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Derivation of the Mass and Spin Spectrum for Mesons and Baryons~
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The problem of classiacation and mass spectrum of elementary particles is considered in the framework
of the algebraic approach. It is shown that mesons as well as baryons can be described by one and the same
algebra, which is essentially a combination of the Majorana representation and the de Sitter model, and
that the spectrum can be derived with the use of only one new constant.

I. INTRODUCTION
' 'NFINITE multiplets have been used extensively for
~ ~ the classi6cation and description of the internal
structure of hadrons, ' and there exists a variety of
approaches to the derivation of dynamical properties.
Thc usc of Rn RlgcbI'Mc stluctUI'c for thc dcscllptlon of
hadron properties is one of the proposed ways, In this
approach, the algebraic structure is delned by algebraic
relations and the indnite multiplet is connected with an
irreducible representation space of the algebraic
structure. As is well known from the O'Raifeartaighm
theorem, the in6nite multiplet cannot be a unitary
irreducible representation of a noncompact group con-
tlnlng thc Poincarc gI'oUp with its usURl physlcRl lntcl-
pretation. This means that the de6ning relations of the
algebra of operators in the irreducible representation
space of the in6nite multiplet can not be Lie-algebraic
(i.e., can not be of the form X;eX;—X,o X;=c;tsXs,
where ~ is the operator product).

One way of introducing such a non-Lic-algebraic rela-
tion is in the form of an (in6nite component) wave equa-
tion, a which gives a prescription of symmetry breaking
of the "relativistic symmetries. "A special example of a
"relativistic symmetry" is 8= &Pz,„„p„/SO(3,2)s„„r„.s

Clearly, E„I'"is an invariant operator of 8, and the
mass can have only one value in an irreducible repre-

~ Supported in part by the U. S. Atomic Energy Commission.
$ Present address: Center for Particle Theory, Department of

Physics, University of Texas, Austin, Tex. 78712!Y. Nambu, ProceeChrtgs of the 1&&67 Irtterrtatiortal Comferertce
ol Particles end F~dds (Interscience Publishers Inc. , New York,
1968), and references therein. A. O. Sarut, Lectgresirj, Theoretical
Physics (Gordon and Breach Science Publishers, Inc. , New York,
1968), Vol. 108, p. 377, which gives an introduction to the ap-
proach of Barut and his school and a summary of their numerous
results. H. M. Kleinert, Fortschr. Phys. 16, 1 (1968).' L. O'Raifeartaigh, Phys. Rev. 161,1571 (1967),and references
therein.

A. Bohm, Lecturesil Theoretica/ Physics (Gordon and Breach
Science Publishers, Inc. , New York, 1968), Vol. 108, p. 483.' P. Sudini and C. Fronsdal, Phys. Rev. Letters 14, 968 (1965).

'The subscripts X; on the symbol for the group G~& indicate
that I; are the generators of G. This notation is necessary to
allow us to distinguish between mathematicallyisomorphic groups,
which have diferent physical interpretation, i.e., whose generators
represent different physical observables. &Ps „,o„&-SO(3,2)s„„,r„
means the semidirect product of the Poincar group &P with the
generators P„andI.„„=iff„„+S„„andSO(3,2) with the generators
I'„andS„„.P„represents the momenta, L~ the angular momenta;
M~ is the "orbital part" of the angular momentum and S~ is its
"spin part. "The new vector operator I'„is a generalization of the
Dirac matrices, and its physical meaning will become clearer from
the following. ' E.g., H. Joos, Fortschr. Physik 10, 65 (1962).
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sentation. The advantage of using these relativistic
sytnmetries is, however, that the spin spectrum is (in
general) nontrivial and depends upon the choice of the
representation of SO(3,2).

A special representation of 8, the Dirac represen-
tation P&n"~&, is very well known. This is the repre-
sentation in which the generators of SO(3,2), S„„and
Fp Rlc lcplcscIltcd by thc usual pop Rnd y™/fan~ Rnd lt ls
obtained if one requires, in addition to the commutation
relations of SO(3,2) Lrelattons (6)-(8) in Sec. IIj, the
further condition fy„,y„)=2g„„(Pauli'sfundamental
theorem). In the Dirac representation of 8, the wave
equation (y"I'„a)=0(Dira—c equation) is automati-
cally fu161lcd' and does not constitute an additional
condition. This is connected with the fact that this
representation contains only the s=~~ representation
of SO(3)s,,.

