175

charge-exchange polarization, the 7p total cross section,
the real forward amplitude D, and the non-spin-flip
superconvergence relations. They found that it is not
necessary to introduce a conspiring p’ trajectory, but
that it is possible to satisfy the superconvergence
relations and the polarization data with a nonconspiring
¢’ (jo=0). Moreover, one of the two solutions of their
model gives a,(0)=—0.5, a,(0)=0.57, in very good
agreement with the prediction o, =a,—1.
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Finally, Hogaasen and Fischer,” in their attempt to
fit the experimental data on nucleon-nucleon charge-
exchange scattering, found for the intercept of the p’
trajectory the value «,(0)=—0.63, again in good
agreement with the results of our model.

The authors wish to thank Professor Abdus Salam
and Professor P. Budini and the International Atomic
Energy Agency for hospitality at the International
Centre for Theoretical Physics, Trieste.
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Relativity theory permits motions of a free-spinning particle in which the instantaneous velocity and
linear momentum are not collinear. Therefore, it is necessary to specify two invariance groups in order to
completely describe the space-time symmetry properties of a particle with intrinsic spin. If the quantal
description of such a particle is given by a covariant linear field equation, then the external space-time
symmetry is specified by the 10-element Poincaré group generated by the linear four-momentum and total
angular momentum operators. However, invariance of the field equation under external inhomogeneous
Lorentz transformations does not complete the algebra of the 10-element group generated by the instan-
taneous four-velocity and spin angular-momentum operators. Several formulations of linear field equations
admitting a mass-spin spectrum are based on different choices for this latter, sntrinsic, space-time sym-
metry group. We begin with the simplest choice, namely, intrinsic Poincaré invariance, and establish the
formal connection between these several formulations by constructing a unitary transformation which
generates an infinite sequence of linear wave equations describing ascendingly more complex intrinsic space-
time symmetry, but linked by a common mass operator. Of special interest is the infinitesimal transformation
which generates the familiar intrinsic DeSitter group. Finally, some kinematical properties of this trans-
formation are discussed for various proposed mass operators.

I. INTRODUCTION

HEORETICAL attempts to explain the pro-

liferation of elementary particles have, of late,
led to extensive investigation of the class of Lorentz-
covariant wave equations of the form,!

(iT,Pu+Mcoy=0. (1)

If x,= (x,ict) is the instantaneous position four-vector,
then the linear four-momentum is given by P,= —1#d,,
so that

First, the Lorentz frame defined by P,= (0,iE/c) is
the “momentum rest” frame, and is usually referred to
as the rest frame. In this frame, Eq. (1) becomes

TWEy=M 6211’ ) (3)

so that M¢is a mass operator, whose specification should
lead, via the eigenvalue equation (3), to the spectrum
of rest energies admitted by (1). Explicit representation
of the Lorentz-invariant mass operator M¢ depends on
the dynamical model studied, if one exists, and on the
2) desired algebraic properties. It is most generally
represented by a finite- or infinite-dimensional matrix,
which may possess more structure than constant
multiple of the unit matrix.!

Second, the covariant wave equation, (1), defines
the proper-time Hamiltonian operator,?

H=il'\,P,+Mc, @)

(%, Py) =1h0,,

specifies the conjugate relation between the position
and momentum. Unlike the momentum, however, the
remaining two operators appearing in (1), M¢ and T,
do not possess unique representations although their
physical interpretation is understood as follows.

* Work supported in part by the Office of Naval Research.
1 (a) H. C. Corben, Proc. Natl. Acad. Sci. U. S. 48, 1559 (1962);

48, 1746 (1962); Phys. Rev. Letters 15, 268 (1965); Y. Nambu,
Progr. Theoret. Phys. (Kyoto) 37, 368 (1966); Phys. Rev. 160,
1171 (1967); L. Castell, Nuovo Cimento 50, 945 (1967). (b) For
additional references see H. C. Corben, Classical and Quantum
Theories of Spinning Particles (Holden-Day Publishing Co., San
Francisco, 1968), Chap. 4.

