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In Paper III of this series, the asymptotic states of quantum electrodynamics were defined in terms of
the mass-shell singularity structure of the Green’s functions. In this paper the reduction formulas obtained
are used to derive simple expressions for the matrix elements of the scattering operator. This operator is
defined on the space of asymptotic states, which is the direct product of the Fock space of the particles
(massive particles and hard photons) with the nonseparable Hilbert space, defined in Paper I, which is
spanned by the soft-photon coherent states. It is shown that the scattering operator so defined is gauge-
invariant, Lorentz-invariant, unitary, crossing-symmetric, and independent of the choice of the small
parameter that defines the separation between hard and soft photons. For a given initial state, the only
nonvanishing scattering matrix elements are those to final states in a specific equivalence class, and con-
ditions for states to be equivalent in this sense are obtained. The relationship between these matrix elements
and physically measurable cross sections is discussed. In this way, results obtained by conventional methods
are reproduced, but in addition questions inaccessible to such methods, such as the effect of an infinite
number of soft photons in the initial state, may be investigated.
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1. INTRODUCTION

HE conventional treatment of quantum electro-
dynamics gives it a special role among renormal-
izable field theories, because of the way the infrared
divergences are handled. Whereas, in other theories one
computes scattering matrix elements that are finite
after renormalization, in quantum electrodynamics they
are infrared-divergent, and one computes only finite
scattering probabilities, obtained by summing over the
number of emitted soft photons. In the present series
of papers! our aim has been to show that this special
treatment is unnecessary and that quantum electro-
dynamics can be treated like any other renormalizable
field theory. To do this we must drop the invalid
assumption,? implicit in the conventional perturbation
calculations, that the asymptotic states belong to the
Fock space, and instead allow the theory itself to de-
determine the structure of the space of asymptotic
states.

In I we discussed the case of interaction with an ex-
ternal classical current distribution. We defined a set of
generalized coherent states of the radiation field which
can contain infinitely many soft photons and which
span a nonseparable Hilbert space 3Cir. We also showed
that on this space it is possible to define a unitary
scattering operator, all of whose matrix elements are
finite. The extension to the fully quantized theory was
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begun in II, where we investigated the mass-shell
singularities of the Green’s functions, which are branch
points rather than simple poles. Then in III we studied
the nature of the asymptotic states implied by this
structure. The states were defined by appropriate weak
limits. They span a space that is the direct product of
the Fock space for the particles (by which we mean
massive particles and hard photons) with the Hilbert
space JC*rg spanned by the soft-photon coherent states.
We obtained reduction formulas that permit matrix
elements between these asymptotic states to be ex-
tracted from the Green’s functions.

In this paper we shall examine the scattering matrix
elements obtained by application of these reduction
formulas. We begin in Sec. 2 with a critical discussion
of the conventional treatment of the infarared-diver-
gence problem. Then in Sec. 3 we obtain a simple gen-
eral expression for the scattering matrix elements in
a manifestly gauge-invariant form. Section 4 is devoted
to establishing the independence of these matrix ele-
ments on the parameter K that fixes the conventional
separation between hard and soft photons. In Sec. 5
we show that for a fixed initial state the only nonvanish-
ing scattering matrix elements are to final states belong-
ing to a certain “equivalence class” and obtain criteria
for states to be equivalent in this sense. A specific class
of soft-photon coherent states, namely, those that could
be produced from the vacuum by the classical current
of a point particle accelerated to given momentum,
plays an important role. These states are investigated
in Sec. 6. In particular, a formula for the momentum
spectrum of such a state is obtained. The relationship
between the scattering matrix elements and physically
measurable cross sections is discussed in Sec. 7. Here we
reproduce the results of conventional calculations.
However, we are also able to discuss problems that are
hard to treat by conventional methods, such as the
influence of an infinite number of soft photons in the
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initial state. The unitarity of the scattering operator
is demonstrated in Sec. 8. The conclusions are sum-
marized and discussed in Sec. 9.

2. DISCUSSION OF CONVENTIONAL
TREATMENT

It will be useful to begin by recalling certain features
of the conventional method of handling the infrared
divergences, developed by Yennie, Frautschi, and
Suura,?® by Eriksson,* and by others.5=8 This may be
summarized as follows.

First, we give the photon a small fictitious mass A,
so as to remove the infrared divergences from individual
Feynman diagrams. Then, for any given basic process,
we compute, for each value of #, the probability
P.(\,AE) for this process accompanied by the emission
of n soft photons with total energy less than AE. When
we evaluate the sum

P(\AE)= i P,(\AE),

n=0

2.1)

we find that all the terms proportional to In\ cancel in
each order of perturbation theory. Thus, finally, we
may take the limit of vanishing photon mass, and obtain
a finite result

P(AE)=lim P(\AE). (2.2)

This is then the observable probability for the process
under experimental conditions in which the energy
loss due to soft-photon emission can just be detected
when it reaches the value AE.

In general, each term of the series (2.1) tends to zero
in the limit of vanishing photon mass

{i_r}(} P,(\AE)=0, (2.3)
although the sum remains finite. [In any given order
of perturbation theory, P,(A\,AE) diverges logarith-
mically. However, it can be shown that these divergent
terms sum to a form like e*'=).] As X approaches zero,
the number of terms that must be included in the series
increases, and in the limit the expectation value of the
total number of photons emitted tends to infinity:

lim 3 #P,(\AE)= oo .

A0 n=0

2.4)

Thus the probability that the given process occurs with
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the emission of any finite number of photons is zero.
This is an indication of the fact that when the initial
state belongs to the Fock space, the final state in general
does not, since it contains infinitely many soft photons.

If all that we want is a set of rules from which ob-
servable scattering probabilities can be calculated, then
this conventional procedure is adequate. From a logical
point of view, however, it has serious drawbacks.

First, it may be remarked that in the procedure as
outlined above we never actually solve the equations of
quantum electrodynamics itself. Instead, we consider
a vector-meson theory with a very small vector-meson
mass A, and assume that taking the limit A — 0 at the
end of the calculation reproduces the results of quantum
electrodynamics. Physically, it is, of course, an ex-
tremely plausible assumption that we would be unable
to distinguish electrodynamics from a theory in which
the photon had a finite mass, provided that this mass
were chosen small enough. However, it would be
better to be able to prove this assumption, and this
could only be done by providing some alternative
method of calculation that works directly with quantum
electrodynamics itself, and avoids the necessity of
introducing a photon mass.

At least a partial answer to this objection has in fact
been provided by the elegant technique for performing
the sum in (2.1) developed by Mahanthappa.” This
technique uses Schwinger’s® method for calculating
directly the expectation value of appropriate final-state
projection operators. Instead of evaluating each term in
the sum separately, one writes the corresponding ex-
pression in terms of operators,

L ([ S*|n)n| S|}, 2.5)

where S is represented by a sum of time-ordered prod-
ucts, and S* by a sum of anti-time-ordered products,
and replaces the sum over final states by a projection
operator. Because the summation is carried out before
the diagrams are evaluated, no infrared divergences
appear, and one avoids the need to introduce a photon
mass.

However, this answer is not really complete, because
the difficulties have merely been transferred to the
problem of defining the projection operators involved.
What is required is the projection operator P on the
subspace of states containing designated charged par-
ticles together with any number of soft photons. For-
mally this operator is defined by '

P=2 [n)nl, (2.6)

but as long as the sum runs only over states containing
finite numbers of photons, this equation is not really
correct, as may be seen from the fact that the expecta-
tion value of P is nonzero, while the expectation value

%J. Schwinger, J. Math. Phys. 2, 407 (1961).
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of each term in the sum (2.6) is zero. This is again an
indication of the need to include states outside the
Fock space.

The second objection that may be raised against the
conventional procedure is its lack of symmetry be-
tween initial and final states. We normally assume that
the initial state contains only a finite number of photons,
and compute the sum of the scattering probabilities to
all possible final states. In general, to obtain a finite
answer one must include final states with infinitely
many photons. However, in practice we have no way
of knowing that the initial state does not already con-
tain infinitely many soft photons, with finite total
energy, and for completeness we should allow for this
possibility. In fact, in a multiple scattering process in
which the initial state before the first stage belongs to
the Fock space, the initial state for the second stage
will not, in general. It can of course be argued that the
infinitely many soft photons emitted in the first stage
of the process will have escaped from the region of in-
terest and, in any case, that the presence of undetectable
soft photons in the initial state should not substantially
affect the scattering probabilities. But this again is some-
thing that should be proved and not merely assumed.
The conventional procedure would allow us to compute
the scattering probabilities from an initial state contain-
ing any finite number of soft photons, but it cannot
accommodate an infinite number.