The simplest in6nite-dimensional representations of
6 appear to be the (unitary) Majorana representations
K&M't"'"'&. The four Majorana representations of 8
are obtained if, in addition to the commutation relation
LKqs. (6)-(8) of Sec. II), one requires the further con-
dition (9) of Sec. II. In contrast to the Dirac represen-
tation, the Majorana representations contain all integer
(s=0, 1, 2, ~ ) or all half-integer (s=-s, , s, —,', ~ ~ )
representations of SO(3)s,,. In these representations
the wave equation (I'oP„—«) =0 is not automatically
fulfilled. If one defines Ss&M't"~' to be the algebraic
structure which is again generated by I'„,
=3Eo„+so„)P» but which) 1I1 addition to tile commuta-
tion and representation relations of 6&"'t"~& Qqs.
(I), (2), (5), »d (7) (9) of Sec. IIj, also obeys the
further relation E„P"=«=constant, then Ps&I't'""&
and 8&M"i"~"&are difFerent from each other, whereas, in
the Dirac case, the corresponding Ss&n"~& and P&n"~&
are equivalent. Because of this, the mass operator I'+o
has, in an irreducible representation space of

a nontrivial discrete spectrum: rrt'
= L&c/(s+st) j'. As has been shown in Ref. 3, the wave
equation can be replaced by an algebraic relation LEq.
(51) of Ref. 3j, which leads in an irreducible represen-
tation space to the same mass spectrum. So we have
an example of an algebraic structure, containing the
Poincard gI'oUp Rnd thc spcctrUm-generating group
SO(3,2)s„„,r„, which has irreducible representation
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spaces with a nontrivial discrete mass spectrum
(Majorana spectrum). However, this mass spectrum
contradicts our experience, and we should try to 6nd an

algebraic structure which gives an experimentally
correct mass spectrum and perhaps further predictions.
This is done in the following, where an algebraic struc-
ture A & is described, which is, in a certain way, a combi-
nation of the Majorana representation %&M""'"'& of the
relativistic symmetry S=(P &SO(3,2) with the algebra
of the de Sitter model. ~

The general idea of this scheme is the following: One
starts with an algebraic structure (in our case At). A

particular physical system is described by one ir-

reducible representation, where all the states of this

physical system are elements of the irreducible repre-

sentation space. Diferent physical systems are de-

scribed in the same way by different (inequivalent)
irreducible representation spaces of the same algebraic
structure. The distinction between diferent physical
systems and diRerent states of the same physical sys-
tem depends upon the algebraic structure one uses.
In our present case, intrinsic properties hke isospin,

hypercharge, SU(3) quantum numbers, etc. , are not
contained in A~. Therefore, resonances with difterent

intrinsic quantum numbers belong to di6erent physical
systems and are thus described by different irreducible

representations of A ~. However, operators corresponding

to the observables, spin and mass, are contained in A~.

Therefore, resonances with the same intrinsic quantum

numbers and different spins and masses are described

by the same irreducible representation, and are con-

sidered di6erent states of the same physical system.

The physical observables are represented by elements

of the algebraic structure; the physical interpretation,
i.e., the coordination between a physical observable

and an operator &At, which is to represent this obser-

vable in the irreducible representation space, usually

follows simply from the construction of the algebraic

structure. After this coordination has been done, the

properties of the physical observable are determined by
the properties of its representing operator (spectrum,
value of matrix elements) which in turn is completely

fixed by the defining relations and the choice of the

representation.
Thus, the actual task is to find the right algebraic

structure with its irreducible representations suitable

to the physical system. This can, of course, only be done

by looking into the experimental data and trying out
various algebraic substructures and algebraic relations

until agreement with these data is reached. This is the

way in which A~ was conjectured, but in the following

we present this in the reverse order: From the definition

7A. 0. Barut and A. Bohm, Phys. Rev. 139, B1107 (1965);
A. Bohm, ibid. 145, 1212 (1966). A uniform presentation of
this problem is given in A. Bohm, Lectures its Theoretical

