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Fano's resonance theory is extended to include the interaction of many resonances with
many continua and inelastic couplings between continuum states. In particular a new parameter
is introduced; the overlap matrix between the continua to which neighboring resonances are
coupled. Resonances which are coupled to the same chanqel states may be said to overlap. If
their widths are comparable to their spacings the resultant effects on photoabsorption or on
the scattering matrix can be quite profound. The apparent widths may bear little relation to
the widths due to configuration interaction, and the resultant structure may not fit the usual
Fano-Buetler profiles for isolated resonances.

The effects of overlapping are examined for various models which are representative of
atomic photoabsorption and electron-diatomic molecule scattering. It is demonstrated that
without prior knowledge of the overlap matrix it is impossible to uniquely characterize a
resonance from limited experimental observations. Scattering and photoabsorption experi-
ments should be designed to examine all possible channels, i.e. , both differential and in-
elastic cress sections. Even so, without the parallel support of theoretical estimates of
partial widths, and the signs of the configuration interaction matrix elements, the interpre-
tation of resonance phenomena and in particular the parameters which are extracted must be
accepted with severe reservations.

I. INTRODUCTION

The width of a resonance I'~ is defined as the
sum of all its partial widths I"„p into the set of
open channels (P), and is a measure of the con-
figuration interaction (CI) between the resonance
state and the continua. For an isolated resonance
the CI width may be inferred directly from the ex-
perimentally observed width. However, this sim-
ple relationship can be destroyed when the widths
of adjacent resonances begin to approach or ex-
ceed the sparings. Fortunately for a collection of
resonances which are coupled to different, channels
P, their shapes are merely superimposed and
there is no intrinsic problem in analyzing the ob-
servations. However, those resonance states
which are coupled to the same channels exhibit
pofound interference effects and are said to

overlap. '

Overlapping resonances have been treated and
discussed briefly by Fano in connection with a
Rydberg series of auto-ionizing atomic lines which
consists of many resonances coupled to one con-
tinuum. Application of this many resonance-one
channel theory to the time dependent behavior of
activated, or metastable molecules' has demon-
strated one extraordinary effect of overlapping,
i.e., the extremely nonexponential decay of an
overlapped resonance state. The purpose of the
present study is to extend Fano's CI theory in two
ways. First, since our ultimate purpose is to ap-
ply CI theory to molecular scattering where the
density of resonance states and channel states
makes overlapping inescapable, we must include
the case of many resonances coupled to many con-
tinua (or channels). Second we introduce inelastic
potential scattering between the continua and give
more explicit attention to electron scattering cross
sections in addition to photoabsorption processes.

Recently Feshbach' has presented an extended
version of his Unified Theory of Nuclear Reactions
which incorporates the effects of overlapping res-
onances with results which are equivalent to those

(ld)Z,e —+ M(e ')

The relative proportions of resonance scattering
Eq. (1r) vs direct potential scattering Eq. (1d) is
of interest.

If M is a positive ion then M (n) represents the
autoionizing states observed in the photoabsorp-
tion and photoionization of the neutral ground-
state molecule M (i).

M (i)+hv =Z M (n) (2r)

2 e +M(s) (2d)

reported here. However, it is felt that the CI
theory is of sufficient interest, and of more ex-
plicit application to the analysis of both photoab-
sorption and electron-scattering phenomena to
warrant a detailed develo ment.

We construct the set (o,'of degenerate, ortho-
normal (N, + 1)-electron continuum wave functions
C~,E at total energy E, which describe the inter-
action of a free electron and a N;electron atom
or molecule M(s) in quantum state s. These wave
functions correspond to the continuum states of
the (N, + 1)-electron system M (o.,E), i.e., E ~ 0,
where E =0 is the ionization threshold. Our par-
ticular concern is with the role of transient (N,
+1)-electron "states" M (n) which are bound and
yet which have approximate eignevalues &~ ~ O

and hence lie within the continua
If M is a neutral species then M (n) are the so-

called negative-ion states or resonance states
which are observed ' in electron scattering.
They influence the asymptotic properties of +~ 8
and hence the scattering matrix 8 which deter-
mines the scattering cross sections.

e +M(s) = Z M (n)
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The final states in the transition +z+hv 4~ E
are the same functions which describe electro'n
scattering by the ion M(s). The relative promi-
nence and shape of the autoionizing lines Eq. (2r)
versus the direct (background) photoionization Eq.
(2d) must be extracted from the total photoabsorp-
tion cross section, O'E,

o =2 i( + E ITI+ ) I'

where T is a generalized expression for a transi-
tion operator.

The generalized version of the CI theory is pre-
sented in the next section. This is an extension
of Fano's development and we intentionally follow
his format rather closely. Section III discusses
the results and shows how they reduce to Fano's
previous results in special cases. Models are
constructed to exhibit overlapping effects in
atomic photoabsorption (Sec. IV) and in electron
diatomic molecule scattering (Sec. V). Section
VI is devoted to a summary and conclusions.

