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charge-exchange polarization, the srp total cross section,
the real forward amplitude D& ), and the non-spin-Qip
superconvergence relations. They found that it is not
necessary to introduce a conspiring p' trajectory, but
that it is possible to satisfy the superconvergence
relations and the polarization data with a nonconspiring
p' (js——0). Moreover, one of the two solutions of their
model gives a,.(0)=—0.5, n, (0)=0.57, in very good
gee t thth p d t,=,—i.

Finally, Hogaasen and Fischer, in their attempt to
6t the experimental data on nucleon-nucleon charge-
exchange scattering, found for the intercept of the p'
trajectory the value n, .(0)=—0.63, again in good
agreement with the results of our model.

The authors wish to thank Professor Abdus Salam
and Professor P. Sudini and the International Atomic
Energy Agency for hospitality at the International
Centre for Theoretical Physics, Trieste.
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Relativity theory permits motions of a free-spinning particle in which the instantaneous velocity and
linear momentum are not collinear. Therefore, it is necessary to specify two invariance groups in order to
completely describe the space;-time symmetry properties of a particle with- intrinsic spin. If the quantal
description of such a particle is given by a covariant linear Geld equation, then the external space-time
symmetry is speciGed by the 10-element Poincar6 group generated by the linear four-momentum and total
angular momentum operators. However, invariance of the Geld equation under external inhomogeneous
Lorentz transformations does not complete the algebra of the 10-element group generated by the instan-
taneous four-velocity and spin angular-momentum operators. Several formulations of linear Geld equations
admitting a mass-spin spectrum are based on difkrent choices for this latter, intrinsic, space-time sym-
metry group. We begin with the simplest choice, namely, intrinsic Poincard invariance, and establish the
formal connection between these several formulations by constructing a unitary transformation which
generates an inGnite sequence of linear wave equations describing ascendingly more complex intrinsic space-
time symmetry, but linked by a common mass operator. Of special interest is the inGnitesimal transformation
which generates the familiar intrinsic DeSitter group. Finally, some kinematical properties of this trans-
formation are discussed for various proposed mass operators.

I. IÃTRODUCTIOH

THEORETICAL attempts to explain the pro-
liferation of elementary particles have, of late,

led to extensive investigation of the class of Lorentz-
covariant wave equations of the form, '

(iI'„P„+Mc)f=0. (1)

If x„—= (x,icl) is the instantaneous position four-vector,
then the linear four-momentum is given by I'„=—i AB„,
so that

(ss„,P„)=i h8„„ (&)

speciles the conjugate relation between the position
and momentum. Unlike thc momentum, however, the
remaining two operators appearing in (1), Mc and I'„,
do not possess unique representations although their
physical interpretation is understood as follows.

~ Work supported in part by the 0%ce of Naval Research.
~ (8) H. C. Corben, Proc. Natl. Acad. Scl. U. S. 48 1559 (1962) ~

48, 1746 (1962); Phys. Rev. Letters 15, 268 (1965); Y. Nambu,
Progr. Theoret. Phys. (Kyoto) 37, 368 (1966); Phys. Rev. 160,
11/1 (1967); L. Castell, Nuovo Cimento 50, 945 (1967). (b) For
additional references see H. C. Corben, Classical and Qgaltgm
Theories of Spill~eg Parficles (Holden-Day Publishing Co., San
Francisco, 1968), Chap. 4.

First, the Lorentz frame defined by P„=(0,i+/c) is
the "momentum rest" frame, and is usually referred to
as the rest frame. In this frame, Eq. (1) becomes

(3)

so that Mc is a mass operator, whose specilcation should
lead vlR 'tile c1gc11valuc cquatloil (3) 'to 'tllc spec'tllllll
of rest energies admitted by (1).Explicit representation
of the Lorentz-invariant mass operator Mc depends on
the dynamical model studied, if one exists, and on the
desired algebraic properties. It is most generally
represented by a hnite- or in6nite-dimensional matrix,
which may possess more structure than constant
multiple of the unit matrix. '

Second, the covariant wave equation, (1), defines
the proper-time Hamiltonian operator, '

~ The role of proper time in quantum mechanics, and its appli-
cation to the temporal evolution of the wave packet, is rigorously
treated in the literature. See, for example, S. Shanmugadhasan,
Can. J. Phys. 29, 593 (1951); G. Szamosi, Nuovo Cimento, 20,
1090 i1961);R. Schiller, Phys. Rev. 125 1116;128, 1402 (1962);
G. N. Fleming, J. Math. Phys. 7, 1N9 1966).
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so that in the Heisenberg picture the evolution of an
operator 0 is governed by the equation of motion

d0
i h =—(H,O),

where v is the proper time for the particle. Thus, with
Mc represented by some matrix, so that

(x„,Mc) =0,
it follows from (2), (4) and (5) that

is the instantaneous four-velocity operator, the dot
denoting differentiation with respect to the proper
time v.