Physics (Gordon and Breach Science Publishers, Inc. , New York,
196/), Vol. 93, p. 327. (Note the diilerence in the notation;
F„there is denoted here by ze„.)

of A» we derive properties of the observables and com-

pare them with experimental 6ndings.
In Sec. II, we give the definition of the mathematical

image of our model, the algebraic structure A~, and

point out some immediate consequences of it. In Sec.
III, we 6nd irreducible representations of A ~. Properties
of the irreducible representations will be studied in

Sec. IV. The comparison of these properties of A~ with
the experimental data is done in Sec. V.

and the de6ning relations':

[P„,P„]=0,

[Ls PI]=i(g pP» gal/)

[L„„,Lp,]= i (g„pL„,+g„—,L„p g„,L„I g„pL—„,), —

(1)

(2)

[M„„,Sp ]=0,
—,'8„„,.I'~M"=0,

(g"=—1, i =1, 2, 3, goo=1) (3)

L ", "]=—(s.P-+g.o -—g" n
—g.P.-) ( )

[I...P„]=[S...l'„]=z(g.„l',—g,„p.),
[I„r.]=—iS...

~r„r.)+(S,„,S. ) =-g...
[MP„,I'),M] = —iX'Pl'P'M '(Sp)„F.}P„,

(see Ref. 8.) (10)

[PyM ', I'p]=0.

From the above definition, we see that A~ contains
the (enveloping algebra of the) Poincare group gener-

ated by E„andL„„asa substructure, and it also con-

tains the whole "relativistic symmetry" S=(p&„,z,
„„

&SO(3,2)s„„r„.' The relation (9) is a relation which

determines the representation of 8 or SO(3,2); it
ensures that only the four Majorana representations of
SO(3,2) can appear. '

The only difference between So&I'i'""'& and At lies

in the relations (10) and (11)between P„andM and the

Instead of relation (10), we could use the relation (10'):
L2gP„,I'&2f]=X'(P~P /M')(1', r„p&,)P„,which can be shown,
with relation (8), to be equivalent with {10).

Cf. Ref. 3. It is the equivalent of the relation (*):o;o;=8@
+ical,o I, for SU(2); the commutation relation Lo;,o&j = ie;&&o & only
states that one has one of the representations of SU(2) with
arbitrary j, the additional relation ( ) makes sure that (a;) is the
2-dimensional representation of SU(2}.The corresponding relation
for the Dirac representation of 8 is (y„,y„l =2g&.. As we know from
the Dirac case, and as we shall see in the following, it is very useful
for the calculation to know the representation relation.

II. THE UNDERLYING ALGEBRAIC
STRUCTURE Ax

The algebraic structure A & is de6ned by its generators
and their relation for multiplication. The generators
of A~ are

P„, L„„=M„„+S„„(P„P&)'"=M,I'„,p=0, 1, 2, 3
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spin-changing operators I'». For K&M'i"' ', we have the
relations (1)-(9) and the symmetry-breaking relation'
(P„l'q]= 2—iP,S'Xl'» (which is, in an irreducible
representation characterized by ~, equivalent to the
wave equation P»I'»=~). The symmetry-breaking
relation for A&, Eq. (10), will therefore lead to a mass
spectrum that is diferent from the Majorana spectrum.

The relation (11) (Werle relation) ensures that the F;
changes the mass and momentum only in such a way
that they leave the velocities (direction of momentum)
constant. This might not be true, and condition (11)
might have to be relaxed. We want to keep it for our
present model because it makes the calculation much
easier, "and it will not aGect the results of classi6cation,
mass spectrum, and spin spectrum.

One of the features of this model given by the alge-
braic structure A ~ is the appearance of the constant X.
As we shall see later (cf.Eq. (40)], the limit X -+ 0 corre-
sponds to the case of no mass splitting. In this limit one
can show, from the basic relations Eqs. (10) and (11),
that P„and I'„commute and I'; only changes the spin.

