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3y using the method developed in, the preceding paper, the Feynman-De%itt perturbation expansion
for the gravitational 5 matrix is shown to follow from the 6eld-theoretic formalism. Again our methd is to
express the path-dependent Green's functions in terms of auxiliary, path-independent Green's functions„ in
such a way that the path-dependence equation is automatically satis6ed. The formula relating the path-
dependent to the path-independent Green's functions will be similar to the classical formula relating the
path-dependent Riemann tensor to the metric tensor. The equations for the auxiliary Green's functions are
found and solved in a perturbation series. H the result is expressed as a sum of Feymann diagrams, one
obtains the expected vertices, together with closed loops of fictitious vector particles.

I. INTRODUCTION
' "N this paper we wish to use the method of the preced-
& ~ ing paper' to derive the Feynman rules for the gravi-
tational field, Our prescription will agree with that found
by Feynman' and DcWitt' from an application of the
tree theorem to the 5 matrix.

Kc shall take as our basis the pa, th-dependent field-
theoretic formalism which we proposed in an earlier
paper. 4 The fundamental principle of tha, t paper was to
work entirely in terms of variables which were inde-
pendent of the choice of the coordinate system. Such
variables had necessarily to depend on a path, and were
measured in a local coordinate system constructed in
the neighborhood of the path.

The details of the theory to be used in this paper will

bc slightly diferent from those of Rcf. 4. ID the latter
paper, w'e devoted considerable cavort to overcoming thc
difFiculty tha, t the time ordering of two points in a
cuI'ved spRcc wRs not RlwRys dctcrmlned fI'oIQ

characteristics of the paths leading to them. As a result
we had to modify the statement of the equal-tune com-
mutation lcla, tlons. Fol thc pUx'pose of obtRlnlng Fcyn"
man lulcs wc shRll lgnox'c this dif6culty, slncc lt docs
Qot occur in pcrturba, tion theory. We shall start from
the coordinate-independent theory of the classical gravi-
tational 6eld developed in Sec. II of Ref. 4, and shall
quantize it by making the Usual correspondence between
commutators and Poisson brackets. We shall then ex-

pand the theory in a perturbation series. Finally, we

shall rctuxD to the fundamental cquatloDs Rlld shRll

attempt to reformulate them without relying on pertur-
bation theory. In this reformulation the concept of a
time-ordered. product will play a fundamental role, Rnd

we shall assume that such a product is delned even if
the time ordering of the relevant points is not known.
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As in the previous paper, we shall obtain the pertur-
bation series for our path-dependent Green's functions
by expressing them in terms of new auxiliary pa, th-
independent Green's functions. For the electromagnetic
and Yang-MiHS fields, we started from the formula
which expressed the gauge-independent, path-depend-
ent fields in terms of the potentials. Wc then expressed
our path-dependent Green's functions in terms of the
RuxlllRI"y GI'ccn s fUnctlons by similar formulas. Kc
shall usc an analogous procedure for the gravitational
6eld, with the metric tensor replacing the potentials.

IIl R CUI'vcd spRcc whclc thc InctI'K tcnsoI' gpy ls R

glvcn fuQctloD of thc coordinates x, wc CRQ CRlculRtc thc
path-dependent Rlcmann tensor Rs R powcl' scrlcs ln thc
g s. Thc main diAlcultyi ln sUch R ca'Iculation ls thRt thc
path-dependent vRrlRblcs Rrc defined ln a locRl EUcll-
dcaD svstcIQ constructed 1D thc neighborhood of the
path, whereas the g's are dcfncd in a non-Euclidean
coordinate system. Nevertheless, once the g's are given,
we can in principle obtain the coordinates in the non-
Euclidean system as a function of the coordinates in the
local Euclidean system. The rela, tion between the co-
ordinates in the two systems has been written to lowest
order in the g's in Sec. II of Ref. 4, and we shall give
equations for finding the relation to arbitrary order in
the present paper. Once w'e have Tound a formula for the
path-dependent Riemann tensor as a function of the
coordinate-dependent g's, we shall express the path-
dependent Green's functions in terms of the auxiliary
Green's functions by similar formulas. Ke shall then
justify the formulas by showing that the path-dependent
Green's functions automatically satisfy the path-
dependence equation as a consequence of their defini-
tion in terms of the auxiliary Green's functions.

%'e next 6nd the field equations which the auxiliary
Green's functions should satisfy in order that the path
dcpcQdcDt Glccn s fUDctlolls sRtlsfy thc corx'cct cqUR-
tions. The solution of the equations can be expanded in
a perturbation series and, as with the Vang-Mills field„
we obtain certain terms besides those given by the
Dalvc Fcynman lulcs. Thc cxtx'a terms corrcspoQd to
closed loops of 6ctitious particles which must be included
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in the Feynman diagrams. Now, however, the fictitious
particles are vector particles Rnd not scalar particles as
they were with the Yang-Mills Geld.

We shall introduce a notation similar to that of the
previous paper for expressing the inhnite set of Green's-
function equations as a single equation in a linear space.
The equations for the path-dependent Green's functions
will appear as cqllatlorls fol' opci'atoi's R~prs(x, P) 111

our linear space, while the equations for auxiliary
Green's function will appear as equations for operators
g„„(x'). Such operators correspond to the variables
R p,s(x,P) and g„„(x') of the classical theory. With the
electromagnetic and Yang-MiHs 6elds, the formula for
the path-dependent operators C(x,P) and P„„(x,P) as
functions of the gauge-dependent operators p(x) and
A „(x) was the same as the formula for the classical field
variables C(x,P) and F„,(x,P) in terms of the classical
field val'lablcs $(x} alid r4 s(x). Slmllarlyq fol' 'tllc gl'avl"

tational 6eM, the formula for the path-dependent
Riemann tensor R prs(x, P) in terms of the metric tensor
g„„(x') will be the same as the formula for the classical
path-dependent Riemann tensor R p~s(x, P) in terms of
the classical metric tensor g„„(x').