Probably the most serious objection to the conven-
tional procedure, however, is simply that it involves a
description of the asymptotic states that does not corre-
spond to reality. According to the generally accepted
ideas of quantum-mechanical scattering theory, if the
initial state is a well-defined pure state, represented by
a definite vector in the Hilbert space of asymptotic
states, then the final state is another well-defined pure
state, which it should be possible to characterize com-
pletely in some way. We know that if the initial state
belongs to the Fock space, then the final state does not,
and it is therefore impossible to characterize it by giving
its components in a basis in the Fock space. All of
these are actually zero. (It should be remarked that the
conventional procedure provides only an incomplete
description of the final state, since it is concerned only
with the particle labels and not with those character-
izing the final soft-photon state.) Consequently, if we
want to retain the usual structure of scattering
theory, we must extend our space of asymptotic states,
and work with a space that can accommodate well-
defined states in which the expectation value of the
total number of soft photons is infinite.

In the Fock space, we normally choose our basis
states to contain definite numbers of photons, each
labeled by its momentum and polarization. It is clear,
however, that this choice cannot easily be generalized
to allow for the possibility of an infinite number of
soft photons. A much better choice of basis consists of
the coherent states of the radiation field that can be so
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generalized, as was shown in I. It is rather natural that
the coherent states, which have quasiclassical proper-
ties,’® should be a convenient tool in discussing the
infrared-divergence problem, since the soft-photon
emission process is essentially classical in nature. Indeed,
it is clear from the work of Bloch and Nordsieck!! that
the soft photons emitted in a scattering process must be
in what is essentially a coherent state,’? although no
precise definition of such states for the case of infinite
photon number was in fact given.

We showed in I that, for the electromagnetic field
interacting only with an external current, the space of
asymptotic states is the space J3Cir spanned by the
generalized coherent states |f,\). That is to say, for
any current J#(x) (of the class specified), a unitary
scattering operator S(J) is defined on 3Crr. Thus, if the
initial state belongs to 3Crg, then does so the final state,
whatever the current chosen may be. No subspace of
JCir has this property, and in fact the generalized
coherent states | f,\) that span #Crz may all be produced
from the vacuum by the action of some suitably chosen
external current.

It will be convenient to recall here certain properties
of these coherent states. The label f stands for a photon
wave function f*(k), while A\(k) is a real function whose
(possibly divergent) integral determines the generalized
phase of the state

N f k| ®
eh=expt | —— .
P (2m)32k°

We frequently use the notation
J* f o *(k)g+(k)
= —_— M
4 (2m)2k of B 4 ’

in terms of which the scalar product of two generalized
coherent states | f,\) and |g,u) is, formally,

(fMlgm)=exp(f*g—3f*f—3g*g—iNtip). (2.7)

This integral may diverge, but we adopt the same con-
vention as in I and ITI: All terms in the exponent are to
be combined before doing the integration, and if the
resulting sum is a divergent integral, its exponential
is zero by definition. Unitary operators U(f)V()\) that
create these coherent states from the vacuum may be
defined by

UMDV | g)= | f+g Mut3i(f*g—g*N). (2.8)

The scattering operator S(J) in the presence of a
classical external current J may be expressed in terms
of these operators by the relation (65) of I, namely,

SN=UGNV (). (2.9)

10 R. J. Glauber, Phys. Rev. 131, 2766 (1963).
U F, Bloch and A, Nordsieck, Phys. Rev. 52, 54 (1937).
12 R. J. Glauber, Phys. Rev. 84, 395 (1951).
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In the argument of U, J signifies the Fourier transform
of J#(x), restricted to the positive-energy mass shell,
k?=0, £°>0. The phase ¢ is a quadratic function of J,
and is physically irrelevant.

We also note a special case of the relation (2.8) of
IIT which may easily be derived from (2.7) and (2.8)
above, namely,

MUB)U (h2) | gy
= (f\ g.w) expLf*(hrthz)— (hitho)*g
— 3k ¥k —hy*he—ho*hs ). (2.10)
The exponents here and in (2.7) must, of course, be
combined before applying the interpretational rules
given above.
Finally, it will be useful to recall the notation for a
translated wave function,

(x) fr(k) = fe(k)e—i* =,

It is reasonable to expect that even in the fully
interacting theory the space of asymptotic photon

(2.11).

states will again be 3Crr. However, we do not assume

this a priori, but seek to deduce it from the structure of
the Green’s functions. We have already shown, in III,
that it is possible to define asymptotic soft-photon
coherent states. What we have not yet shown is that
the asymptotic states so defined form a complete set,
or, in other words, that the scattering operator defined
by the matrix elements between them is unitary. This we
shall prove in Sec. 8.

3. SCATTERING MATRIX ELEMENTS
The scattering matrix elements

(i - L fx; out| =Ly - - —1; gu; in)  (3.1)
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define a scattering operator S on the space spanned by
the states |li---1,; f,\). This is the direct-product
space JC*®@JC*r, where 3% is the Fock space of massive
particles and hard photons, and 5C*x is the nonseparable
Hilbert space spanned by the soft-photon coherent
states | f,\). It is the properties of this operator S that
we shall study in this paper.

The matrix element (3.1) is a special case of the
matrix elements discussed in III, one in which no field
operators remain between the asymptotic states and in
which the soft-photon external current J is set equal to
zero. Let us begin by recalling the rules given in IIT for
calculating such matrix elements. We may start with
the corresponding formula for the #-point Green’s
function G(p1- - - pa). This function is represented by a
sum of terms, each representing core diagrams of one
particular connectivity structure. In each term, the
contribution of the core diagrams is represented by a
product of factors M*,, one for each connected piece.
The soft-photon contribution is entirely contained in
a single function A¢ depending on the external momenta
p; and on the momentum variables ¢; that label the
inner ends of the external lines and appear in the func-
tions M*,. To pass from the Green’s function to the
matrix element (3.1) we must replace each p; by a
mass-shell momentum J;, drop the renormalization
functions [Z%;(p;)]"%, replace the spin matrices A;(p5)
by spin-wave functions #(/;) or %¢(—1I,), and modify the
function A to take account of the fact that the momenta
l; are on their mass shells.

The most general function A¢ considered in IIT had
7 lines with both ends on the mass shell, #—7 lines with
one end on the mass shell, and #—m off-mass-shell lines.
For our present purposes, we need no off-mass-shell
lines, since all the external momenta are on their mass
shells. Thus we may set m=n. The expression (10.3) of
III for A¢ then simplifies to

Aspngu(lye oDy W0, Gryas - 2 qm) q 2ré(m2+-1%) = / dyr- - -dyn exp(—i X (l—1)-y;—i E Gi—9)y;-
= =1 J=r+1

where

" dk w( ,
XN gm) exp<i(f*I+I*g)+%i f I"(k)*y ( )I”(k)), (3.2)
as (2m)4 k2— e
GJ‘lj"
— exp(—ik-y;). (3.3)

IB)=3 e 2mb(l; k) exp(—ik-y)—i 3"

J=1

We recall also the significance of the prime on the
integral in (3.2). It indicates the special treatment that
is required for the terms in which the same term of (3.3)
contributes both to I and I* in (3.2). For these a special
rule is required to make the integral well defined:
We must, in fact, omit the contribution of the double

s=rt1l;-k—1ie

pole at /;+k=0 and retain only the contribution of the
pole at k2=0. [See (6.8) of IT1.]