To understand the significance of this constant X,
we first note a further substructure of A~, which —as we
shall see later —is the central part of our model. If we
define

B»=P»+~~X(P»P») '"fP»,L»»), (12)

then we can verify the following relations~ for 8„:
(8»,8„]=9.'L»„,

t'L„„,B,]= '(g„,B„—g„,B,) . (14)

From (13), (14), and (3), we see that B„and L„„
generate a (4+1) de Sitter group SO(4,1)s„,z„„.Thus,
the enveloping algebra 8(SO(4,1)) is a subalgebra of
our algebraic structure Aq. The central role that
SO(4, 1)&„,&„„playsin our model comes from the fact
that the second-order operator of SO(4, 1)s„,z,„„,

X'Q= B„B»—', X'L».L»"- (15)

commutes with every element of A& (as we shall show
in Sec. III) and is therefore also an invariant operator
of A~. Thus the irreducible representations are charac-
terized by the eigenvalues n' of the SO(4,1) Casimir
operator Q.

Now the mathematical significance of the constant X

has become clear. ) is the contraction constant in the
Inonu-Wigner group contraction from SO(4,1)a„,z,„„-+
ip~„z„„."From the relation (13), one can see immedi-
ately that when X-+0 the commutation relatiog, s of
SO(4,1) go into the commutation relations of (P, and
from the relation (12) one sees that (the representation
dependence of the contraction process has been chosen
such that) 8» —» P„.

"Only for the case that we have relation (11) do we know
how to construct the measure p, of the Dirac spectral tbeorem
(Ref. 17).

"Reference 7 and references therein. E. Inonii and E. P.
Wigner, Proc. Nat. Acad. Sci. U. S. 39, 510 (1953).

The physical meaning of the constant X is that of a
scale factor relating the units of P„and 8»(MeV) to
the units of angular momentum (1 in the units with
h=c=1). As we shall see from the resulting mass
formula, the constant X gives, in our model, the con-
nection between a mass measurement and a spin mea-
surement (in the same way as, in quantum mechanics,
h connects a frequency measurement with an energy
measurement) and its introduction appears inevitable
from dimensional considerations. The value of P will be
determined from the experimental mass spectrum to be
&2=0.28 SeV2.

We can also give a geometrical interpretation of the
constant X; this is obtained if one considers (Pg„,l,„„as
the group of motion in the Minkowski space. Then
SO(4, 1)~„,z„„is the group of motion in the (4+1)
de Sitter space, the most symmetrical curved space
with infinite time and finite space extension; and
E= 1/X is the radius of this de Sitter space. "
III. IRREDUCIBLE REPRESENTATIONS OF THE

ALGEBRAIC STRUCTURE Ax

We give now the description of the irreducible repre-
sentation spaces of A~ ",' for this purpose we use results
given in Refs. 3 and 7.

We first prove that the second-order Casimir oper-
ator of SO(4, 1)s,z, namely,

X'Q= 8„8»—,'X'L„„L»", — (15)

VQ= M'+-'X' —X'3l-'P»P I' I'.
where M~= P„P'I'so that

(2o)

P~Q, r,]=Pe,I,]—X2(P P./m2)Lr, I.,I„].(21)
"C. Fronsdal, Ref. Mod. Phys. 37, 221 (1965)."We restrict ourselves to "Hermitian" representations of AI,

i.e., to those for which the generators and all symmetric elements
of AI are "Hermitian" operators. (For the precise statement, cf.
Ref. 3, p. 41, footnote**, and references given there. )

commutes with every element of A&. To show this, we
use the fact that X'Q can be written as

X'Q=P„P»+(9/4)X'—X'(P„P»)-'W (16)

which follows from the relations (1)-(3),and (12)-(14)."
Here, S' is the usual spin operator

W= w»w», m»—=sc»„»P"L»~=~a»„»P"S»~, (17)

which can also be written

8 =-,'P,P~S„„S~"—P~P S,„S,~

=P»P'I'»F, ~~P»P». (18)

For the derivation of the second part of (18), one has to
use the Majorana representation relation (9).'

