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By using the method developed in the preceding paper, the Feynman-DeWitt perturbation expansion
for the gravitational S matrix is shown to follow from the field-theoretic formalism. Again our methd is to
express the path-dependent Green’s functions in terms of auxiliary, path-independent Green’s functions, in
such a way that the path-dependence equation is automatically satisfied. The formula relating the path-
dependent to the path-independent Green’s functions will be similar to the classical formula relating the
path-dependent Riemann tensor to the metric tensor. The equations for the auxiliary Green’s functions are
found and solved in a perturbation series. If the result is expressed as a sum of Feymann diagrams, one
obtains the expected vertices, together with closed loops of fictitious vector particles.

I. INTRODUCTION

N this paper we wish to use the method of the preced-
ing paper! to derive the Feynman rules for the gravi-
tational field. Our prescription will agree with that found
by Feynman? and DeWitt? from an application of the
tree theorem to the .S matrix.

We shall take as our basis the path-dependent field-
theoretic formalism which we proposed in an earlier
paper.* The fundamental principle of that paper was to
work entirely in terms of variables which were inde-
pendent of the choice of the coordinate system. Such
variables had necessarily to depend on a path, and were
measured in a local coordinate system constructed in
the neighborhood of the path. :

The details of the theory to be used in this paper will
be slightly different from those of Ref. 4. In the latter
paper, we devoted considerable effort to overcoming the
difficulty that the time ordering of two points in a
curved space was not always determined from the
characteristics of the paths leading to them. As a result
we had to modify the statement of the equal-time com-
mutation relations. For the purpose of obtaining Feyn-
man rules we shall ignore this difficulty, since it does
not occur in perturbation theory. We shall start from
the coordinate-independent theory of the classical gravi-
tational field developed in Sec. II of Ref. 4, and shall
quantize it by making the usual correspondence between
commutators and Poisson brackets. We shall then ex-
pand the theory in a perturbation series. Finally, we
shall return to the fundamental equations and shall
attempt to reformulate them without relying on pertur-
bation theory. In this reformulation the concept of a
time-ordered product will play a fundamental role, and
we shall assume that such a product is defined even if
the time ordering of the relevant points is not known.
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As in the previous paper, we shall obtain the pertur-
bation series for our path-dependent Green’s functions
by expressing them in terms of new auxiliary path-
independent Green’s functions. For the electromagnetic
and Yang-Mills fields, we started from the formula
which expressed the gauge-independent, path-depend-
ent fields in terms of the potentials. We then expressed
our path-dependent Green’s functions in terms of the
auxiliary Green’s functions by similar formulas. We
shall use an analogous procedure for the gravitational
field, with the metric tensor replacing the potentials.

In a curved space where the metric tensor g, is a
given function of the coordinates x, we can calculate the
path-dependent Riemann tensor as a power series in the
g’s. The main difficulty. in such a calculation is that the
path-dependent variables are defined in a local Eucli-
dean system constructed in the neighborhood of the
path, whereas the g’s are defined in a non-Euclidean
coordinate system. Nevertheless, once the g’s are given,
we can in principle obtain the coordinates in the non-
Euclidean system as a function of the coordinates in the
local Euclidean system. The relation between the co-
ordinates in the two systems has been written to lowest
order in the g’s in Sec. II of Ref. 4, and we shall give
equations for finding the relation to arbitrary order in
the present paper. Once we have found a formula for the
path-dependent Riemann tensor as a function of the
coordinate-dependent g’s ,we shall express the path-
dependent Green’s functions in terms of the auxiliary
Green’s functions by similar formulas. We shall then
justify the formulas by showing that the path-dependent
Green’s functions automatically satisfy the path-
dependence equation as a consequence of their defini-
tion in terms of the auxiliary Green’s functions.

We next find the field equations which the auxiliary
Green’s functions should satisfy in order that the path
dependent Green’s functions satisfy the correct equa-
tions. The solution of the equations can be expanded in
a perturbation series and, as with the Yang-Mills field,
we obtain certain terms besides those given by the
naive Feynman rules. The extra terms correspond to
closed loops of fictitious particles which must be included

1604



175

in the Feynman diagrams. Now, however, the fictitious
particles are vector particles and not scalar particles as
they were with the Yang-Mills field.

We shall introduce a notation similar to that of the
previous paper for expressing the infinite set of Green’s-
function equations as a single equation in a linear space.
The equations for the path-dependent Green’s functions
will appear as equations for operators Rggys(x,P) in
our linear space, while the equations for auxiliary
Green’s function will appear as equations for operators
Zw(x’). Such operators correspond to the variables
Rapys(x,P) and gu(x') of the classical theory. With the
electromagnetic and Yang-Mills fields, the formula for
the path-dependent operators ®(x,P) and F,(x,P) as
functions of the gauge-dependent operators ¢(x) and
A ,(x) was the same as the formula for the classical field
variables ®(x,P) and F,,(x,P) in terms of the classical
field variables ¢(x) and A4 ,(x). Similarly, for the gravi-
tational field, the formula for the path-dependent
Riemann tensor R,s,5(x,P) in terms of the metric tensor
Zuw(x’) will be the same as the formula for the classical
path-dependent Riemann tensor Ragys(x,P) in terms of
the classical metric tensor g,.(x').

The field equations for Rs,s(x,P) will be similar to
the classical field equations for Reg,s(x,P), and the re-
sulting field equations for g,,(x’) will be similar to the
classical field equations for g,,(x'). The field equations
for Ragys(x,P) and Z,,(«’) will not be identical to the
classical field equations for Ragys(x,P) and g, (x'), be-
cause the former equations will contain terms which in-
volve the operator n and which correspond to the é-
function terms in the Green’s-function equations.

In Sec. IT we shall treat the fundamental equations of
the theory, basing our approach on the classical theory
of Sec. II of Ref. 4. We shall define covariant time-
ordered products, which differ by four-dimensional
¢ functions from ordinary time-ordered products, since
the commutators between two path-dependent variables
contain derivatives of § functions. As with the electro-
magnetic and Yang-Mills fields, we shall show that the
covariant time-ordered products obey simpler path-
dependence equations than the ordinary time-ordered
products. In Sec. III we shall introduce our short-hand
notation and, in Secs. IV and V, we shall use this nota-
tion to express our path-dependent Green’s functions in
terms of auxiliary Green’s functions. In Sec. VI we shall
obtain the field equations for the auxiliary Green’s func-
tions. We shall solve these equations as a perturbation
series in Sec. VII and shall derive the rules of Feynman
and DeWitt. Finally, in Sec. VIII, we shall return to
the problem of formulating the equations of the theory
in a nonperturbative approach, where the time-ordering
of two points is not always determined from the charac-
teristics of the paths leading to them.
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II. EQUATIONS SATISFIED BY THE COVARIANT
TIME-ORDERED PRODUCTS

In the present section we shall define the path-
dependent Green’s functions and shall write the equa-
tions which they satisfy. We shall take as our starting
point the coordinate independent theory of the classical
gravitational field, developed in Sec. IT of Ref. 4. When
quantizing the field we shall depart slightly from the
remainder of that paper, which was strongly oriented
towards the difficulty that the spacelike or timelike
separation between two points is not necessarily defined
by the characteristics of the path joining them. This
difficulty is not present in perturbation theory, and we
shall not concern ourselves with it at the moment.

We shall treat a gravitational field in interaction with
itself but with no other field, since such a system pos-
sesses all the essential complications of the problem
The field equations and path-dependence equations will
be taken from Sec. II of Ref. 4, while the commutation
relations will be taken to be identical to the Poisson-
bracket relations given in that section.

We next turn to the question of the covariance of
time-ordered products. As in electromagnetism, the
commutators between path-dependent variables con-
tain derivatives of three-dimensional § functions. It is
therefore necessary to add a four-dimensional 6 func-
tion to a time-ordered product in order to obtain a co-
variant quantity. The prescription is as follows: If the
commutator between two variables 4 (x) and B(y) con-
tains a term 8/8yq8°(x—y)= — 9/ 9x46%(x—y), one must
define the covariant time-ordered product by the
formula

T{A(x),B(y)}=T{A(x)B(y)} — dasb*(x—y). (2.1)

The commutators between gravitational field variables
will also contain terms involving 8/dy.8%(¢—y),
9/ mab3(x—n), or 9/3.0%(§—1n), where £ and % are the
variables of integration associated with the paths lead-
ing to x and y, respectively. We must then insert terms
—0200%(E—7), —8a00*(x—1n), and —8a08%(—17) into the
definitions of the covariant time-ordered product. We
shall also encounter a term 8,09/ 3158%(E—0)— 8509/ 9k
X 8%(¢—1) in the commutator; such a term gives rise to
a term — 0,00500%(§— 7) in the definition of the covariant
time-ordered product.

Adopting the foregoing prescription, and taking the
commutators between two field variables to be given by
Egs. (2.28), (2.30), and (2.31) of Ref. 4, we define the
covariant time-ordered product of two path-dependent
variables as follows®:

T’ {Rapys(#,P)Regoo(9,P") }
=T{Rapys(2,P)Rezy0(y,P")}
4
+Z t(”aﬁw.ew(x,P,y,Pl) ) (223')
r=]

® The sign of the second term in Eq. (2.28b) of Ref. 4 is in error.
We have corrected this error in writing Eq. (2.2d).
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where

£ D 4g48,e90=0 unless at least two of the subscripts

a- -0 are zero, (2.2b)
tWogysomo=%ic A S 95(%)0,(y)
ye8,m8 Berd
X[aﬂf65064(x—y)]7 v, 6) n )0?50) (2.20)
t(l)Oﬁ()&,ti'qﬂ: _%m A S an(y)ae(y)
e, el ferd
X [ 360200 (x— )]
+3ik 4 S Regq(y,P')0p.0000%(x—y), (2.2d)

70 Berd

1@ 45, eeno=0 unless at least one of the subscripts

a, B, v, 81s zero, (2.2¢)

g erw=dc A S [ 01,0 () [55.35:04(5— )]
P’

8 b

X[J,o(x),R,;,,a(y,P’)], v, 8#0, (2.2f)

120805 e £10="3K ,,S 5 f dn{9«(n)[8p.0504(x—1)]

XL a(m),Reza8(9,P") 1418580
X & (x—n)n(mRes(y,P)}, (2.2¢)
t(s)aﬂw,eruﬂ(x,P,y;P')=t(z)ernO.aﬂwa(y;P',xyP) ) (2'2h)
E® s epap=—31k000xu S / dt, / dmo*(E—n)
Aep S p P

x[JKO(E):Raﬁ'ﬁ(xap)][]o#(n)yRe i‘nﬁ(y:P,).]- (221)

The notation is similar to that of Ref. 4. All components
are measured in the local Euclidean system. The symbol
e(3)R means the difference between R(x,P;) and

P
R

€, in the A direction

(a) Fic. 1(a) The meaning of
the symbol d(z)R. (b) The
meaning of the symbol —i[J,,
. X(2),R].
i, 4P

¢, in the p\ plane

(b)
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<

(a) (b) (c)

Fic. 2. Paths which are allowed when defining the § function.