We now wish to obtain a more convenient expression
for the matrix element (3.1) than the one vielded by
direct application of the rules discussed above. In
particular, we shall seek a form that is manifestly
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gauge-invariant. The original one is not, because of the
appearance of the gauge function v, in the integral in
(3.2). ) '

For simplicity, let us first assume that in the region
of interest no core diagrams with straight-through lines
can contribute significantly to the matrix element (3.1).
This condition will be satisfied if no pair of the external
momenta has a sum /;-+1; close to zero. In this case, the
application of the rules yields the expression

dy- - L3 A5 out]| —Lapr - - —ln; g, w5 in)

I o) [

J=st1

dg 1 dq,.
(2m)t  (2m)

= I;Il a(l)

Xl it ) T 1T xS 09

a=1 =y

XMr({g;| jEA}), (B.4)
where the summation indicates a sum over all partitions
of (1-+-n) into sets Aa, that is, over all classes of dia-
grams with different connectivity structures. ) '
Now, since M*, is a slowly varying function of its
arguments, we may there replace'qj by ;. The.n for
each & function we introduce a Fourier representation

dx.exp(—1 2 ¢i%a).
i€Aa

@2m)is( X a)=

€A

When we substitute (3.2) into (3.4), we then find that
the effect of each g; integration is to set the correspond-
ing y;= % Then the function I#(k) given by (3.3) may
be written in the form

N
Ink)=2 I(k), 3.5)
a=1
where
e,-lj" .
IHE)=—1 X — exp(—ik-xa). (3.6)
i€Aali-k—1e

But charge is conserved in each connected piece of the

core diagrams,
g g Z e;=0, 3.7
i€Aa

and it follows that each of the currents I, is conserved:
kuo#(k)=0. (3.8)

Indeed, I,#(k) is the classical current corresponding to
a point-scattering process occurring at %, where for
each j either a particle of charge ¢; and momentum /;
is emitted or else a particle of charge —e; and momentum
—1; is absorbed.

It follows that the factor v,,(k) in the last term of the
exponent in (3.2) is redundant. (It is easy to check tha:t
the prime on the integral makes no difference to this
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argument.) Hence we may write

(- - -L; f0; out| =Ly - - —)o; g,; in)

=11a) 1T a(-1) = 1T (] €a.)

=1 A} a=1

L %) (N gom)

N
X/dxl- cdeyexp(—i > X
iCAa

a=] j

" dk IHE)*IL(R)
o (M)t B2—ie ) (3.9

Since v, (k) no longer appears anywhere in this
formula, it is manifestly gauge-invariant, provided, of
course, that the core diagrams themselves are so.

In this discussion we have omitted the diagrams with
straight-through lines, but it is easy to see that they
too can be accommodated in the general formula (3.9).
The dependence of the integrand of (3.2) on the vari-
ables of a straight-through line is already of precisely
the form indicated in (3.9), if we identify the corre-
sponding y; with x, and take

I (k)= eil#2nd(l;- k) exp(—1ik-%xa). (3.10)

The only real difference is the appearance of the 6-func-
tion factor on the left of (3.2). Hence (3.9) is again
valid if we define the corresponding function M*,(1;];)
by the formal relation

M"a(l,-lj)21r6(m,~2+l,-2) = N,-"IC;,- . (3 1 1)

The soft-photon factor in the integrand of (3.9) may
be recognized as being essentially the scattering matrix

element
(f,\; out|gu; in)r=(fA[ST)|gu)  (3.12)

in the presence of the classical external current I#(k), as
given by (2.9) or by (59) of I. The only difference is the
prime on the integral in (3.9). This prime is required to
give the integral a meaning, even within the context of
the interpretational rules given in Sec. 2 above and, in
more detail, in I and III. For, without it, the 4 integral
would diverge even for ks£0. In fact, the current 7#(k)
does not belong to the class of currents considered in I.
(Physically, this is because of the artificial choice of
sharp momentum states. We could obtain a current
that does belong tothat class by integrating over a
small range of each /;.)

Despite this difference we may define an operator
S’(I) on the space 3C*r and write (3.9) more briefly as

(ll' : ’18; f’)‘} Outl '—18+1' . —l'M &)k ln>

XeXP<i(f*I+I*g)+%i

“TTat) IT a(-1) = IT ML) jE€4)

=1 j=s+1 {4} a=1

N
X[dxln-de exp(—2 2 X li-xa)
a=l jCAa

XAS' D) gy (3.13)
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It can easily be seen that, like S(J), S’(I) is unitary.
Indeed, it may be expressed in terms of the unitary
operators introduced in I and in Sec. 2 of this paper in
a form similar to (2.9), namely,

S'D=UGNDHV (), (3.14)
where ¢’ is given formally by the principal-value integral
, 1 dk Ix(R)M1L(E)

T2 L @t B

(3.15)
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Here the significance of the prime is simply that the
diagonal terms with 7= j are to be dropped. [Note that
in I we wrote U(ij), where j denoted the positive-energy
mass-shell restriction of J. Here this restriction is
implicit. ]

The translational invariance of the scattering operator
is easy to verify from (3.13). For using the notation
(2.11) for translated wave functions, we easily see
that

(e L (1 0ut] ~leyze -~ (s in) exp(s 3 )= @) 1T a(—1) T IT Mou(thl s€4)

7=1
X/dxl. .

If we then make the substitutions x, — %,+x, we find
that the soft-photon matrix element becomes

(@) SN[ ST@I] (#)guy=(FMS' (D) | g}, (3.17)

so that the matrix element (3.16) is equal to (3.13).
Correspondingly, if we were to project out from the
soft-photon states components with definite momentum,
we should obtain a matrix element containing an over-all
energy-momentum-conserving 6 function.

The invariance under infinitesimal Lorentz trans-
formations may be established similarly, taking account
of the transformation properties of the spin functions
and the M* functions (which we assume) and using the
relation

(WAMSTAIT[A)guy= S S"(D) |gu), (3.18)

which is valid for any infinitesimal Lorentz transforma-
tion A.

4. DEPENDENCE ON THE SOFT-PHOTON
CUTOFF

We now turn to the problem of proving that the
scattering matrix elements computed from (3.9) are
independent of the choice of the small constant K that
defines the separation between hard and soft photons.
We shall consider a small addition 62 to the soft-
photon region ¢, and seek to show that we get the same
answers whether we work with Q¢ or with the enlarged
region @'*=Q°46Q. There are really two distinct
problems here: one concerned with the photons in the
asymptotic states and one with the contributions of
internal photon lines. We begin with the external lines.

Let us consider a state | f,\)’ that, relative to Q's, is
a pure soft-photon coherent state. Since the part of
A(k) within 8Q contributes only a finite phase factor,

N
cdx(—1 3

(4} a=1

EA i @a—=o)@) LA S'(D) | (®)gu).  (3.16)

a=1 j€4a

there is no real loss of generality in setting A(k)=0 in
this region. Now, in terms of Q¢ this state | f,\) is not
a pure soft-photon state, but has a small component
containing one hard photon. In general, there must, of
course, also be components containing two and more
hard photons, but their contributions are evidently of
second order in 82 and so we neglect them. Since the
norm of the component with one hard photon is of
order (892)1/2 there is also to first order a change in
normalization, so that we may write

LAY =1fM)+8] M)

c1(icd [ gsnre)

4 dk ks PPk
ﬁn (27)32k0 i SMfHK), (4.1)

in which the subscript u on k denotes the polarization
index.

Let us consider the matrix element (3.1) with the
soft-photon states |f\) and |gu) replaced by |f\Y
and |gu). In terms of Q's we see that the contribution
to the integrand of (3.9) from the parts of f and g
within the small region 6Q is

dk
ﬁwﬁwm®y®WMWﬂwﬂ@mﬂ)

Fifulk)*I4(k)+il, (k) *gu(k)].  (4.2)

What we have to prove is that the same result is ob-
tained by working in terms of Q.
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Now, in terms of Q¢ the difference between the primed and unprimed matrix elements is, according to (4.1),

, . 1 dk
5<h---ls;f,k;outl—1s+r~-—ln;g,u;in)=—5f

dk
X+ S0 out| =Ly« - —1a; g in)+

Lfu(R)* £ (k) gu(k) *g# (k) ]

so (2m)32k0

[ (&) *(ly- - -Lku; fA; out| —liyge - - —1a; gou; in)

s (2m)3200

dk
- - 1oy £ out| —Loyr- - - —Lk,; gu; in)ge(k) ]+ /
L £5 out] ~Ls s im0t [ S

dk’
s (27)32%Y

JH(k)*

Xl - Lk fA5 out| =Loya- - - =LK, gu; in)g (k). (4.3)

In the last term the only contribution of first order in
8Q is that from diagrams with a straight-through line
joining % to #’. The contribution from such a straight-
through line is proportional to

(k| K',) = (27)32k%, (k) 8(k—K) .