% The role of proper time in quantum mechanics, and its appli-
cation to the temporal evolution of the wave packet, is rigorously
treated in the literature. See, for example, S. Shanmugadhasan,
Can. J. Phys. 29, 593 (1951); G. Szamosi, Nuovo Cimento, 20,
1090 (1961) ; R. Schiller, Phys. Rev. 125, 1116; 128, 1402 (1962);
G. N. Fleming, J. Math. Phys. 7, 1959 (1966).
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so that in the Heisenberg picture the evolution of an
operator O is governed by the equation of motion

do
ih:i—= (H,0), )

where 7 is the proper time for the particle. Thus, with
Mc represented by some matrix, so that

(meC) =0 ) (6)
it follows from (2), (4) and (5) that
&, =il (7

is the instantaneous four-velocity operator, the dot
denoting differentiation with respect to the proper
time 7.

It has long been known that if a particle possessing
an intrinsic spin is described within the framework of
special-relativistic classical dynamics, then complex
motions are permitted where in the instantaneous
particle velocity and the linear momentum are not
collinear.? Indeed, the difference between these two
classical variables is a measure of the effect of the spin
on the trajectory and expresses the fact that
Zitterbewegung is an integral part of classical theories,
as well as quantum theories of spinning particles.

Our concern here is with the quantum theory of
spinning particles as described by the field equation
(1). However, the well-established correspondence
between the operator dynamics in the Heisenberg
picture, based on (4), and the classical relativistic
dynamics of spinning particles,? permits, or rather
demands, some degree of language overlap. Thus, if
the particle described by (1) has an intrinsic spin
angular momentum represented by the operator
Su=—3S,,, the total angular momentum operator is
given by

Muy=Ly+Sw, ®)
where
L,=x,P,—x,P, 9)

is the orbital angular momentum operator, and the
instantaneous four-velocity operator (7) need not be
proportional to P,. Indeed, the lack of proportionality
is the measure of the effect of the spin on the trajectory
(Zitterbewegung),* and their proportionality reduces
(1) to a Klein-Gordon (KG) equation with separately
conserved spin and orbital angular momenta. In the
more general case, T', is represented by a set of four
finite- or infinite-dimensional matrices.

The goal here is to establish an interpretable con-
nection between some of the various explicit formu-

3], Frenkel, Z. Physik 37, 243 (1926); H. J. Bhabha, Proc.
Indian Acad. Sci. Al1, 247 (1940) ; A11, 467 (1940) ; H. C. Corben,
Phys. Rev. 121, 1833 (1961) ; K. Rafanelli, sbd. 155, 1420 (1967);
J. Math. Phys. 8, 1440 (1967).

4Kerson Huang, Am. J. Phys. 20, 479 (1952); M. E. Rose,
Relativistic Electron Theory (John Wiley & Sons, Inc., New York,
1961), Sec. 18.
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lations of (1). To this end, in Sec. I, we briefly review
the algebraic properties imposed on I', and Mc¢ by the
requirement that the field equation (1) be invariant
under exfernal inhomogeneous Lorentz transformations
generated by P, and M,,. This is of course equivalent
to the statement

ge=@e:{Pu; le} ) (10)

that the external space-time invariance group is a
Poincaré group, or that the linear and total angular
momentum must be conserved for the free particle.
This requirement, (10), does not exhaust the algebraic
properties of T',, nor does it completely specify Mc,
the latter simply saying that there remains some
freedom in the choice of a dynamical model. Require-
ment (10) leaves undetermined the commutation
relations, (I',,T',), which means that the group structure
of the ten elements, I', and S,,, is not completely
specified. We shall refer to this group as the intrinsic
space-time invariance group,

gi:{rmsnv} . (11)

In Sec. III, we develop a unitary transformation
scheme which establishes a connection between various
choices for G; while leaving the form of the field equa-
tion (1) unchanged. We begin with the simplest choice,
namely, an intrinsic Poincaré group

Gi=0; :{PM:SMV} ) (12)
which is a consequence of choosing
(T Ty)=0. (13)

This simplest choice, (12), is the basis of a new formu-
lation due to Corben,® in which the mass operator M¢
is also specified, since it is deduced from the dynamical
model of a symmetric top. Whether an acceptable
rest-energy spectrum emerges from this formulation
remains to be seen. However, it is worth noting its
special position as the simplest of an infinite sequence
of previously unrelated formulations.

