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In this paper we propose a mechanism for explaining the polarization in high-energy charge-exchange =N
scattering, based on O(3,1) partial-wave analysis. We found that the nonvanishing polarization may be
understood in terms of one Lorentz pole, ¢,=a,+1, and that it is due to the interference of p with another
Regge pole p’ belonging to the family jo=0 and given in terms of o, by the relation a, =g ,—2.

T is well known that in order to explain the polari-
zation phenomenon in high-energy meson-nucleon
charge-exchange scattering, one has to modify the single
Regge-pole model! (p trajectory) either by introducing
other singularities in the J plane (Regge cuts, o’ Regge
pole) or by taking into account direct channel effects,
for example the effect of tails of low-energy resonances
at high energies.

The aim of this work is to study the high-energy
behavior of polarization within a simple model in which
only one Lorentz pole o,(f) =a,(f)+1, degenerate with
respect to various quantum numbers (jo, Lorentz
signature X), is taken into account.

The expansion of the helicity amplitudes of the
process wp— 7% in terms of the homogeneous
Lorentz group? has been studied by Akyeampong,
Boyce, and Rashid.? According to their results, the
dominance of a Lorentz pole at o,(f)=a,({)+1 may
reproduce all the qualitative features of the experi-
mental angular distribution, provided that the p
trajectory belongs to a mixed representation with
Jo=0and jo=1.

In what follows we denote by fi4(s,t) and fi._(s,f)
the non-spin-flip and the spin-flip helicity amplitudes,
respectively, corresponding to the direct channel (s
channel) of the process

7~ (\)+p(A2) = 7°(Ns)+1(\s) 1)
where \;, As are the helicities of the mesons, and A,
A4 the helicities of the nucleons. The O(3,1) expan-
sion of fi.(s,f) and fi (s,f) is given by the following
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formulas:
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where T, %(c,t), T\—(o,t) are the O(3,1) “partial-
wave”” amplitudes (jo=0, 1) and
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Before introducing Lorentz poles in the ¢ plane, we
modify Eqgs. (2), defining reduced amplitudes Ty 7% (o)
and T,_#%(g,f) having O(3,1) signature X. Following
Akyeampong, Boyce, and Rashid,* we may write
(X==1):

1
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27t 3 x J3/9-in SiNTO
X[ T4 % (o, t)d1-11" (£;)
— (=T (o) din*(2)].  (3)

We assume now that the helicity amplitudes (3) are
dominated by one Lorentz pole ¢,. We also assume that
the location of the Lorentz pole is independent of - jq.
Therefore all amplitudes Ty, T, 9% T, 1x have a
pole at the same point o=o0,(f) corresponding to a
‘“degenerate” trajectory in the sense that it accom-
modates both jo=0 and jo=1 states.® If we shift the
path of integration in Egs. (3) to the left, we obtain
the following expressions for the contribution of the

f
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Fi6. 1. The polarization of the neutron in the reaction
The solid line represents our result.

Lorentz pole o,;

g2 1—Xe irop
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. x sinwo, 2
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=i

x sin1r0'e 2 ‘
X [0, 38+ (D127 (&) ,
— (=o)X (N)dm'#(£)]. (4)

It is easy to show that the signatures of the Regge
trajectories associated with the Lorentz pole o, are
given by the formula!

£n=x("1)n7 ®)

where £, is the signature of the nth member of the
family: a,=0—n—1. Since the only Regge poles that
are allowed in this process are those with the quantum
numbers of the p meson, namely with negative signature
(¢=—1) and natural parity (¢=-1), we distinguish
the following coupling schemes (7 is the parity of the
exchanged particle):

(a) The leading Regge particle, associated with the
amplitudes T4+ 9%~ B +%%dooo®» and Ty X~ _'._lxdlula,,,
corresponds to the member #=0 of the family an=0,
—n—1, and therefore, according to (5), we must have

=—1 since £=—1 (p meson). Hence, the non-spin-flip
amplitude fi; and the leading part of the spin-flip
amplitude (8;—!x) are controlled by the exchange of the
7o=0 and jo=1 components of the p trajectory. ]

(b) The leading Regge trajectory, associated with
the amplitude T} %~ %d;_y;°» which contributes

 — nx for pion momentum Piap=5.9 GeV/c is plotted.
Experimental points are also given.
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to the spin-flip amplitude [Egs. (4)], corresponds to the
member #=1 of the family a,=0¢,—#—1, as can easily
be shown by decomposing the 0(3,1) d function d;_1,%
in terms of O(2,1) matrix elements, following the formal-
ism of Sciarrino and Toller.® The contribution of this
Regge pole is not zero only if ¢=—1, ie., if X=-1,
according to formula (5).

