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The generalized oscillator strengths fz(@ (Kh = momentum transfer) for the transitions of
He from its ground state to excited states n= 2 P, 3 P, 2 S, and 3 S are computed from the
Weiss correlated wave functions of over 50 terms each. For (Kao) -2 (ao= the Bohr radius),
the results by two alternative formulas, corresponding to the "length" and "velocity" formulas
in the optical limit, agree with each other within 0.5% for the 2 P and 2 S excitations, and
within 1.5/g for the 3 P and 3 S excitations. Our f2&P (E) is in accord with electron-scattering
experiments by Lassettre and his co-workers. For (Xao) ~ 0.2, our f2~S(E) departs from
experimental data at 500 eV, but its slope at E=O is consistent with experiment. Our results
are very probably accurate within a few percent, and thus should provide a sound basis to
test the validity of the (first) Born approximation. The representation of the Born excitation
cross section for charged-particle impact is greatly simplified by a generabzation of the
Bethe procedure; it is shown that, a few definite parameters can convey the essential content
of the Born approximation. As an illustration, the cross sections for the excitations to the
four states in He are evaluated and compared with experiments.

1. INTRODUCTION

The generalized oscillator strength of an atom or
molecule is an important property representing the
response of the system to sudden transfer of a giv-
en momentum to its electrons. In particular, it
constitutes the essential part of the differential
cross section [Eq. (3)] for inelastic scattering of
sufficiently fast charged particles. ' ' The well-
known prescription for its evaluation [Eq. (1)] re-
quires the wave functions for the initial and final
states of the system, which are in general known
only approximately, often only crudely, except for
atomic hydrogen. This deficiency has hampered
the application of the Bethe theory to its full ex-
tent even to the relatively simple case of the heli-
um atom. For its transitions from the ground
state to low-lying excited states, many calcula-
tions are found in the literature, -' but the approx-
imate nature of the wave functions used does not
always convince one of the reliability of the re-
sults, "which appear in many cases quite sensitive
to the choice of the wave functions.

Current experiments on inelastic scattering of
electron beams with high resolution in energy and
good collimation are providing data of remarkable
quali. ty. » ~

2 Indeed, one is frequently im-
pressed with a claim for a precision of a few per-
cent in measured differential cross sections. This
circumstance has led us to perform a definitive
calculation, hopefully within an accuracy of a few
percent or better, of the generalized oscillator
strengths for some discrete transitions in the heli-
um atom. The primary purpose of the present pa-
per is to report results for the transitions to the
2 8, 3 S, 2~P, and 3 P states. Qur data shoud pro-
vide a trustworthy basis to test the validity of the
(first) Born approximation; and when applicable,
they may be used to normalize experimental data
for a particular transition and thereby determine
other cross sections on an absolute scale.

The information on the generalized oscillator
strength has several different areas of application,
such as the Bethe (total) cross section for inelastic
scattering of fast charged particles'~'~ 2' and atom-
atom inelastic-collision cross sections. 22

The secondary purpose of this paper is- to eluci-

date the nature of the Bethe approximation, which
has often been misunderstood, and to demonstrate
its application to the four transitions in He.

2. DEFINITIONS

The generalized oscillator strength f„(K) for the
transition of an N-electron atom from its ground
state to the nth excited state with momentum
transfer Ka is defined as, '~'~"

E/8 N
f (K) =(K ), g fg *e jp drl dr, (I,)n (Kao)2 . I n

where a, is the Bohr radius, E„ the excitation en-
ergy from the ground state, R the Bydberg energy,
rj the position of the jth electron, and Q and go
the excited-state and the ground-state wave func-
tions, respectively. When the states involved are
degenerate, customary average and summation
over substates are implied.

In analogy to the "velocity" formula for the opti-
cal oscillator strength, an alternative formula for
f~(K) may be used'~23:

f (K)=—a ~ g fe
n g=1

x(g *Bg,/Bz. -g Bg */Bz.)n 0 q 0 n

xdr1. ~ dr~, ,

with zj =(K rj)/K. In the limit K-O, Eq. (1) re-
duces to the "length" formula, and Eq. (2) to the
"velocity" formula for the optical oscillator
strength f„. Although the two formulas give identi-
cal results with the exact wave functions, the con-
tributions of various regions of the configuration
space are weighted differently by these formulas. 24

Hence, when approximate wave functions are used,
comparison of usually different results from the
two formulas should provide a qualitative measure
of accuracy. 2'

The generalized oscillator strength is the essen-
tial factor in the differential cross section for in-
elastic scattering of a charged particle in the Born
approximation, i.e. , '~'~"
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f„(K)= Z (K;) f„()/~!,
&=0

where

f /X! =(A. !)-'[d/d(Ka0)'] f (K)

E 23+1 r i&-p+&
n ( -1)

R ~ !i!(2%+2-p)!
p, =l

xZ (!i)Z (»+2-V)*,

with

(5)

Z (")= -!'g fq * . ."y d- "d- .
n 0 q n q 0 (8)

In Eq. 5), Z„(") denotes the complex conjugate
of Zz(" . The first expansion coefficient fl"' is
the optical oscillator strength f„. For optically
allowed transitions, Z„(&) vanishes for all even !i,
and for optically forbidden transitions it vanishes
either for all odd or all even p depending on the
parity of the excited state.

3. COMPUTATIONAL METHOD

Many previous investigations of fn for He" "sug-
gest that it is necessary to use accurate wave func-
tions for both the ground and the excited states to
obtain trustworthy values of f„(K). We chose the
Hylleraas wave functions computed by gneiss with
53 terms for the ground state, 54 terms for the ex-

4va sos f (K)0. n 2d(t =
7/R

—
E /R

d In(KQ0)
n

where ze is the charge of the incident particle, and
T= mvs/2, m being the electron mass and v the in-
cident particle velocity.

As can be seen from Eq. (I), f„(K) is an even
function of Ea0 and therefore it can be expanded in
powers of (Ka, )s for small Ka 'P'

+ rl r2 exp[ r(qr-l + r2)]&& (I)Y00(2)].

(8)
In Eqs. (7) and (8), the indices p, q, and!L are non-
negative integers, g and g variational exponents,
and I'bn(l) and I'I~(2) the spherical harmonics for
the angular variables of electrons 1 and 2, respec-
tively.

