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A general formalism is presented for the analysis of production and decay distributions of mes'on-]aaryon
final states resulting from interactions of polarized photons and nucleons. Particular emphasis is given to
high-energy reactions and Regge-pole exchange models. Circular polarization is shown to provide a t.est
for the presence of two or more exchanges. Linear polarization parallel or perpendicular to the production
plane allows the contributions of opposite J-parity exchanges to be separated. This formalism .enab.les one
to make use of data at all angles, rather than limit consideration to discrete points. Applications include
the separation of diffractive and pion-exchange contributions to vector-meson production, an.d tests for
non-pole-type exchanges in baryon-resonance production. Examination of pion photoproduction reveals
that no simple test exists for the discrimination between pion conspiracy and evasion models.

I. INTRODUCTION

HE successes of the Regge-pole model for elastic
scattering and quasi-two-body processes in
meson-nucleon and nucleon-nucleon interactions have
led to its application in high-energy photoproduction
reactions.’~¢ Soon experiments with high-energy polar-
ized photons will be possible.”-® It has been known for
some time that in pion photoproduction by linearly
polarized photons the J parity of the crossed-channel
exchanges is closely related to the azimuthal angular
dependence of the cross section.® Recent papers!®*
have suggested that this mechanism may be useful in
examining ambiguous features of the Regge-pole
model, such as the importance of cuts, conspiracy and
evasion, and relative strength of diffractive versus
pion-exchange mechanisms. The purpose of this paper
is to examine the general case of the two-body inelastic
reaction y+N — V-4 N*, where the photon is linearly
or circularly polarized, the nucleon is unpolarized, and
V and N* are mesons and baryons with arbitrary spins.
In Sec. I the formalism for the differential cross section,
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individual decay distributions, and joint decay corre-
lations is presented, and expressions are given for
production by unpolarized, circularly polarized, a:nd
linearly polarized photons. Applications to speC}ﬁc
reactions are given in Sec. III, and Sec. IV contains
general conclusions and discussion.

II. FORMALISM
A. Joint Decay Distribution

Consider the s-channel reaction
y+N — V4N*, 1)

where N is a nucleon, V is a meson of spin J1, and N* is.a
baryon of spin Je. For simplicity, only the case in
which V decays into two or three spinless particles an'd
N* decays into one spin-0 and one spin-} particle is
treated. Then parity conservation reduces the number
of independent decay amplitudes to one for eaqh
process, which may be absorbed into the normali-
zation.’s Let the direction of the decay particles fror.n
V be specified by Q1= (61,¢1) with respect to some axis
in the rest frame of V (in the case of three-particle
decay, , is the direction of the normal to the decay
plane), and the direction of the decay particles from
N* in its rest frame by Qo= (82,¢2). The angular distri-
bution of the decay products may be written'®

W(01¢1,02¢2)=const>< Z Pmm! ,nn’ y

mm’nn'
Xei(m—ml)<pxe'i(n-—1.,l)tpzdmoJl(gl)dm,oJl (Gl)fnn,Jz (02) , (2)
where the d/’s are the usual rotation coefficients, and

fan? @)= L du 0)dun?(0). )
A=£1/2

The joint correlation coefficients pmms,nn’ deper.ld only
on the production mechanism, and have a part'lcularly
simple form in the f-channel frame of Gottfried and

16 For decays into higher-spin particles, the same type of
analysis may be carried out, but the subsequent decay of the
intermediate decay particles must also be studied in some cases
in order to extract all of the information. .

16 K. Gottfried and J. D. Jackson, Nuovo Cimento 33 309,
(1964) ; H. Pilkuhn and B. E. Y. Svensson, sbid. 38, 518 (1965).
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Jackson.18 The result for unpolarized target and beam is

Z F)\n,an)\n’,nm’*/ Z [F)\n,umiz; (4)

initial spins all spins

Pmm’ ,nn’ =

where Fomun is the c.m. helicity amplitude for the
crossed {-channel reaction

v+V — N+N*,

with helicities u, m, A\, and #, respectively.