It has long been known that if a particle possessing
an intrinsic spin is described within the framework of
special-relativistic classical dynamics, then complex
motions are permitted where in the instantaneous
particle velocity and the linear momentum are not
collinear. ' Indeed, the diQerence between these two
classical variables is a measure of the effect of the spin
on the trajectory and expresses the fact that
Zitterbmegeng is an integral part of classical theories,
as well as quantum theories of spinning particles.

Our concern here is with the quantum theory of
spinning particles as described by the field equation

(1). However, the well-established correspondence
between the operator dynamics in the Heisenberg
picture, based on (4), and the classical relativistic
dynamics of spinning particles, permits, or rather
demands, some degree of language overlap. Thus, if
the particle described by (1) has an intrinsic spin

angular momentum represented by the operator

8„,=—S„„,the total angular momentum operator is
given by

~vv= ~vv+~vv v

where
Lrg V ~/~V ~V~P

is the orbital angular momentum operator, and the
instantaneous four-velocity operator (7) need not be
proportional to I'„.Indeed, the lack of proportionality
is the measure of the eGect of the spin on the trajectory
(Zitterbmeglng), ' and their proportionality reduces

(1) to a Klein-Gordon (KG) equation with separately
conserved spin and orbital angular momenta. In the
more general case, I"„ is represented by a set of four
finite- or infinite-dimensiona1 matrices.

The goal here is to establish an interpretable con-

nection between some of the various explicit formu-

3 J. Frenkel, Z. Physik 37, 243 (1926); H. J, Bhabha, Proc.
Indian Acad. Sci.A11, 247 (1940);A11, 467 (1940);H. C. Corben,
Phys. Rev. 121, 1833 (1961);K. Rafanelli, ibid. 155, 1420 (1967);
J. Math. Phys. 8, 1440 (1967).

4Kerson Huang, Am. J. Phys. 20, 479 (1952); M. E. Rose,
RelutiMstic Electrol Theory (John %iley L Sons, Inc., New York,
1961), Sec. 18.

lations of (1).To this end, in Sec. II, we briefly review
the algebraic properties imposed on I'„and 3fc by the
requirement that the field equation (1) be invariant
under exterrio/ inhomogeneous Lorentz transformations
generated by E„and 3f„„.This is of course equivalent
to the statement

g,=6, :(r„,S„,},
which is a consequence of choosing

(12)

(13)

This simplest choice, (12), is the basis of a new formu-
lation due to Corben, ' in which the mass operator Mc
is also specified, since it is deduced from the dynamical
model of a symmetric top. Whether an acceptable
rest-energy spectrum emerges from this formulation
remains to be seen. However, it is worth noting its
special position as the simplest of an infinite sequence
of previously unrelated formulations.

Of special interest is the infinitesimal part of the
unitary transformation which yields a field equation
of the form (1) possessing an intrinsic space-time
DeSitter group, g;=g;. It is this formulation, par-
ticularly with 3fc a constant multiple of the unit
matrix, that has, up to now, received the most atten-
tion. There are now known to be di%culties inherent
in such a formulation such as a rest energy that varies
inversely with the spin, space-like solutions (which
prevent saturation of the current algebra by single-

particle, time-like states), CPT and spin-statistics
violations, etc.' Some of these difBculties depend on

'H. C. Corben, see Ref. 1(b); Boulder Lecture Series, 1968,
(unpublished); TRW Report No. 00875-6002-ROOO.

' P. A. M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928);
A118, 351 (1928);N. Kemmer, ibid. A592, 91 (1939);E.Majorana,
Nuovo Cimento 9, 335 (1932).