Hence this term and the quadratic terms in f and g are
together precisely equal to the first three terms of (4.2).
Next we must consider the matrix elements in (4.3)
that involve a single extra photon in the initial or final
state. Clearly, this photon still has small momentum,
even though we choose to classify it as hard. Therefore
the same approximations that we used in computing
the soft-photon contributions in Sec. 3 are still valid.
When we insert a photon-emission vertex into the core
diagrams, we need only consider insertions in the ex-
ternal lines. The effect of inserting such a vertex in a
mass-shell line of charge ¢ and momentum [ is given by
the mass-shell form of (3.15) of III, that is, it is to
multiply it by a factor el#/I-k. When we consider all
possible insertions in a particular connected piece of
the core diagrams, we must sum these factors for all its
external lines. Also, of course, the momentum % must
appear in the corresponding § function in (3.4), which
means that in (3.9) there must be an extra factor
exp(—ik-%,) in the integrand. Therefore the net effect
of making all possible insertions in this connected
piece of the diagram is to introduce an extra factor

. lej" X .
S ——exp(—ik-xq)=1l*(k).

iC4a l;-k

The corresponding expression for a photon-absorption
vertex is obtained by changing the sign of %, and is
therefore 71 .#(k)*. Hence, summing over all connected
pieces of the diagrams, we find that the linear terms in
f and g in (4.3) are given by (3.9), but with an extra
factor in the integrand equal to

dk

‘ L) THR) T, (k) *gr(K)]. (4.4
1fm(2r)32k0[f() B+LE*W]. (@4)

This agrees precisely with (4.2).

A very similar argument may be used to deal with the
internal photon lines, and we merely sketch it briefly.
In terms of @ the contribution to the integrand of
(3.9) coming from the region 8Q is simply

i / dk Iu(k)*1(F)

o (2wt k2—ie ' (*5)

[N

On the other hand, in terms of Q¢ this contribution must
be a part of the core diagrams. Indeed, it is clear that
this is the kind of structure that one would obtain by
inserting a single internal photon with momentum re-
stricted to 62 in all possible ways in the external lines
of the core diagrams. Note that this insertion may
change the connectivity structure of the core diagrams.
Two pieces that are disconnected in terms of the sepa-
ration defined by Q¥ become in terms of Q¢ parts of a
single connected piece when joined by a line with
momentum in 62. However, it is not difficult to verify
in detail that the structure (4.5) is indeed what we
obtain in this way. The prime on the integral comes from
the fact that when both ends of the internal photon
line are attached to the same external line of the core
diagram, we are required to subtract out the contribu-
tion to the mass renormalization constant. In defining
the function M* we removed a factor of [Z%(p;) 112
for each external line. Thus we should retain one-half
of the self-energy parts on each line, the other half
being the contribution to this factor. This is actually
what the formula (4.5) yields, because of the explicit
factor of 1 outside it. It may be remarked that if we
were considering the change not in M* but in the Green’s
function itself, we should get the full contribution,
because this factor of 3 would be compensated by the
factor of 2 in the formula (4.20) of III for X,;.

5. EQUIVALENCE CLASSES

Just as in I, we may separate the % or out basis states
[1i--+Lq; f,\) into equivalence classes, each of which
spans a separable subspace of 3¢%(X)3Cex in such a way
that if the initial state belongs to a given equivalence
class of 7% states, then the only nonvanishing scattering
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matrix elements are those to final states in some one
definite equivalence class of out states. We shall find,
however, that in the present case the two decompo-
sitions of JC*¢X)JC*r are not the same. That is, if two
in states are equivalent in this sense, it need not follow
that the two ou! states with the same labels are also
equivalent.

Since scattering matrix elements are zero in any case
if the initial and final states have different total charge,
we may restrict our considerations to states with some
definite given value of the charge (and also of other
absolutely conserved discrete quantum numbers such as
baryon number). '

We must investigate the conditions under which the
matrix element (3.9), interpreted according to the rules
given, is nonvanishing. Now, any integral involving
the quantity (x)I—1I will be convergent because of the
appearance of the factor ¢~%2—1, which vanishes at
k=0, in the integrand. Hence the matrix element in the
integrand of (3.9) will be finite and nonzero for all
values of #, if it is so when each x. is set equal to zero.
(No infrared divergence can arise from the integrations
OVer %q.)

Let us consider the matrix element
Ay --1; £\ out|ly- - -1i; gou; in), (5.1)

We write the corresponding current I evaluated for
%oa=0 as the sum of two terms:

I“(k) =I"out(k)+-[“in(k) ) (5.2)
where
Tty m—i 5 22 (53)
Fou =—1 R
‘ L ke
and
I(=i 32 5.4
Fin(k)=1 . R
=1l;-k+1ie

These currents are, of course, no longer individually
conserved, so that when we separate them, we must
reinsert the factor v,,(k) in the integrand.

Now the cross term in the exponent of (3.9) between
these two currents is

s ¢ dk  elli* yu(k)
-y T -

=t i1 Jqi 2m)4 1 Bbde B2 —ie Ly ktie

el

(5.5)

In this integral, both the poles at /(=0 and /;-k=0
lie above the real axis. Hence, closing the contour in the
lower half 2° plane, we obtain only the contribution
from the pole at k%= | k|,

F t
> X si*sy,

=1 j=1

(5.6)

where, as before, s; denotes the photon wave function

siu(k) = 'Yur(k)ejlf’/ li-k. (5,'7)
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On the other hand, the term quadratic in Ty is
8 8 4 dk e.i’l,"“ v, y(k) e'l v
DD T (58)

i=1 =1 J g0 (20)4 1/ - ktie B2—de L k—ie

Here, when we close the contour in the lower half £°

plane, we obtain not only a contribution from the pole
at k%= | k|,

8 t
-3 2 X si%sf,

t=1 j=1

(5.9)

but also a contribution from the pole at I/-k=0,
namely, "
_ zs: /- dk e,;’l./". Yur(k)
i<i=1Jge 2m)4l/ k+ie k2
By the symmetry of the integrand, it is clear that only

the é-function part of the first denominator will contrib-
ute, so that we obtain

ejrli 2w (- k).

8
i 2 o,
1<g=1
where .
dk 2xd(l! E)2x6(} - k)

o+ (2m)* k2 (5.10)

Adding all these contributions, we find that the
soft-photon function in the integrand of (3.9) is

<f!>‘ [S,(I) Ig:”'>= (f))‘lg)l‘>

11, 1,170.712
Tij =3€; 6 l,’ 'lj

XeXP(Z::] (f*s/—si*g)— Zti (f*si—si*g)

[} 8 t » t t
=32 2SI X sitsi—1 T 3 sty
i=1 j=1 t=1 j==1 ge=] j=1

t

> o). (5.11)

1<j=1

+i Y o ti

i<j=1

Using the identity (2.10), with #;=3"s,; and hy= -8,
we then find that (5.11) may be written in the form

(ff)‘! S,(I) Ig;/“): (f,A l S’(Iout)S,(Iin) !g,u) ’ (512)

where we have defined

STo)=U(E sHV( S a3f)

2 R (5.13)
and
S'Tin)y=U(— Z::l ;) V(.<Z¢.bl 0i;). (5.14)

Note that (5.13) and (5.14) represent an extension of
our previous definition of S’(I) in as much as the cur-
rents here are not conserved. Correspondingly, the argu-
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ments of the operators U are not gauge-invariant.
Under a gauge transformation in which the function
I#(k) of (2.2) of II changes by an amount 8/#(k), so that

Ovu(k) = —k,80,(k)—k,0L,(k) ,
we find that

53 s/HB)=—Qo(E) =5 T sp(k),  (5.15)

where

Q0= i ef= i €.

j=1 F=1

(5.16)

We find then that the condition for the matrix ele-
ment (5.1) to be nonzero is that (5.12) should be nonzero,
or, in terms of the definition of equivalence for coherent
states given in I, that

S (Lout) | fN~S'(T1n) | gt) (5.17)

(We recall that for two coherent states |a)~|g) if and
only if (a|8)70.) Hence we may define the equivalence
classes of the states in (5.1) to be those of these corre-
sponding soft-photon states. The correspondence is
given explicitly by

I+ 1/5 £ out) — S Touws) | f))

U5 s)V(= % o)|fA) (5.18)

j=1 i<j=1
or

|- - -1i; gop; in) — S'(T1n) | go1e)

UV op)lgw. (519)
i<j=1

J=1

We may regard the operator U as removing the “soft-
photon clouds” associated with the charged particles,
and V as removing the Coulomb phase factors associ-
ated with pairs of particles. We note in particular that
one equivalence class contains all the states of the form

8 8
Illl' . .la'; z Sj,; Z a'z'j,; out) (5-20)
j=1 i<j=1
and
t t
|+ -1; X 55, — X 0us5in), (5.21)
=1 i<j=1

in which each particle is accompanied by its appropriate
soft-photon cloud, and each pair of particles by their
Coulomb phase factor.