The field equations for R p„s(x,P} will be similar to
the classical field equations for R pcs(x,P},and the re-
sulting field equations for g„„(x'}will be similar to the
classical 6eld equations for g„„(x'). The field equations
for R p,s(x,P) and g„.(x') will not be ideetscal to the
classical field equations for R pcs(x,P) and g„„(x'), be-
cause the former equations will contain terms which in-
volve the operator g and which correspond to the 8-
function terms in the Green's-function equations.

In Sec. II we shall treat the fundamental equations of
the theory, basing our approach on the classical theory
of Sec. II of Ref. 4. We shall deGnc covariant time-
ordel ed pl oducts which dlfkr by four-dimensional
5 functions from ordinary time-ordered products, since
the commutators between two path-dependent variables
contain derivatives of 8 functions. As with the electro-
magnetic and Yang-Mills Gclds, wc shaH show that the
covariant time-ordered products obey simpler path-
dependence equations than the ordinary time-ordered
products. In Sec. III we shall introduce our short-hand
notation and, in Secs. IV and V, we shall use this nota-
tion to express our path-dependent Green's functions in
terms of auxiliary Green's functions. In Sec. VI wc shall
obtain the 6eld equations for the auxiliary Green's func-
tions. We shall solve these equations as a perturbation
series in Scc. VII and shaH derive the rules of Fcynman
and DcWltt. FlnRHy ln Scc, VIII %'c sliR11 return to
the problem of formulating the equations of the theory
in a nonperturbativc approach, where the time-ordering
of two points is not always determined from the charac-
tcrlstlcs of thc pat1is lcRdlng to them.

11, EQU&TIOIIS SATISFIED SY THE COVARIAÃT
TIME-ORDERED PRODUCTS

In the present section we shall define the path-
dependent Green's functions and shall write the equa-
tions which they satisfy. We shall take as our starting
point the coordinate independent theory of the classical
gravitational Geld, developed in Sec. II of Ref. 4. When
quantizing the 6eld we shall depart slightly from the
remainder of that paper, which was strongly oriented
towards the diRiculty that the spacelike or timelike
separation between two points is not necessarily deGncd

by the characteristics of the path joining them. This
difhculty is not present in perturbation theory, and we
shall not concern ourselves with it at the moment.

We shall treat a gravitational 6eld in interaction with
itself but with no other Geld, since such a system pos-
sesses all the essential complications of the problem
The Geld equations and path-dependence equations will
be taken from Sec. II of Ref. 4, while the commutation
relations will be taken to be identical to the Poisson-
bracket relations given in that section.

We next turn to the question of the covariance of
time-ordered products. As in 'electromagnetism, the
commutators between path-dependent variables con-
tain derivatives of three-dimensional 8 functions. It is
therefore necessary to add a four-dimensional b func-
tion to a time-ordered product in order to obtain a co-
variant quantity. The prescription is as foHows: If the
commutator between two variables A (x) and B(y) con-
«f» a «rm ~/~y-b'(x —y) = —~/»-b'(x —y), one must
deGnc the covariant time-ordered product by thc
formula

T'(A (x),B(y)}= T(A (x)B(y)}—b s8'(x—y) . (2.1)

The coQlQlutRtors bctwccn glavltatlonRI Geld varlRblcs
will also coll'talll 'tcl'nls lllvolvlIlg ri/ciy~b (5—y) )

8/Brt bs(x —rt), or 8/8 bs(&—rt}, where t and rt are the
variables of integration associated with the paths lead-
ing to x and y, respectively. Ke must then insert terms
—b.s&'(5—y), —b.s5'(x—~), and —b..bs(p —

V) mto t e
deGnitions of the covariant time-ordered product. We
shall also encounter a term b s8/itrtpbs($ —rt) hps8/&$-
g bs($—rt) in the commutator; such a term gives rise to
a term bslpsb ($ —rt) in the d—eflnition of the covariant
time-ordered product.

Adopting the foregoing prescription, and taking the
cornmutators between two Geld variables to be given by
Eqs. (2.28), (2.30), and (2.31}of Ref. 4, we def'Inc the
covariant time-ordered product of two path-dependent
variables as follows';

T'(R prs(x, P)R,r„s(y,P') }
=T(R p„s(x,P)R.r„s(y,P') }

+Q t" p, l, , t„s(x,P,y,P'), (2.2a)

' The sign of the second term in Eq. (2.28b) of Ref. 4 is in error.
We have corrected this error in writing Eq. (2.2d).



STANLEY MANDELSTAM

&&[8pr84484(x —y)7, y, 8, g,8&0, (2.2c)

(2.2d)

(2.2e)

tt Iopoo, too= s—ss A S 8„(y)8,{y)
e~g, ot~ft P~$

x [8p r~oo~'(x —y) 7

+,'ss A-S R.r„,(y,P')bp, boo84(x y), —

f(" p~, ,g„y=o unless at least one of the subscripts

n, P, y, 8 is zero,

f t»op, s„r„o-—-,'s A S dg, 8~(x)[8p,84„84(x—I))7
P++8 y»

I,"' p,g„g„y=0 unless at least two of the subscripts
n. 8 are zero, (2.2b)

f'"op, o,or,e= ssslo -2 S 8„(*)8„(y)
Fxo. 2. Paths which are allowed when de6ning the b function.

