the two E+p solutions are essentially the
same for the A amplitude. From our point of view, the
main difference between the two E+p solutions is in the
8&+) amplitudes and we use this di6erence to select our

favored data set. Also, the diGerence between the Kim
and Zovko-Born couplings is more important for the
8&+~ amphtudes than for the A&+) amplitudes. The
reason for this becomes clear if we consider, as an
example the A. contribution 111 Eq. (17a) which shows

that while the coupling constants have their full

strength in the 8 amplitudes, their contribution to the A

amplitude is weakened by the factors M—mg and vq

(the value of & for gs=mq), both &g (in the region of
interest to us) and M —M,~ being much less than 1 in
our units. One has
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strongly, and the variation it causes depends in detail
upon which sum rule one is considering.

For choosing between the diBerent input data sets,
we compared our predictions for these di6'erent data
sets with the expected (extrapolated down to i i= 1.53)
Regge contribution. Let us restrict our attention to t= 0
because this comparison is more reliable for t=0. In
fact, the t dependence of the results with diferent data
sets ls quite siinllal' and, if allythlng, the data set which
we favor on the basis of our considerations at t=0 is
also the favored one for our t/0 results. For the 8&—

&

amplitude, for example, our FESR results for m= —i,
1, 2, and 3 have the same and the opposite signs to that
expected from the Regge extrapolation for the E+p
solutions IV and I, respectively; for m= —2, our results
are quite different from the expected one possibly be-
cause of the extreme sensitivity of this sum rule to the
very-low-energy data; for m=0, the magnitude is in
much better agreement with the Regge expectation for
solution IV. The 8&+& results are not completely in favor
of solution IV; solutions I and IV are better for m=2
and 3, respectively; m=0 and &1 results are about
equally good for both the solutions; m= —2 results are
riot good for either. On the whole, therefore, the non-
resonant solution IV is preferable to the resonant solu-
tion I.As for the diGerence between the Kim and Zovko
couplings and the presence or almost absence of the I ~*
contribution, one has to consider the A sum rules also.
For the A&-~ results, the results are surely better for the
Kim couplings than for the Zovko ones for m =0, j., —2,—I, the results for m = 2 and 3 being about the same for
both the cases. In some cases, the combination (Zovko's
couplings+ full F'i* contribution) is only slightly worse
than the choice (Kim couplings + almost no Fi* con-
tribution), though the latter is, in some other cases,
much better (for example, the m=0 result for the A&

—
&

amplitude). When the combination (Kim couplings
+ full F&~ contribution) is significantly different from
the combination (Kim couplings + almost no Fi*
contribution), it is generally worse than the latter (for
example, the m= —2 case for A&-'). On the whole,
therefore, the preferred choice is (a) Kim's Born
couplings for the h. and the Z contributions, (b) almost
zero Fi*(1385) contribution, as found by Kim," and
(c) the nonresonant E+p solution IV. We hope that
when future analyses of low-energy kaon-nucleon scat-
tering become sufIIciently well determined, one would
not have to rely on a comparison with the extrapolation
of the Regge result; under the present circumstances,
we found this to be a useful possibility. It may very well
happen that only two or one or none of the three choices
that we have preferred is the true one and that the
combination of the three is only a dose approximation
to the true representation of the data; this must await
better and more complete phase-shift analyses than
those available at present. It is unfortunate that, as

found by Queen et al. ,4' all recent parametrizations of
the low-energy EÃ scattering amplitude are incon-
sistent with the remainder of our knowledge of the ES
interactions because they do not satisfy the important
constraint that the Born coupling constants g~' and g~'
de6ned by the dispersion relations be energy-inde-
pendent. Queen et al.4' have suggested that future
parametrizations of the experimental data should in-
corporate more theoretical constraints (for example,
their important consistency requirement of the con-
stancy of gi,' and gz'). As mentioned in Sec. 3, Chan and
Meiere" have shown, in a somewhat related context,
that the constant-scattering-length extrapolation (with
Kim's" parameters) into the unphysical region leads to.
inconsistencies because the coupling constants g~~ and
gz' tend to vary wildly and even become negative for
different allowed values of a certain parameter P.
Hopefully, things will improve in future and a future
FESR analysis of EE scattering will be more informa-
tive than it is now.

The results carry information in the form of dips and
zeros in the various Regge contributions as a function
of t. For t/0, one should rely upon the results of only
those FESR's which agree reasonably well at t=0 with
the Regge expectation. %e have shown the results for
the (+) and (—) amplitudes for m=0, I, and 2 in
Figs. 2 and 3, respectively. The smooth full-line curves
in these 6gures are the sum of all the relevant Regge
contributions (extrapolated down to our matching
energy) and the dashed curves are for the p (for Fig. 3)
contribution in the case of the (—) amplitudes and the
A~ (for Fig. 2) contribution in the case of the (+)
amplitudes. The p and A~ contributions are extrapola-
tions from the results of Berem and Smadja. "For the
32, we have used their solution i. Their other solution
is very similar. The A~, A p and A„contributions are
taken from solution I (which is very similar to their
solution II which we have used only for our Fig. I) of
Phillips and Rarita. "B~,B~,and B„aredetermined by
using our qualitative (for all $) conclusions (confirmed
for the E and P' by the xÃ FKSR results of Barger and
Phillipsio) that vB/A=+I for I' and I" and vB/A
=+1.5 for the ao. The curves do not represent, there-
fore, true high-energy Regge 6ts; they are partly
motivated by the FKSR results. Kith the high-energy
Regge 6t'4" extrapolations taken as such, even the
signs of the spin-Rip amplitudes 8 would not agree with
ours. The curves are meant to represent what we believe
the extrapolation of high-energy Regge 6ts should look
like. Detailed Regge 6ts to high-energy data incorpo-
rating our FESR "prejudices" about the phases and

'6 N. M. Queen, S. Leeman, and F. E, Yeomans, Birmingham
University Report (unpublished}.