With the substitution of Eqs. (7) and (8) into (I)
and (2), f„(K) can be expressed in terms of inte-
grals

g =—f drlrl e 'j (Krl )f dr2r2 e ', (8)
0 0

3'—= f drlrl e 'j„(Krl)
0

fxdrr 's
j.

il0)

where j&(Krl) is the spherical Bessel function of
the first kind, and ~, a, and v are integers cover-
ing the ranges O-X-2, -1 ~z, and 0- v for the
states of interest. VVhen x&A. , the integration for

cited '8 states, and 52 terms for the 'I' states. "
The excitation energies and other properties such
as fn and the expectation values of r2 computed
from the gneiss wave functions indicate that they
are sufficiently accurate for our purpose. (See Ta-
ble I., )

The gneiss wave functions for the singlet states
identified by the usual quantum numbers n, l, and
m are written as

&nfm
'

pqp, nq'pq!, Im'=~C (7
Po'p

where the cp&~ n are variation coefficients, and
1 +q+ @+1+8!» ~ I!i

&pqI, im
=2 '1 '2

TABLE L Comparison of properties of He calculated from the Weiss wave functions
with those from other sources (atomic units) .

Properties 21$ 3'S

Excitation energy E„:
Weissa
Experimentb

&nlrb In&: Weiss
Pekeris3

f+ by "length" formula:
Weiss
Schiff and Pekeriseo

f by "velocity" formula:
n

Weiss32
Schiff and Pekeris30

1.193 48
1.193 48

0.757 75
0.757 72

16.084
16.089

0.842 47
0.842 42

85.770

0.779 88
0.779 86

15.755
15.766

0.2759
0.2762

0.2761
0.2762

0.848 59
0.848 55

91.966
91.873

0.0734
0.0736

0.0730
0.0734

Overlap integral with 3.~8

aBeference 32, nonrelativistic.

—7.00x 10 9.20X10 ' 0.0' 0.0

baeference 34, includes relativistic effects.



Y. K. KIN AND M. INOKUTy i75

T&BLE H. The generalized oscillator strengths for the 2iP and 3ip excitations of He.

3'a
Formula Ia ForIIlula II Formula II

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

4.6
4.8
5.0
5.5
6.0
6.5
7.0
7.5
S.p
8.5
9.0
9.5

10.0
20
30
40
50
60
70
Sp
90

100

2.5440 x 10-'
2.3486 x lp-~
2.1VDG x 10
2.0080 x 10
1.8596 x 10
1.7239 x 10
1.5996x 10
1.4857xlp '
1.3812x 10-~
1.2S52 x 10

1.1969xlp ~

1.1156x 10
1.0408 x 10-~
S.7177xlp 2

9.0804 x 10-2
8.4916x 10
7.9471x 10-2
7.4430xlp 2

6.9761x 10-'
6.543lxlQ 2

G.Q986xlQ 2

4.0141x 10—2

3.1903x 10
2.5577 x 10
2.0672xlp 2

1.6832xlQ 2

1.3801x 10
1.1389xlp '
9.4555xlQ 3

7.8948 x 10-3

6.6267xlp 3

5.5902xlp 3

4.738lxlQ 3

4.0337 x 10-3
3.44SGxlp 3

2.S599x lp —3

2.5502x10 3

2.2052 x 10-3
1.9133xlp 3

1.6655xlQ 3

1.1932xlQ 3

8.6991x lp
6.4421 x 10
4.8389xlp '
3.6819xlp 4

2.8348 x lQ
2.2064xlp 4

1.7346 x] Q

1.3763xlp 4

1.1015xlp 4

4.2007 x 10
5.4225 x 10
1.2431xlp 7

3.944lxlp 8

10-8
6.9002 x 10
3.4324 x 10
1.8464 x 10
1.0565 x 10

2.5453 x 10
2.3492x 10 '
2.1706xlp &

2.0078x 10
1.8591x 10-'
1.7232x 10 '
1.59SSx 10
1.4849 x 10
1.3804 x 10
1.2S44 x lQ

1.1961x 10
1.1149x 10
1.Q4Q1 x 1Q

9.7108xlp 2

9.074pxlp 2

8.4856x 10 2

7.9415x 10 '
V.4379xlp '
6.9713x 1Q

6.538Vxlp 2

5.0953xlp 2

4.0114xlQ 2

3.1879x 10
2.5555 x 10
2.0649 x 10
1.681QxlQ 2

1,3779x ].0-2
1.1367x 10 2

9.4338x 10 3

7.8736 x 10-3

6.606lxlp '
5.5702xlp 3

4.7187xlp '
4.0150xlp 3

3.4305 x 10
2.9426 x 10-3
2.5336x 10
2.189lx10 3

1.8979xlp 3

1.6506 x 10

1.1796x 10
S.5734x10 4

6.3260xlp 4

4.7314xlp 4

3.5823xlp 4

2.7426x 10 4

2.1211x 10
1.655V x lp
1.3Q34 x 1Q

1.Q342xlp 4

6.8954 x 10
6.4743xlp 2

6.0793 x 10
5.7088 x 10-2
5.3618x 10
5.0367xlp 2

4.7323 x 10
4.4475xlp 2

4.1809x 10-2
3.9315x10 2

3.6981xlp '
3.479V x 10
3.2754 x 10
3.0841x 10
2.9051x 10
2.7376 x 10
2.5807 x 10
2.4337 x 10
2.2961x 1Q