II. CONFIGURATION INTERACTION THEORY

A. Formulation

Vile start from the assumption that by some pre-
vious expansion and partial diagonalization we have
on hand subsets of approximate bound (+n'} and
continuum f+p,E'}wave functions which diago-
nalize separate submatrices of the total Hamil-
tonian II,

Therefore all quantities are to be considered im-
plicit functions of such quantum numbers.

B. Boundary Conditions and Scattering Matrix

+J [2/~(v h)']

sin(k ~ ——,pl+q )n, y y H
(8b)

Asymptotically, as the electron coordinate x
approaches infinity, we require that the total wave
function take the following, incoming wave form

1

-Z, % [-f/~(v I )']
+ik x-iamb ++~ Q 77~1 /n

" n,y Q P

where S is the scattering matrix. '9
&

are the total
angular momentum states. for a given Jand S, andare
eonstrueted from a linear combination of the as-
ymptotic target states, M(s), coupled to the elec-
tron spin o and orbital angular momentum states
(or partial waves) l of the free electron. Each 'g&
designates a separate, orthonormal "channel" y
= (s,l). Ws is the eigenvalue of the target in quan-
turn state s, v& is the velocity, e is the kinetic ener-
gy and k& is the wavenumber of the free electron.
E = Ws + a and the threshold for each channel (s, f)
occurs when E = Ws.

An alternate, standing wave, representation of
the total wave function is

(~„'i&—EI4 ' ) =(E —E)5

(+,i Ei'i& Ei @,.i Eii'-)
y p

= (E' —E)5, „5(E"—E').

(4)

(5)

where Uz &is a real, orthogonal matrix, U U=1,
which diagonlizes both the scattering matrix S
and the reactance matrix K. The [qn] are the
eigen-phases, and together with U define S and%,

Our task is to introduce the off-diagonal terms
which couple the subsets {n}and (P,E'}, SC=Utanq Z=f(i-S)(i+S)- . (io)

( @ OIH-El+ Eg ) =V (E,E')n, E' n,
(6a)

and to use a linear combination of the two sets to
represent the exact total wave function +& E at
total energy E 5 0 above the ionization threshold
energy of the P, +1 electron system (E=O).

E ZB (E)@-

+ Z J dE'C (E,E')@

Those bound states which have eigenvalues Ez ~ 0
lie within the continuum and are of course re-
ferred to as resonance states.

It shall be understood that the wave functions +„'
and +p E~' and therefore +~ E have been sepa-
rately diagonalized with respect to the total orbi-
tal angular momentum J, total electron spin S,
and possibly with respect to other operators.
These operators are assumed to commute with II
and with each other and produce quantum numbers
which are conserved '

throughout the collision.

It is useful to define a matrix A =e~~U, such that

S =AA

and &*A.=A.*A =1.
(ii)
(i2)

With these definitions it may be seen that the set
of states (4'o E}are both real and orthonormal
[in the sense of Eq. (5)] with a degeneracy corre-
sponding to the number of open channels (y}. The
more usual incoming, (4~ E}, or outgoing,

representations~ oi the continua are
compIex, and are given by the following transfor-
mations of the standing wave representation
I+a,E},

y+

and 4 = S4+ =A. C+.

(isa)

(13b)

By definition the resonance states 4~ vanish as
~, while the approximate continuum functions

4'p Eo obey the boundary conditions (8) and define
an'approximate scattering matrix S' together with
the matrices U', e»~'~ and A'. We have employed
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C. General Solution

Using Eq. (7a) in the Schroedinger equation (H
—E)4'o E=0, and employing Eqs. (4), (5), and (6)
we generate linear equations in the unknown ma-.
trices 8 and C. These matrix equations may be
solved following Pano's prescriptions. The criti-
cal step is to express C in terms of a principal
value and a delta function,

C (E,E') = 6 [I' (E,E')/E E']-

+Z (E)6(E —E'),
Q,

(14)

where y indicates that the principal value should
be taken. Then in matrix form we find'

yt gyl

and B(E1—E) =ZV (16)

the standing wave representation @p E'in Eq. (Va)
merely for the convenience of having a real CI
matrix V in Eq. (6a). In the sense that the approx-
imate scattering matrix 8 may include off-diagoiia
nal terms the effect of inelastic potential scatter-
ing is introduced into our final solutions.

'0 (E,E') =(4 [H —E I 0

=Z G v'
m n, m m, P

(6b)

&=ZV(E-S) ', (20)

gF'=ZX

where X'= my(E —8)-'V'.