Inagnltudcs of thc vRx'ious contributions. Rlc ln plog-
ress. 4'

For A &+& and IN =0, we find )Fig. 2(a)j slight evidence
of a dip (presumably due to the I" contribution) at
—1=0.5; this agrees with the conclusions of Barger Rpd
Phillips ' who studied the fry sum rules. From high-
cncI'gy Gtsq lt RppcRI's that thc P tra]cctory ls less
strongly coupled to the ES system than to the wg
systeln; Phillips and Rarita" found that at 1=0, for
example,

Indeed, we find a less pronounced. dip than in the Ir&
case. This dip is consistent with its interpreta. tion Rs a
double zero in A& according to the no-compensation
mechanism if ap =0 at this t value. Such R dip could not
bc attributed, to the I' contribution because the I'
trajectory is rather Rat and. is not expected to go
through zero at such a low value of —t. Also, it could not
bc due to the A2 contribution because the latter is much
smRIlcr than thc E RIld I contllbUtlons to A(+). The
tr&= 1 LFig. 2 (c)g results for the A &+& (involving Red &+&)

Rrc also conslstcnt with thc pI'cscncc of this dip in thc
contribution; here, however, the A2 contribution is

not negligible and the conclusion cannot be definite
because the same dip couM be attributed to the g&
contribution. The extrapolations of the Regge 6ts down

to oUx' matching cnclgy sccIns to bc systematically
below the PESR results for the A&+~ amplitude. This can
be due to a number of reasons. (a) The extrapolation of
the Regge fits to as low an energy as gs= 2 may not be
completely justified; (b) the high-energy fits may be
inconsistent with thc FESR results, in which ca,se either
the low-energy data or the high-energy fits need to bc
reexamined. LIt is worth remarking that our results for
the A &+) sum rules Rre fairly reliable especially for m =0
in the sense that the vertical error bars are small and. the
diGcrent input data sets do not lead to very diferent
results. The small error bars for r&1= 2 in Fig. 2(e) are
a priori expected because of the relatively small weight

given to the very-low-energy data in the high-m sum

rules. J Tllc dlsRgrcclIlcllt R't lRI'gc —3 I 18 Ilot Rs bMl as

it looks because the plotted Regge extrapolation did not
take into Recount thc Do-coIQpcnsRtloI1 mechanism for
the I' and I".

Coming to the results for the 8&+& amphtude shown in
Pigs. 2(b), 2(d), and 2(f), we see that, as pointed out in

Scc.4 8, thc vcrtlcRl bars Rlc quite big and R difference
in the input data sets causes an appreciable difference in
the results. The two X+p solutions give fairly different
results. (For 8& &, the variation caused by varying the
E+p solution is much larger than the one caused by
varying the I'~~ or the A and Z couplings for the same
Jt.+p solll'tlon. ) It ls diff&cult 'to draw ally stl'ollg coI1-

clusion from the 8&+') results partly because of the very

big errors. The RgrccIIlent ls Dot good foI' OUr fRvolcd

4~ G. P. Bass, C. Michael, and R. J. N. Phillips {unpublished}.

datR sct, thOugh lt 18 reasonable fol' f8=0 LFlg. 2(b)j
within the rather large error bars. In A&+&, the A~
tra)cctory contribution ls masked by I RIld I q not so
in 8&+& for m= I LFig. 2(d)j where real parts are in-
volved. In this case, our results, us they sfuld, show no
evidence of a zero for —1&0.8 approximately so that the
Chew mechanism (or the no-compensation mechanism)
type nonsense-choosing zero is excluded. Either a Gell-
MRDD type DonscDsc-choosing zcx'0 OI' clsc Do zcx'0 of ag,
in this range is possible. 48 Unfortunately, this conclusion
is in direct contradiction to the results of Chu and
Roy, 4' who considered the sum rule corresponding to
J' ImBdu and J'v'dl ImB for the Ag contribution to
photoproduction; they conclude that their results
strongly favor the Chew or the Do-compensation mecha-
nism over that of Gell-Mann; they did 6nd a, zero in the
zero-moment sum rule and they thought that the be-
hRvloI' of their sccoDd-IQ0IQcDt suIQ I'ulc sUggcsts
strongly a double-zero behavior. It is true that our data,
input is not extremely reliable for the real parts (Sec.
4 D) and that our conclusion cannot be regarded as
absolutely 6nal, but it appears that their conclusion is
not 6nal either. Their second-moment sum rule does
hRvc R dc6nitc sin glc zcI'0 cvcI1 thoUgh onc COUM

perhaps regard it as only a slight displacement of a
double-zero —type behavior. %c believe that more con-
clusive evidence is needed to decide the issue one way
or the other. ID fact, considerations of exchange de-
generacy between the p and the A2 wouM tend to sup-
port our conclusion. Also, the m.y —+ mp FKSR's support
our conclusion.

The results for the (—) RmpHtudes are shown in:

Fig. 3 for m=0, I, and 2. We assume the p to be given
and investigate the ~ contribution which is our main
interest in the (—) amplitudes. Turning to vs=0
/Fig. 3(a)j fol' A I & wlllch Should bc doIIlllla'tcd by thc
~, we do find solutions (using Kim'8 coupling constants)
in which the imaginary part changes sign for —$~0.2 as
is needed to explain the crossover phenomenon. There
appears to be some dilution, however, by lower-lying
Regge poles or else the data are not suQicicntly re-
11Rblc slncc %'c 611d Do corresponding zcI'0 either ln
Red & '(m= I) LFig. 3(c)g which is well nigh constant as
a, function of f, or in the m= 2momentforA& ).Actually,
tllc FESR results foI' tile ts= 2 1110Illell't of A~ & LFlg.
3(c)j Rlc qultc lllscllsltlvc to 'tllc considered varla't10118

in the input data and could be reliable except for the
fact that all the variations we have allowed (for the 2
amplitudes) are in the very-low-energy data to which
the m= 2 are insensitive by construction. "The present

4S Exchange degeneracy of the 22 with the p would suggest that
A& trajectory passed through zero at —t 0.5, whIle high

energy Regge 6ts to mN-+ gE' and to the EN charge-exchange
data tend to favor a flatter {or curved) trajectory with no such
zero.

49 For the 8 aInpHtudes, however, me have allowed big variations
at all energies because the two E+p solutions give quite diferent
spin-Rip amplitudes at even high energies. At low energies, the
diferent choices for the couplings gg', gq', and gyp(~egg provide
this variation.
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experimental situation does not allow one to consider
any variations (for the A amplitudes) in the higher-
energy end of our input data —the region which is
weighted heavily for high positive m values; it is
possible that allowing for such variations would repro-
duce results consistent with the usual zero'~ in the
effective a1 contribution to the (—) amplitudes. We do
not regard the absence of a crossover in the m = 1 results
as a serious diKculty because of the extent to which the
real parts of the input data are rehable. %C return to the
question of thc rcllRblllty of ouI' sum I'ulcs lnvolvlng thc
real parts in Sec. 4 D.