Of special interest is the infinitesimal part of the
unitary transformation which yields a field equation
of the form (1) possessing an intrinsic space-time
DeSitter group, G;=8$;. It is this formulation, par-
ticularly with Mc¢ a constant multiple of the unit
matrix, that has, up to now, received the most atten-
tion.® There are now known to be difficulties inherent
in such a formulation such as a rest energy that varies
inversely with the spin, space-like solutions (which
prevent saturation of the current algebra by single-
particle, time-like states), CPT and spin-statistics
violations, etc.” Some of these difficulties depend on

5 H. C. Corben, see Ref. 1(b); Boulder Lecture Series, 1968,
(unpublished) ; TRW Report No. 00875-6002-R000.

6 P. A. M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928);
A118, 351 (1928) ; N. Kemmer, sbid. A592, 91 (1939) ; E. Majorana,
Nuovo Cimento 9, 335 (1932).

( 4 E;) Abers, I. T. Grodsky, and R. Norton, Phys. Rev. 159, 1222
1967).
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dimensionality of the chosen representation, while
others pervade both the finite- and infinite-dimensional
representations.® It is also conjectured that with any
choice of mass operator such formulations must en-
counter at least some of these troubles.* We shall not
dwell further on the subject of difficulties since that
is not the purpose of this paper. However, it is well to
bear in mind the possible difficulties of any Gi.

Finally, in Sec. IV we present a kinematical inter-
pretation of the constructed transformation theory as
it applies to suggested models.

II. EXTERNAL INVARIANCE
REQUIREMENTS

Since Eq. (1) describes a particle on which no external
forces or torques are acting, the linear and total angular
momentum must be conserved. Let us now see to what
extent these conservation laws restrict the possible
commutation relations among the operators appearing
in (1).

Specification of mass values in the rest frame and
conservation of linear four-momentum are obtained,
from (4), if

(Py,Mc)=(P,T,)=0. (14)

Suy=—1tTpy, (15)

with the T',, represented by a set of six matrices, of as
yet unspecified dimensionality, satisfying

Writing

(PI»UPPU) = (xmrpd) =0 (16)
and
(PuV:an) = (Pupaw’l"rvvanp—rwaw’—PVP‘SM) s (17)
then Eqgs. (2), (16), and (17) ensure that
(M wnM pv) = 'ih(M wodvotM vaaup"‘M M05 vp
—Md0), (18)

i.e., that the six elements of the total angular mo-
mentum tensor constitute the external homogeneous
Lorentz group SL(2,c). Thus, conservation of total
angular momentum is assured if

(T, M)=0 (19)
and either
(F“v,ra) = (Puaw_ I‘rapa) (20)
if (%,,T,)=0, or
(P#V)FU) =0 (21)

if T', is proportional to P,. In this latter case the orbital
and spin angular momenta are separately conserved.
Relations (2), (8), (9), (18), and of course (P,,P,)=0
are equivalent to the statement that the Poincaré
group I0(3,1) is the external space-time invariance
group, symbolically stated in (10).

8 K. Rafanelli, J. Math. Phys. 9, 1425 (1968).

?I. T. Grodsky and R. F. Streater, Phys. Rev., Letters 20, 695

21968;; L. O’Raifeartaigh and S. Chang, Phys. Rev. 171, 1587
1968).
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Clearly then, the above considerations are not
exhaustive enough tq specify the group property of
the ten elements I', and I',, which we have denoted as
Gi [except for I', proportional to P,, in which case (10)
exhausts the space-time group properties]. In order to
specify G;, we must, in addition to (17) and (20), close
the algebra by giving (T',,T',).

III. INTRINSIC INVARIANCE GROUPS

The algebra of the T', and T',, is most simply closed
by choosing (13), which, together with (17) and (20),
gives (12), or equivalently, G;=@;:{I',,T's,}. In this
case, Eq. (1) describes a system with external and
intrinsic space-time invariance under inhomogeneous
Lorentz transformations for which the spaces coincide
only if the velocity and momentum are proportional.
For consistency of notation, we hereafter reserve the
symbol T, for case (13). We now want to study the
extension of the group (12) to other, more complex
structures, not because there is an a priori preference
for any particular G;, but rather to demonstrate the
equivalence of seemingly unrelated points of view.