We are left with the one unknown matrix, Z,
which we determine by imposing the ssymptotic
conditions in Eq. (8a) on Eq. (Vb). We substitute
Eq. (14) for C and express 4o, E~' in terms of its
asymptotic form Eq. (8b) with its associated ma-
trices P' and Ao. Noting that

6 fdE, e . +ikrE-E' ~

as the fundamental microscopic properties which
are to be extracted from an analysis of experi-
mental data, rather than E~ and V's, p. In princi-
ple these two sets of quantities are related through
Eqs. (17), (18), and (19).

From Eqs. (16) and (1V) we find that both 8 and
F' are proportional to Z

where & is the unit matrix and Ii is a symmetric
real matrix,

e obtain the following matrix equations from Eq.
(8a),

F„(E)=E„6„+aj dE'

x ~~ (E,E')V (E,E')/(E E ~)
t 7

I =Z(I pi X )Ao+,

S = Z(1 i X)AO—

(23)

(24)

The net effect of the integrals in Eq. (1V) is to
introduce couplings between the zero-order reso-
nance states due to their mutual interactions with
the continua and to produce apparent shifts in the
locations of the resonance states. It proves con-
venient to define a new set of shifted resonance
states t4'„»ift) which are diagonal with respect to
these interactions. The "locations" gz of the
transformed states are given by the eigenvalues of I'

(18)

where 8= 5+S„~ and G is real and orthogonal GG
= I, and defines the transformation

shift Q Q @ 0 (19)

We may regroup Eq. (Va) to form an alternative
representation of the total wave function in terms
of this set

@
shift

aE n en n

+Z J, dE'C (E,E')e' E,nP ' PE'

Where S=BC. Henceforth we will refer to f@~shi«)
as our set of resonance states and view the reso-
nance energies 8& and new CI matrix 'U',

From Eq. (23) we. obtain the following expression
for Z'

Z =~'(I+i X)-~ (25)

S =AOS.AO

where

8 = (1+iX)-'(I—ix).

(28)

(29)

It is apparent from Eq. (9) that X is closely relat-
ed to the reactance matrix K and incorporates the

We now have a complete orthonormal solution for
the total wave function Eq. (Vb) in terms of Eqs.
(14), (20)-(23). It is-useful to follow Fano's lead
and define a "modified resonance state" which in-
cludes an admixture of continuum states,

p @ shift Q ~ f ~dEg s'p p'E (26)
Ã g 8

Then the total wave function takes the following
pleasing form,

~n

The basic problem in employing this generalized
CI theory will be to construct X in Eq. (22) and to
invert (1+i X) in order to obtain the normalization
matrix Z in Eq. (25). The scattering mq, trix Eq.
(24) is also given in terms of this inversion
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The total cross section for photoionization from
the initial bound state 4i into the continuum chan-
nel o. is given by Eq. (3),

o = Jt I'
e,E e (30)

where I; is the element of the coluum vector t
of transition amplitudes' for the total incoming
wave functions 4 ~ E

(f )=(@ &1Tl@,.) (31}

The total photoionization cross section into all
channels is then

(32)

%'e define similar column vectors for the "reso-
nance" states 4„' and the continuum states +p E
in Eq. (2V).

y ]. (@ OIT ly) (33)

ff j= (4 &'l T I 4.) (34)

effect of the resonance states on the scattering
matrix.

For a description of resonant electron scatter-
ing, i.e. , Eq. (1), the expression for the S ma-
trix is all we require. However, to obtain the
photoionization cross sections, i.e. , Eq. (2), we
now must introduce the expression for the total
wave function Eq. (2V) into Eq. (3).

D. Photo-ionization

The total width I's is the sum over all channels p

I =Z I =2mZu*
n n, n, n,

(40)

There are (Q- 1}remaining continua (n = 2, Q)
which are orthonormal to +y g "' ~~d orthogonal
to +~s»ft and represent the background scatter-
ing. [These transformed continua are employed
in the definitions' of q„and ps' in Eqs. (36) and
(3V)]. If the various continua @I ~'s' for each (n)
are mutually orthogona' there is no interaction
between the resonances due to CI with the continua
and each may be treated as a single, isolated
resonance imbedded in its own continuum. How-
ever, as is more likely, these continua will not
be orthogonal, and the complications due to over-
lapping, or interference between neighboring
resonances, is introduced.

We define an "overlap matrix" between the con-
tinua as follows,

5(E —E')- ( 4 lC, )nm 1E 1 E'
01

These widths are implicit functions of E. It is
usually assumed that any variation with E is small
over the range of energies E = gs a I's and that
I'„(E)= I'„(E~). This assumption will be employed
throughout the remainder of this paper.