The case of the B& 1 amplitudes is shown in Fig. 3(b),
3(d), and 3(f).The error bars here are bigger, in general,
than for A&—

&. Overlooking again the m=1 t Fig. 3(d)j
results which involve real parts and which are very
sensitive to the input data variations (particularly, the
E+p solution), we 6nd that after subtracting the known

p contribution, the tIX=O results LFig. 3(b)$ for the
CBective co contribution to 8& ) show a behavior similar
to the one for A& & for m=0. %ithin the error bars
shown, the xxx=2 results LFig. 3(f)j are also consistent
with the occurrence of the usual crossover at —t 0.2.

%'c 6nd Do evidence in the 8& & sum rules of any
additional zero in B„(a sense-nonsense zero at the
wrong-signature unphysical point n„=O) for t(1—
which is inconsistent with a„=0.45+0.9t found by
Contogouris et ul. 's (see also Sec. 2), from a s.X—+ pE
analysis) our lcsults. tend to favor R Qattcr tra]cctory
(if the zero at t= t, is not to be associated with n„=O).
Also, we find (vB/A)„=+1 to +3 for 0(—t(0.7.
This shows that the amplitude B„could be appreciably
morc important thRD A ln this $ lcgloD Rnd lt ls Dot a
good Rpproxln1atlon to sct Bo)=0 ln R Rcggc 6t. Onc
CRI1 gc't a qllRlltatlvc cstlxllatc of (vB/A)gg at t=tÃgp by
assuming the ~ and p dominance of the isoscalar and
isovector nucleon form factors, respectively. It has been
shown by Rarita et el.'4 that

( „,B) Z 34.S—2.54

at )=m, ', assuming factorization for the p residues and
using the results in their Sec. V (xii). Using the known
proton and neutron magnetic moments and charges and
thc fact thRt thc isovcctor part ls thc p coDtribUtion Rnd
the isoscalar part is the cv contribution, one can deduce
from the ratio of the isoscalar and isovector total
Inagnetlc moments thRt

B (y +IM2)7s
=0.2 )

B, (yx+2Mys),

where the residues y1 and y2 are de6ncd by IIlall and
%ong. 5 Similarly, slncc thc lsovcctoI' RDd lsoscRlar
charges are equal, A „/A, (yx) „/(yx), = 1. Hence

ss J. S. gall and D. Y. Wong, Phys. Rav. 183, g 1/9 {1964).

coI,bB /A ~0.5 at t= m ', assuming te '~m„' K. eeping
in mind the various approximations that wc have made
on the way, the comparison of this number (vB/A) of

+0.5 with our value (+1 to +3), though it involves
an extrapolation in 7, is qualitatively satisfactory. On
the other hand, in their fit to SE data, Rarita et al. '4
used vB/A= —6 for the ~, which they took as the
predominant spin-flip contribution to fIt the pp polariza-
tion data. Their model is in conQict with the recent fop
polarization data of Daum et at." at 2—3 GeV/c. This
lends support to the conclusion that additional impor-
tant spin-fhp contributions (for example, p, As, and ax

correctly) should be included in a Regge 6t to NJX't

scattering to achieve agreement with experiment. Kc
have seen that the sign of vB/A used by Rarita et al.x4 is
DegRtlvc for I ) I ) Rnd al) oui' I'csUlts wRDt this sign to
be positive foI' all these three contributions. It may very
well be that if the Regge parameters are constrained to
be consistent with the FESR results, one would get
agreement with experimental data on EE and EX
SCRttel lng.

D. How 6008 Axe OQf IQpQt DRtRP IxQp11catloQs
for Di8'ereot Moments

FESR's with different moments are reliable is now in
order. Here we want to consider this question in the
light of our input data. These remarks are supple-
Inentary to those of Sec. 3D. To get some idea of how
well our input data determined the low-energy ampli-
tudes A and 8 which went into our FESR integrals, we
compared our amplitudes A with some forward-disper=
sion-relation calculations. Unfortunately, there is not
very much else to compare with, especially at 1&0.ImA
at f= 0 ls) of coulsc) Rll light bccausc Rll our lnpUt dRta
reproduce the observed. total cross sections. However,
one still has not conirmed that the t/0 amplitudes A &~~

are correct. Our extrapolation of the parametrization of
Armenteros ef al.35 below their region introduces very
small discontinuities in ImA (and similarly, in ImB) at
the point {pl,b= 550 MeV/c) where the parametrization
of Armenteros er, al. takes over the ICim28 paramctriza-
tion. For RcA(E+P-+E+P), the agreement is very
good. Tile sltua't1011 abollt RcA(E p~ E p) ls not
very good. We (a) overestimate it in the region 550-780
MCV/c (the regio~ b'etween the analyses of Kim and
Armenteros et at.), (b) more or less agree with the
results of a very recent forward-dispersion-relation cal-
culation by Carter" in the region of the analysis of
AlxIlc11tcl'os et st. , alxd {c)undcrcst1111atc It 111 t11c .1'cg1oxl
(1220-1460 MeV/c); all this, in such a manner that the
area under thc plot of ReA(E p-+ E p) versus v is
about the saIDC as for Carter's numbers. Our m=odd
(real parts of A&+& involved) sum rules always have
factors of (v' —vo') I' multiplying the amplitude; this

» A. A. Carter, Cavendish Laboratory Report No. HEP 68-3.0
(unpublished).
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Pro. 4. Evaluation of Eq. (12) (units, GeV= 1) for es =O, ~o=&
in the resonance saturation approximation for the contributions
fr+I (identi6ed as fg.), fg, of Eq. (9) with all the bound states
and resonances (Ref. 38) (of which J~ is known) included. The
full-line curves are the Regge expectation as for Figs. 2 and 3
evaluated at gs =2.15( Ref. 39).The crosses (X) are for corrected
Kirn -coupling constants (Ref. 43) gA' and gg~ and a negligible
F1*(1385)contribution, the resonance analog of our favored data
set the points are for SU(3) couphngs gA' and gg (g~&~14.5
and f=0.36) and gy,*(1885p=1.9/Mg; the lines are for uncorrected
Zovko's couplings (Ref. 43) gA' and gg', and gy,+'= i.9/Mm.

pla, ces a greater or smaller weighting on the high-energy
x'cglon of our input data thRQ on thc low-encl gy region,
depending upon whether m is positive or negative. If
this weighting is not too strong, our results for m odd

may be reliable. Otherwise, this makes our results for
m odd sum rules less reliable than those for the m even
(imaginary parts involved) sum rules because of this
diferent weighting of the two regions in which our real
parts of the A &+' amplitudes do not, reproduce very well
the results of Carter. It is obvious that one would bc
very lucky if the t dependence of the m odd sum rules
came out correctly, given the fact that the input data
sct might be bad enough to make them wrong at even
1=0. Our m=3 results have Qot been shown because
these would grossly over estimate the higher-energy cnd.
of the input data. The m= +1 results are not bad at
f=0 (see Fig. 1); the f dependence may not be correct
(see Figs. 2 and 3).