From (15) and (16) it follows immediately that 8„,
L„„andP„commute with X'Q, and it only remains to
show that

P Q,I„]-0. (19)

Inserting (18) into (16), we obtain
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In the second term on the right-hand side, we have
used (11).From (10), (11), and (8), we obtain

LM2 P1,$=—iX2(E8E'/M2) (S,&„I'.)
=Xs(E8P /M2) I F,P„P1,$. (22)

Inserting this into (21) gives (19).So X2Q is an invariant
operator of A j and the irreducible representation spaces
of At are characterized by the eigenvalues (22 of Q.

An irreducible representation space of A~ is further
characterized by the irreducible representation of
SO(3,2)s„„,r„which it contains. Proof: It has been shown

in Ref. 3 that, as a consequence of relation (9),'4 only
four irreducible representation spaces of SO(3,2)s„„,r„
are possible; these are the ones with the following

properties (Majorana representations):

+so (8,2) (f,+) ~so (8,1)Q 1 o—0)2~&
SO(3,1)

g~ so(8&s;; (23)
SO(3) @=~a,~s,"~

~SO(8,2) (0,+i APSO(8, 1)(P —0 O
—1)

80 (3,1)

SM so(»s, , (24)
so(3) e-p1"

(=o means reduction with respect to the subgroup G).
In X(&+), the spectrum of I'p is positive:

spectrum Ps ——fr=s+2=1, 2, 3,

and in K(& ~ the spectrum of I'p is negative:

spectrum Ps=fr= —s—2= —1, —2, —3, ; (26)

and correspondingly for X('+).
The question arises whether all these four representa-

tions of SO(3,2) appear in an irreducible representation
of A& or only one. It can be seen that there is no oper-
ator in A& which changes s by a half integer, and also

no operator which transforms between eigenstates of
Fp with negative and positive eigenvalues. Conse-

quently, in an irreducible representation space of A&

there can be only one of the irreducible representations

(2,+), (2,—), (0,+), (0,—), so that this irreducible

representation space of A~ is characterized by the irre-
ducible representation of SO(3,2)r„s„that it contains.

It appears that there is no further independent invari-
ant operator of A~, and we denote the irreducible repre-
sentation spaces by 3'.((r, (0,+)) and K((r, (2,+)). The
value of 0. is determined by the irreducible representa-
tions of SO(4,1)s,z which are contained in the irreducible
representation space 3C((r, ( ~ )) of A 1. We shall restrict

14 From relation (9l an(i the commutation relations P(6l—(8)j of
SO(3,2), one can show that I S~f„SpI = —g„,where u, b, c,=0, 1,
2, 3, 5, g~~

——1, and S„s=j.'„.This relation has been used in Ref. 3
to derive the following results.

ourselves here to the following values of o,'.

For X(n, (0,+))(12 can be any real number (12&9/4

and

for 3!((r,(2,+)) (82 can be any real number (12& 82.

(27)

%e now want to study the properties of the irreduci-

ble representations (n, (21,+)) and ((r,(0,+)) in more

detail; in particular, we want to investigate the spec-

trum of the mass and the spin operator in the represen-

tation spaces K((r(,+)) and see how they are con-

nected. First, we shall introduce a ("generalized" )
basis in X((1,(-,',+)).This is most easily done by choos-

ing a complete set of commuting operators and using the
"Dirac spectral theorem". '" One can show that

I' M2=I' I'I" m tt/ = —zv m~

and the invariants of A1 (28)

commute. From (16) we can see that (28) is already

an overcomplete system, because 3f' and H/' are not
independent. Thus, we can introduce the canonical

basis

with
i&$&$3& +& 2~ r (29)

P'I p', »,» (~,(-:,+)))=p'I p*,s,»; (o,(l,+))),
M'I p';;; (,(l,+)))= 'I p';,8;(,(l,+))),
~

I p', (,(l,+)))
=888's(s+ 1) I p, ,s,s ((r,8(2,+))),

ps, »(n, ( , 2)+)) =888ss
I p;, s,ss, ( ( (8+2))),

(29')

which is well known from the representation of the
Poincare group.

1~ J. Dixmier, Bull. Soc. Math. , France 89, 9 (j.961). T. D.
Newton, Ann. Math. 51, 730 (1950) and references therein.