2.1671x 10

1.726V x 1Q

1.3848xlp '
1.1179x 10
9.0816x 10
7.4232 x 10
6.1034xlp 3

5.0466xlp 3

4.1953x 10-3
3.5055 x 10
2.9435 x 10

2.4831xlp 3

2.1040xlp 3

1.7902xlp 3

]..5294 x 10 3

1.3116x 10
1.1289x 10
9.7509xlp 4

S.4502 x 10
7.3464xlp 4

6.4062 xlp 4

4.6064xlQ 4

3.3673 x 10
2.4985xlp 4

1.8792xlp 4

1.43lpxlp 4

1.1022xlp 4

8.5793 x 10
6.7427 x 10
5.3470 x 10
4.2757 x 10
1.5615xlp 6

1.901Qxlp '
4.1316x 10
1.2545 x 10-'
4.7197x 10
2.0591x 1Q

1.0009 x lp
5.2837 x 10—"
2.9762 x 10-'0

6.85Sgxlp 2

6.44Q7 x lp
6.0480x10 2

5.6794 x 10
5.3339x 10
5.0100x 10
4.7068x 10
4.4228xlp 2

4.1570x 10
-3.9083xlp 2

3.6755xlp 2

3.4577 x 10
3.2540 x 10-2
3.Q632xlQ 2

2.8848xlp 2

2.7177x 10
2.5613x 10
2.4148xlp 2

2.2775xlp 2

2.14gp x 10

1.7101x 10
1.3697x 10
]..].041xlp 2

8.9548xlp 3

7.3063x 10
5.9955xlQ 3

4.9467 x 10
4.1025 x 10-3
3.4193x 10
2.8631x 10

2.4081x 10
2.0340 x 10-3
1.7248xlp '
1.4682xlp 3

1.2542 x 10
1.0751x 10
9.2461xlp 4

7.9760x 10
6.9006x 10
5.9868xlp 4

4.2448xlp 4

3.0541xlp 4

2.2260xlp 4

3..6411x10 4

1.2223xlp 4

9.1859x 10
6.9590x 10
5.3093x 10
4.0761x 10
3.1465x 10

I: Evaluated from Eq. (1) of the text. Formula II: Evaluated from gq. (2) of the text.
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FIG. 1. The generalized oscillator strength for the
2 P excitation of He. The experimental data are those
of Geiger (g) (Ref. 6), of Lassettre et al. (0) [Refs. 8,
16, and J. Chem. Phys. 45, 3214 (1966)], and of Vriens
et al. (6) (Ref. 20). The broken line represents theoret-
ical values calculated by Lassettre et al. (Refs. 7 and 8),
and the solid line the present work. Differences between
"Formula I" and "Formula II" results (see Tables II
and III) are indiscernible in Figs. 1 and 2. As is pointed
out by Miller and Platzman (Ref. 15), the area under the
curve in f~(@ versus ln(Zap) plot, taken betvreen appro-
priate limits of E'ao, determines the excitation cross
section 0'„. [See Eqs. (3), (11), and (14).]

g is elementary. For z~&, however, $ is ex-
pressed in terms of a hypergeometric function
with the aid of Eq. (3), p. 385 of Ref. 33. The inte-
gral X is computed in a similar way after an ele-
mentary integration over x,. The integrals encoun-
tered in the evaluation of Z„(P) [see Eq. (6)] are
similar to but simpler than $ and X, namely, with-
out jg(Krl ).

The evaluation off„(K) by Eq. (2) for large K pos-
es an additional difficulty on the numerical accura-
cy owing to the near cancellation of the two terms
in Eq. (2). Most of our computation was carried
out on an IBM 360 Model 75 computer in double-

. precision arithmetic to prevent the accumulation
of round-off errors.

For the excitation energies Ez which appear both
in Eqs. (1) and (2), we have used the values com-
puted from the Weiss wave functions (Table I).
The computed energies are so close to the spectro-
scopic data'~ as well as to those computed by Pek-
eris et al."that the use of these alternative values
would have slightly affected the fourth significant
figure of our fz(K). '4

4. RESULT AND DISCUSSION

A. Excitations to the 2 P and 3 P States

The results for the allowed transitions are pre-
sented in Table IL (See also Figs. 1 and 2. ) The
values in the columns labeled as "Formula I"were
computed from Eq. (1), and those labeled as "For-
mula II" from Eq. (2). The "Formula II" results
for (Ka, )'~10 have been judged unreliable because
of heavy cancellation of integrals (see Sec. 3} and
are not presented in Table II. The agreement for

the 2'P excitation between the results from the two
formulas is excellent for (Ka,)'~3. In view also of
the fact that the optical oscillator strengths com-
puted from the %eiss wave functions" agree to
three significant figures with those computed by
Schiff and Pekerism (see Table I) we believe our
f2' (K) to be accurate to 1% for (Kao)'&2. The
f2~P(K) computed by Eq. (2) is probably the better
for small K because its optical limit agrees better
with f2~P calculated from the Pekeris wave func-
tions.

Our result for the 3'P excitation is less conclu-
sive than that for the 2'P excitation, because of the
lower accuracy of the 3'P wave function. For the
physically interesting region (Ka, ) 2, we believe
ourf3&P(K) to be accurate to 3%. For comparison
with experimental data for the 3'P excitation, we
recommend the f3/~(K) computed from Eq. (1) be-
cause its optical limit agrees better with the re-
sult of Schiff and Pekeris. ~

I I I I I ~ I II I I ~ I I I ~ I

Ke (3P)

O.l 0—

0.05—

0
10-3 10 2

FIG. 2. The generalized oscillator strength for the
3 P excitation of He. The experimental data are those
of Geiger (g) (Ref. 6), and of Lassettre et al. (0) (Ref.
16). The solid line represents the present calculation.

B. Excitations to the 2lS and 3 S States

Our results for the forbidden transitions ar e given
in Table III, arranged in a manner similar to that
in Table II. (See also Fig. 3.) Although the orthog-
onality of the Weiss wave functions (which were .

computed without constraints of orthogonality to
. the ground state) is excellent (see Table I), the
small nonvanishing overlap integral causes some
uncertainty in the values off+(K) computed from
Eq. (1). To reduce this type of uncertainty we have
used the expansion formula [Eq. (4) whose deriva-
tion assumes the orthogonality]; the results there-
by obtained (from 10-term expansions) are also giv-
en in Table III under, "Formula III." It is evident
from Table III that either the "Formula II"or "For-
mula III" result may be used for small K. At pres-
ent, it is difficult to judge which of them is better.

We believe our results for the 2'S excitation to
be accurate probably to 1%, and for the 3'S excita-
tion to 3% in the region (Kao)'~ 5. For large K,
again the "Formula II" results suffer from near
cancellation, and the "Formula I" results are re-
commended.



180 Y. K. KIM AND M. INOKUTI 175

TABLE III. The generalized oscillator strengths for the 2 S and 3 S excitations of He.