%'c have no way to check our B amplitudes and these
are particularly sensitive to variations in the input da, ta;
one can believe only those conclusions (we have men-
tioned only such ones) which stand inspite of these
variations. Again, wc rely on our sum-rule results for
ImB more than on RCB. Summarizing, therefore, we
regard our m even sum rules as morc reliable than the
m odd ones.

%c wish to emphasize that our data input is a good
representation of all the known experimental data, ,

though it may not be the only possible unique repre-
sentation. For example, it reproduces the known total
cross section (both elastic and reaction ones) and the
known di6'erential cross sections from threshold up to
oux' matching cDcrgy ' these indeed arc thc ingredients of
the data on which the phase-shift analyses which wc
have used were based. Also correctly reproduced are the
available data on polarization in E p scattering even in
the region 1100-1350MeV/c, sr in which some extrapola-
tion beyond the region of Armenteros ef 0/. is already
involved. The forward-dispersion relation for E+p scat-
tering, being built into the a,nalysis of Lea et al. ,

'~

guarantees our ReA (E+P~X+P) at f=0 being correct.
The only obvious imperfections in our input are (a)
Red (E p ~E p) is not well reproduced. This weakens
our sr' odd results somewhat. (b) There is a slight
discontinuity in ImB and Red(E p~E p) at th-e

point of changeover from the Kim parametrization to
the parametrization of Armenteros et al. ; the dis-
continuities in ImB are not very crucial because these
are very small compared to the other more important
ambiguities like g~', gzs, and gr, *s(1385) for the 8
amplitude; the discontinuities in ImA are negligibly
small anyway; the one in Red(E p~X p) is not
negligible. Nonetheless, an over-all average of Red (Z p)
as a function of energy is nearly correctly given, when
compared with Carter's numbers.

E. RcsoxlRQce SRtQfRtioG Apex'oxQBaboQ

We have evaluated (with vs ——0) the m= 0 and m= 2
results for the separate contributions (I'+I"), As, ro,
and p in the resonance approximation. For vs=0, the
results are shown in Fig. 4 for the Z+E' and. As and. in
Fig. 5 for the p and the au. As mentioned in Sec. 2, we
expect the resonance-saturation-approximation results
to be quite reliable for the m. Keeping in mind the rather
lRlgc unccrtRlQtlcs ln thc known rcsonRncc paramctersp
we thought it good enough to work within the ap-
px'oxlnlRtloQ of Darrow-width rcsonanccs Rnd therefore
not to worry about the energy dependence of the rele-
vant width, etc. The full-line curves in Figs. 4 and, 5 are
the expected Regge contributions extrapolated down to
ps=2. 15,"evaluated as for Figs 2and 3..The crosses
are for Kim coupling constants for the A. Rnd Z terms
(corrected4' for the factors M„/Mr) and a negligible
Pre(1385) contribution; the points are for SU(3)
couplings for the A and Z terms (g,~s = 14.5 andf= 0 36). .
and a broken SU(3) value" for the Fr* coupling; the
broken lines are for Zovko couplings (not corrected4' for
the factors Ms/Mr) for the A and Z terms and a broken
SV(3) value" for the Fr* coupling; these cases were
chosen as indicative of the errors and uncertainties in-
volved, within the resonance approxima. tion. Assuming"
that the I+I contrlbutron of Eq. (9a) ls only P
contribution in the resonance approximation, the re-
sults for all the four contributions are summarized
below. One must remember" that the resonance Rp-
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proximation can give only crude results and that slight
shifts in the positions of the expected zeros (as a func-
tion of f) or double zeros becoming broken into two
nearby zeros (and vice versa) or other similar things are
likely to happen in the resonance-saturation results.
YVe have taken the resonance parameters from Rosenfeld
et al.38 and have included all the relevant resonances of
which J~ is known.

I". A single zero in the 8 sum rule and an almost
double zero in the A sum rule (a similar behavior for the
m= 2 results) con6rm our more exact FESR result that
the I" trajectory seems to choose the no-compensation
mechanism type coupling (n~. =0 at —t 0.5). The
agreement with the Regge curves is not good, possibly
because the relevant Regge 6ts did not incorporate this
feature of the I" coupling.

cv. The results for both m =0 and m= 2 indicate zeros
in the A„and B„at —t 0.1 which is expected on the
basis of the usual explanation'~ of the crossover phe-
nomenon. The agreement with the Regge curves is
fairly good. We recall that one can believe the resonance-
approximation results for the co to be reasonably correct.
Again, we do not see evidence of a second zero (at

0.5) in J3 as expected due to a wrong-signature
sense-nonsense zero if one accepts n =0.45+0.9f.ss The
results for the co also, therefore, con6rm our more exact
FKSR results given already. While this paper was being
written up, we saw a paper by Di Vecchia et a3.'9 who
evaluated the tn =0 case with the older (1967) resonance
parameters of Rosenfeld ef al. ,

ss neglecting the Fr*(1385)
contribution, as suggested by Kim. 28

p. Ke do not rely very much on our resonance results
for the p and A2, both of which have been evaluated for
m=0 by Matsuda and Iy..' " For the p the sense-
nonsense zero in 8, is at about the right place, the ms =2
result behaving similarly. The Regge A, is very small
and is not very well given by the resonance approxima-
tion, though the Kim case with no I't*(1385) is not far
out from the Regge curve.

A2. The ns=0resultshavebeen evaluated by Mitsuda
and Igi" "with the older 1967 resonance parameters of
Rosenfeld ef, ul. 52 The results are consistent with a
double zero in Ag, at —t 0.2 and a single zero in B~,
at t= —0.6, both of which, if at the same 3 value, could
result from a no-compensation mechanism for the A2
(as for E'), though A~, is numerically somewhat small
in magnitude and also sensitive to the inclusion or
omission of certain resonances. Also, the m= 2 result for
A~, shows two zeros (at —f =0.13 and 0.5; similarly for
A,) and not a double zero as for m =0. The m= 2 result
for 8~, is similar to that for m=0; it has a single zero
at —~=0.4.