For polarized reactions, Eq. (4) would in general
need some modification. However, since the photon has
zero mass, the crossing matrix from reaction (1) to (5)
is diagonal in photon helicity.'” The summation over
initial spins can be dropped and the index p set to the
values appropriate for the initial polarization state
in the s channel. Hence for right- (left-) circular polari-

®)

QI +1)@J+1) n
— 2

W (0101,0202) =

s m> |m’|
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zation we use only u=-+1(—1), and for linear polari-
zation the appropriate combination of p==1. Since
the rotation coefficients have the symmetry properties

duXJ = d-)\—-lt', =(— 1)"—)‘(1)\#" ) (6a)
which imply
Jan? = fura? = (=1)"" fenn’, (6b)

only certain linear combinations of the joint corre-
lation coefficients are measurable. One can express the
angular distribution in terms of these combinations,
making use of (6a), (6b), and the Hermiticity property

™

If the normalization constant is adjusted so that the
integrated distribution is unity, one obtains the result

— *
Pm/myn’n= Pmm'ynn' -

J2
€EmEm—|m’| d'rnOJ1 (ol)dm’ 0J1(01) Z €n—|n’ |f"m'J2 (02)

n>|n’|

X [cos(m—m") o1 cos(n—n") 93 Re(Zmr ™ 4 Zmrm™ ) —sin (m—m’) o1 sin (n—n") @2 Re(Zmm ™ — Zrm™")

—cos(m—m") @y sin(n—n") oo I (Zonme '+ Zyr ™) —sin (m—m’") g1 cos(n—n") 2 I (Zpwr ™ — Zwrm™) 1, (8)

where

’ —m,!
me,nn =Pmm',nn'+ (_‘ 1)m ™ D_m’—m, nn’

-+ ("‘ 1)"—",[Pmm’ —nt—nt ("' 1)m—m,P—m’—m.—n’—n:| ) (9)
and

for m=0

. for m=0. (10)

In the following expressions, the state of photon
polarization will be denoted by superscripts on the
joint correlation coefficients p and the angular distri-
bution W. The notation is 0 for unpolarized, == for
right- or left-circular polarization, and L for linear
polarization.

For unpolarized reactions, one may use the parity

2(2]1—|—1) (2]2+ 1) J1
2z

w2 m> |m’|

WO (B101,0202) =

relations for the {-channel helicity amplitudes'®

F_—n,—u—m= (phase factor)

X (= 1)r=m=O=mFy 0 um, (11)
along with (7) to show that
Pmm? 0= (- l)m—m,-*-n—n,P—m—m’,—n—-n'n~ (12)
It follows that
IIanm'nn,: 0 (13)
and
ReZ ™
=2 Re[Pmm’.nn’o'I' ("' l)m—m,P—m’-—m,nn'Oj . (14)

The joint decay angular distribution for unpolarized
reactions is

J2
Emem—lm’|dm0J1(01)dm’ﬂJl(01> Z fn—!n’!fnn’h(%)

n>|n’|

X {COS (m_' ml) @1 COS (n" nl) (‘2] Re[Pmm' ,nn’0+Pm’m,nn'0+ ('— 1)m—-m’ (P—m’—m,nn'0+P—m—m' ,nn’o):l

—sin (m— m’) (4] sin (’l’lf‘" n’) Y2 Re[pmm' ,nn’o_ Pm’m,n’n’o_l— (—' 1)m—m’ (P~m’—m.nn’0"‘ P—m—m’ ,nn’o)]} ) (15)

and the measurable elements are the combinations
given in (14).

For circular polarization one sets u==£1, so that (4)
becomes

Pmm’,nn’i= Z F)\n,ilmF)\n' ,ilm’*/ Z I F)m.-_{;lm‘ 2,
A

Anm

(16)

17T, L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).

From (11), we find
Z [F)\n,lmlz‘: Z IF)\n,—lmlz,

Anm Anm

(7)

which expresses the equality of the spin-averaged cross
section for right- or left-circularly polarized photons
on unpolarized targets. Use of the same relations in

18 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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(16) yields

Pmm’ ,nn’i = ("" 1)m—-m’+n—-n’p~m_m, ,-‘"—"':F 4 (18)
which leads to
Reﬁmm’,nn'i‘l‘ Repmm’.nn':F =2 Repmm' ,nn’o (19)
and
Impmm',nn’i"":[mpmm',nn’q:=Pmm’,nn’c, (20)

where we have defined
Pmm',nn’c= Im Z (F)m,lmF)\n',lm’*_ F)\n,—lmF)\n’ ,—lm’*)/
A

23 [Fanaml|?. (21)

Anm

Using this notation, one can write the joint angular
distribution in the form

Wi(ﬂl,ﬂz) = W0(91,92):FW0(QI:Q2) ’ (22)

where W° is the unpolarized distribution given by
(15). W has the same form as W° with the sub-
stitutions p°— p° cos(n—n')ps—> sin(n—n')ps, and
sin(n—n') o3 — —cos(n—n') ¢s. This form is useful for
partially polarized beams, where the W¢ term is to be
multiplied by the degree of circular polarization.