"This is a consequence of (16) and will become obvious later.
It has also been shown in Ref. 7, where the relation between
SO(4,1)~, I, and (P~, L, has been described in detail.

"A. Bohm, in Lectures ie Theoretical I'hysics (Gordon and
Breach Science Publishers, Inc, New York, 1967),Vol. 9A, p. 255.

This restricts us to representations of A1 which con-

tain only class-I and class-III representations of

SO(4, 1)sz, ts which in turn ensures that M2=P„Ps is a
positive-de6nite operator. "This property has already
been used in the definition of A 1, where we have assumed

that the inverse and the square root of I'„I'f"can always

be defined.
In the following, we want to restrict ourselves to the

spaces X(n, (0,+)) and X((1,(12,+)); the spaces

R(o(,( )) can be treated analogously. As we shall see

later, the spaces X((r,(0,+)) will describe the mesons

and meson resonances, and 0. will be di6erent for mesons

with diferent internal quantum numbers like isospin,

hypercharge etc., in the same way, the various

X((r,(2,+)) will describe baryons.

IV. MASS AND SPIN SPECTRUM IN AN IRRE-
DUCIBLE REPRESENTATION SPACE
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However, from (22) we can see that Ms is not an
invariant operator, and its spectrum is therefore non-
trivial. Then it follows from (16) that also the spectrum
of M 2$' is nontrivial because the eigenvalue X2n2 of
VQ is a constant in X(n, (sr,+)).Further, it follows from
(16) that the mass spectrum is determined by the spin
spectrum. We shall therefore erst find the spin spectrum
in the irreducible representation space X(n, (-'„+)).In
doing this, we shall also give an explicit construction
of the generalized basis vectors (29).

We start with a basis of SO(3,2)s„„,r„.From (23), we
know that the irreducible representation space
X (' "(&+)contains only the irreducible representation
(ks=s, c=0) of its SO(3,1) subgroup. There are two
algebraically equivalent (but physically diferent)
SO(3, 1) subgroups of SO(3,2); the one generated by
S„„,SO(3,1)s,„,and the one generated by I';, S;;
(i, j=i, 2, 3), SO(3,1)r;,s;;. We shall choose here a
basis in which the following chain of subgroups appears
completely reduced:

SO(3,2)r„,s„„DSO(3,1)r;,s;;ISO(3)s;;ISO(2)s» (30)

As only the representation (ks ——ts, c=0) of SO(3,1)r;,s;;
is contained in 3'.~ ('"(»+', the well-known' basis
Is,ss& of X &s '& ts'J(ks ——s, c=0) with

—,'S,;S"Isss&=s(s+1)Isss&, (31a)

Sts I s,ss) = ss
I s,ss&, (31b)

I'sIs, ss)=(s+-,') Is,ss), (31c)
I's Is,s,)= I (s—s,)(s+ss)]'lsC, Is—1, s,)

—P(s+ss+1)(s—st+1)]'"C+tIs+1, ss), (31d)

is already a basis of iso(3, 2) ($,+). From the well-known
reduction of X(ko=-'„c=0)with respect to SO(3)s,, ,
(23), we know that the spectrum of s is

s ~ ~1 3 5
2) 2) 2) (32)

To give the explicit construction of the generalized
basis vectors (29), we consider the algebra h((P ) which
is defined by its generators P„,I.„,and the defining rela-
tions W„x=st 8„„„P"L"=0 ("orbital Poincare group").
Let g(p) denote the canonical basis of the representation
space of h((p~) and g(pg) be the state with

m, s=)Pns (9/ )4'—s+ i't(ss+1) (4o)

Summarizing, we have found that the irreducible repre-
sentation spaces X(a,(s,+)) of the algebraic structure
Aj reduce with respect to the Poincare group 6' in the
following way":

X(n, (-,',+)) ~ Q SXs'(rl„s)
~$,$, ~ ~ ~

and correspondingly, for X(tr, (0,+)),

(41)

(29') and the well-known transformation properties

ql, (h) I p;,s,ss&= p I (hp);, s,ss'&D„„,&'(R),
(»)

R= L(hp)AL-'(p).