For each resonance %+shift there is a linear
combination of continua which embodies the total
CI between n and the set of 0 open channels Qj, '

1

and obtain the following matrix equation for t =[(2~) /I I' ]'+
n, m n m p n, 8 m, p' (43)

f - =Z(t'~&(Z-& )
—Itb j. (35)

In terms of the yresent notation, Fano's qz and

p~ factors' for each resonance state 4„0 are de-
fined as follows

hyped f cqn=n/"
p n, pp

t C

"(E~ }lZ {~ '}*l (3V)

Equation (35) can be expressed as follows

t-=z i+g (36)

where vq/(E —5) is a diagonal matrix, (vq„/
(Z —&n)] 6n,m.

E. Widths and Overlap Matrix

The partial width which represents the coupling
of the resonance %~sh&t to the standing wave
continuum 4p @0is given by the CI matrix p,

=2m'* (39)Ss By

If 6=1 then we say the resonances are supexim-
Posed and they may be treated as isolated, while
6 0 1 implies nonvanishing off-diagonal terms and
indicates overlapped resonances.

It is our purpose to emphasize the general con-
sequence of overlapping, 6 &1, and several models
of atomic and molecular systems are constructed
to demonstrate these effects. But first we will
discuss the general theory and compare it with
previous results.

X (E)=g ""n,n~n, p

yl

(44)

III. DISCUSSION

A. General Features

The basic problem in analyzing resonance phenom
ena is to extract information about the resonance
states, primarily from the energy dependence of the
scattering or photoionization cross sections. This
energy dependence is ultimately related to the energy
dependence on the energy shell E'=E of the A&&A
reactance matrix X (E) in Eq. (22), where & is the
number of open channels (o.j,
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Each resonance system is defined by the N xQ
CI

matrix g, where N is the number of resonances
, and by the location of the resonances 8n.

To obtain explicit expressions for the cross
section our major problem is to invert (1+iX), or
to diagonalize the real, symmetric matrix 3.',

F =2m'
n n

(41)

In view of Eq. (41) assumption Eq. (46) merely
states that all resonances interact with just one
continuum

(aU.) ~
1E 8fP PE

where %, is orthogonal and -tan 5 are the eigen-
values of 3'.

The fundamental quantities we wish to extract
from an analysis of resonance phenomena are the
resonance energies En, and the CI matrix V'n ~
in Eq. (6a), and actually Eq. (44) can be made'an
explicit function of these quantities, i.e. , 3t = V (E
—F) 'V. However, if V and 'U are slowly vary-
ing functions of E, then Eq. (44) is in the form
which exhibits the most explicit, .and irreducible
representation of the E dependence of X. Thus
the onlyquantities we can hope to extract from an
analysis of the cross sections are the resonance
energies Sn, and CI matrix '0 for the shifted res-
onance states +nsh&t, and we must view these
as our fundamental microscopic properties. To
go any further in the analysis requires an a pro~i
knowledge of the shift matrix G defined by Eq. (18).
However, we should be aware that because of the
mixing of the zero-order states %no in Eq. (19)
simplifying assumptions which are often applied

to 4'no such as factoring out a Rydberg series like
dependence on the principal quantum number, might
not be at all valid for knshift As will becom

~evident in the discussion, and model calculations
which follow, we shall in fact apply various sim-
plifying models'directly to 4 shift and make no'

further reference to the shift matrix G. Our main
purpose in the model calculations is to demon-
strate )he effects which can occur when resonances
overlap. The further complications introduced by
G merely reinforce our contention that the param-
eters one extracts from situations involving over-
lapping are often far removed and only indirectly
related to the unperturbed resonance, states +n',
or y shif t

For purposes of demonstration we will construcz
bvo model systems which might reasonably repre-
sent the effects of overlapping resonances. One
is a model for the photoionization of atoms in the
far uv and the other is a model for electron-di-
atomic molecule scattering. But first let us dem-
onstrate the agreement of the present results
with previously derived special cases and demon-
strate some overlapping effects.

B. Comparison %lith Previous Results

The cases treated previously'~' correspond to
special cases of the following assumption,

(46)

and we have simply reduced to Pano's many-res-
onance one continuum case. ' The eigenvalues of
X ]see Eq. (45)] are

Z —.'I /(E-& )p= lp n' n n

and the eigenvector for P = 1 is

We need not know the other 0 —1 vectors, P) 1,
other than that they are orthogonal to @y &. The
resultant 8 matrix (Eq. 29) is'

—2' f g/(I+is), (48)

where g=ZI" /2(E —8 ) .

For this special case the photoabsorption cross
section is, from Eqs. (32) and (38)

(49)

(50)

where ob =t f -oo, o~=(f t )', and qn=tb /aft,
in agreement with Ref. 1. In this case all reso-
nances couple to one continuum and the overlap
Eq. (43) is a maximum, i. e. , Sn ~=1 for alln
and m."~" This effect was discussed briefly by
Fano. ' Notice that if all qn have the same sign the
second term in Eq. (50) must pass through zero,
l. e. ,

I+K —.'I" q /(Z-g )=0,

o=&b+& (I+Qa')'/(I+a').