The measurable elements of p¢ occur in combina-
tions pmm ,nnt O (—1)™ ™ p_pr—, aw ©, for m>|m’| and
n>|n’|, and multiply terms proportional to

sin(m—m') ¢1cos(n—n') ey
or
sin(n—n") ¢z cos(m—m') ¢;.

A simple test for the presence of the W€ terms is to
look for asymmetry in the distribution about ¢
(or ¢2)=0 correlated with a symmetric distribution in
@2 (or ¢1). To guard against accidental cancellations,
one may project out the various mm’ mn’ components
of W¢ in the usual manner by examination of the 6,0,
dependence. In general, there will be J;(J1+41) (Jo4-21)2
independent terms in the joint decay distribution.
Since p¢ is made of imaginary parts of products of
helicity amplitudes, a nonzero value implies unequal
phases, which is an indication of two or more exchanges
in the Regge-pole model.

For linear polarization, one uses the relations between
states of definite helicity and plane-polarized states.
Let the photon momentum be along the z axis and the
production plane be the -z plane. Then the helicity
polarization vectors are!8

ex1="T (e,71¢,) /V2. (23)
This may be inverted to give
€= (e_1—e€1)/V2 (24)
and
ey=1(e_1}e1)/V2. (25)

For a photon polarized at an angle & with respect to
the production plane (in such a sense that a clockwise
rotation of the polarization plane through an angle &
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about the z axis brings it into the production plane),
the polarization vector is

G(CI)) = (6_18—”’— 618“’)/'\/2— . (26)

This is the appropriate combination of #-channel
helicity amplitudes to use in (4) to get the joint corre-
lation coefficients pZ. The result is .

ZIFL|2Pmm’.nn'L
=% Z(F)\n,——lmF)\n,—lm'*_*—F)\n.lmF)m’,lm'*
A

27

_F)\n,—-lmF)\n',lm'e_'%q’—F)\n,lmF)\n',-lm'*ehq)),

where
ZIFLPE% Z IF)\n,—lme—i(p"‘F)\nJmei@P. (28)
Amn

This may be rewritten in the form

Z IFL]2Pmm’.nn’L=% Z IFOI2(Pmm’,nn’0
—€0S28pmm’ ,nn*+ 1 SIN2Bpmms ,nnr?)
where we have defined

Pmm'. nn'l'ZEZ (Fkn,—lmF)m’ ,—lm'*:*:Fkn,lmF)\n' ,—lm’*)/
A
2| (30)
ZFP= 2 [Fruum|?. @31

pAnm
Note that dol/dt=K 3 |F*|? and do®/dt=3K Y_|F°|?,
with K a kinematic factor, so that the elements p° and
o™ always occur weighted by their respective differential
cross sections. The joint decay distribution may now be
written in the form
do® do®

d—WL (91,92) = —d——[Wo (91,92) —cos2® W (91,92)
¢ !
—sin2® W2 (91,92):] )

(29)

and

(32)

where W° is again the unpolarized distribution (15),
W12 have the same form as W?° with the replacement
of p° by p'?, and the substitutions cos(n—n’)p;—>
sin(n—n') 2 and sin(m—n') p, — —cos(n—n') @, are to
be made in W? only. For partially polarized beams, W?!
and W? are multiplied by the degree of linear polari-
zation. The measurable elements again occur in
combinations like (14).