From (31c), (31d), (34), and (35), it follows further that
the action of I'„onthese states is:

P„i'sIp;,s,ss)=sos(s+ts)
I p;,s,ss), (36a)

'tt '(L)I"tt(L)
I p', s,s )= L(s+s )(s—s )1'"
XC. I p;, s—1, ss)

—L(s+ss+1) (s—ss+1)]'"C,+t I p;, s+ 1, ss), (36b)

and correspondingly for the other it '(L)I'; tt(L).
Therewith we have found the spectrum of the spin-

operator M 2W in the irreducible representation spaces
X(tr, (rs,+)); from (29') and (32) it follows that

sPectrum (M 'W) =s(s+1) with s= sr, —' —', (37)

so that s is the spin. "
The only difference between X(tr, (—,',+)) and

X(n, (0,+)) is the spin spectrum As .follows from (24)
in the representation spaces X(tr, (0,+)) the spin
spectrum is

spectrum (M 'W) =s(s+ 1) with s =0, 1, 2, 3 . (38)

The mass spectrum in the irreducible representation
spaces X(n, (s',+)) and X(a,(0,+)) is now easily ob-
tained. We call m, 2 the eigenvalue of P'„P& in the
states (29)

P,P"
I p', s,ss, (~,(",+))&

=m,
I p;,ss, (trt(, +))&, (39)

and obtain, from (16),

P 4'(p&) p 4'(prt) p + + (t 0 0 0) (33) X(n, (0,+))= Q SXs'(m„s),
e 0,1,2s ~ ~ ~

(42)

Then, we define

I p*,s,s )= tt '(L(p)) I p, s,s &

=&-'(L(p))(e(p ) Is,s )), (34)

where L(p) is the Lorentz transformation that trans-
forms P„into rest: I„sP„=Pn=(m, 0,0,0). It can be
shown' that the states defined by (34) have all the
properties of the canonical basis states (29) given by

'8 M. A. Naimark, Linear Representations of the Lorentz Group
(Pergamon Press, Inc. , New York, 1964),

where m, is given by the mass formula (40).
'9This does not, however, mean that S;;, the so-called "spin

part" of the angular momentum operator, is the spin operator.
Only for the states at rest is S;; the spin operator. The basis con-
sisting of eigenvectors of qS;;S'& and S12 is different from (29),
and is called the spinor basis; cf., e.g., Refs. 3 and 6.

"We remark that s=po/~po( is an invariant in the whole
representation space X(a,(q+)) and can be chosen &=+i.
However, if we then repeat the same construction for X(a,(~, —))
using also here the e =+1 representation of (P in (33) and (34),
then it follows from (36a) that e= —1 in X(a,( ~ ~, —)), so that
X(a,( ~ ~, —)) offers itself as the representation space for the
antiparticles, after a suitable definition of tbe conjugation
operation,
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V. COMPARISON WITH THE EXPERIMENTAL
PARTICLE SPECTRUM

To compare the results of our model with experiment,
we have to assign the various particles and resonances
of the same kind to one of the representation spaces.
We first consider the meson resonances that have to be
assigned to the irreducible representation spaces
X(n, (0,+)) with appropriately chosen n. It is well

known that the mass formula (40) is well satisfied in

this case, the best examples being the I= 1, F=0 meson
tower which starts with x, p, A~, and the I"=1meson
tower starting with E, E*, E*(1400). According to
the general idea of this program, these two towers
have to belong to representation spaces differing in
n =a(I, Y, ); however, X' is a "universal" constant
and must be the same for all towers characterized by
different n If ns' .is plotted versus s(s+1) as done in
Fig. 1, the mesons should lie on parallel straight lines,

[sev']

IS '

IO.

