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Lorentz-Pole Model and Polari2, 'ation in High-Energy Charge-Exchange
Pion-Nucleon Scattering
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In this paper we propose a mechanism for explaining the polarization in high-energy charge-exchange wF
scattering, based on 0(3,1) partial-wave analysis. We found that the nonvanishing polarization may be
understood in terms of one Lorentz pole, gr~=e~+1, and that it is due to the interference of p vrith another
Regge pole p' belonging to the family jo=0 and given in terms of e~ by the relation a, =o,-2.

'T is well known that in order to explain the polari-
~ - zation phenomenon in high-energy meson-nudeon
charge-exchange scattering, one has to modify the single
Regge-pole model' (p trajectory) either by introducing
othcl' slIlgulR1'ltlcs 111 'thc J plaIlc (Rcggc cuts, p Rcggc
pole) or by taking into account direct channel effects,
for example the effect of tails of low-energy resonances
at high energies.

The aim of this work is to study the high-energy
behavior of polarization within a simple model inwhich
only one Lorentz pole o, (t) =a,(t)+1, degenerate with
respect to various quantum numbers (jo, Lorentz
signature X), is taken into account.

The expansion of the helicity amplitudes of the
process sr p -+ scots in terms of the homogeneous
Lorentz group' has been studied by Akyeampong,
Royce, and Rashid. ' According to their results, the
dominance of a Lorentz pole at o,(t) =cr,(t)+1 may
reproduce all the qualitative features of the experi-
mental angular distribution, provided that the p
trajectory belongs to a mixed representation arith
go=0 and go=4.

In what follows we denote by f++(s,t) and f+ (s,t)
the non-spin-Qip and the spin-fHp helicity amplitudes,
respectively, corresponding to the direct channel (s
channel) of the process

sr-()g)+P(Xs) —. + sr«(its) +N(4),

formulas:
I
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where T++so(o, t), T~"(o;t) are the O(3,1) "partial-
wave" amPlitudes (jo——0, 1) and

cosh)t=
(4mles —t)'ts(4m '—t)'ts

Before introducing Lorentz poles in the 0 plane, we
mod1 fy Eqs (2) dc6nlng 1'cdllccd RInplltlldca T++iox(o t)
and T+ t«(o, t) having O(3,1) signature X. Following
Akyeampong, Boyce, and Rashid, ' we may write
(X=ai).
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where tIIk1 IIItg Rrc thc hcllcitics of thc Dlcsons Rnd Xg

lt» the helicities of the nucleons. The O(3,1) expan-
sion of f~+(s,t) and f+ (s,t) is given by the following —(1—+)T~'"(o,t)dIII"(6)j (3)
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We assume now that the helicity amplitudes (3) Rrc
dominated by one Lorentz pole 0, We also assume that
the location of the Lorentz pole is independent of ja.
Therefore all amplitudes X~+OX T~'x T+ '& have a
pole at the same point o=o,(t) corresponding to a

dcgcncrRtc tIRjcctory ln the scnsc that it accom-
modates both JO=O and J0=1 states. If wc-shift the
patll of 1Iltcgl'atloll 111 Eqs. (3) to tllc left, wc obtalll
the following expressions for the contribution of the
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pro. t. The polarisation of the neutron in the reaction s p -+ s om for pion momentum 21~=5.9 GeV/o is plotted.

The solid line represents our result. Experimental points are also given.

to the spin-Qjp ™plitudel Eqs. (4)j, corresponds to the
member +=I of thc faxnjLIy x=0'p —I—I, as can easily
be shown by decomposing the O(3,1) d function dl rlo ~

in terms of 0(2,1)matrix elements, following the formal-
lsIQ of Sclarrlno and TOIlcr. Thc contllbutlon of this
Regge pole is not zero only if g= —1, i,e., if X=+1,
according to formula (5).

Kc identify this Rcgge particle v6th the p' meson
which therefore belongs to the following class: je=o,
of=+» t= —&

Moreover, the trajectory n;(i) is given in terms of
a, (t) by the following simple relation:

Lorcntz pole ap.
2 f~Xgftxop
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It 1s easy to show that the signatures of the Regge
trajectories associated with the Lorcntz pole a„arc
gjvcn by thc formula

~ =X(-1)" (5)

., (i)=,(~)-l.
Keeping now the appropriate signatures m Eqs. (4)

and using the asymptotic expressions of the d functions,
wc Inay %lite the contribUtions of p and p as foILows:
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~h~re g„js the signature of the Nth member of the
famjIy: ~„=0—g —I. Since the only Regge poles that
arc allowed in this process arc those vGth thc quantuHl
numbers of the p Incson, naxnely w1t»cgat»e»gnat
($=—1) and natlll'Rl pal'lty (rjf=+1), wc distinguish
thc following couplillg scllcrncs (li is thc pR1'lty of thc
exchanged p»tjcjc):