To extract the p? from the decay distribution, one may
separate the W* by weighting each event by a &-
dependent factor and forming new distributions from
(32):

da.O -1 1 27 da.L
— (__> - / 2 wr@)ds, (33)
di 2w Jo dt
da.() -1 1 2T do.L
Wi= — (_> - / —WE(®) cos2® dd, (34)
dt wJo di
da.() -1 1 27T dO'L
We= _(_> - / —WE(®) sin2® d®. (35)
dt m™Jo dt
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These distributions may be analyzed by the usual
methods, i.e., maximum likelihood, least .squares, or
method of moments,® to project out the individual
p”s. One interesting combination of measurable
elements is

Re[(ﬂmm’,nn'0+ (—' 1)m‘m’p—m’——m,nn'o)
:l:(pmm'v"n’l-l— (— 1)m_m'P—-m'—m,nn’1)]
Re Z [(th,—lmﬂ:F)m,lm)

A

Z|F
X (Fant m1m = Foar 1w )*
+ (— 1) (Fn,—1-mr==Fn,1-m)
X (Fanr—i-m==Frur 1-m)*]. (36)

Note from (27) that this is equal to a combination of
the total joint correlation coefficients for linearly
polarized photons at angles =0 or ®=4= from the
reaction plane. This formalism, however, enables one to
make use of data at all angles, rather than limit considera-
tion to discrete points.

It is shown in the Appendix that for the exchange
of a definite J parity [J parity=parityXsignature,
o=P(—1)7], one of the combinations Fyn—10==Fxn,10
is either identically zero (when N=#) or is much smaller
than the opposite combination at high energy (when
M#n). The examination of expressions such as (36) for
m or m' zero and arbitrary # and #’ will enable one to
separate the contributions of exchanges with different
J parity.

Another possibility is to consider the element

Z | F()IZ Re ? [(F)m,'-lm'l"F)\n,lm)

X (F)m' ,—1lm’ ™ F)\n’ , lm') - (F)\n,-—lm_ th,lm)
X (th' ,—1m’+F)sn’,1m')] . (37)

This will also vanish (exactly or asymptotically with
energy, as before) for definite J-parity exchanges when
both m and m' are zero, and will be useful to separate
opposite J-parity exchanges (except when n=#’, in
which case the element is identically zero).

Repmm' ,nn'2=

B. Meson Decay

The meson decay distribution may be obtained by
integrating the joint decay distribution over the baryon
decay angles. The result is

271+1 O
Z €mEm—|m’ ldm()',l (01)dm’0Jl (01)

2w m>|m’|
X {cos (m—m") 1 Repmmr+ (—1)™™ Repm—m]
—sin(m—m’) o1 [Impmm— (—1)™ ™ Imp_m—m ]} ,
(38)

19 N. Schmitz, in Proceedings of the 1965 Easter School for
Physicists, CERN 65-24, Vol. I (unpublished).

W (01¢1)=

ROBERT L.
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where

Pmm’ = Z Pmm’ ,nn . (39)

n

The same type of manipulations as in the previous
part yield the following results.
For unpolarized photons,

271 +1 0

W (01¢1)= Y emmim|Gmo” (01)dmo” (01)
T m>m
X cos(m—m'") o1 Repmm?®. (40)
For circular polarization,
WE@Q)=W(Q)FW (@), (41)

where W has the same form as W° except
cos(m—m') o1 — sin(m—m") o1

and punm? is replaced by pmm . Just as in the joint decay
distribution, the sin(m—m') ¢1 terms detect interference
terms between amplitudes with different phases. This is
also an indication of two or more exchange contri-
butions, but is less reliable because of the possibility of
cancellations in the sum over N* helicities.

For linear polarization,

dot do

—d—tWL Q1) =—[W°(Q1)—cos2® W'(2y)

@t
—sin2d W2(Q1)], (42)

where ! and W? have the same form as W° with the re-
placements p°— p'2, and cos(m—m’) g1 — sin(m—m') o1
in W2 only. One can form the combination of measurable
elements

Re (Pmm’oﬂzpmm'l) =

Z l FOI 2 Re % (F)\n,—lm:l:F)‘n,lm)
X (F)\n,—lm':tF)m,lm’)*’ (43)

which separate different J-parity exchanges for m or m’
zero. There is no useful expression involving pmm? for
meson decay, since Repoe?=0 from (30) and (39).