Formula Ia

2S
Formula II Formula III Formula I

iS

Formula II Formula III

0.05
0.10
0.15
0.20
0.25
0.30
0,35
0.40
0.45
0.50

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

3.2
3.4
3.6
3.8
4 Q

4 6
4.8
5.0

5.5
6.0
6.5
7.0
V.5
8.0
8.5
9.0
9.5

10.0

20
30
40
50
60
70
80
90

100

3.9807 x 10
7.3163x 10
1,0174x 10
1.2613x 10
1.4683 x 1Q

1.6430 x 10
1,7S93x 10
1.9107x 10
2.0103x 10
2.0907 x 10

2.1544x 10
2.2Q34 x 10
2.2396 x 10-2
2.2646 x 10
2.2799 x 10
2.2866 x 10
2.2860 x 10
2.2790 x 10
2.2665 x 10
2.2493 x 10

2.1456 x 1Q

2.0083x10 '
1.8572 x 10
1.7040 x 10
1.5555 x 10
1.4153x 1p
1.2853 x 1Q

1.1660x 10
1.0575 x 10-'
9.5909x 10

8.7028 x 10
7.9027 x 10
7.1827 x 10
6.5352 x 10
5.9528 x 10
5.4290 x 10
4.9576 x 10
4.5330x 10
4.1502x 10
3.8048x 10

3.0795 x 10
2.5127 x 10
2.0661x 10
1,7116x 10
1.4279 x 10
1.1992x 10
1.0134x 10
8.6148x 10
7.3640 x 10
6.3279x 10

6.4906x10 '
1.4706 x 10
4.862oxlp '
2.0020 x 10
9.5185x10 ~

5.0112x 10
2.8475 x 10
1.7173xlp ~

1.0864x10 '

3.9006 x 10
7..2510 x 10
1.0119x 10
1.2565 x 10
1.4639 x 10
1.6389x 10
1.7854xlp 2

1.9069x 10
2.0066 x 10
2, Q87Q x 1Q

2.15pv x 10-2
2.1997x 10
2.2359 x 10
2.2609 x 10
2.2762 x 10
2.2830 x 10
2.2825 x 1p
2.2755 x 10
2.2631x 10
2.2460 x 10

2.1427 x 10
2.0058 x 10-2
1.8551x 10
1.7023 x 10
1.5541 x 1Q

1.4141x 1P-2
1.2843 x 10
1.1651x 10
1.0566 x 10
9.5831x 10

8.6954 x 10
7.8956 x 10
7.1758x 10
6.5285 x 10
5.9465 x 10
5.4229 x 10
4.9517x10 3

4.5274 x 1Q

4.1449x 10
3.7997 x 10

3.0751xlo 3

2.5090 x 10
2.0631x 10
1,7091x 10
1.4259 x 1{}
1.1975x 10
1.0121x10
8.6041x10 4

7.3555 x 10
6.3211x 10

3.8840 x 10
7.2234x10 3

1.0085 x 10
1.2526 x 10
1.4599x10 2

1.6349 x 10
1.7815x 10
1.9O32 x1O-'
2.0030 x 10
2.0837 x 1p

8.6951x 10 4

1.5915xlo '
2.2364 x 10
2.8097 x 10
-3.3168x10 3

3.7631x 10
4.1536x 10
4.4931x 10
4.7860x10 '
5.0365 x 10

5.2486 x 10
5.4257x10 '
5.5713x 10
5.6884x 10
5.7798 x 10
5.8481 x 10
5.8957 x 10
5.9248xlp 3

5.9374x 10-'
5.9352x 10

5.8102x 10
5.5576x10 3

5.2343 x 10
4.8778x 10
4.5123x 10
4.1532x 10
3.8094xlp 3

3.4861x10 3

3.1857x 10
2.9090xlp 3

2.6555 x 10
2.4244x 10 '
2.2141x 10
2.0232 x 10
1.8502x 10
1.6934x 10
1.5514x 10
]..4228 x 1Q

1.3062 x 10
1.2005 x 10

9,7699 x 10 4

8.0081xlp 4

6.6104x 1p
5,4942 x 10
4.5965 x 1Q

3.8697x10 4

3.2772 x 10
2.79llx10 4

2.3897 x 10
2.0564x 10 4

2.1274x 10
4.8O3V x1O-'
]..5813x 1Q

6.4882x10 '
3.0765 x 10
1.6165x 10
9.1722 x 1Q

5.5257x10 8

3.4929x10 8

8.0251x10 4

1.5231x10 '
2.1673x 10
2.7405 x 10
3.2481 x 10
3.6952 x 10
4.0867x10 '
4.4272 x 10
4.7213x 10
4,9730x 10

5.1862x10 3

5.3645 x 10
5.5111x 10
5.6292xlo '
5.7216x 10
5.7908 x 10
5.8394 x 10
5.8693x10 3

5.8828xlp 3

5.8814x 10

5.7595 x 10
5.5099x10 3

5.1895x10 3

4.8358 x 10
4.4732 x 1Q

4.1168x10 3

3.7756x10 '3

3.4549xlo 3

3.1569x 10
2.8824x 10

2.6311x 10
2.4019x 10
2.1935x 10
2.0044 x 10
1.8330 x 10
1.6778x10 3

1.5372 x 10
1.4Q98 x 10
1.2944xlo 3

1.1898xlp 3

9.6874 x 10
7.9445 x 10 4

6.5617x10 4

5.45VOx1O 4

4.5682 x10-'
3.8480 x 10
3.2604x 10
2.7780 x 10 4

2.3793x10 4

2.0478x10 4

8.076S x 10-4
1.5319x 10-3
2.1785x 10-3
2.7534x 1p
3.2620 x 10-3
3.7098 x 10-3
4.1018x 10-3
4.4426 x 1Q-3
4.7369x 10-3
4.98S7x 10-3
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TABLE III. (eontinged)

ao) Formula I Formula II Forrq. ula III Formula I

3ig

Formula II Formula III

200
300
400
500

4.759&x10
7.0851x 10
1.7908 x10
6.0972 x 10

1.5265 x 10
2.2729x10 'o

5.7465 x 10
1.9572x10 "

aFormula I: Evaluated from Eq. (1) of the text. Formula II: Evaluated from Eq. (2) of the text. Formula III«.
Evaluated from Eg. (4) of the text.

The expansion coefficients f„(&)/a! [see Eq. (4)]
are tabulated in Table IV, and the matrix elements
Z„(i') [see Eg. (5)] in Table V.

C. Comparison with Experiment

The use of experimental dv„(usually for fast
electrons) in the left-hand side of Eq. (3) allows
one to define operationally an "apparent" general-
ized oscillator strength. " A necessary (though
not sufficient) condition for the validity of the Born
approximation is that the experimental do~ at dif-
ferent T produce the same "apparent" f„(K).