R(x,P), where the path P; is identical to the path P
except for an additional element ¢ in the A direction at
the point z [Fig. 1(a)]. The symbol —ie[J,u(2),R]
means the difference between R(x,Ps) and R(x,P), where
the path P, is identical to P, except that the local
Euclidean system defining it is rotated by an amount e
in the w plane at the point z [Fig. 1(b)]. We have
adopted this notation since, in a flat space, J would
correspond to the angular momentum about z but,
from our present point of view, the symbol —i[J,,(2),R ]
is defined as an entity and should not be regarded as
the commutator between two operators.® The symbols
A and S are defined as follows:

Aﬁ fap=fap— fgas

Sﬁ fap= fast foy—Oasfrv-

(2.3a)

(2.3b)

We also remind the reader about one point in the
definition of the & function. An expression such as
8(x—+v), where x and y are the endpoints of the paths
P and P’, will of course depend on the paths P and P’
themselves. If P and P’ have the form sketched in Fig.
2(a), one will require knowledge of the Riemann tensor
in the space between the paths in order to determine
whether their end points coincide. The § function will
therefore be a complicated function of the paths and of
the Riemann tensor, and we shall avoid defining the &
function for such cases. On the other hand, there is no
difficulty in defining the & function §(x—y) for paths
such as Fig. 2(b). We shall therefore restrict ourselves
to pairs of paths such as those in Fig. 2(b) or, more
generally, those in Fig. 2(c). The paths may coincide
over the initial portion of their lengths but, once they
have begun to separate, they must be completely dis-
joint. We can restrict ourselves to such paths without
any essential loss of generality. In a space with finite
curvature one cannot be sure whether two paths have
no point in common but, at the moment, we are only
interested in obtaining a perturbation series, and this
difficulty does not occur.

We shall also assume that an individual path does not
turn back and cross itself. Thus different points of the
same path will not coincide.

Equations (2.2) follow unambiguously from our pre-
scription only to the extent that they do not involve

6 Tn Ref. 4, we used the symbol i[J,(2),R] instead of —i[Jw(2),
R]. We have changed our notation in the present paper, since the
symbol J as presently defined corresponds to the angular momen-
tum. All terms in the Poisson brackets of Ref. 4 must therefore be
reversed in sign before being taken over into the present paper.
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time derivatives of the § function. For instance, it is not
immediately evident that we can drop the restriction
¢ §, 1, 050 in Eq. (2.2d). We regard Egs. (2.2) as the
definition of our modified time-ordered products. When
we develop the field equations we shall show that they
are covariant, so that the definition is suitable.

For time-ordered products of more than two vari-
ables one adopts definitions similar to Egs. (2.2). The
covariant time-ordered product will consist of a number
of terms in which the operators are paired in all possible
ways, as in Wick’s theorem. In any particular term the
paired operators are represented by the sum of the ex-
pressions (2.2b)—(2.2i), while the time-ordered product
of the unpaired terms is taken.

‘We can now write the path-dependence equations
and equations of motion for the covariant time-ordered
products. We shall begin with the path-dependence
equations, which will be derived from the fundamental
path-dependence equation

8:Rapys(x,P)= iiT/{Rm)\u(z’Pl)
X[Jw(z),Raﬂ‘tﬁ(x:P):l}UM) (24)

where, as usual, 6, represents the change in R caused by
an infinitesimal change in the path P at the point z by
an amount oy, The variation of the path is shown in Fig.
3, where the solid curve represents the path before the
variation, the dashed curve the path after the variation.
The area o, is the area between the solid and the dashed
curve, and z is any point within this area.

The classical theory of Ref. 4, Sec. II, does not de-
termine the order of the factors on the right of (2.4).
In writing down this equation we have made the sim-
plest hypothesis, namely, that the covariant time-
ordered product is to be taken. The question of the
factor ordering in (2.4) is complicated by the singular
nature of the product of two operators whose paths
coincide, and we shall not attempt to deal rigorously
with such questions in this paper. If we proceed for-
mally from Eq. (2.4) we shall encounter no difficulties.

52(2“)T{Raﬂ78(x7P)R‘ f"a(y’Pl)}

=ik 4 S

e, 0 Feorl

+3x A

ne>0

62(2a>T{Raﬁ'ya(xyP)RUfW(y;P’)}

=ik 4 S

70 teof
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Fic. 3. A variation of the
path by an infinitesimal area
o, at the point z.

We now use Eq. (2.4) to find the change in the time-
ordered product

T{Ragys(2,P)Regos(y,P')} . (2.5)

Our calculation parallels the analogous calculation in
electrodynamics, which was given in the previous paper.
The change in the time-ordered product will consist of
two parts, which we shall call §® and §®. The con-
tribution 6 is obtained by straightforward application
of (2.4) to (2.5);

8: VT { Rapys(%,P)Reno(9,P") }
= %iT(TI{RLKM(Z;P”)[JM(Z),Rdﬁﬂ(x:P)]}
st{nO(ysP,))UMH (2'6)

where P” represents the portion of P leading to the
point z.

The second contribution to the change in the time-
ordered product arises from the fact that the change in
the path may alter the time ordering of the two opera-
tors in (2.5). We can calculate this change in the time-
ordered product by arguments analogous to those lead-
ing to Eq. (3.10b) of the previous paper. The prescrip-
tion is to write that part of the commutator between
the two operators in (2.5) which consists of an integral
J'p d&, over the path P, and then to replace this integral
by S'de.do(z2—7y), o being the area between the paths and
2 a point within this area. We can divide the result into
two parts, which arise from the contributions of Egs.
(2.30) and (2.31) of Ref. 4 to the commutator in ques-
tion. Thus

0. PT=6,2T4-5,20T, (2.72)

where

f 40.095(3) () [8¢.840%(y—2) J[J o(2) ,Rapys(%,P)]

/dqboT{Réi'ﬂX(y)Pl)( SO 6M50K)64(}'—Z)[]KU(Z):Raﬁ‘Yﬁ(x;P)]}e: g') 1, 6#0; (2'7b)
A

/dd.o(l—' 5170) a'rl(y) ax(z)[53460)\64(3""z):][JKX(Z),Raﬁ'N(x:P)]

+%K Ao /dmoT{Ronx(y,P’) S 5»&9@“(3’-Z)[Jxo(z),Raﬂw(x,P)]}
ne> A0

—ic 4 S

730 $0

/ do (1~ 810)0,(y)90(2) {8;.8028*(y— 2) [T o(2), Rapys(%,P) 1}, (2.7c)
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ST Rapys(%,P)Rerno(y,P")}
=%'i"5t)‘6xy )‘S /.da'w/ dﬂ)\T{av(ﬂ)54(z— 77)[:JKO(Z);Raﬁw(x;P)][Jw(’?)yRei’no(y:P')]
“p P

- (1_ 51’0)61'(2)64(2_ ‘r))[J,,K(Z),Ra,g»,‘s(x,P)][J”o(n),Rgg‘,,o(y,P'):l
+16*(z—1)[J «0(2),Rapys(2,P) J0u(n) Re o (,P") }

+3 k80 )S / daw / anT(36(2){8*(z—n)LJ 0x(2), Repys(,P) I wo(m), Reto(y,P) 1} (2.74)

In writing (2.7c) and (2.7d), we have made use of the identity
90(2)[J 0x(2), Rapys(x,P) ]=10x(2) Ragys(x,P) . (2.8)

The ordering of the factors on the right of (2.7) is not determined from the classical theory, and we make the as-
sumption that the time-ordered product is to be taken.

Our next step is to use Eqs. (2.2), (2.6), and (2.7) to find the path-dependence equations for the covariant time-
ordered products 7”. After a certain amount of algebra, we find that the extra terms obtained when replacing the
ordinary time-ordered products by the covariant products cancel against the extra terms (2.7) in the path-depend-
ence equation for T, so that the path-dependence equation for 7” is given by a simple equation of the type (2.6):

8T"{Rapys(x,P) Rerno(y,P") } = ’}ZiT/{RmM(Z:P”)[JLK(Z);Raﬂw(x:PnReh@(yap/)}"'M- (2.9)

The situation with the gravitational field is thus similar to what it was with the electromagnetic and Yang-Mills
Fields. The covariant time-ordered products obey simple path-dependence equations.