R(x,P), where the path PI is identical to the path P
except for an additional element e in the A. direction at
the point s [Fig. 1(a)7. The symbol —so[a„,(s),R7
means the difference between R(x,Ps) and R(x,P), where
the path I'2 is identical to I', except that the local
Euclidean system dehning it is rotated by an amount e

in the f4o plane at the point s [Fig. 1(b)7. We have
adopted this notation since, in a Oat space, J would

correspond to the angular momentum about s but,
fl'0111 oui' preseIIt poIIlt of VIew) tile symbol —4[Joy(s)~R7
is dehned as an entity and should not be regarded as
the commutator between two operators. ' The symbols
A and 5 are defined as follows:

XP,o(x),R,r,o(y,P')7, y, 8WO, (2.2f)
fap fap fpa t

s f p=f.p+fpv 8.pfvv—

(23a)

(2.3b)

epos, eros sK S d 9&{8'(9)['8pd418 (x '9)7
p~b pI

&&V 1(&) R r.o(y,P')7+s~p. &41

X 84(x—g)81(I))R,r„o(y,P')}, (2.2g)

~"' p .«. (»P», P')=~"'.r «p (y,P',xP) (2.2h)

f @&p7s.~too= sss8~&8~s S d4 IfN8 (5 O)''
X++P + go

t~~ " deaf'8ct&op

Pie. 1(a) The meaning of
the symbol 8)I,(g)R. (b) The
meaning of the symbol —iLJ„,
y, (~),zj.

s fA thQ pg, g plafifs

&&L~"(k) R-p~s(»P)7Po. (n),R.r,o(y,P')7. (2.»)

The notation is similar to that of Ref. 4. All components
are measured in the local Euclidean system, The symbol
e81(s)R means the difference between R(x,PI) and

Ke also remind the reader about one point in the
de6nition of the 6 function. An expression such as

8(x—y), where x and y are the endpoints of the paths
I' and I",will of course depend on the paths I' and I"
themselves. If P and I"have the form sketched in I'ig.

2(a), one wiH require knowledge of the Riemann tensor

in the space between the paths in order to determine

whether their end points coincide. The 8 function will

therefore be a complicated function of the paths and of
the Riemann tensor, and we shall avoid de6ning the 8

function for such cases. On the other hand, there is no
difficulty in def1ning the 6 function b(x y) for path—s
such as Fig. 2(b). We shall therefore restrict ourselves

to pairs of paths such as those in Fig. 2(b) or, more

generally, those in Fig. 2(c). The paths may coincide

over the initial portion of their lengths but, once they

have begun to separate, they must be completely dis-

joint. %e can restrict ourselves to such paths without

any essential loss of generality. In a space with 6nite
curvature one cannot be sure whether two paths have

no point in common but, at the moment, we are only

interested in obtaining a perturbation series, and this

difhculty does not occur.
%e shall also assume that an individual path does not

turn back and cross itself. Thus diferent points of the
same path will not coincide.

Equations (2.2) follow unambiguously from our pre-

scription only to the extent that they do not involve

4 lu Ref. 4, we used the symbol fLJ,„(s),Rj instead of —f/'»(s),
Ej.W'e have changed our notation in the present paper, since the
symbol J as presently de6ned corresponds to the angular momen-

tum. All terms in the Poisson brackets of Ref. 4 must therefore be
reversed in sign before being taken over into the present paper.
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time derivatives of the b function. For instance, it is not
immediately evident that we can drop the restriction
e, {,)), 8/0 in Eq. (2.2d). We regard Eqs. (2.2) as the
def(nition of our modified time-ordered products. When
we develop the field equations we shall show that they
are covariant, so that the de6nition is suitable.

For time-ordered products of more than two vari-
ables one adopts definitions similar to Eqs. (2.2). The
covariant time-ordered product will consist of a number
of terms in which the operators are paired in all possible
ways, as in Wick's theorem. In any particular term the
paired operators are represented by the sum of the ex-
pressions (2.2b)—(2.2i), while the time-ordered product
of the unpaired terms is taken.

We can now write the path-dependence equations
and equations of motion for the covariant time-ordered
products. We shall begin with the path-dependence
equations, which will be derived from the fundamental
path-dependence equation

pg( xP) = —,'iT'(R, „),„(s,P')
XLg,„(s),R.„,(x,P)]),„, (2.4)

where, as usual, 8, represents the change in R caused by
an in6nitesimal change in the path P at the point s by
an amount 0 q„.The variation of the path is shown in Fig.
3, where the solid curve represents the path before the
variation, the dashed curve the path after the variation.
The area 0.„,is the area between the solid and the dashed
curve, and s is any point within this area.

The classical theory of Ref. 4, Sec. II, does not de-
termine the order of the factors on the right of (2.4).
In writing down this equation we have made the sim-
plest hypothesis, namely, that the covariant time-
ordered product is to be taken. The question of the
factor ordering in (2.4) is complicated by the singular
nature of the product of two operators whose paths
coincide, and we shall not attempt to deal rigorously
with such questions in this paper. If we proceed for-
mally from Eq. (2.4) we shall encounter no diKculties.