C. Baryon Decay

Cancellations similar to those in the previous section
give the baryon distribution

2Jo+1 12
W(02<P2) = 2 el 1 fanrT? (02)
T nx|n’|

X {COS (n—n') ¢2[Repnn'+ (_' 1)"'_”’ Rep-—n—n':l
—sin(n—n") g Imppne— (—1)* Imp_pn—n' ]}, (44)

where

Pan' = Z Pmm,nnt « (45)
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For unpolarized photons,

2J 2+ 1 7
W (B200) = > enjn | fan"2(02)
2r x|
Xcos(n—n") o2 Repnn®. (46)
For circular polarization,
WE(Qa) =W Q) FW(2), (47)

where W¢ has the same form as W° with the replace-
ments p® — p¢ and cos(n—n') g — sin(n—n') p,. This
also provides a test for interference terms between
amplitudes with different phases, but now the possi-
bility of cancellation comes from the sum over meson
helicities.

For linear polarization,

dol

do
—WE (Qz) = _[WO (92) —cos2®d Wt (Qz)
at dt

—sin28 W2(Qy)], (48)

with the same replacements for W' and W? as in the
meson-decay case. However, in this case the Rep®!?
involve sums over meson helicities, so that the m=0
states cannot be projected out. The baryon decay is
useful in selecting J-parity exchanges only when the
meson has spin J;=0. In this case the differential
cross section may be used directly. If (48) is integrated
over all baryon decay angles, one obtains

dol do®
—=—(1—8cos2®),
ar  dt

(49)
where

B=2 pnx'=Re XZ F)\n,——loF)\n,IO*/g: [Fan,10[2. (50)

The parameter 8 may be projected out by weighting
each event by cos2® and forming a new differential
cross section:

de™\-11 po7 dok
=— (—) - / — c0s2P dP.
dt mJo dt

The combinations 1+8 separate opposite J-parity
exchange contributions.

(51)

III. ANALYSIS OF SPECIFIC REACTIONS

First consider the case in which the N* is a nucleon.
Then there are only two independent couplings at the
nucleon vertex for a Regge-pole exchange. The “re-
duced” spin-flip amplitudes Gj—3 10 are defined by the
relation

Fy 4.410=3 (1%)G4,210, (52)

where «x is the cosine of the ¢-channel c.m. scattering
angle. Consider the contribution of two opposite
J-parity exchanges 4 and B (c4=-1, c3=—1) to the
production of a meson with J parity oy. Using the

HIGH-ENERGY POLARIZED-PHOTON REACTIONS
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parity relations in the Appendix, one can write
P2 (poc®+ovpoo)

=8| F33,10% |*+2|Gy4,10%+ 4Gy 3,10%]2,  (53)
2| P2 (pod®— ovpoot)
=8| Fy3,10% |*+2[2Gy3,10%+G33,10%]2.  (54)

A. Neutral Mesons with Odd C

The exchanges in this case are limited to those
associated with diffractive production (P and P’) and
pion exchange. Consider photoproduction of p° and «°
as examples.® Since the pion couples only to nucleons
with equal helicity in the ¢ channel, (53) and (54)
become

2 P2 (poc®+poot) =8| Fy3,107 | >+ 2| Gyy,107 7' |2, (55)
2| F°|2(pos®— poo)
=8| Fy,10" 7" |24-24%| Gy_g, 167 7' |2, (56)

There are three features of these equations which offer
tests of present theoretical ideas.

(a) The energy dependence of (poo™+poet)/ (00— poot)
should be ~s72, since the difference of the Pomeranchuk
and pion trajectories is approximately one unit. If the
energy dependence is slower, this would indicate a
contribution to po’+pett not corresponding to the
exchange of a definite parity, e.g., a Regge cut or
absorptive corrections to pion exchange.

(b) One may separate the pion contribution from
the diffractive part exactly, with the use of additional
information from Regge-pole fits in elastic scattering.
Note that even though the diffractive part Gj_j,107
o« s*P~1 and the pion part Fy 10" « s*, they may still be
of the same order of magnitude over a large energy
range, since ap—a,~1. However, one can relate
Fy 3,107 to Fy,10” from the fits to pion-nucleon elastic
scattering® by using the factorization theorem. The
result is expressed in terms of the ratio of pion exchange
to the total helicity-zero cross section:

(do/dt) " po’+pon' — (por’— poo')/#* (141

- 57

(da/dt)o 2p()00 ’ ( )
where v is defined by

Fy 0P =32yp,p G310, (58)

and the difference in x values for #V and yN reactions
at high energies is neglected. The values of vp p are
shown in Fig. 1, as obtained from fit 1 of Ref. 20. Note
that v in (57) is actually some linear combination of
vp and vyps, depending on the (unknown) relative
couplings of P and P’ at the vp® or y«° vertex. Since
#? is large at high energy (away from the forward
direction), it is possible that this uncertainty will not
have much effect on the ratio (57). Justification of this
procedure must await the experimental values.