A technique for extending an 70(3,1) algebra to one
appropriate to O(4,1) has appeared previously?; the
discussion is usually confined, however, to the external
invariance group simply because it has become cus-
tomary to associate P P, with the mass operator. On
the other hand, the assertion here is that the physical
mass spectrum emerges as the solution of Eq. (3). The
mass operator is therefore not tied to a Casimir operator
of the external space-time invariance group, and
O’Raifeartaigh’s theorem does not prevent mass
splitting.!* The extension technique, ®,— 8., consists
simply in observing that the four-vector

1
P/A'="'—""“""(MM;PV)+

2(v/PuPy)
has the property
(P“,’Pl',) = ihMuv 3

(22)

(23)
as does P,+P,/ .

Since we have chosen ®;:{T'y; T4}, a similar exten-
sion technique applies, that is, the four-vector!?

Yu=%(Cuol'o+T'Ty0)
has the property
W) =CoPT, (25)
where Cof=T,T', is a Casimir operator of ®;. Thus,
with b= (C¢F)~'2, we have

(ou,b¥s) =Ty (26)

Therefore, the ten elements {by,,I',,} constitute the
DeSitter group, O(4,1). More generally, if

T/=Ty+by,,

10 A. Sankaranarayanan, J. Math. Phys. 9, 611 (1968).
11T, O’Raifeartaigh; Phys. Rev. 139, B1052 (1965).
12 The notation adopted here is consistent with that of Ref. 1(b).

(24)

@7
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then ;
(I‘M,)I‘v’)=r;w (28)

and the ten elements {I',’; T} also constitute O(4,1).
It is this latter extension, ®;:{T',,I'uw} — 8$::{T. T},
that we wish to generalize and incorporate into a larger
transformation theory.

Consider the transformation

Y=ty (29)
generated by the intrinsic SL(2,c) Casimir operator,
Col=—141',,T,,. Since Co’ is Hermitian, the trans-

formation (29) is unitary if the parameter g is pure
imaginary. Under (29), an operator 4 transforms as

A’ = gn00" 4 0ok (30)
Expansion of (30) gives
w 1 1 1
A=Y —AmM=A+4+AD4+—4O 4O ... (31)
m=0m | 21 3!
where
A= (gCOL,A) ’
A®= [gCOL) (gCOLyA):I= (gCoL,A (l)) ’ (32)
A®={gCel[gC¥, (¢Co",A) T} = (€Co2,A®),
etc.
Since M satisfies (19), then
(Mc,Co¥)=0 (33)

so that the covariant Hamiltonian operator (4) trans-
forms as

H'=¢sC0"He~9C"=4T'/P,+ Mc, (34)
where
1
r"'=p“+r“<1)+;p#@)+..., (35)
with ' |
T,®0=2g,, (36)
I,®=4gX,,
etc., where ¢, is given by (24), and
X, =3 Tulot¥olpa). (37)

The commutation relations among the terms generated
in (35) get rapidly complicated, i.e.,

T, DI, D) =482Co"T,,,

@@, ®)=4g4(Co?)[—T uv+2(1‘mil/arl/a

FYo¥oTp)+ Lo (TopToptToplp) (38)
+ (Pﬂprap"i'rvprvp)rnv] )
etc. Thus, we may write
=H+HO+H® ... (39)

as a sequence of iterated wave operators, possessing
ascendingly complicated intrinsic space-time invariance
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groups, generated from @; by a Casimir operator of the
intrinsic SL(2,¢), and satisfying the field equation

HY = (TP, Mo)y' = (40)

Owing largely to the success of Dirac’s equation,
little, if any, consideration has been given to intrinsic
space-time structure other than G;=§;. This is certainly
understandable considering the algebraic complexity
of the second of Egs. (38). However, in light of the
above analysis we see that G;=§; is related to the
simpler case, G;=@®;, on which rests an alternative
approach to the question of mass spectra.’ Therefore,
it seems reasonable to examine, in greater detail, the
special case of the above transformation theory,
@®; — 8;. Explicitly, the infinitesimal part of the unitary
transformation (29),

¥'=(1+4C"W, (41)

which is then also unitary, terminates the sequence

(35) at
L) =Tyt 2gpu (42)
and we have
(FM,,PVI) =T, (43)
corresponding to the two cases
g=3%b, for CoP<0
g=3%b, for Co?>0 (44)

Thus, the adoption of (1) (based on ®;) leads, via
the infinitesimal unitary transformation (41), to the
field equation (40) (based on 8;) of identical form and
based on the same dynamical model, in the sense that
Mc is unchanged.