For the 2'I' excitation, published experimental
data have so far been relative, "and have been nor-
malized to some theoretical data. '~" '8~2o A better
comparison, therefore, would be possible after ex-
perimental data are renormalized against our re-
sults. The shape of the "apparent" f„(K), however,
should be free of uncertainties due to the normal-
ization. For a tentative comparison, we quote in
Fig. 1 some published experimental data without
renormalization. The experimental data of Lasset-
tre et a~.'~"~" Bt T=—400-500 eV agree with our

I I I I l I i I I I j I 1 l I II 1 1

He(2S and 3S)

calculated f2»(K) very well. Average deviation of
their data from our f2&~(K) is about 2.5/o except
for the large-angle data for which the cross sec-
tions become extremely difficult to measure. "
Their data are normalized to f2»(K) calculated by
Lassettre and Jones' (see further discussion in
Sec. 4D) in the neighborhood of (Ka,)'-0.3 to 0.4,
where their calculated values happen to agree very
well with ours (See. Fig. 1.) Therefore, renor-
malization against our result will not change to
any appreciable extent Lassettre's "apparent" f~(K)
not only of He, but also of all other atoms and
molecules, which are normalized against f2»(K)
of He.

The experimental data of Vriens, Simpson, and
Mielczarek" for T «400 eV are normalized against
an anlaytic formula for f2'~(K) (Sec. 4D) whose op-
tical limit is chosen to be the value by Schiff and
Pekeris. " These data are consistently smaller
than our result except for the small angle (5') data.
The deviation from our f2»(K) is about 5%, some-
what greater than the claimed experimental uncer-
tainty of 2%. The small difference may have come
from uncertainty in the normalization procedure,
or may represent a departure from the Born ap-
proximation. The latter possibility, however,
seems to be in disagreement with implications of
extensive experimental data of Lassettre and co-
workers.

Although the normalization of Geiger's data' by
use of a calculated elastic-scattering cross section

002

O.OI

TABLE IV. Power-series expansion coefficients for
the generalized oscillator strengths of He for small mo-
mentum transfers. [See Eq. (4) of the text. ]

0
lO !O-' !

(Kao)

I I I I I I I

(0
2iS

0 0.0 0.0 0.275 87 0.073 438
FIG. 3. The generalized oscillator strengths for the

2i8 and 3 8 excitations of He. The experimental data
for the 2'$ excitation are those of Lassettre et al. (g)
(Hefs. 8 and 17, T= 500 eU), and of Uriens et al. (6)
(Ref. 20, T= 300 and 400 eU). The solid curves repre-
sent the present calculation. There are no experimental
data available for the 3 9 excitation. Differences between
"Formula II" and "Formula III" results are indiscern-
ible in this figure.

1 0.083 616 0.017 028 -0.450 15 -0.092 490

2 -0.123 938 -0.017 897 0.429 45 0.057 131

3 0.107 984 0.008 014 -0.311 55 -0.016 248

4 -0.071 770 0.000 1935 0.189 54 -0.006 065

5 0.040 092 -0.003 192



182 Y. K. KIM AND M. INQKUTI

TABLE V. Matrix elements Zz(") [see Eq. (6) of the
text] between the ground and excited states of He.

2is 3S 2iP 3P

1
2 0.469 780 -0.201 060
3
4 4.177 95 -1.267 86
5
6 62.7593 -7.038 98
7
8 1459.87 230.165
9

10 48 284.2 25 035.7

0.420 556 0.208 015

2.058 69 0.785 943

22.4849

426.415

4.760 31

-9.924 23

12 230.7 —4039.80

may be subject to reconsideration, "his large-an-
gle data(~2X10 ' rad) for the 2'P excitation agree
reasonably well with our result. Relativistic kine-
matics has been used to redetermine the "apparent"
f„(K) from his experimental do~. (Figure 1.) We
omitted from Figs. 1 and 2 some small-angle data
((10 2 rad) which show a larger scatter presum-
ably due to the difficulty in photographic detection
and in the geometry.

The close agreement of our f2'~(K) and available
experimental data, particularly those of Lassettre
et al. , seems to support the general belief that
the 2'P differential cross section is well represent-

ed by the Born approximation to rather low-inci-
dent energies (-200 eV).

The experimental data for the 3'P excitation are
less reliable than those for the 2'P excitation be-
cause of the difficulty in separating the contribu-
tions from the 3'S and 3'D excitations. The experi-
mental data of Lassettre et al."and Of Geiger' are
presented in Fig. 2. It is clear frorh Fig. 2 that
the shape of the former agrees in general with the-
ory, though not as precisely as for the 2'P excita-
tion.

The magnitudes of Geiger's data for the 3~P ex-
citation are substantially larger than our result,
possibly because of insufficient energy resolution,
but the shape is in somewhat better agreement
with theory than the data of Lassettre et al." A re-
normalization, however, would seriously affect
his 2'P data that were simultaneously measured.

As for the 2 S excjtatjons s,z6,&7,2o all experimen-
tal data for (Ka, )' &0.2 depart in various ways from
our calculation. (See Fig. 3.) We can detect in
Fig. 3 a tendency for the shape of the "apparent"

f2~S(K) to become closer to that of our result as
the incident electron energy is increased. The
Born approximation is probably valid only at much
higher incident electron energy (2800 eV) for this
excitation. Note also that the slope of the f2~S(K)
vs. (Kao)'plot as K-0 measured by Skerbele and
Lassettre" with 500-eV incident energy is 0.099,
slightly larger than our f2~S'" =0.0836. (See Ta-
bles IV and VI. )

No experimental do+ for the O'S excitation ap-

TABLE VI. Values off„i for the 2 Sand BiS exoitations of He.

2iS f i(i) Comments

Experiment

Lassettre et al.a

Skerbele and Lassettrei~
Boersch, Geiger, and Schr5der 9

Vriens, Simpson, and Mielczarek~

0,089
0.092
0.099
0.116
0.0773

T= 500 eV, (E'ep) ~ 0.177.

T=500 eV, 0.09&(Kao) &0.02.
T=25 keV, (Eao) -3.3x10
T=400 eV, ga, )'» 0.235.