* W. Rarita, R. J. Riddell, C. B. Chiu, and R. J. N. Phillips,
Phys. Rev. 165, 1615 (1968).
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F16. 1. Ratios of non-spin-flip to spin-flip couplings of Regge
trajectories to nucleons from parameters of Ref. 20.

One may also use (57) for both p° and «° production
to determine the ratio of pion coupling constants.
Neglecting the p-w mass difference, one can write

Ao/ A) ypsp'p™  Lrprd
(do/ )wpp:gp'y. (59)

(do/d)yp>a's™  grwn’

This ratio is predicted to be ~% from SU(6) and also
has an upper limit of =% from experimental decay

widths.

(c) At nonforward angles and high energies where
#2>1, one can find the relative contribution of diffrac-
tive processes. From (55) and (56) one has

pod’— poo* (do/dt)?*’
— .
2p000 a1 (da/ dt)o

(60)

One can determine the ratio of diffractive production
of p® and «° and compare with the predictions of SU(3),
quark model, vector dominance, etc.

B. Neutral Mesons with Even C

Here the candidates for exchange are the vector
mesons p, w, ¢ and also axial vector mesons with odd C.
The two opposite J-parity contributions may be
separated by using linearly polarized photons just as in
the previous case. Consider the case of #° photo-
production. Here po’=1 and poi'=8 [see Eq. (51)].
The two dominant contributions are assumed to be w
and B exchange, due to small pry and ¢V N couplings.
The analogous result to (57) is

w1,

= 61
(do/di)* 2 (0

1+8 )
x2(1+’)’02) ’

ROBERT L. THEWS
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where v, is defined as in (58). The values are deter-
mined from Regge-pole fits to nucleon-nucleon elastic
scattering® and are presented in Fig. 1.

One may also write

do/d)*
o/ 2 5(148).

-_— 62
(do/d) #*>1 (62)

Even when x? is not large, however, the combination
18 receives contributions only from the w. It may be
used to study the details of w exchange, such as the
nonsense zero and crossover zero.?

C. Charged Mesons

For charged mesons the diffractive processes are
absent, but both even and odd C exchanges are allowed.
The most interesting reaction at present is pion photo-
production, where a sharp forward peak at high
energies? indicates that the exchange of a single set of
definite quantum numbers cannot be the dominant
mechanism.” Two models have been suggested to fit
the data. One is the conspiracy model, in which a pion
and its parity doublet partner act in a cooperative
manner to produce the forward peak.? The other is a
pion-exchange contribution interfering destructively
with a background term of nondefinite parity coming
from a Regge cut, fixed pole, absorption correction, or
some other mechanism.* Both models fit the high-
energy forward-direction data, and knowledge of the
individual spin amplitudes is needed to distinguish
between them. It would seem reasonable that polarized
photon interactions may be able to provide such a test.

The pion-conspiracy model predicts the following
form for the measurable quantities:

Z|F*(1—B)=8|Fy10"|*+2|Gy3.00™ |2, (63)
Z|FP(148)=8|Fy3,10™ | *+222| Gyg007 2. (64)
The nonconspiring-pion model predicts a change in (63):

2P 2(1—B)=8|Fy3,10"+3 (F33.108—F_3_1,105) |2
+2|Fy 3,108 —F_y,10%[2.  (65)

The essential difference is that the leading-order pion-
conspirator contribution to 1—8 vanishes, leaving only
a term o« s?~2 while the background term contributes
full strength, since it has no definite parity. Cooper!
has suggested that the energy dependence of a quantity
like 1—8 could distinguish between these models. In
practice, however, this difference in energy behavior
would be measurable only outside the forward peak,
for momentum transfers in the range —0.5 to —1.0
(GeV/c)2 In this region the restrictions on the models
are not as stringent. For example, there may be non-
conspiring negative J-parity contributions to Fj_j 10

2 A, M. Boyarski et al., Phys. Rev. Letters 20, 300 (1968).
(1;26% D. Drell and J. D. Sullivan, Phys. Rev. Letters 19, 268
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which become large at large momentum transfers and
are approximately energy-independent (an 4 with a
flat trajectory). Alternatively, the combination of
background terms Fy;, 105 —F_;_3,10® may be very small
at large momentum transfers, with the main energy-
independent contribution coming from the opposite
combination in 1+4B. These possibilities make the
interpretation of large-momentum-transfer data some-
what ambiguous. Conversely, if one considers only
small momentum transfers it is fairly certain that the
dominent contributions are the pion-exchange term in
combination with some additional term to form the
forward peak.