Nothing has been said so far about particular repre-
sentations for either ®; or $;. It is, therefore, worth
noting at this point that for those representations of
8; with vanishing X,, the sequence (35) generated by
(29) is exactly terminated as in (42), all T, vanishing
identically for #>> 2. Therefore, for this class of repre-
sentations we have (1) — (40) with ®;— §;, via the
finite unitary transformation (29). We defer a detailed
discussion of representations until a later study and
base the ensuing analysis on the infinitesimal unitary
transformation (41) effecting ®; — 8.

IV. MASS OPERATORS AND
DYNAMICAL MODELS

Physical interpretation of the transformation (41)
requires the choice of dynamical model, or mass oper-
ator. Clearly, the simplest choice is Mc=constant
parameter, or Casimir operator of ®;. A consequence
of this choice is that either (M¢,I',)=0, or &,=const,
and the particle described by (1) undergoes no
Zitterbewegung. Hence, the velocity and momentum
must be proportional. The orbital and spin angular mo-
menta are separately conserved, the spaces of ®; and
@, coincide, and it is consistent to think of (1) as the
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KG, or second-order equation corresponding to (40).
This is not a very interesting case, however, since it
is reasonably well established that if Mc¢=const the
mass spectrum is not indicative of the elementary
particles..8:8

In order to obtain a theory, based on (1), admitting
Zitterbewegung, we must have (I'y,,Mc)#0. There is
discussion in the literature on possible choices for M,
consistent with the external invariance requirements.!
The discussion is usually in conjunction with Eq. (40).
However, since we now recognize that (1) and (40)
are identical formulations, modulo-¢ unitary trans-
formation of intrinsic space-time symmetry, the
discussion applies to both cases.

In the remainder of this section we examine the
transformation ®; — §;, with the choice

Mc=mc—3aCol=mc+%al' Ty,

(45)

where, for purposes of this discussion, we leave mc
and a as unspecified constant parameters. The selection
of (45) corresponds, in Corben’s formulation, to an
operator representing the rotational levels of a spherical
top.® It also follows that, since

CoS= _%Pabrab=rﬂ,ru'+C0L; a,b=1,---,5 (46)

is a Casimir operator of 8;, other discussed choices for
Mc, such as T',/T,/,! can differ from (45) by at most a
constant parameter, and that the model studied by
Sutton® is equivalent for those representations of $;
with (T'),Co¥)=0. So, while the model leading to (45)
is quite specific, the mass operator itself has received
a broader appeal.
With (45), Eq. (1) is explicitly

Hy= (iT,P,+mc—21aCo )y =0. “n

Thus, the infinitesimal transformation (41) is equivalent
to

¥'=[1+(2g/a) mc+iTWP ) W

for solutions of (47).

The transformation ®; — 8; now admits the following
kinematical interpretation. The instantaneous position
four-vector #, transforms under (48) as

(48)

x/=z,+ (2g/a)T,, (49)
yielding, from (47), the new four-velocity
x,/ =1l =3(T,+2g¢,) (50)

as given by (42). Therefore, with the mass operator
given by (45), ®; — 8, is equivalent to a transformation
of coordinate representation. Corresponding to the
change of coordinate, the division of the total angular

momentum between orbital and spin now becomes
My=2,/P,=x/P,—iiT,,'=T,/4+S,". (51)

13 A. M. Sutton, Phys. Rev. 160, 1055 (1967).

INTRINSIC INVARIANCE GROUPS

1765
Using (49), comparison of (51) with
Mu=x,P,—x,P,—ihTy,=L,,+S,,
yields
—ihly, = — Ty, — (2hg/a) (T.P,~T,P,); (52)

the same result is, of course, obtained by directly
transforming I',, under (48).14 It is easily seen that

(xMI7PN,)=O= (Pmrpvl)= (an,yrpvl) ) (53)
and
(Fuv,;rpv,)= - (P“p,5,,¢+r,,,,,5“p-—r“,,§”
—TI,,/0,,). (54)
It also follows that
—ihl =i(P,T/—P,T,)) (55)
as a consequence of
— it y=1(P,I,—P,T,). (56)

Thus, it is clear that I',,” has those properties of an
intrinsic angular momentum with respect to the
primed-coordinate system possessed by I',, with respect
to the unprimed-coordinate system.