7 E.Abers, I.T. Grodsky, and R. Norton, Phys. Rev. 159, 1222
(1967).

that the external space-time invariance group is a
Poincare group, or that the linear and total angular
momentum must be conserved for the free particle.
This requirement, (10), does not exhaust the algebraic
properties of I'„, nor does it completely specify Mc,
the latter simply saying that there remains some
freedom in the choice of a dynamical model. Require-
ment (10) leaves undetermined the commutation
relations, (I'„,I'„),which means that the group structure
of the ten elements, I'„and S„„is not completely
specified. We shall refer to this group as the intrinsi
space-time invariance group,

g, :&r„,s„„). (11)

In Sec. III, we develop a unitary transformation
scheme which establishes a connection between various
choices for g; while leaving the form of the field equa-
tion (1) unchanged. We begin with the simplest choice,
namely, an intrinsic Poincare group



dimensionality of the chosen representation, while
others pervade both the Gnite- and infinite-dimcnsioIlal
representations. ' lt 18 also conjectured. that with any
choice of mass opcI'atoI' such foxIQulations IQust cn"
counter at least some of these troubles. ' %C shall not
dwcB further on the subject of de.culties since that
is not the purpose of this paper. Hovrevcr, it is well to
bear in mind the possible diKculties of any g;.

Finally, in Sec. IV we present a kinematical inter-
pretation of the constructed transformation theory as
1t applies to suggcstcd IQodcls.

with the F„.represented by a set of six matrices, of as
yct unspeci6ed dimensionality, satisfying

(p» r».)= (* »»")=o (16)

(r». r» )= —(r»»~-+r-b»» —r» b» —r»b» ) (17)

then Eqs. (2), (16), and (17) ensure that

{M„„M»)=ih(M»»b„+M. .b»» M»,b„»—
—M„,b„.), (18)

i.c., that the six elements of the total angular mo-
mentum tensor constitute the extexnal homogeneous
Lorentz group SI.{2,c). Thus, conservation of total
angUlaI' momentum 18 assured 1f

and either

lf (x„,r„)=0,or

(r»„Mc)=0

(r„„r.)= (r„b,.-r„b„.)

(r„„r.)=o
if I'„ is proportional to I'„.In this latter case the orbital
and. spin angular nmmenta are separately conserved.
Relations (2), (8), (9), (18), and of course (P„,P„)=0
are equivalent to the statement that the Poincarc
group IO(3,1) is the external space-time invariance
group, symbolically stated in (10).

s K. Rafanelli, J. Math. Phys. 9, 1425 (1968).
9 I. T. Grodsky and R. F. Streater, Phys. Rev. Letters 20„695

(1968)," L. O'Raifeartaigh and S. Chang, Phys. Rev. 171, 1587
((968).

lr. ZXTZRmr, ImVARXAmcz
REQUIREMENTS

Since Eq. (1) describes a particle on which no external
forces or torques are acting, the linear and total angular
momentum must be conserved. Let us novr see to what
extent these consex'vation lairs restrict the possible
commutation relations among the operators appearing
ln (1).

Speci6cation of mass values in the rest frame and
conservation of linear four-momentum Rre obtained,
from (4), if

(P„,Mc) = (P„,r,)=o.

Clearly then, the above considerations are not
exhaustive enough tq specify the group property of
the ten elements I'„and F„„which we have denoted R&

g; Lexcept for r» proportional to P„, in which case (10)
exhausts the space-time group propertiesj. In order to
specify g;, we must, in a,'ddition to (17) and (20), close
the algebra by giving (1'„,I'„).

Thc Rlgcbx'a of thc Fp Rnd I pp 18 Hiost SUIlply closed
by choosing (13), which, together with (17) and {20),
gives (12), or equivalently, 8;=(P;:(r»,r»„}. In this
case, Eq. (1) describes a system with external and
intrinsic space-time invariance under inhomogeneous
Lorentz transformations for which the spaces coincide
only if the velocity and momentum are proportional.
For consistency of notation, we hereafter reserve the
symbol F„, for case (13). We now want to study the
extension of the group (12) to other, more complex
structures, not because there is an a priori preference
for any particular g;, but rather to demonstrate the
equivalence of seemingly unrelated points of view.