On the whole, therefore, our resonance approximation
results give support to our more exact results obtained
with phase-shift analyses as input data.

N A. H. Rosenfeld, A. Barbaro-Galtieri, W. T. Podolsky, L. R.
Price, Matts Roos, P. Soding, %.J. Willis, and C. G. Wohl, Rev.
Mod. Phys. 39, 1 (1967).
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Pro. S. Evaluation of Eq. (12) (units, GeV=1) for m=0, F0=0
in the resonance sa.turation approximation for the contributionsf„and f„of Eq. (9} with all the bound states and resonances
(Ref. 38) (of which 1+ is known) included. The full-line curves
are the Regge expectation as for Figs. 2 and 3 evaluated atps=2. 15 (Ref. 39). The crosses (X) are for corrected Kirn
coupling constants (Ref. 43) gq~ and gy' and a negligible I 1~ (1385)
contribution, the resonance analog of our favored data set; the
points a,re for SU(3) coupHngs gg'and gz~ (g +~14.5 and f=0.36)
and gy, *(1385&'=1.9/M'; the lines are for uncorrected Zovko's
couplings (Ref. 41) gq' and gym, and gy,+'= 1.9/3P.

C. Schmid, Phys. Rev. Letters 20, 628 (1968).54M. Ademollo, H. R. Rubinstein, G. Veneziano, and M. A.
Virasoro, Phys. Rev. Letters 19, 1502 (1967)."The results of Ademollo eI al. (Ref. 54} favor the possibilitythat ag, does go through zero for —5&1.4.

F. Relevant Meson-Meson Scattering FESR Analyses
in Resonance Ayyroximation

By considering the process EE~EE, one can show
that the zero in the residue of the helicity-nonQip
amplitude for the ~ contribution has a zero nearer to
k= 0 than the zero in the p residue which in, for example,
the my ~~x calculation of Schmid" is at —I~0.3. This
is encouraging for the usuaP~ co-crossover explanation
which would indeed want it at —$~0.15. For the other
trajectories, the EE—+EE calculation does not give
very unambiguous results.

One could consider the process xp ~mg to get infor-
mation on Bg,. H one uses Eq. (12c) of Ademollo ef al. '4
in their Eq. (12b), one can deduce that B~gn~, has no
zero for —1&1.4 approximately. This could mean the
Cell-Mann nonsense-choosing mechanism p n near
0.=0 if 0,~, goes through zero for —t(1.4; otherwise, »
it could mean the Chew mechanism or the no-compensa-
tion type coupling (p-n' near n=0). Also, the SU(3)
symmetry limit results of Ademollo et ul. '4 include
exchange degeneracy between the p and A2, this imp]ies
p~, n~, near n~, =0.
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A'-&(v) dv, (26)

f(m) = — ImA' &(v)dv.
0 X

Flo. 6. Evaluation oi Eq. (33) at I=0, X =/a/I in the normaliza-
tion of Eq. (12) (units, GeV= 1) for various m values. For m even,
the whole thing is a genuine FESR, shown by circles where the
naive Regge expectatio~ (evaluated as a sum of genuine co afid p
Regge poles as for Figs. 2 and 3) and the modified Regge expecta-
tion coincide. The full line is the naive Regge expectation
having two in6nite discontinuities at m= —1.52(= —1—e„) and
m= —1.57(=—1—n&); the dashed curve is the modihed version
incorporating the m plane pole plus background model and has no
infinities at the points m= —1.52, —1.57. The integral in Kq, (33)
is shown by points and error bars in the same notation as for the
other 6gures. For et= —1.5, the integral varies from —8.6 to—21.j for the various input data sets; this agrees better with the
dashed curve. An ideal agreement with the dashed curve would
mean f(/a} =0.

5. OTHER SUM RULES

T1M finite-energy suxn rules that wc llRvc considered
so far depend on analyticity and a. Regge-bkc para, me-
terization of the high-energy data. However, one may
evaluate x'clRtlons which dcpcnd ln R lTlorc scnsltlvc
fashion on thc Rcggc-pole Rppx'oxlIDRtlon. EGectlvely
what one does is to evaluate the Froissart-Gribov
representation of the I-plane amplitude a(l) using the
6nite-energy trick to continue the representation to
smaller / values. Wc sha, ll discuss this procedure in
terms of the Khuri plane" which is much simpler for
practical evaluation, while the correspondence between
leading Rcggc poles and leading Khuri poles is main-
tained. I.et us take ~0 to be zero to simplify the dis-
cussion further and consider a typical amplitude
At I (v,t) which is an odd function of v. Then at fixed t,
say, I,=o, we consider the following relations:

OO ( p2 t@jg

0= Im
~

—— A& &(v) dv,

The expression on the right-hand side of Eq. (25), which
is the usual generalized SCR we have discussed previ-
ously) ls zclo fx'olTl cx'osslng Rnd analytlclty. Equation
(26) ls not zero, Rnd define Rll Rllalytlc fllIlctloll of
m, b (m). There is a relation between Eqs. (N) and (27):
f(m) =b(m) sin-', mar. Equation (27) similarly defines an
analytic function of m, f(m), which is the same function
as was discussed by Khuri" (noting that v is pro-
portional to cos8& for our kinematics). Thus one expects
f{m) to llavc poles Rt m= u 1, —e+—1,——m+3, . ~ if
there is a pole in /I(l) at I=a. Assuming that the highest
/-plane slngularlty ls at 1=0., one must seek a method of
analytic continuation to discuss Eqs. (25)—(27) for
fsW —c—I Rnd this ls provided by thc 6nltc-energy
trick. Ke evaluate the integrals from v1 to ~ using a
Rcggc pRrRIDctrlzRtlon of thc high-clM1 gy dRtR Rnd
obtain, if 2' '(v} Q/tie-" /2/& -'&(v/}),

vl -
pm ~m, /2

Im ——
i

A& 1(v) dv
}2)

sinL-', a (n+m+1)) {vl/X) I+"+'
—Q)p (2g)

PI ( pe ) fs/a

Re
i

——
i

A& &(v) dv

cosL-,'~(a+m+1))(pt/y) +"+'
+Q }/p (29)

f{m)= — ImA&-&dp

O

sint 12m(e+1))(pt/}) +"+'
{30)