It is also straightforward to verify that rewriting
the @; — §; transformation as in (48), gives rise to the
transformed mass operator

M'c=Mc+2igh,P,. (57)
It therefore follows that, if ¢ is a solution of (47), then
H'=iT,/P,+Mc (58)

and

H'=iT'P,+M'c (59)

are equivalent statements with M’c given by (57), and
H"Y/=0. While it is true that the momentum depen-
dence in M’c gives it a somewhat different status than
Mc, we are merely using the form (59) to illustrate a
kinematical equivalent for ®; — 8;, the results of which
are stated in (58). As such, we can see the origin of the
enhanced group structure as follows. From (4) we have
#,=1T,, and with (45) we have #,=a/#,. It then
follows from (24) that &,%,4-2,%,=0, stating, in Heisen-
berg operator language, the orthogonality of the in-
stantaneous velocity and acceleration, and reflecting
the classical trajectory of a free-spinning particle in
which the Zitterbewegung is a uniform circular motion
superimposed on the average, straight-line path. Thus,
the form of (49) indicates that the transformation
®;— 8; is in the rest system, kinematically equivalent
to the transformation to a primed set of axes, rotating
with respect to the unprimed axes, and the momentum-
dependent term in (57) is the spurious contribution of
the rotation.

To further illustrate this kinematical equivalence,
we examine the relation between the two local position

( " S7&)ae also J. A. De Vos and J. Hilgevoord, Nucl. Phys. B494
1967).
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F16. 1. Rest-frame relationship
between particle coordinates.

operators x, and x,” and the nonlocal position operator
X ,, usually associated with center of mass.!® Consider

Xﬂzx“—ihryvpv/})apo' ) (60)
for which (X,,X,)#0, and
X,=(il',P,/P,P,)P,. (61)

There is another operator with similar traits, namely,

iiT,, P,
X=ux,/— P.P. ’ (62)
for which (X,/,X,")#0, and
iT,P,
x( )P,‘. (©3)
PP,

It is not surprising that, as viewed from the two co-
ordinate systems, the center of mass is different; in
fact we see that

XF'—XM=@(—iP’P”)PF'. (64)
a P,P,
Introducing the notation

J=(T'23,T'51,T'12) ,

K= (P14,P24,F34) s (65)

18 M. H, L. Pryce, Proc. Roy. Soc. (London) 195, 62 (1948).
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in terms of which

C0L= '—%I‘[AVI‘;UJ:: - (J2+ K2) ’ (66)
and
J'= (T ,To,T1y),
K’= (P14,’P24';P34I) ’ (67)
then in the rest frame, P,= (0,E/c), we have
X=X'=x—(ch/E)K=a'— (ch/E)X’,
dX dX’
(lr_- ar - (68)
x'—x= (2%g/a)T= (ch/E)(K—K"),
Xy —Xy=un—xs= (2hg/a)Ty,
and
J=J,
dy ay (69)
dT_ dr B

The relations among these vectors in the rest frame are
diagrammed in Fig. 1.

V. CONCLUSION

The intrinsic space-time particle symmetry is defined
by the ten-element group composed of the four-velocity
and spin angular momentum operators. This group is
not completely specified by external Poincaré invari-
ance. From the simplest choice, an intrinsic Poincaré
group, it is possible to effect a unitary transformation
to more complex intrinsic group structures, leaving
invariant the form of the linear wave equation de-
scribing the particle, and the mass operator.

Choosing a mass operator based on Corben’s model
of a spherical top, the intrinsic symmetry-group trans-
formation ®;— 8; has as a kinematical equivalent, a
transformation from an inertial to a rotating co-
ordinate system.
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