A technique for extending an IO(3,1) algebra to one
appropriate to O(4,1) has appeared previously"; the
discussion is usually confined, however, to the external
invariance group simply because it has become cus-
tornary to associate E„P„with the mass operator. OD
the other hand, the assertion here is that the physical
mass spectrum emerges as the solution of Eq. (3). The
mass operator is therefore not tied to a Casimir operator
of the external space-time invariance group, and
O'Raifeartaigh's theorem does not prevent mass
spHtting. "The extension technique, 6', —+ S„consists
simply in obscI'ving that thc foUx'-vcctoi

4'»= s (r».r.+r.r,.)
hRs thc property

(6,k.)=co'r». .

(24)

where Co =FBI p 18 a CRS10111 opci'atox' of $'9, Thus
with b=(C +) rls we have

(b4»A'. )=r.'
Therefore, the ten elements (btf», r»,} constitute the
DeSitter group, O{4,1).More generally, if

(27)
'o A. Sankaranarayanan, J. Math. Phys. 9, 611 (1968).» L. O'Raifeartaigh; Phys. Rev. 139, 81052 (1965)."The notation adopted here is consistent with that of Ref. 1(h),

I JJ( M„„,P„+
2(&PP»)

hRs tllc pl'opcl'ty
(P„',P,') =ihM»„, (23)

as does P»+P» .
Since we have chosen (P;:(r»; r„.), a similar exten-

sion technique appHes, that, is, the four-vector"
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(F„',F„')=F„,
and the ten elements (F„';I'„,}also constitute O(4,1).
It is this latter extension, (P, :(r»,r»„}-+8;:(r»',r»},
that wc wish to generalize Rnd incorporate into a larger
transformation theory.

Consldel thc tI'RnsfoITDRtlon

p'=coco p

generated by the intrinsic Sl.(2,c) Casimir operator,
Cp= —/sr»„r»„. Since Co~ is Hermitian, the trans-
formation (29) is unitary if the parameter g is pure
imaginary. Under (29},an operator A transforms as

A'= e«0'Ae-«o'.

Expansion of (30) gives

groups, generated from 6'; by a Casimir operator of the
llltllllslc SL(2,c), Rlld sR'tlsfylIlg tllc 6cld cqllR'tlon.

H'p'= (I'r»'P»+ J)d c)p'= 0. (40)

Owing largely to thc success of Dirac s equation,
little, if any, consideration has been given to intrinsic
space-time structure other than g;= g;. This is certainly
understandable considering the algebraic complexity
of the second of Eqs. (38). However, in light of the
above analysis we see that g;=g; is related to the
simpler case, b;=(P;, on which rests an alternative
approach to the question of mass spectra. 5 Therefore,
it seems reasonable to examine, in greater detail, the
special case of the above transformation theory,
6'; —+ 8;. Explicitly, the infinitesimal part of the unitary
transformation (29),

(1+gC '}P
which is then also unitary, terminates the Sequence

(35) at
r»'= r»+2gp»

(r„',r,') =+r„,
Rnd wC have

2")= (gCoi, A},
A I') = fgCo~, (gCo~,A)j= (gCo~,A")),
~ "'=(gCo' LgCo' (gC" ~)1}= (gCo'~"')

(32) corresponding to the two cases

g= ~b, for Co~&0

g= gQ ~
foI' CoCte.

Since Mc satis6es (19), then

so that the covariant Hamiltonian operator (4) trans-
forms Rs

(34)a'=e«o'He «"=iT'„'P-„+Mc,

r ~ —F +r (I)+—r (2)+ ~ ~ ~

F."'=2gp»

I' (2) —4g2X

ctc.o
wllcl'c P» ls glvcll l&y (24)o Rnd

x»= 2(r».p.+p.r».)— (37)

The commutation relations among the terms generated
in (35) get rapidly complicated, i.e.,

Thus, the adoption of (1) (based on (P;) leads, via
'thc 1116Ill'tcsllllRI unitary transformation (41} "to 'tlM

6eld equation (40) (based on 8;) of identical form and
based on the same dynamical model, in the sense that
Mc ls unchanged.