We note that because the Coulomb phases enter with
opposite sign for the iz and out states, the decomposition
of 3¢*X3Cer into equivalence classes is different for
the two cases.

The definition of equivalence that follows from the
correspondences (5,18) and (5.19) is gauge-independent,
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as long as we stick to states with a given total charge,
since under a gauge transformation the states on the
right sides in both cases undergo a unitary transfor-
mation induced by the operator U(Qdl). We may also
regard these correspondences as defining the relation of
equivalence for states with different total charge, but
the relation is not then independent of the choice of
gauge. A physical interpretation of this extended defi-
nition is provided by the observation that any time-
ordered product of field operators has matrix elements
only between states that are equivalent in this sense. To
see this, let us consider the matrix element of some time-
ordered product between the asymptotic states of (5.1).
We may recall that no infrared divergence is associated
with off-mass-shell lines. Correspondingly, in the general
function A¢, given by (10.3) of IIT which, gives the soft-
photon contribution to this matrix element, the off-
mass-shell lines contribute only a finite factor. Hence
the infrared-divergent part depends only on the i and
out states, but not on the operators that appear between
them, and is again given by (5.11). Thus the condition
for such a matrix element to be nonvanishing is precisely
(5.17). In view of this interpretation, it is natural that
the definition of equivalence should in general be gauge-
dependent, since the operators in the time-ordered
product are so. We note in particular that the equiva-
lence class containing the states (5.20) and (5.21) consists
of those states that can be produced from the vacuum
by the action of a finite number of field operators.

We may also note that this interpretation is consistent
with the general formula (10.1) of III, which gives the
matrix element of a field operator ¢ between out states
containing # and #--1 particles:

<ll‘ . 'ln; a; 0utl¢n+1(x) “1/' ‘ 'ln,l; B; Out>

=[ 24D ] 2u() (e UL~ ()s]|Beit>
Xg (NAa)ud)JA 3 G L)) . (5.22)

Asfar asitsinfrared divergence is concerned, U[ — (%)s:]
is equivalent to U[—s;]. Moreover, the infrared-
divergent part of the function A*(}/; I;| I (n41y) may be
obtained from the formula for it [(8.10) of III] by
setting y=0 in the integrand, and is

CXP(L. (;j)

Thus (5.22) is nonvanishing if and only if the soft-photon
matrix element

(@] U(=sap)V(— z oimi)|B)

8jlj“27r5 (lj . k)

’an(k) eny1l’
4 B2

I k+t1ie

= exp(—1i0j,n41).-

(5.23)

is nonzero. But, according to the rule of correspondence
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(5.18), this is also precisely the condition for equivalence
of the states [/;-+-ln; @; out) and |l;- - -lulnya; B; out).

6. MOMENTUM SPECTRUM OF SOFT-PHOTON
COHERENT STATES

It will be convenient at this point to investigate
certain properties of the special class of coherent states
that, as we have seen, plays an important role.

Let us consider the state

IS,0>= |S1+ o '+sm0>: (6-1)

where s; is the wave function defined in (5.7). We note
that this state is explicitly gauge-dependent except in
the special case where the total charge is zero, Y e;=0.
[In that case, a change in the gauge function v,,(k)
changes s* only by terms proportional to k.]

The function (5.7) appears in all treatments of the
infrared-divergence problem, and has a simple physical
interpretation. To be specific, let us choose the radiation
gauge, and consider the process of accelerating a particle
from rest to momentum p*. The hard-photon emission
during this process depends on the details of the ac-
celeration mechanism, but the soft-photon emission
does not, except in one specific respect to be noted below.
It is essentially that produced by the classical current

J#(x)= o

—0

dr ent§(x—nt)+ / dr evsd(x—vr), (6.2)
0

where v#= p#/m and, as usual, »*=(1,0). This represents
a point particle accelerated at =0 from rest to velocity
v#, According to the results of I, the photons emitted
by this classical current are in a coherent state whose
wave function is given by ¢ times the mass-shell value of
the Fourier transform of (6.2), namely,

e(p*/p-k—n*/n-k),

which in the radiation gauge yields (5.7).

The reason for the explicit gauge dependence is now
clear. The state |s,0) represents the photons emitted
in accelerating the particles to momenta p;# from a
particular canonical state, in this case the state of rest,
and the choice of the canonical state depends on the
choice of gauge. We may regard the photons in the state
5;,0) as belonging to a “soft-photon cloud” associated
with the particle of momentum p;4, but the separation
of soft photons into ones belonging to these clouds and
the remainder is to some extent arbitrary, and gauge-
dependent.

Note the special role played by the origin in (6.2) as
the point at which the acceleration occurs. We could
equally well have chosen any other point %, and would
then have obtained in place of s a translated wave func-
tion (x)s. To this extent only, the soft-photon state
produced by the acceleration does depend on the way in
which the acceleration occurs.

COHERENT SOFT-PHOTON STATES.
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We now wish to investigate the momentum spectrum
of the state (6.1).

In general, the momentum spectrum of a coherent
state | f,\) is given by the distribution

(k)= / d cik(fA | oiP=| £)

o L CYNV AR

Using the scalar-product formula given in Sec. 2, we
may write p(k) in the form

p(k)= / dx e~ikagl@ (6.4)
with
L(x)= (@) f*f—3(@) f*@) f—=31*f
= / o fu*(k) fu(k) (et+=—1).  (6.5)
(27)32k°

Note that, because the last factor vanishes at k=0, this
integral is always convergent. It is clear that p(k) has its
support in the forward light cone, £2<0, k°> 0, is non-
negative, and satisfies the normalization condition

ik
/ anrB=1

The coherent states may be decomposed into states
with definite energy and momentum, according to the
relations

6.6)

| FALED)= f dx ¢+ (2) f\) 6.7)
and
&) f)= f B v A 69)
’ (2r)¢ ’ ' '

These states are normalized according to the relation

(FALED| SR D)= (2m)to(k—R')p(R).  (6.9)

Now, substituting s for f in (6.5) we find that the
exponent L(x) has the form

Lx)= é Z::lL,-,-(x) , (6.10)
where ik ®
?i"'Ym' PJ'"
Lij( =¢€:e; ( ikez— 1), 6.11
? ”/ e g n D G

To find the nature of the spectrum near 2= 0, we must
determine the asymptotic behavior of the function L(x)
for large values of . But Ly;(«) is precisely the function
(2.9) of II whose asymptotic behavior we studied in
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II. We found it to be given by
Lij(%) = 3&i; In(K%2)+ fi;(x/°) (6.12)

where fi;, as indicated, is a function only of the direction
of %, not its magnitude. In the radiation gauge, the
parameter £;; is a function of the relative velocity

wuij=[1—mms/(p; p;)*]'"*
and the velocities #;= | pi/p:®|, given by
Ei%= (ese;/4n") [ B(uis) — B(us) — B(u;)+1],
where ®(#) is the function
1 14u
&(u)=— In—mo-.

20 1—u

Thus the asymptotic behavior of the function L(x) is
described by

L(x) ~§¢ In(K2%3)+ f(x/2°) , (6.13)
where
f=é é &ij. (6.14)

This result is sufficient to determine the nature of the
singularity in the momentum spectrum p(k) at k=0. A
straightforward calculation shows that as £— 0 from
any direction within the forward light cone,

p(k) =~ (— k%)~ —k?/K*)~#g(k/%°)

where again g is a function only of the direction of %.