We now turn to the field equations for the time-ordered products. We take as our starting point the Einstein
equations for the field variables:

Ryavs(2,P)—38apR 15x5(%,P)=0. (2.10)
From (2.10) we can at once write the Einstein equations for the time-ordered products:
T{Ryars(%,P)Retno(¥, ')} —38apT{ Rysys(%, P) Regno(y,P') } = 0. (2.11)

The Einstein equations for the covariant time-ordered products will be slightly more complicated. From (2.2) and
(2.11), we easily find that

T’{vaﬁ(x,P)Re (’nﬂ(y;P,)}"'%BaﬂT,{vaﬁ(xaP)Rf!w(y;P,)}
=—3%ik A 9,(y)3(¥)[(8pr9s0+8p005:)8*(x—y) 1+Fik A Repyi(y,P")(35.850+05680.)8*(x—)
(] ne>d

e, e

+3x / dn(8p.8ant85185) { 0(1) 8*(5— ) [T i (n), Rego (3,P") ]4-10*(— ) r(n) Reso (3, )} . (2.12)

We observe that the covariant time-ordered products obey simpler path-dependence equations but more com-
plicated field equations than the ordinary time-ordered products. However, the terms on the right of (2.12) are
precisely analogous to the é-function terms in the Green’s-function equations of other theories, e.g., the é-function
terms in Eqs. (2.4) or (3.8) of the previous paper. Time-ordered products of field variables will obey equations
similar to (2.12). There will be one term corresponding to the right side of (2.12) for each field variable in the
product (except the variable Ryays—38asRysys itself), and the terms will be multiplied by the covariant time-
ordered product of the remaining #—2 variables.

Having defined our time-ordered products, we can define the Green’s functions as the vacuum-expectation values
of such products in the usual way. Thus

Gapys,etno(2, Py, P')= <0| T'{Rapys(x,P)Rerno(y,P")} l0> (2.13)

Green’s functions of more than two variables can be similarly defined. They will satisfy equations such as (2.9) and
(2.12), and it is hardly necessary to write them explicitly.

III. CONDENSED NOTATION

We can express the equations of motion in the condensed notation developed in the preceding paper. We shall go
very quickly through the establishment of the notation, since it is the exact analog of that of the preceding paper,
and no new problems arise.
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As before, we begin by constructing the linear space of the totality of all functions Cagrs.cnon.. (1, P1, %2, Poy - - -.).
We next construct the dual space of vectors (I? apys,etno(¥1,P1,22, P, - - )|, which are defined in the same way as in
the preceding paper. We define the operator Rag4s(x,P) in our linear space as follows:

(ﬁefno(xl,Ply' : ')[Raﬁvé(x,P)'_‘ (ﬁaﬂvﬁ,erno(x,P;thl;' e )[ .

3.1)

Proceeding in the usual way, we now define an operator U(x,P) in our linear space to correspond to the right

side of (2.12). The definition is as follows:
(Htr,(x1,P1, - )| Uga(2,P)
= 4

r e, no0

-3 A (ﬁMVEﬂ.-".e{nW]t,-"(xI;PI;' -+ %r, Py,
0

r e

+ie S

r Py

Hostr, oo tetn), o @1,P1, =[50, P o, - )| 0y(0) 02, ) [ (B¢ Bs0+ g08sr) 64 (w—1¢,) ]

++ )| (8p.80+ 8g685.) 84 (26— 1¢,)

dﬂt(aﬂtaé)\_*‘&ﬁ)\aél){I:jk)‘(n))(ﬁlwiﬂ'."',Ef'fl92"'(x1:Pl; o '7xrrPf: o ) l :Ian(n)54(x_ 77)
_1'64(05— 77)a)(n)(ﬁlﬂ’sﬂ""'.Gfﬂa."'(bel" : ':xf)PT)' : ') I } . (32)

In Eq. (3.2), the subscripts e/ 6 correspond to the coordinates ., P,, and the subscripts e[ 6. on the second term
indicate that 6 is to be replaced by «. The operator I/ may also be defined by its commutation relations:

[Uﬁ(x:P))ﬁE{'ﬂﬂ(y)Pl)] ’

=—3 4

AR AR

8,(3) () (8p: 050+ 8p00sr) 8*(w— ) 143« Ao R (y,P") (8p.050+ 85005.) 84 (x—1)
e

—Jix / dn.(8.80x+ 0385 ) {[J r(n), Regno (3, P") 10(n) 8% (5 — ) +i8*(x—n)O(m) Rt (3, P")} . (3.3)

The definition (3.3) of U is completed by the equation
(Hol Uﬁa(x,P)=0 . (34)

In our condensed notation, the field equations (2.12)
take the form

[E'vavﬂ(xsp)_ %5aﬂR7576(x7P)'_iUﬂé(x;P)] lé) =0. (3.5)
The path-dependence equation (2.9) has the simple form,
8Raprs(x,P) = iRt 00(2,P')[T 4 (8),Raprs(,P) Jos.  (3.6)

As usual, P’ represents the portion of P leading to the
point z.

IV. AUXILIARY VARIABLES

We now attempt to express the operators Reag,s(x,P)
in our linear space as functions of path-independent
variables g,,(x"). This step in our method corresponds
precisely to that of the previous paper, where we ex-
pressed the path-dependent variables & and F as func-
tions of path-independent variables ¢ and 4.

In writing down the connection between the vari-
ables Ragys(x,P) and g,(«") we shall be guided by the
classical theory. The justification of our formulas will of
course be the fact, which we shall demonstrate explic-
itly, that the path-dependence equation (3.6) is a con-
sequence of our definitions.

To begin, we define the Christoffel three-index sym-
bols T',*, and the path-independent Riemann tensor

7 wp, by the same formulas as in the classical theory:

LA ) =g («") T, ('), (4.1a)
170gu(x')  0Bu(x')  0Zw(x)

Ty w() =—( i } ! e ) , (4.1b)
2\ 9x" ox'» ax™

Frurs () 1<32§)\,(x') . 0%Z,,(x")  8%8,(x") 62210'(9‘3,))
P (6)) =—
e 2\0x'19x'» i 92 ax’.  Jx'*dx’r  Jxax'e

+g°7[ Ty n(") T'r ()

— ()T, W(x)]. (4.22)
Punp() =2 (&) P oprp(2”) (4.2b)
d
=—TMNa")— —f‘up)\(x,)
ax'e x”
+ va)‘(x/) Fuvv(xl) - r‘av)\(xl) f‘,‘,,"(x') . (4.2C)

The variables g are, as usual, the elements of the
reciprocal of the matrix g,,. In perturbation theory, we
define the variables

(2K)1/2$uv= w0

We can expand 2 in terms of the @,’s to any desired
order.

It is still necessary to express the elements R ,5.5(x,P)
of the path-dependent Riemann tensor in terms of the

(4.3)
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elements 7y,,(x") of the path-independent Riemann
tensor. The difference between the variables R 5,5(x,P)
and Fau,,(2”) lies in the coordinates in terms of which
they are expressed. The variable 7y, (x’) is expressed as
a function of non-Euclidean coordinates, whereas the
variable R ,g,5(x,P) is expressed in terms of a Euclidean
coordinate system constructed along the path P. For
the moment let us denote the non-Euclidean coordinate
by X*, the Euclidean coordinate by x,. Furthermore,
let us take a unit vector in the a direction at the point
x, and let us denote its contravariant coordinates in the
non-Euclidean system by the symbol V.*(x,P). The
four vectors VM «,P), a=1, - - -, 4, thus form a tetrad
which is moved parallel to itself along the path. These
vectors form the axes of our Euclidean coordinate sys-
tem, and the coordinates x are measured in this system.
The shape of the path itself is defined by giving the four
coordinates x, (@=1, ---, 4) as a function of some
parameter.

In general, we shall use subscripts or superscripts from
the middle of the Greek alphabet to denote coordinates
in the non-Euclidean system. We distinguish between
contravariant components, represented by superscripts,
and covariant components, represented by subscripts.
We shall use subscripts from the beginning of the Greek
alphabet to denote coordinates in the path-dependent
local Euclidean system. There is no distinction between
covariant and contravariant components, (besides the
trivial distinction associated with the Lorentz metric),
and we shall only use subscripts for these components.
In one case, Eq. (4.6), we shall be unable to use con-
sistently the convention just outlined. This equation
will express the coordinates in the local Euclidean sys-
tem as a Taylor series in the coordinates in the non-
Euclidean system, and we shall have to use subscripts
or superscripts from the middle of the Greek alphabet
for all coordinates.

Once the shape of the path and the metric tensor g,
are known, we must be able to calculate the variables
X* and V. as functions of x, and we now construct
equations for doing so. First, since the contravariant
coordinates of a unit vector in the o direction are
V(x,P), the non-Euclidean coordinates of a vector
with Euclidean coordinates dx. will be V*(x,P)dx.. On
the other hand, the non-Euclidean coordinates of such
a vector will be dX* by definition, so that we may
write’

dX =V Mox,P)dxe
or
Vo (x,P)= X (x,P)/0%a. (4.4)

7 Strictly speaking, we should write (4.4) in the form Vo*(x,P)
=9q(x)X*(x,P), since X is a path-dependent quantity. In the
remainder of the paper we shall use the usual differential notation
9f(x,P)/dx4 for da(x)f(x,P), where f is any path-dependent func-
tion and dxad, is the change of f caused by tﬁe addition of an ele-
ment dx, at the end of the path. We continue to use the notation
84(£)f(x,P) for the change in f due to the addition of a path ele-
ment at some arbitrary point £ on the path.

STANLEY MANDELSTAM

175

In Eq. (4.4), the coordinates X* in the non-Euclidean
system are regarded as functions of the coordinates x,
of the Euclidean system.

To find a second equation between V,* and X*, we
use the fact that the variables V,*(x) represent the
coordinates of a vector which undergoes parallel dis-
placement as « is varied. Thus, by the fundamental
formula for parallel displacements;

dVa)\z - f‘uv)‘Va“dXV
=—T M #Vgdrg, [from (4.4)],
or

AV Mx,P)/dxg=— T W MX)V 2 (x,P)Vg(x,P). (4.5)

In Eq. (4.5), the argument X of the variable I',,}(X)
is to be regarded as a function of x (and P). Equations
(4.4) and (4.5) enable the functions V.*(x,P) and
X*x,P) to be calculated, and it is a straightforward
matter to calculate them to any order of perturbation
theory.