In the limit, as (I' ) ay )) (@n 1 —h n) a, the
cross section can 8e represented as a superposi-
tion of narrow resonances.

once between each resonance Sn, $n+ y, regardless
of the widths 1n. Thus, if 0 is interpreted as a
superposition of isolated resonances the "apparent"
widths of the resonances would never exceed the
spacings. In fact if the widths become exceedingly
large, i. e. , I"n))En —En ] the cross section
Eq. (50) takes on the appearance of a series of
narrow isolated resonances. Consider the case of
qn = Q = constant for all n. Then

where Z~ f~'=1. This is equivalent to assuming
that all resonances have identical branching ratios
into the set of open channels, i.e. , I"n o =fn'I'n,
and

where em —2(E —Dm)/I'nI The "shifted" .reso-
nance energies D~ are located at the singularities



of f= —1/g and thus are the roots of g(E) =0. It
ean be shown that the reciprocal of -g must take
the following form. "

y=~Z+P++ r /2(Z a-),

where the "widths" are

b —h h (p p 4)-2
7

p is the principal quantum number, and p* is the
quantum defect. The transition amplitudes t~& are
approximated as follows,

(52)

r = Z I /2(e -D )'

IV. ATOMIC RYDBERG SERIES OF AUTOIONIZING
LINES

In what follows we assume that for a given se-
ries X the resonance energies (in rydbergs) are
spaced as follows, '

', 01

Oj

17

/6. 25
I

I

I

I

!0

Oj

In the limit, as I'-~, n, P-0 for finite E, and we
obtain the limiting case shown above.

This narrowing effect is shown in Fig. 1 for a
Rydberg series of resonances. Notice how the
location and "apparent" widths change as I'z is
increased, until we attain what appears to be nar-
row, isolated resonances in the limit of large I'~.

where"
'= 28-i * )/[V t* )-'- lj'

X,P
We will distinguish between two types of ioniza-

tion processes. We call the first "autoionization"
and its partial widths "autoionization widths"; in
this case the CI matrix Eq. (6b) is proportional
toRyp,

(53)

auto
np &p Xp (54)

Auger
n, p ~,p(p)

(55)

However there is another important distinction in
this case; each resonance ionizes into a separate
continuum P = P(t&), leaving the ion in the excited
Rydberg state P, and the overlap between reso-
nances is zero. The transition amplitudes into
the Auger continua should vary approximately as

Auger~
pv)

The reasons for this dependence have been dis-
cussed elsewhere. ' Note that within a given series
X each resonant state p autoionizes to identically
the same continuum Eq. (41) and the overlap Eq.
(43) between all resonances in the series is one.

In the second process we refer to Auger widths.
The resonances are due to excitation of inner shell
electrons. The core may undergo an Auge. r ioni-
zation in which the Rydberg electron does not par-
ticipate. In this case the CI matrix elements are
equal for all members of the series p.

125

1.0625

Ojja;

I

I

I

256I
I

I

I

.90
III&'(RYDBERG)

.95

I

I

I

I

j

FIG. 1. Photoabsorption cross section for an auto-
ionizing series of Rydberg lines, as a function of in-
creasing width. The transition amplitudes to the Rydberg
states and to the continuum are held constant so the
magnitude of the q factor does vary as F increases. Note
that in the limit of very large overlapping widths the
cross section takes on the appearance of a single series
of narrow resonances located at intermediate distances
between the original resonances {located by the ticks).

A. Overlapping Autoionizing Series

Figure 1 already demonstrates the effect of in-
creasing the widths on the photoabsorption for a
single "autoionizing" Rydberg series. However
we often expect the occurrence of several closely
lying Rydberg series which can couple to common
continua. As a trivial application of the present
theory let us vary the degree of overlap between
two autoionizing series X =1,2 which have only a
small difference in their quantum defects, e.g. ,
P,*-P,*=0.1. The other variables are the total
widths I"„Eqs. [(40), (53), (54)], a constant q fac-
tor Eq. (36), and a constant p' factor Eq. (37) for
each series. These parameters are ke t con-
stant; p'=0. 5 for both series and q=2 2, —2v 2
for series 1 and 2, respectively. Figure 2 shows
the effect of increasing the overlap between the
series on the total photoabsorption cross section.
Of course within each series X the overlap between
all p states is one, justasin Fig. 1. Noticethatin
all three curves the total widths (shown by bars in
Fig. 2A) p', and q are the same. The only vari
able is the degree of ovexlaj be&&veen the series,
And yet, as s~~en i.n Fi.~ps. 28, and 2C, with
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It is apparent from this exercise that without prior
knowledge of the overlap matrix 6 it is animpossible
task to extract meaningful values of F, q, and p2
for such series.