Theory

Altshuler4

Fox'

Oar etang ~

van den Bos
Present work

0.0366
0.0557
0.072
0.11
0.13
0.0611
0.0836

Method I, hydrogenic wave functions
Method II, hydrogenic wave functions
Hartree ground-state wave function
Eckart ground-state wave function
Hartree-Pock wave functions
BJ-BE combination of Ref. 11.
Weiss wave functions

3S f i (i)

Theory

Garstang
van den Bos i

Present work

0.021
0.0266.
0.0170

Hartree-Fock wave functions
BJ-BE combination of Ref. 11
Weiss wave functions

aObtained by Lassettre (Ref. 17) from experimental data quoted in Ref. 67.
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pears to be available, except for some relative
measurements of the zero-angle electron-scatter-
ing cross sections do„(0).~' The ratios RP
=da3&p(0)/do2& p(0) and RS =do'3&S(0)/do'2&S(0)
have been measured by Lassettre et al.4' at 202 eV
(RP=0.22, RS=0.22), and by Chamberlain ef al.~'

at 81 eV and below (RP =0.20, RS= 0.25 at 81 eV).
The experimental ratios compare very favorably
with our calculated ratios (RP =0.206, RS=0.183
at T =202 eV, and Rp=0.203, RS=0.189 at T =81
eV), though the Born approximation is expected to
be valid only for the R~ measurement of Lassettre
et al.4'

D. Comparison with Other Theoretical Results

As discussed in A of this section, the optical os-
cillator strengths of Schiff and Pekeris" and of
Weiss ' provide an indispensable guide in judging
the accuracy of our result.

Altshuler4 computed f„(K) for the 2~S, 2'P, and
3'P excitations from hydrogenic wave functions us-
ing the two alternative formulas [Eqs. (1) and (2)].
Considering the crudeness of the wave functions,
it is remarkable that his f„(K) for the 'P excita-
tions computed from Eq. (2) are close to ours in
shape and magnitude within ~5%for (Kao)2& 1. For
(Kao)'pl, his results from Eq. (1) are in better
agreement with ours, though they are poor for
small K. His f2&S(K) computed from Eq. (2) agrees
with ours in shape, but is smaller in magnitude by
20 to 30%.

Lassettre and Jones' calculated f2'(K) from Eq.
(1) using a six-term Hylleraas ground-state wave
function and a variational 2 P wave function (simi-
lar to a screened hydrogenic function in accuracy).
Their calculation was later extended to cover a
wider range of E by Silverman and Lassettre. '
This f2'(K) is in very good agreement with ours
in the region 0.3 ~ (Ka, )' &1.0. (See Fig. 1.)

A similar calculation, by use of Eqs. (1) and (2),
was reported by Kennedy and Kingston, "presum-
ably with an improved ground-state wave function.
We find, . however, that the result in Ref. 12 is
larger than our result by a few percent, contrary
to their claimed accuracy of 1/o."

Van den Bos" calculated fz(K) for many excited
states of He using Eq. (1) with various combina-
tions of ground and excited-state wave functions
comparable to the Hartree-Fock wave functions or
somewhat inferior. Of the many combinations, the
f„(K)for the 'P excitations computed with a two-
term Hartree-Fock-Roothaan ground-state wave
function and Eckart 'P wave functions agree with-
in 5% with our result for (Ka„)'&2.

Bell, Kennedy, and Kingston» calculated f31P(K)
using a six-term Hylleraas ground-state wave func-
tion and a hydrogenic excited-state wave function.
Their f3'(K) is larger than ours by several per-
cent, indicating the importance of accurate wave
functions not only for the ground but also for the
excited states.

As mentioned earlier, the nonvanishing overlap
integrals between the ground and excited ~S state
wave functions lead to less accurate fz(K) for
small K when Eq. (1) is used. ~~ Fox studied the
dependence of f„(K) on the choice of ground-state

wave functions when the orthogonality constraint
was enforced. His result for the 2'S excitation
with the Hartree ground-state wave function
agrees reasonably with our result. The results of
Fox' and of Altshuler' clearly indicate, however,
that an accurate evaluation of f„(K) for the 'S ex-
citation requires much more sophisticated wave
functions than for the 'P excitation.

Another quantity of interest for the ~$ excitation
is fz& &, the first nonvanishing coefficient of the ex-
pansion Eq. (4).'~" (See Table IV, and comment
on the experimental data of Skerbele and Lassettre"
in Sec. 4C. ) This coefficient may be used as a
measure of the reliability off (K) for small K.
For the 2'S and O'S excitations, values of fz'" from
various sources are tabulated in Table VI. Clear-
ly no combination of Hartree-Fock or inferior
wave functions produces a reliable value of f„'"be-
cause its essential factor Z„~') emphasizes the con-
tribution from large x.

In view of the remarkable success of Altshuler
for the 'P excitations by use of Eq. (2), as a pre-
lude to the calculation of f„(K) for large atoms or
molecules, it would be interesting to calculate
f„(K) for the allowed transitions using bona-fide
Hartree-Fock wave functions both for the ground
and excited states of He.

Rau and Fano4' have shown that the leading term
of f„(K) as K- ~ is proportional to (K«,)

—2(f+ 5),
where l is the azimuthal quantum number of the ex-
cited state. We found that this asymptotic behav-
ior could be described by the leading term alone
for (Ka, )' & 900.

The generalized oscillator strengths for other
transitions from the ground as well as metastable
states will be reported in a later publication.

5. The Bethe Total Cross Sections for Excitation

The (total) cross section o~ for excitation to a
particular state n is simply an integral of do&& [Eq.
(3)J, the upper and lower limits being determined
by kinematics. In the region of valid&ty of the
Born approximation, where T =mv /2 is sufficient-
ly larger than the binding energies of atomic elec-
trons, az can conveniently be treated in terms of
an expansion in inverse powers of T. The leading
term is known as the Bethe asymjtotic cross sec-
tion. »2~»~» Thus, the excitation cross section o
for an optically allowed transition to the state s is

47&a 'z' f0 s
+s T/R E /R

ln(4c T/R)
S

8
/

s
T/R (T

where the constants cs and ys are defined by

ln[c (E /R)']= j [f (K)/f ]din(Ka )'

f (1-[f—(K)/f ])d In(Ka0)', (l2)

y = -(m/2M)f (E /4R)f '", -
fs&" being defined by Eq. (5) and M denoting the re-
duced mass of the incident particle and the atom.
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TABLE VII. Parameters for the excitation cross sections of He.