We identify this Regge particle with the p’ meson
which therefore belongs to the following class: jo=0,
nE=-+1, E=—1.

Moreover, the trajectory a,(f) is given in terms of
a,(f) by the following simple relation: '

ap()=a,()—1. (6)

Keeping now the appropriate signatures in Eqs. (4)
and using the asymptotic expressions of the d functions,
we may write the contributions of p and p’ as follows:
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F16. 2. The polarization of the neutron in the reaction #—p — «%n for pion momentum Piap=11.2 GeV/c is plotted.
The solid line represents our result. Experimental points are also given.

We observe that, although the angular distribution is
dominated by the exchange of the p meson alone, the
nonvanishing polarization at high energies is due to the
interference between the p and p’ terms in Egs. (7). This
mechanism coincides with the p+p’ model introduced
for the explanation of the polarization within the Regge
theory®? so the identification of the amplitude 7 %x
~B4_9%d;_1,°?» with the conventional p’ meson exchange
is therefore justified. The details of the mechanism
which explains the polarization data within the present
model are as follows.

The differential cross section do/d¢ of the reaction
7—p — w% is given by the formula

de 1
el fel) m o) ®

dt 2ws?
and the polarization P of the neutron by the expression
— 2Im(f4f+-*) . ©)
| fre P4 | S ]2

From Egs. (7) and (9) we easily find that the energy
dependence of the polarization P in the asymptotic
region (s—o) is P~1/s. The experimental results in
wN charge-exchange scattering at 5.9 and 11.2 GeV/¢
give for the mean value of P in a given momentum
transfer integral, the value (Pi1.2)/(Ps.9)=0.824-0.2.
This experimental result8 indicates a slower decrease of
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P with energy as compared with our prediction, but
nevertheless our result is consistent with the above
value within the experimental errors (Figs. 1 and 2).
The explicit form of P is found using Eqgs. (7) and (9).
We obtain

» V38,016, 0 (apt-1)2| 2|12 cotjma,
(e F TR B ot D3 1] (8]

x(zm”m”) . (10)

s

The p trajectory is taken to be a,(f) =0.57-40.91¢.

The residues B4.%%, B, treated as constants, are
determined by fitting the angular distribution. In Eq.
(10) the residue 8,_°! remains a free parameter and it is
chosen to fit the polarization® data at 5.9 and 11.2
GeV/c in the process 7—p — 7%. The results are show:
in Figs. 1 and 2. :

To conclude, we have shown that within the 0(3,1)
partial-wave expansion of the wN charge-exchange
scattering amplitudes, two leading Regge poles emerge
and they are identified with the p and p’ mesons. The
p trajectory corresponds to the first member (2=0) .of
the family an=0,—n—1 generated by the Lorentz pole
o, with quantum numbers 7X=+1, X=—1, (4,=0, 1).

The p’ trajectory corresponds to the leading Regge
pole which contributes to the amplitude 77, %«
~B4-0%d 11" [Eqs. (4)]. It is generated by a Lorentz
pole with quantum numbers jo=0, 7X=-1, X=+1 and
lying on the same trajectory o,(f). Moreover, the p’
trajectory is given in terms of e, by a simple relation
ay=a,—1. We wish to point out that the p’ trajectory
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Fic. 3. In this figure we plot the
angular distribution of the reaction
7~ p— 7% using the parameters of
Table I, for energy of the incident
pion, Pip=5.9 GeV/c. Experimental
points are also given.

0 0.1 0.2 0.3 0.4 0,5

must not be interpreted as a daughter of the p trajectory,
since these Regge poles correspond to different O(3,1)
signatures. From the interference of these two trajec-
tories, a nonzero polarization is obtained and a reason-
able fitting of the data is given.