B. Overlapping Auger Widths

{8)
OVERLAP

I5O-
OVERLAP = 1.0

26 "
9-
0

~ ~

~ ~

I ~

~ ~

It is a trivial matter to treat the Auger mecha-
nism alone since each resonance has a constant
width and does not overlap with its neighbors, i.e.,
6~ ~ = O for n 0 m, and the spectra is just a super-
pos™itionof isolated resonances. However, we
might expect that the same resonance states will
also "auto-ionize". The mixed case, with partial
widths for both processes, can only be handled by
the present theory.

For a single Rydberg series of N resonances
there are N+ j. channels, i. e. , A=N+1 in Eq.
(44). '4 An example of the resultant total cross
section for such a situation is shown in Fig. 4A. "
Notice how the resonance peak heights decrease
in amplitude in contrast to the pure autoionization
processes. The interesting features for this case
are the photo-ionization cross sections into the in-
dividual channels. Figure 48 shows the auto-ion-
ization cross section, while Figs. 4C and 4D show
the cross sections into the Auger channels asso-
ciated with the first and second resonances. The

.86 .88 .90 .92 .94 .96
h P (RYOBERG)

FIG. 2. Overlapping between two closely lying Hydberg
series. Series 1, located by the first of each pair of
ticks, has p2=0.5 and a constant q factor of 8 . The
second series has a p =0.5 and a q=-8 2 The cross
sections are normalized to the total continuum cross
section, i.e. , Oa =tztz. The total widths are the same
in all three plots and are shown by the bars in (A) . The
onty difference betseeen the plots is the degree of oyer
lap. (A) The overlap is zero between the two series, i.e. ,
they autoionize to orthogonal continua, and their photo-
absorption cross sections merely superimpose. (B)
Here the degree of overlap is 0.707. (C) In this extreme
case both series autoionize to the same continua and
this causes the oscillator strength to accumulate in the
narrow region between the two series in spite of the
fact that the widths are the same as in (A) and (B).

{A)
OVERLA

increasing overlap the oscillator strength has
"collected" in the narrow interval between adja-
cent resonances, and the "apparent" width bears
no resemblance to actual widths which are shown
in Fig. 2A. When the overlap equals 1 as in Fig.
2C the cross section is given by Etl. (50). Because
of the difference in the sign of q the sum
(I+ sZqn I~/E —g„) in Eq. (50) has alternating
signs and the o~ term does not necessarily vanish
between resonances; actually the cross terms add
in the narrow interval between resonances.

In Fig. 3 we show a similar case, where q =+2'
for both series. The sum now must vanish between
aQ resonances, and the oscillator strength is
spread out, while the cross section exhibits a

xvindow 1n the narrow inter77als.

a 4 a
~ \

.84,86 .88,90,92,94 .96
hP{RY08ERGS )

FIG. 3. Overlapping between two closely lying Hydberg
series. Same as Fig. 2 except both series have a positive
q= 8 i' . In this case the oscillator strength is spread
out and a "window" develops between the resonance as
the degree of overlap increases.
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(A)

TOTAL

tion alone it would be impossible to estimate the
degree of overlap. The partial cross sections of-
ten can offer the added information needed to prop-
erly interpret the spectra.

V. OVERLAPPING RESONANCES IN ELECTRON-
MOLECULE SCATTERING

(8)
AVTOIONIZ

We construct a rather special molecular model
which, however, demonstrates the effects intro-
duced by the overlap of resonances coupled to the
same channels. Consider an electron incident on
H, Iin its ground electronic state and in vibrational
state o. =0. This is represented in Fig. 5. Each
vibrational state 0. corresponds to an open channel

(c)
g AUGER ~l

I
I
I
l
I

v=4

4.85 4.70

(0)
AUGER ~2

ag

4.55 5.00
hV(RYD8ERGS)

5.05 5.IO

f V=6
V)

v=4
I-
(A

v=3
2

o v=2
LLS

K

v=2

v=l

v=0

(n= X,v)

FIG. 4. Effect of combined autoionization and Auger
processes on a single Rydberg series. The partial
"autoionization widths" are shown by the bars in (8),
awhile the "Auger widths" which are constant for each
resonance are shown by the bars in (C) and (D). All
resonances have a constant q= 1.98, while p2 decreases
with increasing principal quantum number p; the first
few values are 0.90, 0.58, 0.35, 0.21. Also the degree.
of overlap decreases rapidly with increasing p; 6& 2

=0.623; I3g g=0.439;et t=0.362. All the erose sections
are normalized to unit'cross section for photoabsorption
into the autoionization continuum. {A) shows the total
photoabsorption. (B) is the partial cross section into the
autoionization channel to which all the resonances are
coupled. (C) is the cross section for photoionization into
the Auger channel which leaves the ion in the excited
Rydberg state corresponding to the first resonance. (D)
is the partial cross section into the Auger channel arising
from the second resonance.