FIG. 3, A variation of the
path by an in6nitesimal area
o„,at the point s.

where
b, (2)T= b, (&o)T+b, (»)T (2.7a)

We now use Eq. (2.4) to find the change in the time-
ordered product

T{R.pv~(x»)R. r p(y»')) (2 5)
Our calculation parallels the analogous calculation in
electrodynamics, which was given in the previous paper.
The change in the time-ordered product will consist of
two parts, which we shall call 8&'& and 8&'~. The con-
tribution 8 &') is obtained by straightforward application
of (2.4) to (2.5);
b, (')T(R p, ()(x,P)R,r„()(y,P'))

= 4iT(T'(R-i. (s P")IX.(s) R-pe~(x P)j)
&&R,r„()(y,P'))o),„, (2.6)

where P" represents the portion of P leading to the
point s.

The second contribution to the change in the time-
ordered product arises from the fact that the change in
the path may alter the time ordering of the two opera-
tors in (2.5). We can calculate this change in the time-
ordered product by arguments analogous to those lead-
ing to Eq. (3.10b) of the previous paper. The prescrip-
tion is to write that part of the commutator between
the two operators in (2.5) which consists of an integral
J'~ d g, over the path P, and then to replace this integral
by J'do, obo(s —y), o being the area between the paths and
s a point within this area. We can divide the result into
two parts, which arise from the contributions of Kqs.
(2.30) and (2.31) of Ref. 4 to the commutator in ques-
tion. Thus

b, (")T(R p~()(x,P)R, r„()(y,P'))

S d~„a,(y)a, (y)9„„b„„b'(y s)XZ„,(s)—,R.pv, (x,P)3
e~t', sf~{) f~g

+-,'» A do,pT(R, r„)(y,P')( S b)„8()„)84(y—)Ps„p( ),Rsp, ((x,P)j)p, (', )), 8WO, (2.7b)

b. '")T(R p, (,(x,P)Rot„()(y,P'))

=-', » A S do, o(1—b„o)8,(y)8„(s)/br, b()),84(y —z)]fJ„)(s),R p,p(x,P)j
e e

+o» A do. OT{Ror„)((y,P') S b),A.b4(y-s)LJ o(s),R p (((x,P)])
sf++g z~e

——,'» 2 S do, ()(1—8„)a,(y)a()(s){br,bp), b ( -y)sJL)o( )s, Rp„,(x,P)j), (2.7c)
~~eggy
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h&"&T(R p,g(x,P)R, r,ii(y,P')}

= ~iI(;8,),8„„5 do,
X~yc

2(i7( )~'( )P o() R (*P)jLJ. ( ) R. ( P)j
—(1—~.o)~.(s)h'(s —n)L~-( s),R-pv i(x,P)jE~,o(v),R.r~~(y, P') j
+~~'(s ~)P.o(s),R.s.~(x,P)]~.(~)R.r~~(y»') }

+2 i«hcxhKp
g~p

«,0 &rIP'(&0(s)(h'(» n)P—O.(s),R pvb(x, P)jPl 0(n),R.r»~(y» )j}) (2 7d)

In writing (2.7c) and {2.7d), we have made use of the identity

~o(s)L~o.(s),R-std(x, P)j=~~.(s)R-pv~(x, P) (2.8)

The ordering of the factors on the right of (2.7) is not determined from the classical theory, and we make the as-
sumption that the time-ordered product is to be taken.

Our next step is to use Eqs. (2.2), (2.6), and (2.7) to find the path-dependence equations for the covariant tirne-
ordered products T'. After a certain amount of algebra, we find that the extra terms obtained when replacing the
ordinary time-ordered products by the covariant products cancel against the extra terms (2.7) in the path-depend-
ence equation for T, so that the path-dependence equation for 7.' is given by a simple equation of the type (2.6):

h7"'(R-pv~(x»)R re~(y»') }= 4i7'(R i.(sP")L~-(s),R-pv~(xP) lRree(yP') }~is (2.9)

The situation with the gravitational 6eld is thus similar to what it was with the electromagnetic and Yang-Mills
Fields. The covariant time-ordered products obey simple path-dependence equations.

%e now turn to the 6eld equations for the time-ordered products. Ke take as our starting point the Einstein
equations for the field variables:

R, ,s(x,P)—i2h pR, i,i(x,-P) =0.
From (2.10) we can at once write the Einstein equations for the time-ordered products:

2'(Rv-. s(x,P)R re~(yP') } 2h«p7'(R—.~Pi(x,P)R ra~(y, P') }=o

(2.10)

(2.11)

The Einstein equations for the covariant time-ordered products will be slightly more complicated. From (2.2) and
(2.11), we easily find that

T'(R, ,p(x,P)R, r„ii(y,P') }—i~h„pT'(R~g, i(x,P)R,r„ii(yP') }
,'i«—A—8„(y)8,(y)Dhprhge+hpiibir)h'(x y)j+,'i«—A R,r„,-(y,P')(hp, hgg+hpgbg, )h'(x —y)

smt', qm 8 y++g

&v.(~s ~»+~pili. )(~.(~)~'(x ~)L~.i(v) R.r,~(yP')3+ih'(x n)~.(s)R.r,—~b,P')} (2 12)

%e observe that the covariant time-ordered products obey simpler path-dependence equations but more com-
plicated field equations than the ordinary time-ordered products. However, the terms on the right of (2.12) are
precisely analogous to the b-function terms in the Green s-function equations of other theories, e.g. , the 8-function
terms in Eqs. (2.4) or (3.8) of the previous paper. Time-ordered products of field variables will obey equations
similar to (2.12). There will be one term corresponding to the right side of (2.12) for each field variable in the
product (except the variable R„~s 2h sR„q„q itsel—f), and the terms will be multiplied by the covariant time-
ordered product of the remaining e—2 variables.