In obtaining relations between path-dependent and
path-independent quantities, we shall frequently re-
quire to calculate a function f(X) in terms of the co-
ordinates x, where X is given in terms of x by (4.4). The
function T',,*(X) in (4.5) is an example. One can perform
this calculation to any order of perturbation theory by
making a Taylor expansion. Thus

™

=% H —{X*(x P)— xx:l” f(x) (4.6)
=1 A=1 7')\
We may write (4.6) in the form
130)= f WP, @)
where
—1)n
W(aPal)= 3 H (X2 (,P)—x ]
=1 A=1 a“
X d(x—x). (4.8)
(8"
The function W is defined by the equations
2 d
—W(x,P,x")=—V Mz, P)—W (x,Px), (4.92)
0%y x>
W(x,Pa')=d(x—x)
at the beginning of the path. (4.9b)
From (4.7), we may rewrite (4.5) in the form
OV M, P)
%
e XW (&,P ) T (@), (4.10)

Equations (4.9) and (4.10) may be used instead of (4.4)
and (4.5) to define the functions V and W, and we shall
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use these equations in our subsequent work. The primed
coordinates now represent coordinates in the non-
Euclidean system, the unprimed coordinates those in
the local Euclidean system.

From (4.8) we can easily derive the following useful
formula:

/ d%x'd%x"'W (x,P,x" )W (%,P,%"") f1(s') fa("")
=/d“x’W(x,P,x’)fl(x’)fz(x’). (4.11)

It will sometimes be convenient to use the covariant
components of the vector V. They are defined in the
usual way:

Via(#,P)=2\u(X)Vo#(x,P)
= / %'V (2, PYW (%, P, 5 )Eru(%') . (4.12)

From (4.9) and (4.10), one can show that V', obeys the
equation

ad Vm(x,P )
e / A4’V yo(%,P)V g (,P)

c')x,g ~
XW (%,P,x" )Tk (x').

(4.13)

From (4.8) and (4.13) one can then show that
a
—[ VM, P) Vs, P)]=0.
axY

If we adopt the boundary conditions V *(k,P)Vs(x,P)
= 0.4 at the beginning of the path, we conclude that

Va)‘(x,P) V)\g(x,P) = 5a/3 ) (4 143,)

quite generally. Equation (4.10) is of course a conse-
quence of the fact that V,» and Vg represent the co-
ordinates of two unit vectors which are perpendicular
if a8, and the development leading to (4.14) shows
directly that this equation follows from the equations
used to define the V’s.

The following equations are immediate consequences
of (4.11), (4.12), and (4.14):

V.M, P)V b, P) = f 04/ (PP (), (414b)
Va)\(x;P) Vﬂa(x;P) = 5;4)\ ) (4.14C)

Vaa(2,P)V yo(x,P)= / 4 2'W (x,Px g (). (4.144)

We are now equipped to define the path-dependent
variables Ragys(x,P) in terms of the path-independent
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variables #aw,(x"). Since the components of R are mea-
sured in the local Euclidean system and those of 7 are
measured in the non-Euclidean system, we require a
factor ¥V, for each subscript to convert from one system
to the other. Furthermore, the argument of the variable
R is the coordinate in the local Euclidean system, while
that of the variable 7 is the coordinate in the non-Eucli-
dean system. We therefore have to apply Eq. (3.7) to
reexpress 7 as a function of the local Euclidean co-
ordinates. The relation between the variables R and 7
is thus given by

Rupms(,P)= f 04V N, PV (5, PV (1, P)

XV (@, PYW (2,P 2 Yruo(x") . (4.15)
Finally, then, the Egs. (4.1), (4.2), (4.9), (4.10), and
(4.15) can be used to calculate the components of the
path-dependent Riemann tensor R,s,s(x,P) in terms
of the components gxu(x’) of the metric tensor, to any
order of perturbation theory.

It is now necessary to show directly that the above
definitions of Reug,s(x,P) in terms of Zy.(+") do lead to
the path-dependence Eq. (3.6). Such a result can cer-
tainly be anticipated, since the definitions are valid in
the classical theory, where the path-dependence equa-
tion is true. We have carried out the proof in the Appen-
dix for those readers who wish to see an explicit demon-
stration. We are thus justified in relating the path-
dependent operator Rug,s(x,P) to the path-independent
operators g ,(2’) in the manner outlined above.

The operator 7*#(x) is defined in the same way as the
operators 7 in electrodynamics and the Yang-Mills
field:

[(),2m(¥')]
= —(26)12(8,%8,4+5,29,4)04(x'—y"), (4.16a)

(Ho| m(x')=0. (4.16b)

We shall require an expression for the path-dependent
operator Upgs(x,P), defined by (3.3), in terms of n**(x’)
and Zyu(«”), before we can write the equations of motion
in terms of the auxiliary variables. In the Appendix we
shall show that

2—1I2K1I2/d4x,Vka(x1P) Vuﬂ(x;P)W(ij)xl)

X[E) I (') = Ugs(w,P)

in the sense that both sides of (4.17) have the same
commutation relations (3.3) with the operators,
Ret19(y,P"). Equation (4.17) is precisely analogous to
a result in the previous paper, where it was shown that
the operator V.,(x,P)n,(x) was a possible choice for
the operator U,*(x,P) of the Yang-Mills field. The proof

(4.17)
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is carried through in the same way, though the algebra
is somewhat long.

We have emphasized that all formulas in this section
are to be expanded as a perturbation series in the ¢’s.
They can then be rewritten as formulas for the auxiliary
Green’s functions. The method is simply to apply the
formula to one of the vectors (H| in the dual space and
then to take the scalar product with the vector |G). We
have given examples in the previous paper [Egs.
(3.25)-(3.29) ] and we need not repeat them here. The
perturbation formula for the R’s in terms of the ¢’s is
thus simply a shorthand for the formulas expressing the
path-dependent Green’s functions in terms of the auxil-
iary Green’s functions. It remains to find the field
equations which the g’s must satisfy in order that the
R’s should satisfy the field equations (3.5). This is
equivalent to finding the equations which the auxiliary
Green’s functions must satisfy in order to ensure that
the path-dependent Green’s functions satisfy the re-
quired equations.

V. GAUGE TRANSFORMATIONS

One can define gauge transformations for our auxiliary
variables; such transformations are analogous to the
gauge transformations of the electromagnetic and Yang-
Mills fields. They are identical in form to the general
coordinate transformation of the classical gravitational
field.

The definition of the gauge transformations is as

follows:
X (x")

B — B —Bl)
ax'+

—Zu(a’)

ox(x)  9Zw()

Ix’r

X”(x’)) R

x>

The functions [(x’) %2 and T'(x’) will then undergo
the following transformations:

(2«72 — (B T2 HNg (") ]
% X (x )_)\( ]

[z(x'>}1/2)xv<x'>, (5.2)

ax’” ox"
_ _ ~ axr(x)
() — I‘M“(x’)—i-}\(— (')
dx'#
ax(x') ox+(x')
T k(4 TSyl
Ly €] P + Iy (=) Py
d _ a2xx(x')
() )= =) 63
9x" dx M x'm

and the path-independent Riemann tensor transforms
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as a tensor:

d
7)\,,,,,,(36/) - 7)\,‘yp(x/)+ >\(_ ?crl.wp(x’)
Iz’

d
- ?)unfp(x,)'__ 7)\u¢p(x’)—'—'_ 7)\nvn<x,)——>xf(x,>
ox'# dx” ox'?

9
—-A(———,—hﬂ,p(x’))xv(x’). (5.4)
dx'e

The functions V and W will transform as follows
under the transformation (5.1):

Vi (x,P) — Vo Mz, P)+ / dx'V 2 (x,P)
AXMax')
XW(x"P7x,) )
ox”

W (x,Px") = W(,P ') —%(W(x,P &)X (x)).  (5.6)
2 v

(5.5)

Equations (5.5) and (5.6) are proved by substituting
them into Eqgs. (4.9) and (4.10) which define the func-
tions ¥ and W. When V and W undergo the transforma-
tions (5.5) and (5.6), and T undergoes the transforma-
tion (5.3), Egs. (4.9) and (4.10) remain valid.

From Egs. (4.15), (5.4), (5.5), and (5.6) one can con-
clude that the path-dependent Riemann tensor Ragys
remains unchanged under the transformation (5.1). The
transformation does therefore possess the physical sig-
nificance of a gauge transformation.

We shall also require to find the effect of a gauge
transformation on the function Vye(x,P). From (5.5)
and (4.14) it follows at once that

Vaa(®,P) — Viya(2,P)— / %' V,a(x,P)
x(x")

XW (x,P,x")
ax’>

(5.7)

The operator in our linear space which effects the
transformation (5.1) is

a
V(y")=— (20 —L*(y)Zu(y") ]
ay*

+3(20) 12 e(y ) 0gnu(y')/9y” . (5.8)

When the integral A /'dy’V,(y')X*(y’) is commuted with
Zu(2’), the result is equal to the right side of (4.1). It
follows that

[ / d“y’Y,(y’)X”(y’),[z(x')]—l/2]

=[2G T

X (x") ( d

dx” "

£z<x'>3~“2)xv<x'>, (5.9)
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: / Yy V(Y )X (), Vra(®, p)]

(%)
=— / %'V, o(2, P)W (x,P,%") ,
: x>

(5.10)

—/ a4’y »(y’)X”(y’),W(x,P,x')]
e W papet], (511
Iz’
[ / d4y'Yp<y'>xv<y'>,z?am<x,z>>]=o. (5.12)

VI. FIELD EQUATIONS FOR AUXILIARY
VARIABLES

We can now rewrite the field equations (3.5) as equa-
tions for our auxiliary path-independent variables
Hau(2’). According to (4.15) and (4.14) we may rewrite
(3.5) in the form

( / 04 Vs, PV sl PYV s, PYW (5P )
XWL“‘(x’)—iU;Mx,P) | G) = O, (61)

where #7i* is the path-independent Einstein tensor
(6.2)

The function Ugs is defined by its commutation rela-
tions (3.3). We have seen (Eq. 4.17) that the operator

() = PAM(2) — FMH ()P0 (1)

2“1/2K1/2/d4x,VXﬁ(x1P)Vﬂa(x’P)
XW (2, P ") [5(') T2 ()

satisfied those commutation relations. However, as with
the electromagnetic and Yang-Mills fields, the commu-
tation relations do not define U(x) uniquely in the en-
larged linear space of our auxiliary variables. In particu-
lar, the quantity JSd%'V,(y)X*(y') commutes with
Reagys(x,P), and we may add such a quantity to the
function U without changing its commutation relations
with the elements of the path-dependent Riemann
tensor. We shall see below that it is necessary to add
such a quantity in order to satisfy a consistency
condition.