v=0

a=2, a=0

6 Q=l, e=o
I-
K
6)

LLJ

a a=a, a=0

H2(Q)+e (E,r=)

partial widths for the various channels are indi-
cated by bars in Figs. 4B-4D. Notice that, be
cause of the off-diagonal couplings in X, the Auger
channels show a slight structure due to neighbor-
ing resonances which would be absent in the pure
Auger case. Supposedly one could observe these
partial cross sections by energy analyzing the
photoelectrons. Each channel would give rise to a
different ejected electron energy. However this
effect is not very strildng, particularly once the
Auger widths equal or exceed the autoionization
widths. But again it does reflect the ambiguities
which might arise if overlapping effects are not
considered. On the basis of the total cross sec-

' = R(A)

FIG. 5. Model of electron-molecule scattering using
H2 potentials. Each vibration state n of the ground
electronic state corresponds to an open channel. Two
electronic resonances are postulated, X& and X2, both of
which are represented by the H2+ potential, and have
identical vibrational spectra. The spacing'bebveen the
onset of the two series, &, is taken to be l.86 times
the vibrational quanta I'co~. This model is not to be
taken as a meaningful representation of the real Ht sys-
tem, but was merely devised to demonstrate overlapping
effects.
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and e is the asymptotic kinetic, energy of the elec-
tron. We assume several electronic resonance
states exist, which arise from doubly excited
states of H, . In order to simplify the problem we
assume each electronic state X has identically the
same potential curve and hence vibrational wave
functions y. In the model calculations we consider
the overlap of the two states X, and ), shown in
Fig. (5). These are approximated by the H, + po-
tential. In. addition we assume that the only open
channels are the vibrational states a; in terms of
electronic states alone we might say we are treat-
ing the case of one open electronic channel coupled
to several electronic resonances. This model is
constructed strictly for demonstration purposes
and is not meant to describe the actual elect on-H,
scattering.

We employ the adiabatic Born approximation and
factor the zero-order functions into a product of
vibrational functions times electronic-rotational
functions.

The overlap matrix for this case is

,=Z '0 &,F F, =«,6,. (68)n, n' n X X' v, n v', n X X' v, v'

(1+ix) =+ F F (1+ig ), (64)

where g =+ I' j2(E —S ).
v X X Xv'

Multiplying Eq. (64) from the right by (1+iX) '
and from the left by F(1+ig) 'F, and making use
of the identity 1 =FF = FF, we obtain,

(65)

(1+iX) ' =Z F F (1+ig ) '. (66)

Within a given electronic state the vibrational res-
onances are superimposed and do not overlap. This
is strictly a consequence of assumption in Eq. (60)
that the R dependence of 'U& can be ignored.

It is a trivial matter to invert (1+iX) for this
model. From Eqs. (44) and (60)

@ shift @ el
(R) (~ )n X v (56) Then from Eq. (29) we find the S matrix

with 8 =&~+En X v'

and 0 &'=4' ( (R)

with

We can define an electronic CI integral

1 —ig,
S = F F F, F,nP, v n vy v', y v', P 1+ig

7

If, and only if, the set of open channels (yj form a
complete set, as we have assumed for the model
in Fig. 5, then Z F»Fv~ &

=6v v' and Eq. (67)
reduces to the fol owing,

'U&(R)=( 0' lH —EI4 (58)
S=ZFFnP v vn vP1+ig

v
(68)

and also an R dependent "electronic width'

I' (R) =2m'U 2.

If the dependence of Eq. (58) on the vibrational
coordinate R can be ignored then Eq. (6b) can be
factored into an electronic term times a vibra-
tional overlap integral between the channel vibra-
tional states gn and the resonance vibrational
states yv.

= ( y I a&(R) lg ) = u F (60)

where E =(y Ig ). (61)

Eq. (62) states that the partial width between the
electronic-vibrational state n and the open channel
a is factored into an electronic width times a
Franck-Condon factor Fv ~' .

(62)I' =2mV2 E„2=I' F,
Since Ev o is an orthogonal matrix the total width

r the electronic-vibrational state n is equal to
1"n ~ = 1"&, and each vibrational resonance state

has 6e same width. This is only true if the entire
set of vibrational channels are open. We assume
the electronic resonance occurs at energies high
enough above threshoM that this is essentially true.