Having de6ned our time-ordered products, we can dehne the Green's functions as the vacuum-expectation values
of such products in the usual way. Thus

G-sr~. r.~(x P y,P') = (012'(R-sv~(x»)R. r.~(y»') }I0&. (2.13)

Green s functions of more than two variables can be similarly de6ned. They will satisfy equations such as (2.9) and
(2.12), and it is hardly necessary to write them explicitly.

III. CONDENSED NOTATION

%e can express the equations of motion in the condensed notation developed in the preceding paper. %e shall go
very quickly through the establishment of the notation, since it is' the exact analog of that of the preceding paper,
and no new problems arise.
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As before, we begin by constructing the linear space of the totality of all functions 0 e», ,«„e...(x{,P{,xe,P&, ).
We next construct the dual space of vectors (H e», ,«„e(xi,P{,x&,P&, ) ~, which are defined in the same way as in
the preceding paper. We define the operator R e»(x, P) in our linear space as follows:

(8,«„e(x,,P„" ) {{R.e„(x,P)=(8.e», ,«„,(x,P,x„P„" ) i. (3.1)

Proceeding in the usual way, we now define an operator U(x,P) in our linear space to correspond to the right
side of (2.12). The definition is as follows:

(8„,[., (xi,Pi, ")iUee(x,P)

(&"., -, ~ ~,-( P "C.,P.] ")IB(*.)B(.)t(~ ~ +~ ~ )~'(*—*.)]

2 {Z ~ (~e [, ~, «e[e"}, "(xiPi ' ',*„P„'')
~
(Be 8»+BeeBe,)8 (x x,)—

+l{~r f A (&&An+cvd& }{[1+(w}(8,p. r, ' . (x{,';... ,x„,p„}(ja (v}8 {x—p}

—cB (x—v)B}(~)(&,.&-.-,«,e,-.(xl,Pi ' ' ' x,P ' ' ') ~) ~ (3.2)

» Eq. (3.2), the subscripts e| &8 correspond to the coordinates x„,P„, and the subscripts ef'etLB]c on the second term
indicate that 8 is to be replaced by c. The operator P may also be defined by its commutation relations:

$U (x,P),R.„, (y,P')]

B,(r) B.(y) HBe«B»+BeeBe«) B'(x r)]+2—x» «"(r P')(Be Bee+ Beetle )B'( —r)

1'
ZK2 A, (~e.b +~{}&.){LJ.(n),R.«, (y, P')] B.(v)~'( ~)+ B—'( v)B (~—)R.«, (r,P')) (33)

The definition (3.3) of U is completed by the equation {' „„,by the same formulas as in the classical theory:

(H{}~Ut{c(x,P) =O.

In our condensed notation, the field equations (2.12)
take the form

1(Bg,„(x') Bg,„(x') Bg„.(x'))
Pi,"(x')=-I, +

2 'E Bx'" Bx'" Bx'"

(4.1a)

(4.1b)

LR,-,e(x,P) 2&-eR»»—(x,P) cUec(x,P)—]l{G)=o (3 5)

The path-dependence equation (2.9) has the simple form,

BR-e»(x P) = ccR .«( ePs')L~.«(s) R-e»(x P)]~ee (3 6)

As usual, I" represents the portion of I' leading to the
point 2.

1 B'gi.(x') B'g..(x') B'gi.(x') B'g"(x'))

2 Bx "Bx e Bx "Bx '. Bx'"Bx ~ Bx iBx ei

—r.,„(x')r„„,(x')]. (4.2a)

IV. AU3HLIARY VARIABLES &~e~e(x) =g (x')r~e~e(x') (4.2b)

We now attempt to express the operators R e»(x,P)
in our linear space as functions of path-independent
variables g„„(x'). This step in our method corresponds
precisely to that of the previous paper, where we ex-
pressed the path-dependent variables 4 and P as func-
tions of path-independent variables {{{}and L

In writing down the connection between the vari-
ables R e»(x,P) and g„,(x') we shall be geccded by the
classical theory. ThejNstiIcc{ctioec of our formulas will of
course be the fact, which we shall demonstrate explic-
itly, that the path-dependence equation (3.6) is a con-
sequence of our definitions.

To begin, we define the Christo6el three-index sym-
bols 1'„„",and the path-independent Riemann tensor

(2~)"V..=g" B"—(4.3)

We can expand g&" in terms of the p„„'s to any desired
order.

It is still necessary to express the elements R e,e(x,P)
of the path-dependent Riemann tensor in terms of the

+I'.,"(x')I'„„(x')—1'.„"(x')P„e (x') . (4.2c)

The variables g&" are, as usual, the elements of the
reciprocal of the matrix g„,. In perturbation theory, we
dehne the variables
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elements FI„„,(x') of the path-independent Riemann
tensor. The difference between the variables R s,s(x,P)
RIld Fgsys(x ) llcs lll tile coordinates 111 tcHlls of wlllcll

they are expressed. The variable Fl„„,{x')is expressed as
R function of non-Euclidean coordinates, whereas the
variable R s„s(x,P) is expressed in terms of a Euclidean
coordinate system constructed along the path I'. For
the moment let us denote the non-Euclidean coordinate
by X", the EucMCRQ coordinate by x . Furthermore,
Ict us tRkc a unit vector 1Q thc Qf direction Rt the polDt
x, and let us denote its contravariant coordinates in the
non-Euclidean system by the symbol V "(x,P). The
four vectors V "(xP) u=1 . 4 thus form a tetrad
which is moved parallel to itself along the path. These
vectors form the axes of our Euchdean coordinate sys-
tem) Rnd the coordlnatcs Ã RI'c mcasulcd ln this system.
The shape of the path itself is dehned by giving the four
coordinates xg (cr= 1, '

) 4) Rs a function of some
parameter.