(a) The leading Regge particle, associated with the
Smplitudea T++or P++'"dooo ' Rnd T+xPm rd»r "p-
corresponds to thc QMInbcr N=o of thc faGllly cw, =o'p
I—1, Rnd therefore, according to (5), we must have

x= —g sjnce (=—1 (p meson). Hence, the non-spin-fjjp
amplitude f++ Rnd the leading part of the spin-fjjp
amplitude gt+ r~) Rle conti'ollcd by tllc cxc11angc of tile

jo—0 and jo——f coxnponcnts of thc p trajectory.
(b) 'fhc leadmg Regge trajectory, associated with

ampljtude 2'+ ~~p~ &dr » p wlllch colltl'lblltcs
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Fro. 2. The polarization of the neutron in the reaction s p ~ s u for pion momentum Ps,s= 11.2 GeV/c is plotted.

The solid line represents our result. Experimental points are also given.

%e observe that, although the angular distribution is
dominated by the exchange of the p meson alone, the
nonvanishing polarization at high energies is due to the
interference between the p and p' terms in Eqs. (7).This
mechanism coincides with the p+p' model introduced
for the explanation of the polarization within the Regge
theory'~ so the identi6cation of the amplitude T~'~
~P+ 'xdt tt"~ wtth the conventional p' meson exchange
is therefore justided. The details of the mechanism
which explains the polarization data within the present
model are as follows.

The differential cross section do/Ck of the reaction
s' P ~ s'e is given by the formula

GO'

(I f++I'+ If~I')
2vrs~

(8)

and the polarization P of the neutron by the expression

2 Im(f++f~')

lf-I'+lf I'

From Eqs. (7) and (9) we easily find that the energy
dependence of the polarization I' in the asymptotic
region (s-+~) is P 1/s. The experimental results in
sX charge-exchange scattering at 5.9 and 11.2 GeV/c
give for the mean value of I' in a given momentum
transfer integral, the value (Ett.s)/(Es. s)=0.8+02.
This experimental result' indicates a slower decrease of

' R. K. Logan, J. Besuprs, and L. Sertoris, Phys. Rev. Letters
Is, 259 {1967).

r H. Hogsssen snd W. Fischer, Phys. Letters 22, 516 (1966).' P. Bonsmy et sl., Phys. Letters 23, 501 (1966).

I' with energy as compared with our prediction, but
nevertheless our result is consistent with the above
value within the experimental errors (Figs. 1 and 2).
The explicit form of E is found using Eqs. (7) and (9).
VVe obtain

p ™poi(o +1)sill~jr cotsrsrr,

(~.+2)H(P++™~)'(~n+1)'+3 I1I~'(0+-' ')'j

t 25$grN+
. (»)

The p trajectory is taken to be n, (t) =0.5'7+0.911.
The residues P++~', P~'-' treated as constants, are

determined by 6tting the angular distribution. In Eq.
(10) the residue P+ "remains a free parameter and it is
chosen to Gt the polarization' data at 5.9 and j,1.2
GeV/c in the process s p ~ rr I The result. s are shown
in Figs. j. and 2.

To conclude, we have shown that within the 0(3,1)
partial-wave expansion of the xX charge-exchange
scattering amplitudes, two leading Regge poles emerge
and they are identi6ed with the p and p' mesons. The
p trajectory corresponds to the first member (m=0) of
the family e„=o.,—rs —1 generated by the Lorentz pole
o'p with quantum numbers 'sX=+1~ X=—1~ (Js= 0~ 1).

The p' trajectory corresponds to the leading Regge
pole which contributes to the amplitude T~ &

~p+ srdt rts ~ LEqs. (4)j.It is generated by a Lorentz
pole with quantum numbers je——0, qX=+1, X=+1 and
lying on the same trajectory o,(/). Moreover, the p'
trajectory is given in terms of o,, by a simple relation
,.= „—i. We wish to point out that the p' trajectory
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Fco. 3. In this 6gure we plot the
angular dlstrlbutIon of the reaction
~ p-+~on using the parameters of
Table I, for energy of the incident
pion, P&,b= 5.9 GeV/c. Experimental
points are also given.
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must not be interpreted as a daughter of the p trajectory,
since these Regge poles correspond to diiferent O(3,1)
signatures. From the interference of these two trajec-
tories, a nonzero polarization is obtained and a, reason-
able Gtting of the data is given.

TABLE I.The parameters of the Lorentz pole cr~ which have been
used to 6t the angular distribution and the energy dependence of
the present charge-exchange data are shown in this table. The
residue P++ ' is given in units mb'/' and the residues P+ ~-I P+ o~

in units mb'~s/GeV.