We may note that in the radiation gauge (or any
physical gauge) the parameter £ is never positive. This
may be seen most directly from (6.10) and (6.11), by
noting that the non-negativity of v,,(k) implies that
ReL(x) <0. This inequality must remain valid in the
asymptotic region, and thus requires £<0. In this case
p(E) has a singularity at k=0 which is integrable in the
usual sense. If we define a function p(%) in the Lorentz
gauge by (6.4), (6.10), and (6.11), with v,(k)=gu,
then we find that although this p(%) is well defined as a
distribution, it is no longer an integrable function. Nor,
of course, is it any longer non-negative, or directly
related to physical quantities. (It might be given a physi-
cal interpretation by defining coherent states in a space
of indefinite metric, but we shall not attempt to do so
here.

An) explicit formula can be found for the energy spec-
trum. Using the method introduced in a closely related
context by Lomon and Shaw,® it is easy to show that the
probability P(E) that the energy is less than E is given,
for all EXK, by

(6.15)

dk , et s E\—¢
D= | ——0(E—9)p(k) = =), 616
ro- [ —om-rpw=" () @10

where v is Euler’s constant and we use the notation
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(—8!=T(1—%). In a physical gauge, where £<0, this
probability rises rapidly from zero to a value close to
unity.

7. RELATIONSHIP TO PHYSICAL
MEASUREMENTS

We now turn to the important question of extracting
the values of physically observable quantities such as
cross sections from the scattering matrix elements that
we have obtained.

. For simplicity, we shall suppose that we are interested
in a region of momenta in which only completely con-
nected core diagrams can contribute significantly, so
that we may set N=1in (3.9).

Let us introduce the total momenta

t

ll‘:Z ljﬂ Vo= Z l}-’u

=1 =1

(7.1)

and write the integration over the final-state phase
space in the form

s dly ar
—= dQ, (7.2)
=1 (2m)%21/° (2m)*

where dQ’ represents the integration over the 3s—4 vari-
ables other than the total momentum. (We assume that
$2 2, since the cases s=0, 1 are trivial.) Since /'—1 is
necessarily small, we may write the contribution M* of
the core diagrams in a form independent of /, as a func-
tion only of Q' and the initial-state variables.

If we were to remove all the soft-photon contributions,
we should obtain a scattering matrix element of the form

{15 out|ly- - -1,; in)?
=(2m)*(V = [SYD |, (7.3)

where

@150 9)=1T a(1)) guv(l,-)Mh({z,-',z,-n. (7.4)

=1

The corresponding transition probability per unit space-
time volume into a set of final states defined by a region
" would then be

(@)= / W@ISOIRE (15)
3

In the actual theory, with soft-photon contributions,
(7.3) is replaced by (3.9), which may be written in the
form

{0’ --1'5 S5 out|ly- - -1; gy in)
=@]S0)|2) f dw e~ V=0-2(f X| S'[ ()] gm), (7.6)

where we have chosen to exhibit the dependence of the
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current on x explicitly, using the notation (2.11), and
I is given by (5.2).

Now let us ask for the transition probablhty to a set
of final states specified by given ranges L’ and &' of the
total momentum /" and the remaining final-state vari-
ables, regardless of what final soft-photon state is
produced. This is obtained by taking the squared modu-
lus of (7.6) and summing over a complete set of soft-
photon states:

!

@0 [ -
./xz' ‘ /L (2m)*

dx =D (o ST(0)I]| g1

2

X2

’

= A (| S*) Q)2
L. @isol [ o

X / & dx V=D &= (g | S (/)] ]
XS L)I]] g,w)-

It is clear that significant contributions can come only
from the region where /’—1 is small. Let us suppose first
that no further restriction is placed on !’ or, physically,
that we measure only the variables &’ and not the total
momentum !’ of the final-state particles. Then the inte-
gral over /' has the effect of setting #'=x, so that the
two operators S’ cancel. The remaining integral over %
may be interpreted as usual as the space-time volume of
the interaction region. Hence we obtain a scattering
probability per unit space-time volume

(1.7)

(@)= f WSO, (18)
5

which is exactly equal to (7.5). Thus we see that, inde-
pendent of the initial soft-photon state, the probability
of transition to all final states in a given range @' is
equal to the corresponding expression obtained by drop-
ping all soft-photon contributions, provided that we do
not attempt to measure the total momentum of the
final-state particles.

Now let us consider what happens if we do impose a
restriction on the final-state total momentum /’. Clearly;
in that case we can no longer expect in general to obtain
a result independent of the initial soft-photon state.
For example, for some special soft-photon states there
might be a net transfer of energy from the soft photons
to the other particles, but this is clearly a property not
shared by all soft-photon states. We shall come back to
this general case in a moment, but first let us assume that
the initial soft-photon state is the vacuum, and ask for
the transition probability if the momentum transfer
k=1—1 is limited to a small region A. For this case the
soft-photon matrix element in (7.7) is a function only of
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#’—wx=1%, so that there is still an integral over # that
vields a space-time-volume factor. The transition
probability per unit space-time volume is now

dak
(@A) = (@) / Tl (1.9)

where

p(k)= / dy 40| S=L()IISTI0). (7.10)

This is the momentum spectrum, as given by (6.3), of
the soft-photon coherent state S’[Z]|0), whose photon
wave function is

¢
=2 5/=2 sj.

=1 =1

(7.11)

This is, of course, the function whose structure is de-
scribed by (6.15). We note that the parameter ¢ of
(6.14) is now necessarily gauge-invariant, because of the
gauge invariance of s that follows from charge conser-
vation. This parameter £ is therefore always negative.

In particular, if the region A is defined by a limit E
on the total energy transfer to the soft photons, then,
according to (6.16), we obtain (for E<K)

w(@,E)=w(@)[er/(— ) J(E/K)E,  (7.12)

a result that has been obtained by many other
authors.®~7 (It is valid, of course, only when E< K<,
and must be modified if E=~m.)

Now let us consider the general case in which the
initial soft-photon state is not the vacuum. Then the
soft-photon matrix element in (7.7) is no longer a func-
tion only of #'—=, and so we do not obtain a factor of
the space-time volume. This is hardly surprising, for
clearly we should no longer expect to get a transition
probability per unit space-time volume independent of
position. The transition probability may be expected to
depend on whether the field G#(x) associated with the
soft-photon wave function g#(k) is large in the inter-
action region or not.

To handle this problem, therefore, we must adopt a
slightly more sophisticated approach. For 51mp11c1ty,
let us suppose that the initial state contains two spin-
less particles described by wave functions ¥; and s

dly
(27{') 32l1 (21!')3212
X |lll2; gu; i (I)ye(ls).

These functions are normalized according to

a [g;()|2=1
/(27)3210 viD[2=1.

We shall assume that the momentum spread in each of
the functions ¢, and ¥ is small compared to the size of

!1,’11)&2’ 8>3 in ) /

(7.13)
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the region L’ to which we are going to limit the final
momentum.

Now we may introduce the corresponding x-space
functions

(7.14)

( 1 )
v x)~/ PR

and regard [¢;(x)|? as providing an invariant measure
of the particle density, equal to the density divided by
twice the mean energy #;/21,%. The integral

A= f dx [9a(0) || ela) | (7.15)

then measures the space-time volume ¥ of the region in
which the two beams of particles intersect and therefore
in which the interaction can take place. We may write
A=Vnms/4°L°. Thus the cross section (') is de-
termined by dividing the transition probability by AF,
where F is the invariant flux factor

F= 4llol20‘012= 4[([1'l2)2—M12M22]]/2. (7.16)

The expression (7.7) for the transition probability is

now replaced by
dll dlz
J=[
(2m)320,° (27)321,°

ar
o)
QI ’

(2m)* «
XA [SM0) [ QW (I)e(l)e =0 =] ST ] g1 -

We may again remove the non-soft-photon matrix ele-
ment from within the integral, since it is slowly varying
in the region of interest, and perform the sum over a,
obtaining as before

(G| S NI L)1 ]| gou)-

We then make the substitution #’=x+y. The exponen-
tial factors become

V=)= =)-2 |
In the factor depending on v, the change in "/ is small
compared to that of 7 by assumption, so that we may

replace it by its mean value /(). Going over again to the
variable k=l¢,—, we thus obtain

dk /d N
y e—iky
a (2m)*

X f i 1) |* 9ale) | e ST (e-+-) 1]
X ST lgu).