In these equations, the summation is over the relevant
Regge poles (p and o/ for the A'-I amplitude). Equation
(28) call clcRlly bc colltlllllcd ln m beyond —a—1 slid
this is the technique we have been employing in the
previous sections. Equations (29) and (30), however,
have poles in b (m) and f(m), as we have noted, and to
continue these one must, make a model for the m-plane
amplitude as a pole plus background:

~6 N. N. Khuri, Phys. Rev. Letters Io, 420 (1963);Phys. Rev.
I32, 914 (1963);D. Z. Freedman and J.-M. %ang, ibad. I53, 1596
(19|7).

f (m}=P — +5(m).
(n+ m+1)

(31)



Then, Eqs. (29) and (30) may be written as
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and the latter equations (32) and (33) are in a form
suitable to continue to values of m larger than —0,—1.
%C note that Sch~arz" has considered expressions in
Eqs. (2I) and (30) for m odd (for m even this is the
form of the FESR's used by Dolen ei al. ') and has argued
that f(m) is zero at these nonsense, wrong-signature
values if third double-spectral-function effects are
negligible. However, f(m) may even be infinite, as is
exhibited in Eq. (30).

Before evaluating relations such as Eq. (32), one
should discuss the choice of ~0 and X and possible /-

dependent singularities. As they stand, b(m) and f(m)
are singular for t —0.23 when sg ——0; such left-hand
cuts in t are well known in the physical partial-wave
amplitudes a(l), of course. Thus we see that b(m) must
contain these cuts and we may learn rather little from
cvaluatlIlg the relations numerically —what we seek, of
course, is some representation which will minimize the
background term in the region of interest.

Equation (33) with vs ——0 has the advantage that only
imaginary parts of the data are required; thus at k=0
for A&+& the data are essentially the total cross sections
and are reliable. Choosing A ~ ~ since this is expected to
have electively only one contribution with n~0.5 at
I,=0, we plot in Fig. 6, with error bars as usual, the
integral in Eq. (33) and compare with the Regge terms.
The normabzation used is similar to that for the usual
FESR's $Eq. (12)j considered previously, rather than
as in Eq. (33). The m-plane pole model using l~=0.494
(since cos8,= v/ii at 1=0) is the more plausible and is
shown dashed, together with the naive result of setting
f(m) =0. Though the normalization of the high-energy
parameters is not very reliable (because the agreement
for m&0 is not good even for m values corresponding to
genuine FESR's) in this context, we see that the
Schwarz condition f(m) =0 for m= —1 is not satisfied,
while f(m) =0 (shown dashed) is a more plausible as-
sumption. For even m, f(m)=0 and one has the
FKSR's evaluated by Dolen, Horn, and Schmid. '

In Fig. 7, we show the results of evaluating the
analogs of Eq. (32) at 1=0, for the four amplitudes

0
I

II,I
I
l

I
I
to-14

-2-

I I . s I s s I r

0 2 -2 0 2
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Fn. 7. Evaluation of the analogs of Kq. (32) at 5=0 for —2 ~& m
(integral only) ~&3 for the four amplitudes A(+), y 3&-&, p8&+&, and
8& &. The normalization is the same as for Eq. (12) (units,
GeV = 1). Also, vo=II+Ii4M was used. The points and error bars
have the same meaning as for the other 6gures; they are for the
left-hand side of Eq. (12) evaluated for the wrong crossing-
symmetry amplitudes A(+), ~A( &, 8( &, and s 8&+& and correspond
to the integral in Eq. (32). The naive (full line) and the modified
(dashed line) Regge expectations are calculated with the same
high-energy parameters as for Figs. 2 and 3 and for X=m~. The
in6nities at m= —1—o.;, —2—0.;, —1—n;, and cx; for theampli-
tudes 3&+&, ~A& &, v8(+), and 8& ), respectively, (where n; refers
to any contributing Regge pole) occur for the unmodi6ed (full
line) case P(ia) =Oj, but not in the modified model Lb(eil=0)
which agrees better with the low-energy integrals.

A&+), sA&—
&, vB(+), and 8&—). In this cRse to avoid thc

necessity for real-part data below the physical EQ
threshold, we used vs=@+i/4M as for the FESR's.
Indeed the integrals evaluated are formally the same as
for the FESR's of Eq. (12) except for an interchange of
the (+) and (—) labels. Again the high-energy contribu-
tion (within a 10% error due to neglecting vss relative to
vis) is in good agreement if b(m) =0 (dashed line) and
not if b(m) =0 (continuous line).

Using this VRluc of vo, thcx'c ls Ilo f slngularlty until
po

———pg Rt t~—1.05, so that the l dcpcndcIlcc of thc
expression should be of value if the background is really
negligible. %e find the I" dip RgRln ln A +~ but no (y
crossover at all for A( ~. In view of the extra assump-
tions involved in carrying the model in Eq. (31) to
|I&0 for these sum rules, we are not able to make a
definite conclusion Rbout this apparent 1Rck of m cross-
over. Introduction of adjustable parameters (to fix up,
for example, the oi crossover for Ai ') would reduce the
chRnccs of lcarIling Qlore froIQ these suIn rules,
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FIG. 8. E+p polsl'&zetlolls &&t P&ah=1.46 GeV/c vers&&s g Coo-.
tjnuous a,nd dashed curves are for E P scattering and are the
predictions for choices (I) and (H), respectively, ss described in
the text. The points with error bars are from Ref. 11;the error bars
represent the range of values in this energy region. The E+p
predictions al'e shown with closses and dots for choices (g) and
(H), respectively.

In conclusion, we have shown that the "off l-shell"
Regge-pole contributions can be calculated by using the
wrong-crossing generaHzed moment sum rules. These
depend on the m-plane background amplitude which
seem. s to be negligible for our value of vl and m SUQi-

ciently large.

57 The egectj.ve 0. values we used for our m =0 and m = 1 results
are (0.9+0.3$) for ImA(+); (0.6+0.4$) for 1mB(+); (0.5+0/) for
Red&+& &L»d ReB&+&; (0.5+0.60 for ImA& & e»d ReA& &, s»d
(0.5+0.Q) for ImB( ) and ReB( ). Only the Im8(+) sum rule for
m =0 is sensitive to the chosen n values because the corresponding
denominator is ~ust e,

6. PREMCTIONS

In order to predict any specific feature of EÃ scat-
tering, it is necessary to extract the invariant amplitudes
and their energy dependence from our FESR results.
Having obtRlncd thc lQvRI'lRDt RIDplltudcs) onc cRQ

calculate any observable like do/di and polarization for
EE scattering at high energies or a local energy-
avcI'Rgcd vRhlc Rt, low'cr energies. Fox' Instance~ the
modulus and Phase of the KssP ~Ã&sP regeneration
amplitude cRQ bc evaluated; lt ls domlQRtcd by thc ~-
cxchangc contxlbutloD.