One essential feature of the conspiracy model is a
zero in the pion residue function at ¢~ —0.03 (GeV/c)2
An obvious test is to look for a dip in 1—4, since the
leading-order contribution from the conspirator is
absent. Using the amplitudes of Ref. 3, one can write

-4+ 0s7)
[1=A1+)PHLA-N A+

where y= —1/u?, u is the pion mass, and X is an adjust-
able parameter which determines the position of the
pion residue zero. The result for A=0.4 is shown in
Fig. 2, and indeed shows a pronounced dip at t=—1.5u2

One might expect that the interference model would
not exhibit such a dip, since the pion residue function
does not need a zero, and also the background term
contributes full strength. However, this is not true. An
examination of the fit of Ref. 4 shows that a cancel-
lation between the pion and background terms occurs
at approximately the same place as the zero in' the
conspiracy model. Values for two energies are shown
for comparison in Fig. 2. Although the position of the
minimum moves with energy, the curves are quali-
tatively the same as in the conspiracy model, so that
no clear distinction is possible. In the notation of
Ref. 4, the curves are values of the expression

_ {AL24[1/ (t—p2) Jas"t7)2
{421/ =) Jas e+ (A1)

It has also been shown by Donohue® in an absorption-
model calculation that the corresponding term also has a
minimum at about the same point. In general, it is
evident that any model which fits the sharp peak in the
differential cross section and includes pion exchange
will predict such a structure. The pion amplitude alone
is too large for momentum transfer greater than
(3-4)2, so that there must either be a zero in the
residue function, or else a cancellation with some other
contribution.

One other possibility is to examine the energy
dependence of 1—p8 at the position of the dip. The
conspiracy model predicts a s dependence while the

3(1-8) (66)

(67)

3(1—6)

2 J, T, Donohue (private communication).
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F1e. 2. Predicted ratio of pion-photoproduction cross section for
photons polarized in the reaction plane to that for unpolarized
photons. (a) Pion conspiracy model of Rev. 3. (b) Interference
model of Ref. 4 at 5 GeV/c. (c) Interference model of Ref. 4
at 16 GeV/c. .

other models predict essentially no energy dependence.
However, the same uncertainties present themselves
here as in the large-momentum-transfer case. The
addition of some small term which would not affect the
fits to the cross section could greatly modify the pre-
dictions at the dip. It seems that the use of polarized
photons alone cannot clearly distinguish between
conspiracy versus interference models of pion photo-
production.

D. Baryon Resonances

The most common baryon resonance production is
the A(1238). Since it has I=32, the exchange contri-
butions with 7=0 are ruled out. However, since it has
J=3%, there are twice as many independent amplitudes
for each exchange as in the nucleon case. In addition,
since there are no G-parity restrictions in the ¢ channel
for the NA state, the exchanges with = or B type
quantum numbers will couple to all four independent
helicity combinations, rather than just to the equal
helicities as in NN. Consequently there will always be
amplitudes with nonzero spin flip, so that J-parity
separation will be only approximate for all exchanges,

] The reaction y+p — 2% A+ is of particular interest,
since only B exchange is expected to be important.
Its leading-order term may be eliminated by using
linearly polarized photons, so that the remainder must
come from either lower-lying poles or non-pole-type
contributions. It has been suggested that the energy
dependence of this reaction is a good test for the presence
of Regge cuts.”? It is not likely that this will be done in
.the near future, due to experimental difficulties in
1dent§fying two neutrals in the final state. An easier
reaction to examine is y+4p — x—+ A+, The exchange
of w, n’, p, Ay, and 4, are all allowed. However, if the 4,
term is assumed small, the pion-exchange term may be
approximately separated from the others due to its
different J parity. An experiment to look for the
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pion-exchange term has been done at low energies,
and essentially a null result obtained. It will be interest-
ing to see if this result persists at high energies.