In general, vie shall use subscripts or superscripts from
the middle of the Greek alphabet to denote coordinates
in the non-Euclidean system. We distinguish bet@teen
coQtravariant components, represented by superscripts,
Rnd covaliRnt coIQpoDcDts, lcprcscntcd by subscI'lpts.
Wc shall use subscripts from the beginning of the Greek
alphabet to denote coordinates in the path-dependent
local Euclidean system. There is no distinction between
covariant and contravariant components, (besides the
trivial distinction associated with the Lorentz metric),
Rnd %'c shRll only usc subscllpts for these coIIlponcnts.
In one case, Eq. (4.6), we shall be unable to use con-
sistently the convention just outlined. This equation
veil express the coordinates in the local Euclidean sys-
tcnl Rs R TRylol scI'lcs ln thc coordinRtcs ln the Qon-

Euclidean system, and vs shiH have to use subscripts
or superscripts from the middle of thc Greek alphabet
for Rll coordinates.

Once the shape of the path and the metric tensor g„„
are known, ere must be able to calculate the variables
X~ Rnd V~~ Rs functions of s, RDd w'e now constluct
cquatloDs fol dolDg so. First~ slDcc thc contravarlant
coordinates of a unit vector in the 0. direction are
V,"(x,P), the non-Euclidean coordinates of a vector
with Euclidean coordinates Cx will be V "(x,P)dx . On
the other hand, the non-Euclidean coordinates of such
R vector vill be dx" by definition, so that ere may
%'rite

dX"= V "(x,P)dx
01'

aV."(x,P)/ax&= I „„I(X—)V:(x,P)V;(x P). (45)

In Eq. (4.5), the argument X of the variable I'„„"(X)
is to be regarded as a function of x (and P). Equations
(4.4) and (4.5) enable the functions V "(x,P) and
X (x,P) to bc calculated, Rnd lt ls R straightforward
matter to calculate them to any order of perturbation
theory.

In obtaining relations between path-dependent and
path-independent quantities, vrc shaH frequently re-
quire to calculate a function f(X) in terms of the co-
ordinates x, where X is given in terms of x by (4.4). The
function I'„„"(X)in {4.5) is an example. One can perform
this calculation to any order of perturbation theory by
Inaklng R Taylor cxpanslon. Thus

to 4 Qf'A

y(X) = P II —LX (x,P)—*,j f'(x). (4.6)
r)l I X I g) I (c)x')'&

We may write (4.6) in the form

f(X)= dx'W(x, P,x')f(x'), (4 &)

(—1)n
w'( Px, )x= Q II Lx"(x,P)—xy$"&

f')l=l )t=l

S(x-x'). (4.g)
(8x'") 1

Thc fUQctlon 8 ls dc6ned by thc cquRtlons

8 l9

IV( Px,x') =—V "(x,P) 8'(x,P,x'),

IV(x,P,x') =B{x—x')

at the beginning of the path. (4.9b)

» Eq. (4.4), the coordinates X" in the non-Euclidean
system RI'c I'cgaI'dcd as functions of the coordlDRtcs x
of the Euclidean system.

To 6nd a second equation between V " Rnd XI', we
use the fact that the variables V "(x) represent the
coordinates of a vector @which undergoes parallel dis-
placement as x' is varied. Thus, by the fundamental
formula for parallel displacements;

dV ~= —I'„,~V &dr"
= —I' IV "Vs"dxp Drom (44)]

VJ'(x,P)= r)X"{x,P)/r)x . (4.4) From (4.7), we may rewrite (4.5) in the form

~ Strictly spe~g, we should write (4.4) in the form V "(x,P)
=8 (x)XI(x,P), since X is a path-dependent quantity. In the
remainder of the paper we shaB use the usual differential notation
Bf(x,P)/Sx for 8 (x)f(x,E), where f is any path-dependent func-
tion and @A~8& is the change off caused by, the addition of an ele-
ment d'h at the end of the path. %e continue to use the notation
8 ($)f(x,P) for the change in f due to the addition of a path ele-
ment at some arbitrary point g on the path.

8V "(x,P)
d'x'V. s(x,P) V&"(x,P)

XW( , x, P)Ix'„„"(x'). (4.10)

Equations (4,9) and (4.10) may be used instead of (4.4)
and (4.5) to define the functions V and W, and we shall
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use these equations in our subsequent work. The primed
coordinates now represent coordinates in the non-
Euclidean system, the unprimed coordinates those in
the local Euclidean system.

From (4.8) we can easily derive the following useful
formula:

d4x'd'x"W(x, P,x') W(x,P,x")fi(x') fn(x")

d4x'W(x, P,x')fi(x') f2(x'). (4.11)

variables r),„.,(x'). Since the components of R are mea-
sured in the local Euclidean system and those of r are
measured in the non-Euclidean system, we require a
factor V "for each subscript to convert from one system
to the other. Furthermore, the argument of the variable
R is the coordinate in the local Euclidean system, while
that of the variable r is the coordinate in the non-Eucli-
dean system. We therefore have to apply Eq. (3./) to
reexpress r as a function of the local Euclidean co-
ordinates. The relation between the variables R and r
is thus given by

It will sometimes be convenient to use the covariant
components of the vector V. They are de6ned in the
usual way:

V),.(x,P)=g&„(X)V.~(x,P)

d'x'V )'{x,P)W{x,P,x')g),„{x'). (4.12)

From (4.9) and (4.10), one can show that V), obeys the
equation

BVg (x,P)
d'x' V„(x,P) Vp" (x,P)

&& W(x,P,x') P&„~(x'). (4.13)

From (4.8) and (4.13) one can then show that

ff we adopt the boundary conditions V "(k,P)V) f)(x,P)
= 8 p at the beginning of the path, we conclude that

27 q„q(xP) =fd4a'V '(xP) Vp"(xP) V„"(xP)

X V))&{x,P)W(x,P,x') F),„„,{x'). (4.15)

Finally, then, the Eqs. (4.1), (4.2), (4.9), (4.10), and
(4.15) can be used to calculate the components of the
path-dependent Riemann tensor R s,),{x,P) in terms
of the components g»(x') of the metric tensor, to any
order of perturbation theory.