Since [¢1(%)]2|¥a(x)]? is slowly varying, the x integral
yields essentially 4, as given by (7.15), multiplied by the
mean value over the interaction volume of the soft-

/ 4 (2] S* () | 2o |2
o

KIBBLE 175

photon matrix element. Thus the cross section ¢(2/,A)
is related to o(2') by

dk
o(@,8) =o(2) f oop®

where now

1
pol)= / dy o f dr (=gl S= ()]
'\ 4

, XS] (—x)gm) (7.18)
or, equivalently,

1
po(k)= / dy ety exp[(y)s*s—s*s]—V—_ / dx

Xexp{(—2)g*[(y)s—s]—[()s—sT*(—=)g}. (7.19)

We note that this function is again real, and normal-
ized in the sense that

ak
(2n) 4Pg(k) =1.

(7.20)

Equation (7.17) describes the effect in general of the
initial soft-photon state. We may note certain special
cases. First, it is clear that if we remove the restriction
to a finite region A, then by (7.20) we obtain simply
o(), and that, on the other hand, if we set g=0, we
recover (7.9). Thus this formula includes the earlier
ones as special cases. Next, we note that it is easy to see
that a soft-photon state for which the corresponding
field G¥(x) is concentrated far from the interaction region
will not contribute significantly. For suppose, for ex-
ample, that g#(k) is real, which means, in general, that
G*(x) will have its maximum intensity in the vicinity
of the origin. Then if the interaction region is far from
the origin, we shall have K«>>1 within this region. In
that case the exponent will be the integral of a rapidly
oscillating function of %, and will therefore be very
small, so that we again recover (7.9).

At the opposite extreme we may suppose that g#(k)
contains such soft components that G#(x) is effectively
constant in the interaction region, so that we may re-
place the x integral in (7.19) by the value of its integrand
at ¥=0. We note that the exponent is purely imaginary,
so that its main effect is to translate the whole distri-
bution p(%) in % space. In fact, when g is confined to very
soft components, we may approximate e¢~*%*¥—1 by
—ik+y and thus obtain

po(k)=p(k-+0F) (7.21)

where

dk’
ke= | ————k/82 K)*se(k')]. (7.22
sir— [ S R0 00]. (122

It is evident that the sign of 6k* depends on the phase



175

of g. It is interesting to note that the spread in the total
momentum of the final-state particles is not much
affected by the presence of the soft-photon state. The
main effect is to introduce an additional constant mo-
mentum transfer described by (7.22). This result is not
perhaps of great practical importance, but it does serve
to illustrate the fact that there are questions that can
be answered using the methods developed here but not
by conventional methods. The same results could, of
course, be obtained by treating the initial-state soft
photons as a classical external field, which is effectively
equivalent to a coherent state, but within the conven-
tional formalism there seems to be little justification for
such a treatment, since this is not the way in which the
final-state soft photons are handled.

8. UNITARITY

We still must prove that the scattering operator whose
matrix elements are defined by (3.9) is unitary, as, of
course, it must be if the asymptotic states that we have
found constitute a complete set.

What we must prove is that

“ dly’ dl,’
o
o) @ms  (2r)s2,0

XZ <ll,' . .lxl; a; outlllll_ . 'lt””; g”,ﬂ”; in>*
a

XAy - 1/; a5 0out|li- - -1,; g,u; in)
= (lll" . ’lt”lllll' * 'lt><g”aﬂ”lg)/‘>y (8'1)

where, as usual, |a) denotes a complete set of soft-
photon states. Throughout this paper we have assumed
that the non-soft-photon contributions have the correct
properties, and we shall do so here too. Specifically, we
assume that the scattering operator with all soft-photon
contributions removed is a unitary operator on 3C%, so
that its matrix elements satisfy the corresponding uni-
tarity relation, obtained by discarding all the soft-
photon parts in (8.1).

It will be helpful to begin by recalling certain features
of the unitarity relation for the theory without soft
photons. We may decompose the scattering matrix
elements into their connected pieces, and represent the
contribution to the unijtarity integral from diagrams with
a particular connectivity pictorially as in Fig. 1. Here
the lines on the right are the l; lines and those on the
left are the 1/ lines, while the lines in the middle repre-
sent final-state particles, with momenta l;/. The circles
on the right denote connected pieces of the scattering
amplitude and those on the left denote connected pieces
of its complex conjugate.

The decomposition of the matrix element on the right
corresponds to a partitioning of the labels (1---¢,
1’. - -s’) into sets 4 o, while that of the matrix element on
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Fi1c. 1. Example of a contri-
bution to the unitarity integral.

the left corresponds similarly to a partitioning of
(17--+¢",1"- - -5') into sets Bs. Regarding the diagram
as a whole, we may introduce a coarser partitioning of
these labels into sets C, that correspond to the connected
pieces of the entire diagram. For example, in Fig. 1
there are three sets 4. and four sets Bg, but only two
sets Cy. The unitarity integral may be expressed as a
sum over all classes of diagrams corresponding to the
different ways of assigning the labels (1--:4) and
(1”--+¢") to such sets C,. The right-hand side of the
unitarity integral is equal to the contribution from just
one such class, namely, the one in which the diagrams
consist entirely of straight-through lines. (Actually, if
the particles are identical, there may be several of these.)
Thus the sum of all other contributions must vanish.
Indeed, it is easy to prove by induction on the number
of initial-state particles that the contribution from each
class must vanish individually. For example, in the
three-particle unitarity equation the contribution from
classes with two sets C, vanishes in virtue of the two-
particle unitarity equation. Hence also the contribution
from the connected class with only one set C, must
vanish. The contribution to the unitarity integral from
diagrams of a given class is a product of factors, one
corresponding to each C,, and each of these factors is
zero, unless the corresponding C,, contains only a single
label of each type, as is the case for straight-through
lines.

In the case of the theory with soft photons, it is con-
venient to make the same decomposition of the unitarity
integral according to the connectivity structure of the
core diagrams that contribute. We shall again try to
show that the contribution from each class vanishes
individually except for the single class consisting en-
tirely of straight-through lines. However, it is no longer
true that its contribution to the unitarity integral can be
factorized into factors associated with the individual
sets Cy, since they are connected to each other by soft-
photon parts.

Let us consider first the class of diagrams for which
there is only one set C,. To obtain its contribution we
must sum over all possible ways of assigning the labels
to sets 4. or Bg, that is, over all connectivity classes of
the individual diagrams that preserve the over-all con-
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nectedness. Consider the contribution from one particu-
lar assignment into sets A« - -4, and By - - - B,. Each set
A, or Bg corresponds to a particular connected piece of
the individual diagrams. We define the corresponding
momentum transfer

ka=la—la’= Z lj_ Z Zj, (8'2)
iCAa  'Eda
or
ke"=1l"—l'= 3 L'"— 2 1. (8.3)
J""EBg i'EBB

Clearly, the diagrams in question can only contribute in
a restricted region of the final-state phase space in which
all of these variables ko, kg”" are small. Indeed, in the
theory without soft photons the matrix elements con-
tain 6-function factors 8(k,) and 6(ks’").

Now there is precisely one linear relation between the
variables k. and kg, namely,

q
> k=11
B=1

- (8.4)

a=1

Thus we can make a transformation of variables in the
final-state integration in which these p-¢—1 indepen-
dent four-vector variables appear explicitly, leaving an
integration dQ't4,p) of dimensionality 3s—4(p+¢—1).
Straight-through lines constitute an exceptional case,
since the variable &, corresponding to a set 4. contain-
ing only one final-state label ;" is restricted to lie on its
mass shell. However, we can bring this case within the
same framework by writing the corresponding integral
as a four-dimensional integral (2r)~*dk. with a é-func-
tion factor 2wd(m;*+[ka—1;]?) in the integrand. This
means that we no longer have to remove this factor
according to the rule (3.11). It also means that we should
add to the dimensionality 3s—4(p+¢—1) the number
of straight-through lines in either matrix element. (Of
course, by assumption no lines pass straight through
both parts of the diagram.) When this adjustment has
been made, the dimensionality of d'(4 ) may be as-
sumed to be non-negative, for otherwise we should be
trying to impose more conditions on the final-state
momenta than there are independent variables, so that
we should not, in general, be able to satisfy all the con-
ditions anywhere in the phase space.