Optically allowed transitions

Excited state s Ines pf /g ln(4c ) , (.)'
s

21+ 0.177

0.0433

—1.868

—1.833

-0.0852

-0.0193

0.0376

0,00252

0.175

0.0392

Optically forbidden transitions

Excited state s' bs'

0.0455 -0.0317

3'S 0.0103 -0.00717

aBecause ys for allowed transitions dePend on M, we give values for an electron y ~ ) and for a charged Particle with
(~) s~ ps . The latter hardly differs from the value for a proton.

The excitation cross section Osi for an optically
forbidden transition to the state s' is

4wa 'z' y /E
s' T/R s' T/R ( T' j

where bs and ys are defined by

„ f, , (~)
b, =f, R

d ln(Ka )',
s

(14)

and y, = (E,/4R)f, &'&. - (16)

for an allowed excitation, Cs being related to es
by

C =(Rf /E )Linc +ln(2mc'/R)],

and

ln(2mc2/R) = 11.2268, (18)

The derivation of Eqs. (11) through (16) is given in
the Appendix. Equations (18) and (16) represent a
generalization of a similar treatment by Vriens, 4'

who utilizes a presumed analytic form for fn(K).
Some remarks may be made on the above formu-

las. Firstly, a few well defined param-eters fs/Es~c, and ys (or bs' and Xs') determine the essen
tiatly meaning+i content of the Born approxima
tion, thus obviating repeated integrations of dan
at different T. Of these parameters, fs /Es, cs,
and bshe are the most important. "They also deter-
mine the cross section at relativistic velocities
(v =Pc T-10 eV) ~48~4

8va 2e2 f &' P2 )0 svz=, /p, @ /p ln[y &pI-I
' +c I &17)

part of the difference between the Born cross sec-
tion and the Bethe asymptotic cross section and
thus serves as a -measure of the applicability of
the Bethe procedure. This term, however, should
by no means be confused with the difference be-
tween the tyne cross section and the Bethe cross
section, because those effects which are neglected
in the Born approximation contribute to the cross
section within the same order of magnitude as the
ys or ys' term. 47 Thirdly rs for an allowed tran-
sition depends on M and may have either sign
while yst for a forbidden transition is invariably
nonpositive. " Fi"ally ys and ys' likewise es
and bshe,

"obey certain sum rules.
%e have evaluated cs and ys for excitations to

the 2'P and 3 P states, and bshe and yst for the 2 S
and O'S states from our fn(K). The results are pre-
sented in Table VII. The total cross sections there-
by derived are shown in Figs. 4-7, where the ordi-
nate represents (T/R)on/(47&a0'z') and the abscissa
ln(T/R). Notice that the Bethe asymptotic term,
given by the straight lines there, dominates over
the correction term with yn. Further the remain-
der O(En /T') is insignificant in the region of in-
terest. Indeed, integration of dan between exact
kinematical limits shows that the remainder O(En /
T'), even at T = 100 eV, is less than l%%uo for the 2'S
and O'S excitations, and even smaller for the 2'P
and 3'P excitations.

It is worth noting that the important parameters
es and As' are often inadequately treated in the lit-
erature. An example is the discussions on pp. 496-
498 of Ref. 10. The often quoted formulas, Eqs.
(117a) and (117b) of Ref. 10, imply in our notation

c =R/E (20)

Bra,2@2

s' mv'/R s' (19) b, = l 2, &'&l IW0l/(4R), (21)

for a forbidden excitation. Secondly, the term
with ys or ys~ represents the most significant

respectively, where W, is the total energy of the
ground state. These relations neither have a
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FIG. 4. Cross section for the 2 ~ excitation of He. The
solid straight line represents the Bethe asymptotic cross
section for any charged particle, and the broken curves
(---) represent the same with the kinematical correction
[Eq. (11)j for an electron labeled "e")and for charged
particles with M ~ (labeled "~"). The dots (o) show
the electron-collision data of Jobe and St. John (Ref. 60),
the circles (0) those of Moustafa Moussa et al. (Ref. 61),
and the triangles (6) those of Vriens zt pl. (Ref. 20).
The square (p) shows the measurement of Gabriel and
Heddle (Ref. 58), and the dashed curve (-—,labeled
"Z") Zapesochnyi's data (Ref. 62).

sound basis nor can serve as a practical guide. In-
deed, for the transitions in He; Eq. (20) gives
lnc2~P = -0.445 and lnc3'P = -0.529, leading to the
cross sections too large by some 40% at T = 500 eV.
Further, Eg. (21) gives b2,&=0.320 and b31S
= 0.0587, leading to the asymptotic cross sections
several times too large. (See Table VII. )

A. Excitation to the 2 I' and 3 I' States

Earlier theoretical and experimental studies
have been extensively reviewed by Moiseiwitsch
and Smith, "and by Green et al."

Among published calculations4&M-~4&»-», the re-
sults within the Born approximation of Altshuler4
(from his "Method II"), of BelP' (for proton and
alpha particles), of Mott and Massey (Ref. 10, p.
498), and of Kennedy and Kingston" (for 2'P) are
the closest to our result, differing only by a few
percent in the region T ~400 eV. Earlier determi-
nation ~ of the parameters f&/E&, inc&, and
y~ is, in general, in reasonable agreement with
our result in Table VII, except for the y3$P values.
A study of Hothenstein" indicates that the second
Born approximation reduces the electron-impact
cross section for the 2'P excitation by about 6% at
T =200 eV. However, the use of simple hydrogen-
ic wave functions, which give an erroneous f21P,"
prevents one from attaching quantitative signifi-
cance to this result. Allowance for the electron
exchange also seems to reduce the first Born
cross section by a few to several percent for T
g 4p p eV 47

p
54 y 57

Figures 4 and 5 compare our results with select-
ed experimental data. The cross sections given
in Refs. 58-62 were derived from intensities of op-

T (ev)

60 IOO 200 500 IOOO 2000 5000

0.20
C4

N
NO

O. l 5
Q

CL
O. IO

OQ5

0
In (T/R)

FIG. 5. Cross section for the 3 & excitation of He.
The solid straight line represents the Bethe asymptotic
cross section for any charged particle, and the broken
curves (---) represent the same with the kinematical
corrections [Eq. (11)j for an electron (labeled "e")
and for a charged particle with M ~ (labeled "~").
The dots () show the electron-collision data of St. John
et al. (Ref. 59), and the circles (Q) those of Moustafa
Moussa et al. (Ref. 61). The square (p) shows the meas-
urement of Gabriel and Heddle (Ref. 58), and the dashed
curve (---, labeled "Z") that of Zapesochnyi (Ref. 62).
The data of Silverman and Lassettre (Ref. 63), not
shown here, are indistinguishable from the solid line for
T-100 eV.

tical emissions excited by electron impact. For
the 2'P excitation, the data of Jobe and St. John6
are closer to our result than those of Moustafa
Moussa et al." (Notice also that the latter mea-
surements were originally relative and were nor-
malized in such a way as to exhibit the correct as-
ymptotic slope. ) In contrast, the 3'P data'of Mou-
stafa Moussa e& al." (in this case measured abso-
lutely) are compatible with our asymptotic cross
section but those of St. John et al."are not. The
data of Zapesochnyi" for the 2'P and the O'P exci-
tations are in disagreement with our result.