It is now necessary to show directly that the above
definitions of R p,))(x,P) in terms of g),„(x') do lead to
the path-dependence Eq. (3.6). Such a result can cer-
tainly be anticipated, since the delnitions are valid in
the classical theory, where the path-dependence equa-
tion is true. We have carried out the proof in the Appen-
dix for those readers who wish to see an explicit demon-
stration. We are thus justi6ed in relating the path-
dependent operator 8 s~(((x,P) to the path-independent
operators g»(x') in the manner outlined above.

The operator ))")'(x) is defined in the same way as the
operators g in electrodynamics and the Yang-Mills
field.

V "(x,P)V) p(x,P)=b p, (4.14a)
Ln»(x'), g"b')j

(2~)'I'(8,"8—,~+b,"b„~)84(x' y'), (4.16—a)
quite generally. Equation (4.10) is of course a conse-
quence of the fact that V " and V~p represent the co-
ordinates of two unit vectors which are perpendicular
if +WE, and the development leading to (4.14) shows
directly that this equation follows from the equations
used to define the V's.

The following equations are immediate consequences
of (4.11), (4.12), and (4.14):

{H,(
q»(x') =0. (4.16b)

We shall require an expression for the path-dependent
operator Upi(x, P), defined by (3.3), in terms of y»(x')
and g»(x'), before we can write the equations of motion
in terms of the auxiliary variables. In the Appendix we
shall show that

V.'(x,P) V.~( Px) = d4x'W(x, P,x')g"~(x'), (4.14b)

V '(x,P) V„(x,P) =h„',

Vi (x,P) V„,(x,P) = d4x'W(x, P,x')g),„(x'). (4.14d)

We are now equipped to define the path-dependent
variables R„f)~);{x,P) in terms of the path-independent

2 '")('" d'x'V), ~(x,P)V„s(x,P)W(x)P, x')

&(fg{x')j-'"q"~(x')= U&(,{x,P), (4.17)

in the sense that both sides of (4.17) have the same
commutation relations (3.3) with the operators,
R,r„()(y,P'). Equation (4.1"l) is precisely analogous to
a result in thc previous paper, where it was shown that
the operator V ~{x,P)r),&(x) was a possible choice for
the operator U„(x,P) of the Yang-Mills field. The proof
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is carried through in the same way, though the algebra
is somewhat long.

Ke have emphasized that all formulas in this section
are to be expanded as a perturbation series in the @'s.

They can then be rewritten as formulas for the auxiliary
Green's functions. The method is simply to apply the
formula to one of the vectors (II

~
in the dual space and

then to take the scalar product with the vector
~
G). We

have given examples in the previous paper LEqs.
(3.25)—(3.29)] and we need not repeat them here. The
perturbation formula for the R's in terms of the g((g's is
thus simply a shorthand for the formulas expressing the
path-dependent Green's functions in terms of the auxil-

iary Green's functions. It remains to find the 6eld
equations which the g's must satisfy in order that the
R's should satisfy the field equations (3.5). This is

equivalent to 6nding the equations which the auxiliary
Green's functions must satisfy in order to ensure that
the path-dependent Green's functions satisfy the re-
quired equations.

as a tensor:
8

rl„.,(x') r&„„(x')+~j —r.„„,{x')

8 8—rl.„(x') -rl„.,(x') -r),„,.(x') & (x')
Bx Bx" Bx

8
r),„„,(x') iX (x'). (5.4)

ax" i
The functions V and 8' will transform as follows

under the transformation (5.1):

V„"(x,E) -+ V "(x,P)+ dx'V "(x,P)

8&'(x')
XW(xg,x'), (5.5)

(9'

m (x,f,x') ~ W(x,I,x') (W(—x,r,x')X (*')). (5.6)
Bs

V. GAUGE TRANSPORMATIONS

One can define gauge transformations for our auxiliary
variables; such transformations are analogous to the
gauge transformations of the electromagnetic and Yang-
Mills 6elds. They are identical in form to the general
coordinate transformation of the classical gravitational
6eld.

The de6nition of the gauge transformations is as
follows:

BX"(x')
1~.( )gi (v)+g( gv.v(v') ——I..(v')

8$ l"

Equations (5.5) and (5.6) are proved by substituting
them into Eqs. (4.9) and. (4.10) which define the func-
tions V and 5'. %hen V and 5' undergo the transforma-
tions (5.5) and (5.6), and I' undergoes the transforma-
tion (5.3), Eqs. (4.9) and (4.10) remain valid.

From Eqs. (4.15), (5.4), (5.5), and (5.6) one can con-
clude that the path-dependent Riemann tensor R p~y

remains unchanged. under the transformation (5.1).The
transformation does therefore possess the physical sig-
ni6cance of a gauge transformation.