Nothing has been said so far about particular repre-
sentations for either 6'; or 5;. It is, therefore, worth
DotlDg Rt this point that fol those I'cplcscDtRtlons of
8; with vanishing X», the sequence (35) generated by
(29) is exactly terminated as in (42), all r»I & vanishing
identicaBy for m&~ 2. Therefore, for this class of repre-
sentations we have (1) o (40) with P;~ S;, via the
finite unitary transformation (29). We defer a detailed
discussion of lcplcscntRtloQs until R lRtcr study Rnd

base the ensuing analysis on the infinitesimal unitary
transformation (41) effecting (P; -o 8;.

(r II) r 11))—4g2C Pr

(F.I'),r,"))=4g'(C )'L-r.,+2(r„p.p.
+p.p.r„.)+F„.(F„»r.,+r.,r„)

+ (r„„r.,+r.,r„)r„.j,
ctc. Thus, we may write

+~—+++II)++(»+.. . (39)

Rs R scqucncc of ltcratcd wave operators~ possessing
asccndingly complicated irltrinsic space-time invariance

Physical interpretation of the transformation (41}
requires the choice of dynamical model, or mass oper-
ator. Clearly, the simplest choice is Ac=constant
parameter, or Casimir operator of O';. A consequence
of this choice is that either (Mc,r»}=0, or i„=const,
and the particle described by (1) undergoes no
ZAIerbnvegNNg. Hence, the velocity arid momentum
must be proportional. The orbjtal and spin angular mo-
mcnta Rrc scpRrRtcly conserved~ thc spRccs of 6s, Rnd

(P. coincide, and it is consistent to think of (1) as the
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KG, or second-order equation corresponding to (40).
This is not a very interesting ease, however, since it
is reasonably well established that if Me=const the
mass spectrum is not indicative of the elementary
paltlclcs 1 6 8

In order to obtain a theory, based on (1), admitting
Zitterbeeeegueg, we must have (F„,Mc)WO. There is
discussion in the literature on possible choices for Mc,
consistent with the external invariance requirements. '
The discussion is usually in conjunction with Eq. (40).
However, since we now recognize that (1) and (40)
are identical formulations, modulo-c unitary trans-
formation of intrinsic space-time symmetry, the
discussion applies to both cases.

In the remainder of this section we examine the
transformation 6'; —+ 8;, with the choice

where, for purposes of this discussion, we leave esc
and u as unspeci6ed constant parameters. The selection
of (45) corresponds, in Corben's formulation, to an
operator representing the rotational levels of a spherical
top. ~ It also follows that, since

Coe= —-',r gr g=r„'r„'+Coz, a, b=1, , 5 (46)

is a Casimir operator of 3;, other discussed choices for
Me, such as r„'I'„',' can differ from (45) by at most a
constant parameter, and that the model studied by
Sutton" is equivalent for those representations of S;
with (r„',Cez)=0. So, while the model leading to (45)
is quite speci6c, the mass operator itself has received
a broader appeal.

With (45), Kq. (1) is explicitly

HP= (ir„P„+wc x2aCpz)$—=0 (4.7)

Thus, the in6nitesimal transformation (41) is equivalent
to

(48)P'= (1+(2g/a) (mc+ir„P„)jig

for solutions of (47).
Thc tIRnsfoITQRtloD 6';~ 5;now admits thc followlDg

kinematical. interpretation. The instantaneous positioD
four-vector x„ transforms under (48) as

x„'=x„+(2g/a) r„, (49)

yielding, from (47), the new four-velocity

x„'=iF„'=i(r„+2'„) (50)

'3 A. M. Sutton, Phys. Rev. 160, 1055 I', 1967}.

as given by (42). Therefore, with the mass operator
given by (45), (P;~ 3; is equivalent to a transformation
of coordinate representation. Corresponding to the
change of coordinate, the division of the total angular
momentum between orbital and spin now becomes

M„„=x„'P„=x„'P„—'ar„„'=r„„'+S„,'. (51)

(x„',F,.') =0= (P„,F,.') = (L„.',F,.'),
Rnd

(53)

(r„.',r,.') = —(r„,'b„.+r„.'b„,—r„.'b„,
—r„,'b„.). (54)

It also follows that

iver„—,'=i (P„r„' P„F„—')

RS R CODSCquCDCC Of

iver„„=—

i(p„F„p„I'„)—.

(55)

Thus, it is clear that I"„„'has those properties of an
intrinsic angular momentum with respect to the
primed-coordinate systcIQ posscsscd by VII ~ with 1cspcct
to the unprimed-coordinate system.