TaBLE I. The parameters of the Lorentz pole o, which have been
used to fit the angular distribution and the energy dependence of
the present charge-exchange data are shown in this table. The
residue 8,.,971 is given in units mb!/2 and the residues 4171, 8,0
in units mb!/2/GeV.

a,(0) 0.6

a,’ (0) 0.9
Byt 47
By-11 364
B0t 6.2X108

Y

-t(GeV/c)?

Finally, we compare the present model with the
results of Regge theory where the parameters of the p’
are determined by fitting the experimental data. (See
Table I and Fig. 3). In order to satisfy the constraints
of both the polarization data and the superconvergence
relations, Sertorio and Toller® introduced a conspirator
p’ with Lorentz quantum number jo=1 in disagreement
with the present model according to which p’ is a non-
conspiring Regge pole with jo=0. More recently,
Gajdicar, Logan, and Moffat,® using the p+p’ Regge
model, have analyzed in detail the 7NV charge-exchange
scattering by fitting the differential cross section, the

9 L. Sertoria and M. Toller, Phys. Rev. Letters 19, 1146 (1967).
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170, 1599 (1968).
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charge-exchange polarization, the 7p total cross section,
the real forward amplitude D, and the non-spin-flip
superconvergence relations. They found that it is not
necessary to introduce a conspiring p’ trajectory, but
that it is possible to satisfy the superconvergence
relations and the polarization data with a nonconspiring
¢’ (jo=0). Moreover, one of the two solutions of their
model gives a,(0)=—0.5, a,(0)=0.57, in very good
agreement with the prediction o, =a,—1.
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Finally, Hogaasen and Fischer,” in their attempt to
fit the experimental data on nucleon-nucleon charge-
exchange scattering, found for the intercept of the p’
trajectory the value «,(0)=—0.63, again in good
agreement with the results of our model.
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Relativity theory permits motions of a free-spinning particle in which the instantaneous velocity and
linear momentum are not collinear. Therefore, it is necessary to specify two invariance groups in order to
completely describe the space-time symmetry properties of a particle with intrinsic spin. If the quantal
description of such a particle is given by a covariant linear field equation, then the external space-time
symmetry is specified by the 10-element Poincaré group generated by the linear four-momentum and total
angular momentum operators. However, invariance of the field equation under external inhomogeneous
Lorentz transformations does not complete the algebra of the 10-element group generated by the instan-
taneous four-velocity and spin angular-momentum operators. Several formulations of linear field equations
admitting a mass-spin spectrum are based on different choices for this latter, sntrinsic, space-time sym-
metry group. We begin with the simplest choice, namely, intrinsic Poincaré invariance, and establish the
formal connection between these several formulations by constructing a unitary transformation which
generates an infinite sequence of linear wave equations describing ascendingly more complex intrinsic space-
time symmetry, but linked by a common mass operator. Of special interest is the infinitesimal transformation
which generates the familiar intrinsic DeSitter group. Finally, some kinematical properties of this trans-
formation are discussed for various proposed mass operators.

I. INTRODUCTION

HEORETICAL attempts to explain the pro-

liferation of elementary particles have, of late,
led to extensive investigation of the class of Lorentz-
covariant wave equations of the form,!

(iT,Pu+Mcoy=0. (1)

If x,= (x,ict) is the instantaneous position four-vector,
then the linear four-momentum is given by P,= —1#d,,
so that

First, the Lorentz frame defined by P,= (0,iE/c) is
the “momentum rest” frame, and is usually referred to
as the rest frame. In this frame, Eq. (1) becomes

TWEy=M 6211’ ) (3)

so that M¢is a mass operator, whose specification should
lead, via the eigenvalue equation (3), to the spectrum
of rest energies admitted by (1). Explicit representation
of the Lorentz-invariant mass operator M¢ depends on
the dynamical model studied, if one exists, and on the
2) desired algebraic properties. It is most generally
represented by a finite- or infinite-dimensional matrix,
which may possess more structure than constant
multiple of the unit matrix.!

Second, the covariant wave equation, (1), defines
the proper-time Hamiltonian operator,?

H=il'\,P,+Mc, @)

(%, Py) =1h0,,

specifies the conjugate relation between the position
and momentum. Unlike the momentum, however, the
remaining two operators appearing in (1), M¢ and T,
do not possess unique representations although their
physical interpretation is understood as follows.
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