We first consider the case of just one electronic
resonance, i. e. , gv= ,'F&/(E —8~ —v). Equation
(68) 'reduces to identicall'y the same expression
used by Chen in his analysis of the N, +e reso-
nances. "

gn, P n, P

~x-iZ F
v n v PvE —b +iI' /2

X, v Xo

(69)

This is just a superposition of isolated resonances,
as indicated by Eq. (63). Figure 6 shows 1—
Real(S „,) for the H, model when one electron reso-
nance Xo is present. If A'=1 in Eq. (28) this is
proportional to the total cross section, The widths
are shown as bars and the curves are labeled ac-
cording to I"y in units of the 0- 1 vibrational
spacing hue. The locations of the vibrational reso-
nance states are shown at the bottom of the figure.
As the width increases the curve exhibits a blend-
ing into a Franck-Condon "envelop". Similar be-
havior is seen in Fig. 7 for the 0- 1 vibration@
excitation cross section. This is a consequence of
having constructed Un z in such a way that I and
3', are diagonalized by the matrix E. If the elec-
tronic widths are R dependent this is no longer
true and structure probably would persist even at
large widths. But the overlapping effect is more
easily demonstrated by allowing two electronic
resonances X, and X, to overlap.
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The present CI theory includes the effects of both
inelastic potential scattering and the coupling of
many resonances to many channels, and has been
applied to various models representing atomic
photoionization and electron molecule scattering.
The effects of inelastic potential scattering have
not been examined explicitly in terms of the mod-
els, but are fairly apparent from the theoretical
expression in Eg. (28). Rather, emphasis has
been given to the effects of overlapping resonances.
A new parameter, the overlap matrix 6, has been
introduced to measure the degree to which differ-
ent resonance states overlap.

If 6 = T we say the resonances are superimposed,
since they each couple to separate, mutually or-
thogonal continua, and they may be treated as sin-
gle isolated resonances. As the total widths F~
exceed the spacing between neighboring resonances
the structure of the cross sections becomes unre-
solved (see Figs. 6 and 7). However, if 6 4 f, the
resonances overlap and exhibit interference effects
due to their mutual interaction with common con-
tinua. The striking feature of the overlap effect is

= E/flue
gol I I I I I I I I I I I I I IIII

XII I I I - I I I
'I

I I I I I I IIII

FIG. 8. Plotof 1-Real (go, o) for various combinations
of widths (Ig, Fy ) when the bvo electronic resonances
shown in Fig. 5 overlap. The locations of the vibration-
al resonances are shown at the bottom of the figure.
The pair of numbers which label each curve indicate the
widths I'~ snd I'~, respectively, in units of the vibra-

1tional spacing I~ .

channel. Certainly in the case of electron-H, scat-
tering other channels must be included. The effect
of an R dependent electron width must be consid-
ered, in which case the unusual feature of the g«
matrix being orthogonal will be destroyed. Lastly
the assumption that all electronic resonances have
the same vibrational structure must be relaxed,
although it may not be unreasonable for a given
Rydberg series of molecular resonance states.

O

I
cf
laIC'

I

1I 1I 1( 1(

VI. SUMMARY AND CONCLUSIONS
Qo I I I I I I I I I I I I I IIIII

I I I I I I I I I I I I IIII
There is a natural desire among scientists to

relate experimental observations to intrinsic molec-.
ular properties of the system being studied, and
thus the temptation to associate the location of each
bump or oscillation in a photon or electron scat-
tering experiment with some approximate eigen-
state of the collision complex, or so-called reso-
nance state is understandable. Further the breadth
of the oscillation is often associated with the width
of the resonance and is used as a measure of the
configuration interaction between the resonance
state and the accessible continuum states. How-
ever, these simple relationships are destroyed
when adjacent resonances, which are imbedded
in the same continua, overlap.

P . I I I I I I I I I I

FIG. 9. Plot of 1 —Real (So, 0) for Fg =5 and ~ =20
corresponding to the extreme case in Fig. 8. This
curve is labeled (Xo+X~). Also Shown are the expected

.curves X~ and ~2 for the two electronic series if they
were isolated, as in Fig. 6. The arrows at the bottom
of the figure locate the positions of the Breit-Wigner
resonances in the overlapping curve. The position and
widths of the resonances are in quantitative agreement
with Eqs. (72) and (73).
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0
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I

I

FIG. 10. Plot of 150, ~t for the case presented in Fig. 9.

that often the cross sections persist in oscillating
between resonance positions even when the widths
greatly exceed the spacings (Figs. 1,2, 3,8,9, and
10). Thus the "observed" widths which appear
never exceed the spacings between those reso-
nances which overlap. By varying the degree of
overlap the "observed" widths vary and bear no
simple relationship to I'„(see Figs. 2 and 3).

In conclusion, we find that to properly charac-
terize a resonance we must know not only its reso-
nance energy E„, and its partial widths lz z
= 2a'0'it n into each accessible channel, but also
the phase of the CI matrix elements 'U ~. This is
necessary to obtain 6 in Eq. (43). Thus from a
theoretical viewpoint there is an important need to
determine 'U~ ~ in addition to solving the more
trivial "eigenvalue" problem. And from the ex-
perimental viewpoint, both differential and inelas-
tic cross sections into a11. accessible channels are
needed to further characterize the resonances.
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