It is also straightforward to verify that rewriting
the (P; —+ 8; transformation as in (48), gives rise to the
transformed mass operator

M e= Me+ 2$gk~P~.

It therefore follows that, if P is a solution of (47), then

Rlld

H' =iF„'P„+Me

H'=ir„P„+M'e

are equivalent statements with M'e given by (57), and
H'f'=0. While it is true that the momentum depen-
dence in M'c gives it a somewhat di6erent status than
Me, we are merely using the form (59) to illustrate a
kinematical equivalent for 6'; -+ S;, the results of which
are stated in (58). As such, we can see the origin of the
enhanced group structure as follows. From (4) we have
x„=ir„, and with (45) we have x„=a/hf„It then.
follows from (24) that x„x„+x„x„=0, stating, in Heisen-
berg operator language, the orthogonality of the in-
stantaneous velocity and acceleration, and reQecting
the classical trajectory of a free-spinning particle in
which the ZiNerbmegleg is a uniform circular motion
superimposed on the average, straight-line path. Thus,
the form of (49) indicates that the transformation
5';~ S; is in the rest system, kinematically equivalent
to the transformation to a primed sct of axes, rotating
with respect to the unprimed axes, and the momentum-
dependent term in (57) is the spurious contribution of
the rotation.

To fur ther lllustrRtc this klncIQRtlcRl cqulvRlcnce
we examine the relation between the two local position

'4 See also J. A. De Vos and J. Hilgevoord, Nucl. Phys. 34/4
(&967}.

Using (49), comparison of (51) with

M„„=x„P„x„—P„—ihr„„=L„„+S„,
yields

—iver„„'= —iver„, —(2'/a)(r P —r P ) (52)

the same result is, of course, obtained by directly
transforming F„„under (48)."It is easily seen that
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C '= —-'l' 1' = —(Js+Ks)

FIG. j..RCSt-&SIC j;C18tioQSMP
between Partide Coordiaatea.

J'= (l'ss', l'ss', i'Is'),
K'= (I'Is",1'ss', Fss'),

then in the rest frame, P„=(O,sE/c), we have

X=X'= x—(cps/E) K=x'—(ck/E) K',

(67)

opel'ators ss RIld ssp and tlM nolllocal posltlo11 opel'R'tol'

Xp) Usually associated with ccntcl of Inass. ConsKl, eT' Rnd

X„=sc„—ski'„„P„/P.P„ (60)

x'—x= (2kg/u) r= (ch/E) (K—K'),

Xs Xs= xs ss= (25g/g)Fs,

for which (Xs,X,)WO, and

X„=(sl',P./P, P.)P„. (61)

There is another operator. with similar traits, namely, ZIlc relations RQMDg these vectors in tIlc rc8t fraDM Rrc
dlagraIQHMd ln Flg. l.

(6S}

2igb ~ iF.P,~X„'—X„= i
— iP„.

u k
(64)

It ls not surprlslng that, as viewed from the two co-
ordinate systcIQS, thc ccntcl' of Dlass 18 diferent; in
fRCt, %'C.SCC that

V. CONCLUSION

TIlc lntrlnslc space-tl111c particle SQIDIActry Is dc6ned
by. the ten-element groIIp composed of the four-velocity
Rnd splD RngulRI' IQolTlentUIQ opcI'Rtols. This gl'oUp 18

not completely speciied by external Poincarc invari-
Rncc. FroIQ thc 81IQplcst choice, RQ lntrlnslc Polncalc
group, it is possible to e&ect R Unitary transformation
to Inol c coIQplcx lntI'lnslc group structures~ lcavlng
lnvRrlRQt thc forTQ of thc llDcRr wave cqURtlon de-
scribing thc particle, Rnd the Inass. operator.

Choosing a mass operator based oQ Corben's Inodcl
of R spherical top, thc 1DtI'lnslc syIQIQctry-groUp tI'Rns-
forlnatlon (Ps~ Sg has Rs a klncIQatlcal eqUlvalentq a
trRnsfolTQRtlon from RQ lncI'tlRl to a 1otRtlng co-
ordinate sfsteIQ.

J= (&ss,&sI,I'Is),
K= (FIs,Fss,I'ss), (65)

@M. H. L. Prycc, Proc. Roy. Soc. (London) 195, 62 (1948).
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