5

FIG. 2. The mass squared of the
nucleon resonances is plotted
versus s(s+1), with s the spin of
the resonances. The P indicates
that the spin of that resonance is
not known, and PP indicates that
the existence is not conclusively es-
tablished. The slope of the straight
line X is the same as in Fig. 1 for
the mesons.
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and the mesons of the same kind, i.e., with the same
value of rr'=mrs(I, F ~ ) should lie on the same line,
every line corresponding to one irreducible representa-
tion space X(n(I, F', )(sr,+)). That this is very well
satisfied can be seen from Fig. 1, where, besides the
towers s-, p, As, . and E, E*,E*(1400),some less-
well-established towers have been indicated. From the
slope of these straight lines, we obtain the value of the
constant X

&2=0.285 BeV2 (43)

From this, the radius of the de Sitter space, in which
the SO(4, 1)s,z, subgroup of Ar is the group of motion,
is obtained to be R= 1/X= 0.36X10 "c.m."

The uninteresting value of the quantum number
as(I, F; ) for the rr tower is then n'(I=1, F=0, ~ )
= Lm '+ (9/4) X']/X' and similarly for the other towers.

Of the predictions this model makes for higher meson
resonances we mention only those of the m tower. From
(42) and (40) we expect I=1, F=O resonances with
(s=3, m=1850 MeV) and (s=4, m=2380 MeV). At
these mass values indications of I= j., F=0 resonances
have been observed (R4 and U).

The baryons have to be assigned to the irreducible
representation spaces K(n, (-'„+)).Though one would
be very well prepared to accept the mass formula (40)
for mesons, one would spurn it for the baryons, because
of the strong belief in the usual Regge-trajectory idea.
We have therefore plotted in Fig. 2 the I= ~ nucleon
resonances; .the straight line is given by (40). As the
value of X is already given from the meson spectrum, the
only free parameter is n, which is determined by the
nucleon mass rrN' ——Pm~'+ (9/4) X']/X'. The agreement of
(40) with the experimental data is certainly comparable
with that of the Regge trajectories and, in view of the
fact that the only parameter that enters here is the
nucleon mass, is probably more remarkable. The major

2' If one assumes that, in the small domainin which the strong
interaction processes are relevant, the space is to be viewed as
being curved (with a curvature much greater than the one caused
by gravitation; because of the much stronger interaction), then
the group of motion in this small curved domain is no longer the
Poincare group. If one further assumes that in a certain state of
equilibrium this space is of a highly symmetrical form and may be
approximated by a de Sitter space with a Gnite space and in6nite
time extension, then the group of motion in this domain will be
the above-mentioned SO(4,1)z, L,. Thus, E may be compared with
the radius of the region of interaction obtained from completely
diGerent considerations: J. Pasut, M. Roos, CERN Report No.
Th. 885, 1968 (unpublishedl, p. 28. Comparing their results in
Sec. 5.5 with our value for E, we see that their parametrization
(30) of the width F(co) appears to give the best agreement. Cf. also
H. Schopper, CERN Nucl. Phys. Division Report No. 67-3,
1967 (unpublished).

defect is the absence of an I=2, ~3+ resonance with a
mass equal to that of the 33 resonance. For the other
baryon resonances the situation looks very much the
same.

VL CONCLUSION

The main purpose of this work was not to give a
further scheme for the classification of a maximum
number of particles. For this the model is probably too
simple. In particular, the choice of the Majorana repre-
sentations /which follows from the representation
relation (9)] for the spectrum-generating subgroup
SO(3,2) is certainly not sophisticated enough. With one
of the more complicated (singleton) representations of
SO(3,2) (which would require the introduction of a new
"space-time" quantum number m) known resonances,
which now lie outside the scheme (or in a different
representation), could certainly be accommodated in the
same irreducible representation space with the above
ones. Furthermore, the intrinsic quantum numbers
have not been incorporated in this model. This short-
coming would become more apparent if there is an
interrelation between space-time and intrinsic sym-
metries (like that one given by the usual SU(6)). Then,
models like the present one can only describe a sub-
class of particles (namely, those which have recurrences
in all intrinsic symmetry multiplets). The purpose of
this work is rather to show how meson as well as baryon
properties can be derived from the same algebraic
structure, and how, in the framework of this concept,
an explanation of the particle spectrum can be given.
The main result of this model is not that a mass formula
can be derived that does not disagree with experimental
data, but that this can be done using only one new
constant X and that this constant appears in a natural
way within the framework of this algebraic approach.
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