We therefore write the following formula for U (x,P):

Upgs(x,P)= 2—1/2K1/2/d4x’V>\,3(x,P) V us(x,P)
XW (x,P ") [g(2") T 2 (")

+2—”2x”2/d4x’/d4y’Y,(y')Vx,g(x,P)

XV (2, PYW (x,P,x")

XI5 ('), (6.3)
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where the function X*»(x’,y’) is at the moment an
arbitrary function of the #'s. The right side of (6.3)
satisfies both conditions (3.3) which define the operator
U. We should like to commute the operator ¥,(y') in
the second term of (6.3) through the operators Vs(x,P),
V us(x,P), W(x,P,x’), and [(x’)]1/2, since all terms of
(6.1) would then have the factors V and W in front of
the other factors. We can easily do so by using (5.9)-
(5.11), and we obtain

s, P) = 211212 / 4% Vrs(@,P)V s, P)

XW (,P ")) I1/2(x"),  (6.4)
where
62u(a") = (') + / 4y Y, (y") XM (')
axmN(aly') XM r(x',y")
+(-
6y’v ay’v
A (a!y") X (x,y)
Y =) .69
dy" x” o
We can now substitute (6.4) in (6.1) to give
[ Vs PV o PO 5 ) 0
XALR) () — 20 20w (3} [ G) =0, (6.6)

and therefore
{[B(") T2 e(a") — 0271 1% 200 (x') } | G) =0 (6.7)

Equation (6.7) is a sufficient condition for (6.6) and, if
the integral operator S da’Vas(x,P)V us(x,P)W (x,P,x")
X [g(x) 1712 has a reciprocal, as it does in perturbation
theory, it is also a necessary condition. We shall there-
fore adopt (6.7) as our field equations. The function 6 is
given by (6.5), with X still to be determined. In Eq.
(6.7) we have finally eliminated the path-dependent
variables.

As in all gauge theories, the function 0*#(x’) in (6.7)
is limited by a consistency condition. From the fact
that the covariant divergence of the Einstein tensor
vanishes identically, we can show that

130(2")
2 Jx'»

d
—{Zw(x) 0V (x")]— 7 (x)=0. (6.8)
dx'>

We may rewrite (6.8) in the following form, which bears

a resemblance to the corresponding equation for the
Yang-Mills field:

60)"'(50,) | 1/2. a rx 7\ AN ’
Oy Py T(Z") ax,xL‘i’w(x )0V (x )]
3¢, (x")
-%(zx)lfL—”T-o»(x')=o. (6.9)
xl‘
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The new field variables ¢ are defined by (4.3). We have
to determine the function X in (6.5) so that (6.9) is
satisfied.

We begin by looking for a function 6;** which has the
form 5*#+6# and which satisfies (6.9). The function
0’*+ will not have the form of the second term of (6.5),
but we shall then be able to modify it to bring it into
this form. By analogy with the development for the
electromagnetic and Yang-Mills fields, we might try a
function 6;** of the form n**—(3/8x'*)k*. Such a trial
function is not symmetric in u and », however, and we
replace it by the trial function

()= 1P+(a!)

/] d a
—<——5,~+—5,%— w>Hv(x’). (6.10)
dxy’ dx,’ '

We adopt the notation 8**=4§,*, x,’= ' simply to keep
our formulas conventional with regard to upper and
lower indices. [If we were using a Lorentz metric with
real time, the Kronecker delta 8 would be equal to
— 8%, while #; would be equal to —x"* (1=1, 2, 3).] The
consistency condition (6.9) when applied to (6.10) leads
to

62
l:ax' Adxy”

o 9

’ “)‘ 7,
ox,'  dx”

a d 0

+'——;¢u
ax”

X

’
ax)\

,w+ (ZK) ! I2('a_¢uv

696)\

o, 0

a¢)\v a
15X >]HV (x/)
dx's 9x”

ox’r ax)"

6 -~
_"7'¢/w
x>

—3(2 1/22¢ ) »(x'). (6.11)
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We shall therefore define a function 07#(x’,y") by

92 i) a _ 9
( uv+(2")1/2 — )“¢pv +—u

92" 9xy ™ 9y 9x”  oxn
d_ 9 9 9 odre 9
— __._..¢I‘)‘ — —_—] 1 6)\0 } )
dxy  0x"  9x'koxy b

XOe(x',y)=0,,84x'—7v"). (6.12)
From (6.11) and (6.12), the function H” will be given by

d d
1) [ 90 (b0 20—
ay's 9y’
06215
ay'r

3 yww.mm

Thus, from (6.10),

(i) a a
glm(x') = nku(x') (_5 u+__5 X___-aku)
i}

Y Iz’
i) d
X/d4y'0”’(x',y')<5,,ra'—,+(21c ”26—‘,'“5;»1(3”)
y o 's

Gor
- ))n”(y')- (6.14)

(zx)llz
9y’

The choice (6.14) for 6;*#(x’) satisfies the consistency
condition (6.9), but it does not quite have the required
form (6.5). The last factor of (6.14) is just equal to
—(26)1/2 times the operator Y ,(y"), apart from factor
ordering. The difference between the right sides of (6.14)
and (6.5) is, first that the factor 9°7(y) in (6.14) is
ordered to the right of the other factors instead of to the
left, and second that the last term of (6.5) is absent. We
therefore take the following choice for 6*#(x"), which is of
the form (6.5):

, ) n"(y’) o , (y’) L
(") =n(x")+ | d*y'( 8,r (2K)“2 L7 (¥)8r(5) 1= 3(20)1 % "(y) Xk (a!y')
9y
X yf) POl y)  Xm(ayf) ()
+(2K)1/2<_ - ——+ - - ) , (6.15a)
ay'? oN'e ay'? ox’e o=z
where s
X op(x! ") = — <———6 - -—-—6)“‘)0""(90’ ). (6.15b)
oxy  9x, dx”

Having made this choice for 6, it is necessary to test the self-consistency condition (6.9). If we substitute (6.15)
in (6.9) we find, after some straightforward but tedious algebra,

(o z
%60 (=) : (2[()1/2" ( )

x>

3
()6 (@) ]—3(20)" 2
X

i) 9
= 4(20) 12— — ) | & =y — 4(26) 1 P—0(x' — &) .
ox'» ‘ e

—6(x')

(6.16)
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The right side of (6.16) is of course undefined, but if we subtract infinities in the usual perturbation-theory manner
we shall get zero. In momentum space to the right side of (6.16) would have been 4i(2«)'/2 S pd*p—4i(2x) V2 [ pd*p
and we would normally have set the result equal to zero. Since we are only attempting to obtain results within
the heuristic framework of Feynman-diagram perturbation theory, we can set the right side of (6.16) equal to
zero, and the consistency condition (6.9) is proved.

Finally, therefore, we can take (6.7) as our field equations, with the function 8 given by (6.15) and the function
0#(x,’y’) defined in turn by (6.12). These equations are self-consistent and they imply the validity of our path-
dependent field equations (3.5).

VII. FEYNMAN RULES FOR GRAVITATIONAL FIELD

To determine the Feynman rules we must separate (6.7) into those terms which contain powers of «'/2 and those
which do not. Thus,

0%,
(%(5»5#».{_ Shegur — 3>\n5vp) 6t A
V0, pesT 636/"696’7

+(2K)1/2W—iew)|<;)=o, (1.1)

where ™ is k! times that part of the Einstein tensor density /%7 which contains at least one power of k. Equa-
tion (7.1) can be integrated to give

[&X#(x, _'%’i(ZK)l/2(6)\,8”T+3)‘,6“,— 5x,,5¢f)/dx"%Ap(x'—x")f‘”'(x")

- %(3)\,6,”'{— 5)\16,”— 5)\,‘5")/(130”%Ap(x,—- x”)n"(x”) —%(2K) 1/2(5)\,5,‘,—-{— 5)‘,5,,.,— 5)\”5") /dx"%A p(x"— x”)

aX’f’c(xI,,y’) axu-p,y(xll,yl) ang’p(xll,yl) (?X”'”(x”,y')
x(— ' | ) ]l(;)=o. (7.2)
2 =y’

aylp aylp U aylp ! axllp

In writing (7.2) we have used Eq. (6.15) for 6 and have uses the supplementary condition
omitted the second term on the right of (6.15a), since * oy AAusy )

the contribution to the left side of (7.2) would be a pure (8270k04-3n0— 81+67) D/ 307 =00. (7.5)
divergence. One can obtain more general gauges by to rewrite the Lagrangian in the form

making the replacement = —3(§Moo+ 5Mogw — §hugre) o

8),8,,1-‘*‘ 5),6,“,— 8)\;4601- - 6)«76#'r+ 6}\76“’— 6)\;‘507 X (a¢)‘"‘/6x”)(a¢vp/axf)+ geint : (76)
a2 5 a2 From the Lagr.angian (7.6) one can construct Feynn}an

—a { . Bre . rules by following the standard procedure. The function
OxNox'T | Qu'edn'T Mg £Lins is an infinite power series in the variables ¢, so

that there exist vertices with an arbitrary large number

9? 9* of external lines. It is in principle straightforward to
o o (L1 bm&ﬂ-z- (7.3)  find the factors associated with the m-point vertex, but

the algebraic complexity of the result increases rapidly
with ». We shall not carry through the algebra here; it
has been done in Ref. 3 for »=3 and #=4. The graviton
propagator associated with the zero-order Lagrangian
in (7.6) is simply