Because the variables &, and &g’ are limited to very
small ranges, we may write the non-soft-photon parts
of the matrix element, and the current Z, in a form inde-
pendent of these variables, in which they are functions
only of the remaining variables @'(4,5) and of initial-
state momenta. Then the only dependence on the
p+q—1 independent variables among the k. and kg”
is in the exponential factors

{", ko %a).

a=1

2
exp(—¢ Z kp" . xg”—l-i
p=1
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Hence the effect of integrating over these variables is
to introduce p+¢—1 & functions, which set all the p+¢
variables %4, 25" equal to a single variable x. The con-
tribution to the unitarity integral is thus of the form

q V4
/ it 1T @515 @' T @510
= a==1

X / dy = W=Drs(g | SIS D) | g, (8.5)

where the variables denoted by Q' or &, constitute a
subset of the variables @14 5}, and S*() denotes the
connected part of the scattering amplitude for total
energy momentum / with all soft-photon contributions
removed. In the case of a straight-through line, it must
be replaced simply by a constant matrix N;!Cyj,
according to (3.11). Displaying the x dependence of the
current explicitly, we may write

I= (x)l’out+ (x)lin )

I'"= (x)I’out"I" (x)INin , (86)
as in (5.2), where the primes indicate the momenta on
which these currents depend, and I,y and I, are given
by (5.3) and (5.4).

It is at this point that our assumption that there is
only a single set C, introduces an essential simplification.
For when there is only one variable z, the decomposition
(5.12) remains valid, so that we may write the soft-
photon matrix element in (8.5) as

CANT i KCOV SN N NCHY v
XS L) oue L) T1n ]| gt
= (g"w" | S @)1 T(@)in] | ge)-

This matrix element no longer contains any dependence
on the final-state variables @4 ). But it is clear from
the structure of the x integral in (8.5) that this expression
is essentially zero unless I”’—1 is small. Hence the inte-
gration over ©'{4 p} is just a unitarity integral for a
theory without soft photons, and so - when we perform
the integration and sum over all ways of assigning the
labels to sets A, and Bg, the result that we obtain must
be zero.

We have proved, therefore, that the contribution to
the unitarity integral from the class of diagrams corre-
sponding to a single set C, that cannot be separated into
disconnected pieces vanishes. It remains to prove the
same thing for other classes of diagrams.

If we go through the same analysis as before, we find
that in the general case all the variables x, and x4”
corresponding to sets 4, and Bg in a single C, are set
equal by the corresponding k. or k4" integrations. Thus
in place of (8.5) we obtain an expression in which an
integration dx, appears for each set C,. In place of

(8.7)
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(8.6) we have

I=3[(x,)Iy 0+ (x)I 'r.out] ’

I".= Z[(x7)Il'y.out+ (x'y)I”'y,in] . (88)

However, (5.12) is not true in general, so that we cannot
pass immediately to (8.7). The reason for the difficulty
may be seen by examining (5.5). If we consider the cross
term between (%,)I'y out and (%,)I,,in, we find that
there is an extra factor exp[ék:(xy—=,)] in the inte-
grand. Hence we can complete the contour in the lower
half-plane and obtain the analog of (5.6) only if «.,.°
2 x,% This suggests that to overcome the difficulty we
should consider the various sets C, in sequence, begin-
ning with the one associated with the largest value of
x,%. However, we also must consider the cross term
between (%,)1' out and (x,)I’y out that is of the form
(5.8). Explicitly it is

. dk  ele 'y,,,,(k) ej’lj"’

iz =z T

v ECy 'ECy Joo (2m)4 1 - kt-1e k2—ie b - k—1ie
Xexp[ik+ (%, —2y)].

For x,°2x.,% we may complete the contour in the
lower half-plane and obtain as before two contributions.
The one from the pole at £°= | k| is just what we want,
namely,

2 X (y)si™(@y)si=— @y )]y out®
€0y J'ECy
X (x'y)-[,"/,out-

However, we also have the contribution from the pole

(8.9)
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at /- k=0, namely,
dk  ellv v, (k)
-2 X / — L ama (i E)
vECy i€Cy J (2m)t 1 k+tie B2—ie
Xexp[ik: (xyp—2x,)]. (8.10)

Let us consider the C,» with the largest value of x,.9.
It is no longer true that we can write S’(I) in a form in
which S’[(%,)I’y ous] appears as a factor on the left
with no other dependence on the final-state momenta in
the set Cy, because of the extra terms (8.10). However,
these extra terms are purely imaginary and correspond
to a phase factor V[o,,,]. Since o,y is a function only
of final-state momenta, this factor has the same form
for both S’(I) and S’(I""). Hence it is still true that all
the factors depending on the final-state variables
associated with C, cancel, as in (8.7). Then the argu-
ment can go through as before. The integration over the
final-state phase space d€'(4,p) is again part of a non-
soft-photon unitarity equation, and when summed over
all assignments to sets 4. and By, yields zero.

Note that for a line that runs straight through both
diagrams there is no dependence of the matrix element
on the component of the corresponding #, in the direc-
tion of /,. Thus we can always add an appropriate
multiple of /, to x, so as to arrange that this is nof the
variable with the largest time component. Hence, if
there are any sets C that do not correspond to such lines,
we can apply the above argument to one of them, and
obtain a vanishing contribution.

All that remains is to show that in the special case
where all the lines run straight through both diagrams
we recover the right-hand side of the unitarity integral.
Now, when all lines run straight through, (3.9) reduces to

(/- -15 35 out|hy- - -1s gous in) IT 2wd(m,2+-1/%) =TT [N;7'a(1)u(l) J(F\ | ge)

=1 J=1

X / dwy- - - dus exp(—1i 2 (L—1) %) exp(i 2 eielicl;
J=1

1<j=1

(We assume here that the particles are distinguisable.
Otherwise we must add all the diagrams with final-state
labels permuted. This does not change anything es-
sential.) The spin factor is simply a spin & symbol, and
the soft-photon matrix element is trivial. Thus in order
to prove the unitarity relation (8.1), it is only necessary
to consider the factor represented by the integral over
%1 - - %, If we write the final-state phase-space integrals
in the form

diy ,
/ (2 21r6(m,-2+l,- 2)

)4

and multiply the unitarity integral by

IT 2x3(m+1"%), 8.12)
=1

dk 21l'5(l, k)27r6(l,° k)
os (2)4 k2

exp[ik- (wi— x,-):l) . (8.11)

then both factors on the left-hand side of (8.1) are of the
form given by (8.11). The four-dimensional integration
over /' has, as before, the effect of setting ;”=x;. The
integrand of the ; integral consists of the product of the
exponential factor in (8.11) and its complex conjugate
evaluated with J; replaced by ;”/, together with the factor
exp[i(4/'—1;) -«;]. But clearly /—1; must be small, so
that in the slowly varying exponential we may replace
Ii" by l;. Then the two exponential factors cancel, and we
are left with

IT (2r)%5(,"— 1),

J=1

which is equal to the factor on the right-hand side of
(8.1), multiplied by (8.12).
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Finally, therefore, we have established the validity
of the unitarity equation (8.1), and thus the complete-
ness of our set of asymptotic states.

9. CONCLUSIONS

We have obtained a general formula (3.9) or (3.13)
for the scattering matrix elements between the asymp-
totic states defined in III. These matrix elements define
a scattering operator S on the space 3C'*(X3Ceg of
asymptotic states. We have shown that .S has all the
expected properties. It is gauge-invariant, Lorentz-
invariant, unitary, crossing-symmetric, and independent
of the choice of the parameter K that fixes the conven-
tional separation between hard and soft photons.
Moreover, when interpreted according to the rules
introduced in preceding papers, all its matrix elements
are finite. They are nonzero only for states satisfying the
relation of equivalence defined by (5.18) and (5.19).

We have also shown how these matrix elements are
related to observable quantities. The formalism repro-
duces the conventional results, embodied in (7.8) or
(7.12). However, it can also be used to investigate
questions that cannot be studied by conventional
methods, such as the dependence of scattering proba-
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bilities on the initial soft-photon state, as given by
(7.17).

It must be emphasized that all these results are valid
only in the limit where the soft-photon cutoff K is very
small compared to the particle masses. If the experi-
mental resolution is comparable to the masses, one must,
as usual, sum over the probabilities for emission of
various number of ard photons with total energy less
than this experimental limit. However, this is, of course,
always a finite sum.

In this series of papers we have shown that quantum
electrodynamics may be treated according to the same
principles that apply to any other renormalizable field
theory, provided that one does not make a priori
assumptions about the nature of the asymptotic states
but determines them from the structure of the Green’s
functions.
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