The 2'P excitation cross sections in Ref. 20 are
semiempirical in origin. The determination of the
cross sections is based on the Born approximation
[Eg. (3)] and utilizes an analytic form for the "ap-
parent" f2'(K) fitted to measured differential
cross sections. The resulting cross sections
agree well with our theory. (See Fig. 4. ) The 3'P
excitation cross sections derived in a similar man-
ner by Silverman and Lassettre" are also in good
accord with our .result.

The measurements for the 3'P excitation by pro-
tons and deuterons' "are in fair agreement with
our result.

The cross sections adopted by Miller» in i956
after critical analyses of experimental and theoret-
ical information available at that time are slightly
higher than our results for T & 200 eV.

B. Excitations to the 2 S and 3 S States

Again, theoretical and experimental data are
summarized in Refs. 50 and 51.
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FIG. 6. Cross section for the 2 S excitation of He.
The solid straight line represents the Bethe asymptotic
cross section and the broken curve (---) the same with
the kinematical correction [Eq. (14)] both for any
charged particle. The triangles g) show the electron-
collision data of Vriens et al. (Ref. 20). The square
(p) shows the determination by Gabriel and Heddle
(Ref. 58).The dashed curves labeled as M, L, E, and Z
refer to the adoption of Miller (Ref. 27), the data of
Lassettre (Ref. 67), the calculation of Fox (Ref. 9), and

of Zapensochnyi (Ref. 62), respectively. The cal-
culation of Altshuler (Ref. 4), which is not shown
here, is very close to the adoption of Miller.

The Born cross sections evaluated by Fox are
close to ours (Figs. 6 and 7) while those of Altshul-
er' and of van den Bos" are very different from
ours although all the calculations use wave func-
tions of similar quality. This situation illustrates
the need of accurate wave functions for a reliable
result in these forbidden transitions, particularly
when the states involved belong to the same sym-
metry so that the orthogonality between them is
nontrivial. (See Sec. 4B.)

For the 2'8 excitation by electrons, only a few
fragmentary data are available from direct mea-
surements. '7y5 Lassettre, e' and later Vriens et
g).' evaluated the excitation cross section from
"apparent" f2~S(K) fitted to the measured differen-
tial cross sections. Comparison of these cross
sections especially those from Ref. 20 with our re-
sult on Fig. 6 appears to indicate that the Bethe
asymptotic limit is not quite attained at T = 400 eV.
(See Sec. 4C.)

Among optically measured cross sections for the
3'8 excitation by electrons, the data of Moustafa
Moussa et al. ~ are compatible with our result and
exhibit a gradual attainment of the asymptotic be-
havior around T= 10 eV, while the data of St. John
et gl. '9 are incompatible with our result. The data
of Zapesochnyi62 disagree strongly with our asymp-
tote.

The O'S excitation cross sections for impact of
protons with incident energies around 100 keV~~66
appear to be in rough agreement with our result,
although the Born approximation is not likely to be
valid at these low velocities.

The cross sections adopted by Miller" for both
the 2 ~ and 3 ~ excitations, in contra, st to those for
the 2 I' and 3 I' excitations, turn out to be much
too low compared to our results. A revised adop-

tion of He cross sections in view of the present
work and other recent information" is being
planned.
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+O(E '/T')]

Q, = [4(M/m)2T/R]I 1-(m/2M)E /T
(A1)

+o(E„/T )] (A2)

Because f„(K) is known to fall off as a high pow-
er of 1/Q as Q -~,46 it follows from Eq. (A2) that
replacement of Q, by infinity introduces an error
in A„only of o(E„'/T'). Thus, after rearranging
the interval of integration, we write

~ =f, f (K)Q dQ+f, [f (K)-f ]Q 'dQ

-f„»Q1 f, '[f„(K-)-f„]Q-'dQ

+o(E '/T2). (A3)
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FIG. 7. Cross section for the S~S excitation of He.
The solid straight line represents the Bethe asymptotic
cross section and the broken curve (---) the same with
the kinematical correction [Eq. (14)3, both for any
charged particle. The dots () show the electron-colli-
sion data of St. John et al. (Ref. 59), and the circles (0)
those of Moustafa Moussa et al. (Ref. 61). The sc uare
( ) shows the measurement of Gabriel and Heddle (Ref.
5.8). The dashed curves labeled as M, I, and Z refer to
the adoption of Miller (Ref. 27), the calculation of Fox
(Ref. 9) and the experimental data of Zapesochnyi (Ref.
62), respectively.
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APPENDIX. DERIVATION OF EQS. (& l)-(16)
The essential factor in o„ is the integraP'

A =1 'f (K)Q VQ,

where Q = (Ka,)2, and the limits Q, and Q2 in non-
relativistic kinematics are

Q = [E '/(4RT)][1+(m/2M)E /T
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The first two terms on the ri t-hand side of Eq.
(A3) together give either fs ln cs(Es/R)'j for an al-
lowed transition (n=s), or (Es~/R)bs~ for a forbid-
den transition (n =s'). [See Eqs. (12) and (15).j
The third term, present only for an allowed tran-
sition, is written, by use of Eq. (Al), as

(E ~) (m) f E (E 2)

The fourth term is expressed, by use of Eq. (4),
in the form

=f &uE ~/(4RT)+0(E I/Tn) (A5)

Combining Eqs. (A3), (A4), and (A5), we obtain

A =f ln(4c T/R)-(m/2M)f E /T

-f 'uE '/(4RT)+o(E '/T') (A5)

for an allowed transition, and

E 2 (E
A .=~( „ I&, -f, ."(4RT)+OI T. ~,

for a forbidden transition. Equations (A6) and (A7),
respectively, lead to Eqs. (ll) and (14).
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