The first three terms on the right of (7.2) are the
terms we would have obtained by an uncritical use of
the analog of the Lorentz gauge. In this method one
writes the Einstein Lagrangian in the form

)

7.7

L= _%(5)\;'5;&::_{_ SMogHy — §hugre) Gkn,«f(ﬁ)= *
(2m)t —pPie

) (6)\06yr+ 6)76ua'” 6)\”5’1)

X6 A <6¢M )(6¢"’ >+ L, (7.4) Itis thus equal to the coefficient of 77 on the left of
Ve, poT \ Gy oxT (7'2)‘

The presence of the last term on the left of (7.2) shows

where Lint represents all terms in the expanded Lagran- that the simple Feynman prescription is not correct and

gian which contain at least one factor of «!/2. One then that additional vertices are necessary. We begin by
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expanding the function 0*?(x’,3’), which is defined by
(6.12) and which occurs in the function X*-#(x’,y’), as
a perturbation series:

0 y)=i 3.

n=1

dxy - dxn' A p(x'—x1)

X &#4(26)2DMEL, gy (01 )5 A P (901" — 12")
X 5"“’%(2'() ! /2D)\Z"2p2V25)\2u2(x2,) e

FAp(a'—y)one,  (7.82)
where
~ 6 ~
D)‘Mm/d’)\n = 6p)‘6v"
Gx' o
J 3 () o
i) —
dx, Ax” ax’s  dxy/
OPau(x")
i (7.8b)
dx'»  ox,/

The expression (7.8) can now be substituted in (6.15b),
which in turn can be substituted in the last term of (7.2)
to give the result

%i(ZK) 1/2(6)\v6yr+ 5)\16/w— 6)\;460'1') Z

n=1

dx''dxy -

da,'dy'3 A p(x'— ') 64" — y") (D7, D77 )

X 2A p(x"—21") 6215 (26) 1 2DMw B (1)

X 5 g1 — ") 87172 (2) V2DNH2 B (20) -+ -
LA p(xa'—y)ome,  (1.9)

where DM, is given by (7.8b) and

_ Jd 9 a 9 a 9
DM y=— 5,05, , 5 —
3y’ 0x,’ dy” ox,’ dy,’ ox”
d\ 9
\ (7.10)

d 0 a\ 0
+5y"( & %5“‘< f )*“ .
ax'» dy N dx’e dy'#/ o,

The expression (7.9) is similar in form to the analo-
gous term in the equationfor the Yang-Mills field. Again,
one can represent the term diagramatically by an
(n+1)-sided polygon (Fig. 4), which is inserted into the
Feynman diagram in all possible ways. The solid lines
represent the gravitons, while the dashed lines are as-
sociated with the factor 1Ap(x,’—x,41/ )8 in (7.9).

\.

‘/ \/ F1G. 4. A Feynman vertex corresponding
to the last terms of (8.2.)
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Thus, in momentum space,
1 bid

(2m)* — prtie
The vertex factor is obtained by transcribing the factor

i(2c)12DM . or i(2«)1/2DM,,, in (7.9) into momentum
space. Thus the vertex factor is given by

w(pap, pahu,pv) = 1(2m)4(26)1/2(8,26,4p1 pst+8, prpst
- 59)\?1”?3"_,‘ 5.."?2,0[73)‘— %5)\”?%?31’) . (7 1 lb)

In (7.11b) the quantities p1p and p are associated with
the dashed lines, and the quantities psAu with the solid
line, meeting at the vertex. If we wish we may sym-
metrize the vertex factor in A and . Finally, from (7.2)
and (7.9), we find

dashed-line factor= (7.11a)

(7.11¢)

an over-all factor —1.

As a mnemonic device we can associate the dashed
lines in Fig. 4 with fictitious particles. The presence of
the indices » and p in (7.11) shows that these particles
must be vector particles. The propagator associated
with the fictitious vector particles is given in (7.11b),
while the factor associated with a vertex involving two
fictitious vector particles and one graviton is given in
(7.11¢). In addition, we must include a factor (—1) for
each closed loop of vector particles; such particles may
therefore be regarded as (very) fictitious ‘“‘vector fer-
mions.” The vertices involving gravitions alone are
obtained by expanding the interaction term in the
Einstein Lagrangian, and we have observed that there
exist such vertices with an arbitrary large number of
lines. The only vertex involving the fictitious vector par-
ticles, however, is the vertex with two fictitious-particle
lines and one graviton line.

VIII. NONPERTURBATIVE FORMULATION OF
THE THEORY OF THE QUANTIZED
GRAVITATIONAL FIELD

Our work in the body of the paper, and indeed the
formulation of the equations of the theory given in Sec.
I, has been within the framework of perturbation
theory (to arbitrary order). We shall now attempt to
reinterpret the contents of Secs. IT-VII without assum-
ing perturbation theory. We are not concerned here
with methods of obtaining a nonperturbative solution
of the field equations (7.2). Since we do not have a reli-
able method of solving the equations of other field
theories, it would probably be premature to investigate
nonperturbative approximations to the solution of (7.2)
at the present time. We wish simply to show that the
development leading to Eq. (7.2) can be understood
without perturbation theory.

The first point which must be examined is the defini-
tion of a time-ordered product. In theories of fields
other than the gravitational field, or in the perturbation
theory of the gravitational field, the definition of a time-
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ordered product is unambigious. In the general theory
of the gravitational field, however, one is faced with the
problem that one does not necessarily know the time
ordering of two points from the characteristics of the
paths leading to them. We shall assume that there
exists an operator T'{Rag,s(x,P)Rerns(v,P’)}, even if
the time ordering of the points x and y is not known.
Functions identical to time-ordered products have
sometimes been defined in quantized field theories
without explicit use of time ordering. For instance, the
Green’s function, instead of being defined as the
vacuum-expectation value of a time-ordered product,
is sometimes defined as the multiple derivative of the
S matrix with respect to changes of the external source.
The assumption that the operator 7"{Ragys(x,P)
X Reyo(9,P')} has a meaning will be taken as a funda-
mental assumption of the theory.

The operator 7/{Rags(x,P)Rerqs(y,P’) } will no longer
be a product of two operators. We shall assume that it
is equal to a product of two operators, time-ordered in
the usual way, when the paths P and P’ are far apart.?
We shall also assume that the covariant time-ordered
product satisfies the path-dependence equation (2.4)
and the field equations (2.12). Time-ordered products
of more than two operators are similarly defined. We
have shown that Egs. (2.9) and (2.10) are sufficient to
calculate the time-ordered product. Hence the assump-
tion that there exist operators which satisfy (2.9) and
(2.10), and which tend asymptotically to ordinary time-
ordered products, is sufficient both to determine the
theory and to define the time-ordered products.

Next it is necessary to obtain a definition of the path-
dependent § function, which occurs in the field equa-
tions (2.12). The definition of this function is not trivial,
since we do not in general know whether two paths P
and P’, whose endpoints are ¥ and v, lead to the same
point. We shall assume that there exists an operator
84(x—y), which depends on the paths P and P’, and
which has the properties specified below. We shall fur-
ther assume that there exist covariant time-ordered
products such as

T"{Ragys(2,P") Regao(w,P"")5(x—y)},  (8.1)

and similar time-ordered products with any number of
R’s. The time-ordered product (8.1) must satisfy the
field equations (2.12) in z and w, and the path-depen-
dence equations (2.9) for variations of the paths P’ and
P, The definition of the § function is then completed
by the following three requirements:

(i) If P and P’ are coincident along their entire
lengths except for infinitesimal portions at their ends
[Fig. 2(b)], the & function is defined as in Ref. 4.

(ii) The covariant time-ordered product (8.1) satis-
fies a path-dependence equation analogous to (2.9) for
variations in the paths P or P’.

8 We require this assumption in order to apply Feynman bound-
ary conditions, and also to use the reduction formulas.
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(iii) The covariant time-ordered product satisfies the
equations

T"{Rapys(*,P) Repns(w,P""")8(x—)}
= T"{Raprs(y,P")Retns(w,P""")8(x—9)} ,
T'{Rapys(2,P"")Repns(x,P)8(x—7)}
=T"{Rap2s(2,P" ) Rerno(y,P)8(x—9)} .

Requirement (i) ensures that the & function has the
appropriate properties when two paths end at or near
the same point, while requirement (iii) ensures that the
6 function is zero if the paths do not lead to the same
point.

The condensed notation introduced in Sec. IIT made
no use of perturbation theory, and we can take that
section over into our nonperturbation treatment. In
Sec. IV, however, where we defined the path-dependent
variables in terms of auxiliary variables, we must
modify our approach. In perturbation theory, all formu-
las were to be expanded in powers of the operator &,
and they were equivalent to formulas involving the
Creen’s functions. Now, however, the formulas are to
be regarded as genuine formulas involving operators
in a linear space and not as a shorthand for perturbation
theory. The operators g are known from their definitions,
and we then have to find operators V (x,P), W (x,P,x’),
and Rag,s(x,P) which satisfy the equations of Sec. IV.
Once the operator Rapys(v,P) and the vector |G) are
known, we can write the matrix elements (Ho|Ragys
X( )P) IG)> (HO|R¢575( ,P)Rti'nﬂ()':P/) lG)y etc. These
matrix elements will be the ( reen’s functions Gegys
X 4P)y Gapns.eeno(r,P), etc. To calculate the path-
dependent ( reen’s functions from the auxiliary (;reen’s
functions is thus anontrivial problem involving operators
in our linear space.

Another point to be verified in Sec. IV (actually in
the Appendix) is that the path-dependent & function,
defined in terms of the path-independent § function by
(AS), does satisfy conditions (i)-(iii) above. It is not
diff cult to show that the conditions are in fact satisfied.