The reactions y+p — (p%%)+Att differ .from .the
ordinary vector-meson photoproduction reactions, since
the diffractive terms are not present. The only im-
portant exchange is thought to be the pion. This term
may be isolated as usual with the stu.dy of peoda/dt for
linearly polarized photons, and _again a test for the
presence of non-pole-type terms is possible.

E. Strange-Particle Production

For reactions which produce a strange meson, and
hence also a strange baryon, the only possible exchanges
are K and K* types. The reactions y+p — K+ (29,A9)
have been fitted with a K parity doublet conspiracy and
K* exchange. Linearly polarized photons‘ can separate
the K exchange to leading order, and possibly provide a
check on the relative magnitudes of the KNZ a,r%d KNA
coupling constants. Similar analyses are possible for
reactions such as y+p — K*+Y*.

IV. CONCLUSION

The analysis of quasi-two-body final states for
polarized photons has been shown to provide two main
tests of theoretical models. For circular _po%an.za.tlon,
an analysis of the azimuthal asymmetry in individual
or joint decay angular distributions for any two-body
reaction can give information on the presence of two
or more exchange terms with different phases. The
interference terms of the amplitude may be determined
explicitly from an extraction of the sinm¢ dependence
of the decay distribution. ) .

For linear polarization, a leadmg—ordex: separation
(exact if there is no spin flip) of opposite J-parity
exchange contributions is possible. This occurs in the
differential cross section for the productl.on _of spin
zero mesons, or in meson decay angular d}str}but}ons
via the elements Repmo and in joint decay d'lstr}butxons
via the elements Repmo,nn. The main apphca,.tlons are
the separation of pion exchange and the diffractive
mechanism in vector meson productu?n, tests for the
presence of non-pole-type contl:ibutlons in baryon
resonance production, and separation of kaon excha{lge
from positive J-parity exchanges in strange-particle
photoproduction. An apphcau.on to pion photo-
production reveals that there exist no sun‘ple tests for
the presence or absence of pion parity doublet
conspiracy.
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APPENDIX

The t-channel c.m. helicity amplitudes for Regge-
pole exchange in the process v+C — B+D may be
written

B um (tx)= Ry, ym Oy r—n® (%), (A1)

where \, 7, u, m are the helicities of B, D, v, and C,
respectively, R is the residue function, « is the trajec-
tory value, ¢ is the square of the total energy, and « is
the cosine of the scattering angle. From parity relations
for helicity amplitudes,’® it may be shown that

R—)\—n,um(t) =0BODO ER)\n.um(t) (AZ)
and

(A3)

where oy=P;(—1)7 (Ji~1/2for fermions) {5 the J parity and
E refers to the exchanged trajectory. We use the
properties!®

.R)m,._,;*m (1) = G'C'U'E'R)\n,#m (t) ’

dr—p? (%)= (—1)*d), 7 (x) (A9)
and
1+

i’ = U=

1“‘.702) (m—1)/2

Xs=m[14+0(1/s)], (AS)

for m=1, where C(J,m) is independent of x and s is the
square of the c.m. energy for the s-channel reaction
v=B—C+D.% For no spin flip at the baryon vertex
(A\=n), we can combine (A1), (A3), and (A4) and write

Fxxpm=0com(—1)"*Fyy ym, (A6)
so that when m=0, the combination
P ~1wtocopF,10=0. (A7)
When \>#, we use (AS5) and write ,
Fxn~10t0co8Frn10 14+0(1/s)
=— (A8)

Fyn—10— 000 8F ), 10 %

Thus the leading-order term is missing in one combina-
tion. Note that the parameter is %, not s. Away from the
forward direction x=s, so that at high energies the
ratio (A8) is very small. In the forward direction the
ratio approaches unity for all energies, but for linearly
polarized photons this region is not useful, since the
angle between reaction and polarization planes is not
well defined. In practice this region is very small,
typically less than 0.01 (GeV/c)® in the multi-GeV
range of energies..

% The expansion parameter in the terms of dynamical . origin
has been changed from x to s to satisfy the analyticity require-
ments of inelastic scattering amplitudes, See D. Z. Freedman
and J.-M. Wang, Phys, Rev. Letters 17, 569 (1966).