If the FESR evaluations had negligibly small errors,
the extraction of the invariant amplitudes could be
accomplished by fitting the left-hand side of Eq. (12) to
a sum of effective poles and determining the o&;(t) and
P;(&&) for each amplitude at each) value from the results
for the diferent m values. In practice, however, these
errors are not small, and we choose a less ambitious
procedure (which we call I): We employ effective
trajectories" a(t) deduced quahtatively from previous
high-cDcx'gy 6ts, ln order to cxtI'Rct thc effective 1csldUcs

P(i) from our m=0 and. &&&= 1, FESR results with our
favored data set. This is somewhat inconsistent since the
phase of the amplitude may not correspond with the

trajectory a(t). An alternative (which we call II) is to
use (as mentioned previously in Sec. 4C and employed
for Figs. 2—7) the high-energy fits of Phillips and
RRI'lta Rnd of Dcl'cID Rnd Smad)a - with thc Inodl-
fications that &8/A =+1, +1, +1.5 for I', I", and o&

l cspcctlvcly —RlthoUgb this representation of our FESR
results is quantitatively rather poor, especially for
Red&-& and ReB&+& LFigs. 3(c) and 2(d), respectively).
We believe that these choices (I) and (II) represent
qualitatively the correct amplitudes; the quantitatively
exact answer may perhaps be in between the two
if and when the predictions with (I) and (II) differ
appreciably. "

In Fig. 8, we show the E+p polarizations resulting
from the above two choices for p&,b=1.46 GeV/c, our
matching energy. Also shown is an energy-averaged
representation of the K p polarization data of Daum
ei &&/.

» from 1.4 to 2.3 GeV/c, the error bars showing the
range of values encountered in their energy region. The
experimental values lie between our predictions for the
two choices, (I, the FESR results) and (II, the expected
extrapolation of the modi6ed high-energy Regge 6t), at
least up to —f 0.6 beyond which the reliability of these
plcdlctlons decreases. In ouI' prcllmlnary Ieport oD thc
sum-rule evaluations, wc had used a modihcation of
choice (I):we did not use directly the FESR results for
RCA(—) and RCB( ), but determined them from the
FKSR results for the corresponding imaginary parts
(ImA& & and ImB& &, respectively), assuming some
effective n values; this leads to predictions, for E p
polarization, of about 40% at —i 0.3 and about 100%
at i 0.6 {a—s is indeed observed" experimentally),
with the X+p (E p) polarization being larger than the
E p (K+p) polarization for t less (gr—eater) than
approximately 0.3.

%C hope that our results mill be qualitatively vabd
also at higher energies" with, of course, a reduction in
normalization. Previous high-cncx'gy 6ts with 8 =0 RIll
the opposite sign of 8~, had predicted a large negative
E p polarization and a small E+p polarization. One
sho'uld Dote that ln Rn cxchRngc-dcgcDcrRcy llmlt foI' thc
residues (at all i values) where &8/A is the same for p
and As, the polarization will be zero for K+n and E p
charge-exchange scattering. Further, if P' and o& (as
well as the p and As) were also each degenerate in their
trajectories Rnd I'csldUc fUQctlons, thc polRx'lzRtlol1 Rnd
the real part of the forward-scattering amplitude would
both be zero in the X p case and both positive in the
K+p case. Also, the two charge-exchange cross sections
would be &dent&cal, X p ~K $$ having a purely lmagl-

nary amplitude and X+e —+ XsP, a purely real one.
Anothex source of difhculty for the Regge-pole model

in the intermediate-energy region has been the K+e
charge-exchange data at 2.3 GeV/c, as discussed by

's Future high-energy fits (Ref. 47} incorporating the informa-
tion that the FESR's give can help to make these predictions
quantitative.
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Rarita and Schwarzchild, " who found that the con-
ventional Regge fits gave only half the differential cross
section needed in the peak region (—t 0.2). This
process is spin-Qip-dominated with the p and A~
trajectory exchanges contributing; the sign change of
the spin-flip amplitude Bz, (retaining everything else
unchanged as in Ref. 59) is enough to increase the
predictions by up to 50% for —t 0.2 without the need
to introduce a p' contribution. Hopefully, a researching4'
of the parameters after one takes into account this sign
change will make theory agree with the experimental
cross section even better.

7'. CONCLUSIONS

We have seen that FESR's can provide a very useful
tool to determine several features of Regge-pole parame-
ters. If one had a complete and well-determined phase-
shift analysis, one could hopefully learn something also
about the lower-lying Regge poles which would not be
very important to the high-energy fits, but could be
important at the low matching energy that we have to
use. Even with the present state of the low-energy EE
phase-shift analysis, we have learnt some useful things.
We now summarize these.

co. Our sum-rule results, as far as they go, are con-
sistent with the usual explanation of the crossover
phenomenon. These results are based mainly on the sum
rules involving the imaginary parts of the amplitudes A
and B.Our sum-rule results involving the real parts are
not as reliable as the ones for imaginary parts. If it were
not for the lack of a zero in ReA„as determined by our
sum rules for ReA( ), we should be unreserved about our
confirmation of the usual or-crossover mechanism of only
a single pole with all residues passing through zero at
t= 10 because of factorization.

We find no evidence of a wrong-signature nonsense
zero in 8„ for —t&0.8. This is in contradiction with
what is expected for a trajectory function rr„=0.45+0.9t
found by Contogouris et cI."from an analysis of the cv

contribution in the reaction xlV ~pS. Our FESR re-
sults would prefer a Ratter trajectory for the effective co

contribution.
We find (tB/A)„=+1 to +3 for —t&0.6 which,

again, is in contradiction to what has been assumed in
high-energy fits which have taken this ratio to be either
zero" or negative. "

P aid P'. We find (t B/A)r, r. +1 which is, again,
of opposite sign to that in high-energy fits. This agrees
with the mN FESR results of Barger and Phillips. '
Also, we find some evidence of the no-compensation
mechanism type coupling for the P', 0.& passing through
zero at —t 0.5. Our results support exchange de-
generacy of P' and oi for the ratio of the residues vB/A,
though n~. and n„are not found to be degenerate. For

"%.Rarita and B. M. Schwarzschild, Phys. Rev. 162, 1378
(1967).

example, we suggest that 0,~ has a zero at —t 0.5,
while O.„has no zero for —t(0.8.

p. We have not really learnt anything about the p-
trajectory contribution from the present analysis. We
have taken the p Regge pole to be well known and used
it to teach us something about the co pole.