The remarks which we have just made in connection
with the formulas of Sec. IV apply equally to the field
equations (6.7). The function g/%#**, when expanded
in powers of ¢, gives rise to an infinite series. The equa-
tion thus connects an infinite number of Green’s func-
tions or, equivalently, there exist vertices with an arbi-
trarily large number of lines. If we are not using pertur-
bation theory, we therefore have to regard (6.7) as a
genuine operator equation in our linear space. Given
the operators g and 5, we have to find a vector |G)
satisfying (6.7).

By making use of our linear space, we can therefore
express the gravitational field equations as equations
for path-independent quantities. We have given the
perturbation solution to these equations. Any more
adequate treatment would involve at least all the diffi-
culties of quantum field theory. One can of course sum
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subsets of perturbation diagrams in the usual way and
can construct approximation schemes such as the Bethe-
Salpeter scheme. It has frequently been suggested that
an adequate treatment of the quantized gravitational
field might remove the divergence difficulties both from
the gravitational field equations themselves and from
the equations of other field theories. If one could con-
struct an approximation scheme with these features,
either by starting from Eq. (6.7) or by summing subsets
of perturbation diagrams, one would have achieved
‘major progress. At the moment, however, one does not
have any indication of how to proceed.

Note added in manuscript: Faddeev and Popov
(unpublished) have extended their method of Ref. 3 of
the preceding paper to the gravitational field. Their
results are the same as those of Feynman and DeWitt
and those of the present paper, though they differ some-
what in appearance since the variables used are different
[(—g)Y2g» instead of g, ). With such variables one can
replace the fictitious vector particles by fictitious scalar
particles if and only if one uses the Landau gauge. For
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the gravitational field, Faddeev and Popov do not
relate their ansatz to a field theory.

APPENDIX

In this Appendix we shall give the proofs of two re-
sults quoted in Sec. IV. The first is that the definition
of Ragys(x,P) in terms of Zy.(x") does lead to the path-
dependence equation (3.6). We begin by examining the
function V(x,P) and calculating the change which oc-
curs when the path P is varied by a small area g at
the point z (Fig. 3). Equation (4.10) for V can be
written in integral form as follows:

VM P)=— f G2V (5, P)V 5 (5,P')

y4

X [ d%'W(z,P' )T E).

If the path P is deformed by an amount oas at the
point z, we can use Stokes’s theorem to find the change
of V just beyond the point z. Thus

. F]
WMk, P)=—} A4, — { VP V@ P) / 45 (5P, fw*(zo}aaﬁ
e za

a
~=4 4, (VrePyrer)—| [eswerie |

Za

—Vy*(5,P )V (2,P) Vg (2,P') / &' W (3,P' &) T (&) (7))

Ve, PV ut(a,PYV (s, P) [ 35 (5, Mz')r‘,,,(z'))aag.

In the last two terms of this equation we have used (4.10) and (4.11) to express derivatives of V in terms of the
V’s themselves. We may use Eq. (4.9) to rewrite the derivative (8/0z.)W (2,P',2") as — Vo (3,P’)(a/ 82'?)W (&', P',5').
On doing so and rearranging some of the dummy indices A, u, », and p, we find that

SV M+, P)=—3V4(5,P) Vg (2,P)V o*(2,P") f d''W(z,P' %)

d i)
X (“""f#vk (z,) _—_fﬂpx(zl) +T vp"(zl) F#vo(zl) -7 w)'(z’) flwa(zl) )"'aﬁ
dz'e az"

VAP Vi PV (P f W (5,P' 2P )08

=—1V(%P")Rsysa(2,P)0as
=—20(3,P") R y50p(2,P")0ap.

[from (4.15) and (4.14)]

This equation may be brought into a form resembling (3.6) by noting that
i[J45(2), VM3, P)]= _’S'erB)‘(ZrP)‘{"aﬁer)‘(Z;P) .

Thus

VMz+, P)=21iRysas(z,P ) 1s(2),VeMz,P) Joag-

(A1)

We have thus far only proved (A1) when the argument 2+ is a point just beyond that at which the path was de-
formed. However, we can now readily extend (Ala) to arbitrary arguments:

6V_€)\(x7P) = %iﬁ'vﬁaﬂ(zrl)/)[]'yﬁ(z); Vx,P)Joas,
6W(x)P:x/)= i’iR'ﬁaﬁ(z;Pl)[]’vﬁ(z):W(x;P,x,):lo'dﬂ'

(A2a)
(A2b)



175 GRAVITATIONAL FIELD 1619

Equations (A2) are proved by examining Egs. (4.9) and (4.10), which define the functions ¥ and W. To begin with
Eq. (4.10), the two sides undergo the following changes when ¥ undergoes the change (A2a):

6Va"(x,P) - aVa)‘(x;P)
5—~——=%iRwsr(z,P’)[Jw(z)r—]m, (A32)
dxg dxg

6(—— / d4%'V (%, P)V g (2, PYW (,P,5") T M (x) )
=R s (x,P’) [J vi(2), — / Ax'V (2, P)V g (2, PYW (2, P ") T, (s’ )] . (A3b)

On the other hand, it is permissible to apply the operator J,5(z) to Eq. (4.10) at all points except the point 2, since
(4.10) must hold for the original and for the rotated path. Hence

AV (x,P)
(12260

g

:|=|:Jw(z), - ] 04V (,P) Vﬂ”(x,P)W(x,P,x')T‘u»‘(x'):l, 233, (A4)

From (A3) and (A4), we observe that the changes of the two sides of (4.10) are the same when V and W undergo
the transformation (A2), except possibly at the point x=2z. One can prove in the same way that the changes of the
two sides of (4.9) are the same. Hence, since V and W satisfy (4.9) and (4.10), we can conclude that V46V and
W+-6W satisfy these equations, except possibly Eq. (4.10) at the point x=2z. The development leading to (A1)
showed that V8V also satisfies (4.10) along the new path near x=3, so that the functions V46V and W-8W
satisfy (4.9) and (4.10) along the entire new path. Since Eq. (4.9) and (4.10) are the definitions of ¥ and W, we
have proved Egs. (A2).
It now follows at once from (4.15) and (A2) that

Bﬁei’n(?(xap )= %iﬁwaﬁ(zap ") [J vé (Z)’Refnﬂ (%,P)Joas-

This is the required path-dependence equation (3.6), which has thus been shown to follow from our definitions.
Before we prove our next result, Eq. (4.11), we shall have to derive one further formula, a formula relating the
path-dependent and path-independent & functions. We shall show that

3(x—y)= f &*'dty'W (e, P YW (y,P,y ) [5(2) /264"~ '), - (AS)

where g is the determinant of the matrix g),. We shall assume this relation to be true at one value of x (for all y)
and, at that value of x, we shall show that the derivative of the right side with respect to x, is equal to 854(x—y)/
dx.. Since the equation is true at the beginning of the path from our boundary conditions, we shall thereby have
proved it in general. Proceeding in this manner, we find '

ad
5;( f d4x'd4y'W<x,P,x'>W(y,P,yo[z(x')J—l'264<x'—y’))
d
=f Ay VN PIW (5P W (0Pl AT T84 ) from (49)]
=‘/ a2V M, PYW (3, YW (3,Py') B )2 () T4126%( — )

i)
+ [ty VD P W 0,2 YEGI T~y
ox

AV A (x,P)
= f d*x'd*y'V o, P)Vy(,P) Vup(x,P)——T—W(x,P,x’)W(y,P,y')[E(x’)]f" 2042 —y')
Xg

a
= / d*'d'y’V N, P) an('y,P)s—{ W (x, P )W (y,P, Y")[Z(2) I 264z~ )},
8
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f;orn (4.9)-(4.11). Since we are assuming (A5) at the value of « under consideration, for all y, we can now deduce
that

Yo

i)
a——( f d4x’d4y'W(x,P,x')W(y,P,y'>£z<x>J-wa4(x—y))

AV #(x,P) d
=V us(#,P)————84(x—y)— V. x,P) Vas(9,P)—3(x—3)
9z 9s

d d 9
==V 3,P)Vrs(y,P)——b4(x—y) = ——d'(x—y) = ——0*(x—).
6)\5 Va 0%a

This is the equation that we wished to prove. The physical meaning of Eq. (AS) is that the path-dependent ¢
function is #-1/? times the path-independent, coordinate-dependent § function. Such a result is not surprising; the
factor g71/2 is the reciprocal of the volume element in the non-Euclidean coordinate system.

We now prove that (4.17) is a possible expression for Ugs(x,P), in the sense that they both have the same com-
mutation relations with the operator Rg,(y,P’). From (4.16a), we obtain

3f(g(¥"))

[rr(a), fE()) )= — 220 *——=. (A6)
6g7\u(x )

Hence, in order to find the commutator of »*#(x’) with any function of g, we require to know the derivative of that
function with respect to . We shall therefore begin by supposing that #x.(y") undergoes a change

au(y) = hand*('=5), (A7)

and shall find the corresponding changes in the functions Va*(3,P"), W(»,P’,y’), and Paws(y").