Finally, we compare the present model with the
results of Regge theory where the parameters of the p'

are determined by Gtting the experimental data. (See
Table I and Fig. 3). In order to satisfy the constraints
of both the polarization data and the superconvergence
relations, Sertorio and Toiler' introduced a conspirator
p' with Lorentz quantum nulriber jo= j. in disagreement
with the present model according to which p' is a non-

conspiring Regge pole with j0=0, More recently,
Gajdicar, Logan, and Morat, "using the p+p' Regge
model, have analyzed in detail the xF charge-exchange
scattering by 6tting the di6erential cross section, the

9 L. Sertoria and M. Toiler, Phys. Rev. Letters 19, 1146 (j.967).
'o T. J. Gajdicar, R. K. Logan, and J. %'. Morat, Phys. Rev.

170, 1599 (1968).
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charge-exchange polarization, the srp total cross section,
the real forward amplitude D& ), and the non-spin-Qip
superconvergence relations. They found that it is not
necessary to introduce a conspiring p' trajectory, but
that it is possible to satisfy the superconvergence
relations and the polarization data with a nonconspiring
p' (js——0). Moreover, one of the two solutions of their
model gives a,.(0)=—0.5, n, (0)=0.57, in very good
gee t thth p d t,=,—i.

Finally, Hogaasen and Fischer, in their attempt to
6t the experimental data on nucleon-nucleon charge-
exchange scattering, found for the intercept of the p'
trajectory the value n, .(0)=—0.63, again in good
agreement with the results of our model.
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Relativity theory permits motions of a free-spinning particle in which the instantaneous velocity and
linear momentum are not collinear. Therefore, it is necessary to specify two invariance groups in order to
completely describe the space;-time symmetry properties of a particle with- intrinsic spin. If the quantal
description of such a particle is given by a covariant linear Geld equation, then the external space-time
symmetry is speciGed by the 10-element Poincar6 group generated by the linear four-momentum and total
angular momentum operators. However, invariance of the Geld equation under external inhomogeneous
Lorentz transformations does not complete the algebra of the 10-element group generated by the instan-
taneous four-velocity and spin angular-momentum operators. Several formulations of linear Geld equations
admitting a mass-spin spectrum are based on difkrent choices for this latter, intrinsic, space-time sym-
metry group. We begin with the simplest choice, namely, intrinsic Poincard invariance, and establish the
formal connection between these several formulations by constructing a unitary transformation which
generates an inGnite sequence of linear wave equations describing ascendingly more complex intrinsic space-
time symmetry, but linked by a common mass operator. Of special interest is the inGnitesimal transformation
which generates the familiar intrinsic DeSitter group. Finally, some kinematical properties of this trans-
formation are discussed for various proposed mass operators.

I. IÃTRODUCTIOH

THEORETICAL attempts to explain the pro-
liferation of elementary particles have, of late,

led to extensive investigation of the class of Lorentz-
covariant wave equations of the form, '

(iI'„P„+Mc)f=0. (1)

If x„—= (x,icl) is the instantaneous position four-vector,
then the linear four-momentum is given by I'„=—i AB„,
so that

(ss„,P„)=i h8„„ (&)

speciles the conjugate relation between the position
and momentum. Unlike thc momentum, however, the
remaining two operators appearing in (1), Mc and I'„,
do not possess unique representations although their
physical interpretation is understood as follows.
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11/1 (1967); L. Castell, Nuovo Cimento 50, 945 (1967). (b) For
additional references see H. C. Corben, Classical and Qgaltgm
Theories of Spill~eg Parficles (Holden-Day Publishing Co., San
Francisco, 1968), Chap. 4.

First, the Lorentz frame defined by P„=(0,i+/c) is
the "momentum rest" frame, and is usually referred to
as the rest frame. In this frame, Eq. (1) becomes

(3)

so that Mc is a mass operator, whose specilcation should
lead vlR 'tile c1gc11valuc cquatloil (3) 'to 'tllc spec'tllllll
of rest energies admitted by (1).Explicit representation
of the Lorentz-invariant mass operator Mc depends on
the dynamical model studied, if one exists, and on the
desired algebraic properties. It is most generally
represented by a hnite- or in6nite-dimensional matrix,
which may possess more structure than constant
multiple of the unit matrix. '

Second, the covariant wave equation, (1), defines
the proper-time Hamiltonian operator, '

~ The role of proper time in quantum mechanics, and its appli-
cation to the temporal evolution of the wave packet, is rigorously
treated in the literature. See, for example, S. Shanmugadhasan,
Can. J. Phys. 29, 593 (1951); G. Szamosi, Nuovo Cimento, 20,
1090 i1961);R. Schiller, Phys. Rev. 125 1116;128, 1402 (1962);
G. N. Fleming, J. Math. Phys. 7, 1N9 1966).