As. Our results would want (vB/A)&, +10——(nearly
the same as for p) which, again, is of opposite sign to
that previously used in some high-energy fits."

The situation is somewhat confused about the type of
mechanism of coupling that the A2 chooses. Our sum-
rule results (and also the irrt-+sp FESR's in the
resonance approximation) would prefer either the Gell-
Mann mechanism, or else no zero in o.g, for —t( j. ap-
proximately, while the resonance-approximation FESR's
for the ES system could be consistent with the no-
compensation mechanism and the photoproduction sum
rules of Chu and Roy" would perhaps like either the
Chew mechanism or the no-compensation mechanism.
A really convincing FESR analysis in this context would
be very welcome. "Again, our results support exchange
degeneracy of p with A2 for the ratio of the residues
vB/A for t 0. We cannot really say very much about
the A2 trajectory; our input data are not accurate
enough to allow one to calculate n&, explicitly.

We have not considered the possibility of more than
one t-channel pole having the quantum numbers of the
p and A2. Our A 2 and ~ contributions, therefore, are only
eGective ones.

Favored data set. Though the input data are not very
well determined, a choice of the favored data set which
leads to the best agreement with extrapolations down to
our matching energy of the high-energy Regge fits is
possible. This may not be the correct and final repre-
sentation of the data at low energies (up to ps=2 for
our purpose). We would prefer Kini's couplings gas and
gzs for the Born diagrams, a negligible Fi*(1385)
coupling (as found by Kim) and the nonresonant (type
IV) K+P phase-shift solution of Lea et alsr.

Predictions. Having been able to determine the signs
and the I, dependence of the Regge-pole spin-Qip con-
tributions in KE scattering, we see that the older signs
of vB/A for P, P', &e, and As are not consistent with our
results. If we take them as our sum rules prefer, we are
able to predict quite confidently the expected polariza-
tion in K+p and K p elastic scattering and our predic-
tion agrees with the available" experimental data on
K P polarization while the previous fits gave the wrong
sign of the polarization. Also, we are able to remove, at
least partially, the other dBBculty that the Regge-pole
theory meets in the KX system: The K+rt +K'Pdo/dk-
comes out in better agreement with the experimental

'0 Note that our result (either the Gell-Mann mechanism or
np, &0 for —3 &0.8) is based mainly on our ReB(+) sum rule which,
apart from involving real parts, gets non-negligible contributions
from the P'. If one had (ReBi

~
for t 1 much larger than-

[ReBi
~

for t 0 one could perhaps —allow a zero in the ReBz,
sum rule and, therefore, a Chew or a no-compensation type
mechanism which corresponds to 8 cP near 0, =0.
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data than the previous older prediction because of the
change of sign of the ratio (oB/A) g,.

Other sly rules. We have considered generalized
Schwarz sum rules which evaluate the "oG l-shell"

amplitudes in the Khuri plane. We And the background
to be small in general, so that these relations are
satisfied with Regge-pole parameters alone. The t de-

pendence of these relation. s implies that the background

amplitude has cuts, however, and this limits the
applications, since further parameters to describe the
background will then be needed.
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Explicit constraints on the mass dependence of daughter Regge trajectories, near zero mass, are ob-
tained for fermion trajectories contributing to ~$ scattering. Both the analyticity and the group-theoretic
approaches are investigated. We Gnd agreement between these two methods, but disagreement between

our constrairits and those previously published. For the dependence on the mass 8' of the kth daughter

trajectory with parity designation &, we 6nd that os&+&(W)=o —h+A( oh+s)W+PB&+B&(o h)—
(o —h+1)+A'(o —h+$)gW'+ ~ ~ ~, where a, A, B&, and B& are constants over the family. For each of the
two methods, we stress the assumptions leading to the MacDowell symmetry evident above.

I. INTRODUCTION

' 'N a recent paper' it has been pointed out that two

~ ~ diGerent approaches to daughter Regge trajec-
tories, analyticity and group-theoretic, lead to the same

results for the scattering of spinless particles. Mathe-

matically the equivalence of these two approaches has

been established. ' Namely, in order to make the analy-

city requirement for scattering amplitudes compatible

with Lorentz invariance and Regge behavior, it is

necessary and sufhcient to classify singularities accord-

ing to the irreducible representations of the homogene-

ous Lorentz group Sl.(2,C). However, at the practical

level, the ways by which these approaches lead to a
given result dier considerably. At present their rela-

tionship is by no means trivial. ' In this paper we com-

pare these approaches for fermion trajectories, with

particular emphasis on the mass formula that they yield.

Even though the two methods agree, we find that each

of the methods seems to have some advantages over

the other. %e reserve a more detailed discussion of this

*Work supported in part by the U. S. Atomic Energy Commis-

sion under Contract No. AT{30-1)2098.
t Present address: Department of Physics, Johns Hopkins

University, Baltimore, Maryland.
t Present address: Department of Physics and Astronomy,
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~ G. Domokos and G. L. Tindle, Phys. Rev. 165, 1906 (1968).
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point for later. The mass formula that we obtain does
not agree completely with that obtained previously by
Domokos and Suranyi, 4 hereafter referred to as DS,
using their group-theoretic method. In order to facilitate
comparison, our group-theoretic approach closely paral-
lels that of DS. In our approach this disagreement is
resolved by recognizing some subtleties associated with
the ipse of wave functions having nonphysical angular
momentum values.

In Sec. II we examine the implication of analyticity
on the sr% scattering amplitude near u=0 (u is the
square of the momentum transfer for exchange scatter-
ing) in some detail, using the method of Ref. 1. In Sec.
III we use our apparently modified version of the per-
turbation theory developed in DS to reproduce the re-
sults of Sec. II. Section IV contains some discussion
concerning the relative merit of the two approaches and
the degree to which the daughters are determined by
experiment.

II. ANALYTICITY APPROACH TO mN
SCATTERING AMPLITUDE

The xS scattering is dominated in the backward
region by the exchange of fermion trajectories. For this
reason we go to the I channel and de6ne the invariant

G. Domokos and P. Suranyi, in Proceedings of the Topical Con-
ference on High-Energy Collision of Hadrons (CERN, Geneva,
1968), Vol. 1, p. 494.