First let us find the change in the variable T',,* when %, undergoes the change (A7). It follows at once from
the definition of I' that

8T, 5(y") = — 18 (y) (8 T, (y') +8,28,48/ 8y’ *— 8,28,40/ 3y" — 8,8,49/ Y P)8 (&' — 3 Vs . (A8a)

From (A8a) we can calculate the integral — /'dy’V (y,P")V#(y,P")W (3,P’,y")8 T, ,%(y’), which we shall need when
treating Eq. (4.10). Thus multiplying (A8a) by the factor — V¢(y,P")V¢?(y,P )W (3,P',y’), using (4.14) for the
factor *°(y), and rearranging some dummy indices, we find that

__/ d4y'Ve(y,P) Vo (y, P YW (3,P',y)8T,,(y')
- %[ a4’V (5, PV 9,P) Ve (y,P)Vi#(y, P YW (3,P',y") Typt (5 645" = ¥ Vina
+%‘/d4y’Vu“(y1P’) Vﬂ)‘(y)P’) Vﬁ”(y)P’){556651'1/;(3’:1)’)
3
— 88405V (3,P') — 8580,V (3, P )} W (3,P ',3")6_7 §4(a" =) ra
y v
=} / a4V (3,P YV My, P Ve (y,P) Ve (3, P YW (3,P ") Ty 4 () 04" = 3" ) ens

+ [ A%V (3, P")V Ny, P)V 5#(3,P") (85:850/ 3yy— Bpsd5:9/ 03— 833349/ 3y )W (3,P',3) 84" — 3 Vlonu,  (A8D)

from (4.9). We can simplify (A8b) by taking the factors V., (x,P) and V3*(y,P) in the second term to the right of
the differential operators. Using (4.10), we find that the terms obtained by doing so cancel the first term of (A8b).
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Thus

B / aty'Ve(y, PV (y, P YW (y,P',y') 8T ,5(y")
=3{86e05: V4*(y,P") 8/ 3yy— 85V 5*(3,P") 9/ 8ye— 85V 5*(3,P')8/ 3y} dgs,  (A8c)
where

dgs(x',y) = f y'Ve(y,P )V (39, PYW (y,P',5') 345" =y Virs. (A9a)

The function d is symmetric in 8 and 5:
dpa(0,y) =dp(x,y) - (A9D)

Equation (A8c) may be simplified further by noting that

555V,,"(y,P,)— 6¢7JVﬁK(y7Pl) = 'i[Jﬂﬂ(y): Vﬁx(y;P’)] .
Thus

B / aty'Ve(y, P Ve (y,PYW (39,P',5") 6T 5= §{ 5[ T 16(),V(3,P") 10/ Oyy— 85V s*(3,P")0/ Oys}dps(x',3) . (A8d)

We can now investigate the effect of the change of T, given by (A8d), on the change of the functions V¢*(y,P’)
and W (y,P’,«’) defined by (4.9) and (4.10). We shall write the result and shall show that it does satisfy (4.8) and
(4.10), in writing the result we were guided by Eq. (3.3) for the function U. The result is as follows:

oVe(y,P) =31 / dns{([ T 25(n), Ve(3,P") 105(n) dgs(',m) +idgs(x',m)ds(m) Ve (y,P') } — 86V (5, P )des(',y) - (A10)

W (y,P'y')=%i [ dns{[Tas(n), W (3,P",5')184(n)dpa(’yn) +iddgs (2" ,m) B ()W (3,P",3')} (A11)
P

To verify (A10) and (A11), we calculate the resulting changes of the two sides of (4.9) and (4.10). The change of
the left side of (4.10) is

Vy,P) d . Ve (y,P')
o = %1’65?([]715(3’); Véx(y>P’)J_dﬁ5(x,ay)+7/dﬂ8(x,,y) - "_'__'>
s 3y, 3y
i Ve(y,P") ) AV (y,P')
+ dm([fnﬁ(ﬂ),"——]an(n)dﬁa(x'm)+¢dﬁa(x'm)dﬁ(7l)—‘——*‘—>
2/)p 0y; dyr
6V5K(y’P /) 9 ,
—30p————dgs(«",y) — 50V s*(y,P)—dps(x',y) . (A12)
dIy; dyr

The change of the right side of (4.10) is equal to the sum of two terms. The first is given by Eq. (A8d), and the
second is as follows:

“/ 05V 23, PV (3, P YW (3,5} o (o)
=—1 yd Ty , | dy Ve ,P'VP PYW ,P','f‘,,,," 4 d,(n)d ',
/ ?7[[ B<n>f ) Vo0, P) V5o, PYW (3,P' ) (y)] (Ddso'on)
Fidaa(etm) aﬂo,)( / V0, P) V;»(y,mW(y,P',y')n,~<y'>)}

+%/ dy'L86V5 (3,2 Vi2(3,P)+06:V (3, P )V s (39, P) W (3,5 ) T (3 )o@ ) . (A13)
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We can now show that the right side of (A12) is equal to the sum of the right sides of (A8d) and (A13). We first
note the equations

oV (3, P')
[ e ,——y—]=—[fme<n>, [ dy'Ve(y,P) Vr’(y,P')W(y,P’,y’)fyp“(y')] , (Alda)
dye
AV e(y,P’) _
36(77)——6—;—= —aﬁo;)( [ d4y'V:<y,P'>Krr<y,P'>W<y,P'>n,,x(y)) . (Al4b)
¢

Equations (A14) are obtained by applying the operators Jg,(1) and ds(n) to Eq. (4.10); it is permissible to do so,
since (4.10) must hold for the original and for the rotated or displaced paths. Using (A14), we observe that the
terms on the right of (A12) and (A13) which involve an integral over n; are equal. Using (4.10) and (A9b), we can
show that the two terms on the right of (A12) which involve a derivative of V with respect to y are equal to the
last two terms of (A13). The right side of (A8d) is equal to the sum of the remaining terms on the right of (A12).
We can similarly show that the changes (A10) and (A11) of V and W are consistent with Eq. (4.9). The changes
“of the two sides of this equation are as follows:

a a a
6<-—W(y)PI)y/)) = %’LBN'[JW(}]) )W<y7P/’y’)]——dﬁ5(x,:77) - %55rdﬁ8(x’,y')—W(%Pl,y’)
ay; 0y, 9ys

v oW (y,P',y") ) oW (y,P',y")
b ] dm([hﬂ(ﬂ),—a———]au(ﬂ)dﬂa(x'm)+1daa(x'ﬂ7)3ﬁ(17)-——-“

). @)
P Ve dye

i) v a d
=5{Po0,P) 0, | =i [ n([ 76720201 |t
ay"™ ay™ 9y,

P
d d
—idﬂa(x',ﬂ)aﬂ(ﬂ)[Vr)‘(y:Pl)ﬁW(%P',y')]>+%5ﬁrdﬂa(x';y) V5)‘(y;P,);W(y7P7y/)' (A16)
y y

The first term on the right of (A15) is zero. This is because the symbol 5[ J,s(v),W (y,P’,y")] is the change of W
caused by a rotation of the path P about the point y, the end of the path. Such a rotation cannot change a variable
which has no tensor indices. The second term on the right of (A15) is equal to the last term on the right of (A16),
by (4.10) and (A9b). As in our previous example, the terms on the right of (A15) and (A16) which involve an in-
tegral over n; are equal to one another. Hence the right sides of (A15) and (A16) are equal. We have thus verified
that (A10) and (A11) satisfy the defining equations for ¥ and W, so that (A10) and (A11) do give the change of V
and W when g undergoes the change (A7).

Next we find the change in the path-independent Riemann tensor #auw,(y"), defined by (4.2a), when g undergoes
the change (A7). Since our main object is to find the change of the path-dependent Riemann tensor, given by (4.15),
we shall actually calculate the product VMV eV 7V e?W 67y u,- The calculation is similar to the calculation leading to
(A8c), and we need not give the details. The result is

[ ay' Vi, PV (y,P )V (y,P')Vor(3,P YW (3,P',y") ¥ nuwp (3')
=1 A4 3,509 0ards0dps(a’,y) 1+% A Reino(y,P')d5.8s0dss(x',y). (A1T)
¢

e—§ et €

We can now calculate the change in the path-dependent Riemann tensor (4.15). Inserting (A10), (A11), and
(A17) in (4.15), we find that '

SR, P)=% A 3,(3)9(y)0ards0dss(2',y)— 5 A(’Rew(y,P ") 86.8s0dp5(%,y)

e§, el KAnd

+Li | dna{ [T s(n),Rers(9,P)10.(n)dss(',)+idgs(a’,n) 06(n) Regno(y,P)} . (A18)

P

The functional derivative 8Req0(y,P’)/8%u(x’) is the coefficient of /y, on the right of (A18), symmetrized in A and
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u. Thus

BRErW(y:PI) 1 , 1 ~ , N

———-—-————8~ @) =1 ;‘1’1 ) 3,(9)0e(v)[ (8¢ 050+ 8p00sc) dps™ (2, ) 1— % 'IAaRe;m(y,P ) (86,850 Bgs05.)dga™ (x',y)
gx” €§, N> Amd

+id / dn.(3.80nF 851830 [T (1), Regqa(9,P") 10(m)ds™ (') s (',m) On(m) Rt (3,P7)} ,  (A19)
PI
where dgs*#(x,y) is the coefficient of %, in the function dgs(x’,y), i.e.,
dgM(x',y) = / dty' Va9, P) Vi (3, P YW (3,P,5") 04 (x' = ). (A20)

The right side of (A19) resembles that of (3.31), except that the § functions 84(x—y) [or §4(x—n)] are here replaced
by dgs*#(x',y) [or dgs**(x',n)]. However, from (A20) ,(A5), and (4.14), it follows that

/ a5’ Vas(#,P)V us(o, PYW (&' P 5" ) [E(%') I e (8 ,3) = BayBps0* (x—y) . (A21)
We can therefore multiply both sides of (A19) by the factors Vs(x,P)V us(x,P)W (x,P,x")[8(x’) JV/?, and integrate
over x’, to obtain the final result?
6E6§’n0(yap’)

5§x,,(x’)
=3 4 3,(y)0(y)[(8srs0+p0dsr) 64 (x—y)1—% A4 ) Regni(5,P") (85,830 89085, 84(x—y)

et inest >

/ @' Vag(,P) Vs (%, P)W (x, P ") (g (o) 1/

+1i / d1.(86.052F05385.) {[T A (n), Reena (3, P) 10,(n) 84(— 1) +164(x— 1) On (1) Regno (3, P)} . (A22)

Pl
Since the right side of (A22) is the same as that of (3.3), apart from a factor — 2«, we can conclude from (A6) that
20 [ 0505, 2)V PO o, P TP ()= U ), (A23)

in the sense that both sides of this equation have the same commutators with Re,e(y,P’).

In this equation, the “beginning of the Greek alphabet” over-laps into the middle. All subscripts in (5.20) refer to the local
Euclidean system and are to be regarded as belonging to the beginning of the alphabet.