Ke shaH also require to find the e6ect of a gauge
transi'ormation on the function VI (x,P). From (5.5)
and (4.14) it follows at once that

Bx"(x') agl„(x')
x"(x') . (5.l)

V), (x,P) -+ V), (x,P) dx'V„.(x,I')—

The functions [g(x')j '" and f(x') will then undergo
the following transformations:

Lg(x')3 '"~ Lg(x')3 '"+~Lg(x') j '"

BX"(x')
XW(x,P,x') . (5.7)

Bx'~

The operator in our linear space which eGects the
tl allsforlllatloI1 (5.1) ls

BX"(x')
I'1„"(x')-+ I'g„g(x')+ X

i
—I'1„"(x')

Bx" WllcIl tllc ln'tcglal l(,J dy Y„(y )x"(y ) ls COIIllllutcd wltll

gl„(x')v the result is equal to the right side of (4.1). It
follows that

yv(x ) gjI["(x )—P,„g(x') + f'&,„"(x')
Bx"

BX"(x') 8
X —g [g(v')j '")g'(v'), (g.g)

gy~X

+2 (2~) '"v""(y')~Pl.(y')/~y'" (5 g)

O'Xg(x') q
I-„„(x ) ~x (x )- I, (5.3)

&ax"
" i ax'"ax"&

and the path-independent Riemann tensor transforms

d'y'V. (y')x"(y'), Lg(x')l '"

aX"(x') 8
= [g(v') j '" —,[g(v')?'")g" (v'), (g g)



d, ,V (yI)x (y ),V»(x,P)
gx"(x')

d4x~V„.(x,P)W(»P x)
~x~~

4,V ( ~)y~(y'), W(x)P)x

'
PW(.,P,")'("»

$$

pV (yl)y&(y ) R(ep22 xP) =0.

ATIONS FOR AUX ILIARYVL FIELD EQU
VARIAB

,i, n dxVip(x, »V"("(5.») U (xP) —2 K

6.4)XW(x~P&x
,)~(, )q- e"(*), (

where

e»(x' =9„(,)+ d4y&V (y')X»'" x )P

AT )ONAL

at the nnment
',, &he right side of„tio„of the g s

the ~perato~
i

fies b«h "n '"'
the operator

satis es
to commute .P),

~e should like o
h the opera ors VX

(5 h, eco„d term of,
»2 „nce all

.10
6.3) throug .

terms ofW(x P x )& an
V d W in froilte the fa,ctors a" .

5 9
(61) wo„M then" ve

l do so by us'"ge can ea»yacto~ .
) d ~e obtain

P V„2(x,P) W( ,xP, x)( d4x'V), p(x,P) V„2(x, )

X222
' ' P G) =0, (6.1)Xm»(x') 2Up—2(x,

uations (3.5) as equa-th 6 M qua onWe can now rewr' ua ion
tions or r atf r our auxiliary pat

( '). According to (4. ) wC&I P
(3.5) in the form

)I,v, paX» i(x',y') BX&'~(x,y

g) ts, vBX» "(x' y') BX» "(x
+ ,. ). ,Bp

stitute (6.4) in (6.1) to giveWe can now substitute . i

(6.5)

,P) V 2(x,P)W(x, P,x')$g(x'Vip(x)P pp x)

S" (x') =0. (6.8)[g„„(x')tP"(x')j—— 8 " x
8x'~

is - e endent Einstein tensor

66)

"~ is the path-indepen en ensor

—I/2 1f2gig xi))
i G) —O'"m»(x') 22 '—2-

ommutation rela-efined by ifs colll

Equation (6. /) is a
'

ition for 6.6 an, is, ith X gx
ar condition. e't is also a necessa ytheory, i

satis e
n 'll fields, the commu-

U(x) uniquely in t e en- . fi q

t ee ican

'liary variables. In p

ries
' » x' in (6.7)

lar, the quantity y „' " o

tto elto'th ut changing
Xp )

ent Riemann is
t divergence o

function U wi o
'

h the elements o e enwit o
tensor. Ke sha see

to satisfv a consisntit in or er o
condition.

~ ~

the following formuula for U(x,P:We therefore write t e o

p2, = '"2" d4x'Vip(x, P) V„2 xP)Up2(x, P) =2 '"~

XW(x,P,x') Pg(x') j-'~2q» x'

'"a'" d4x' d'y'V„(y') Vip(x, P)

p t

X g x -ii2X». x y

win form, which bearsm 6.8 in the following orm, rsmay rewriteem
o the correspon iding equation oa resemblance to

Vang-Mills field:

Bx'"

—-'2(2K)'" 8'" x =
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The new field variables p are defined by (4.3). We have
to determine the function X in (6.5) so that (6.9) is
satis6ed.

We begin by looking for a function 8~"& which has the
form 2/"/'+tt'"/' and which satis6es (6.9). The function
8'"/' will not have the form of the second term of (6.5),
but we shall then be able to modify it to bring it into
this form. Sy analogy with the development for the
electromagnetic and Yang-Mills 6elds, we might try a
function ai")' of the form 2/")' —(8/ax'")h/". Such a trial
function is not symmetric in p and v, however, and we

replace it by the trial function

We shall therefore define a function 0"/'(x', y') by

8„.+ (2K) '" y„„+
&ax'&ax, '

" ax'" "axg' ax'" "axg'

8 8 api 8 aug 8

axi' ax'" ax'" axi' ax'" Bx'"

)&0"~(x',y') = 8„~84(x'—y'). (6.12)

From (6.11) and (6.12), the function H" will be given by

!8 8 8
P~ iH" (x') . (6.10)

I ax, ' "
ax ' ax"

Thus, from (6.10),

ai-(y'))—22(2K)'", l~"(y')
ay/v )

%e adopt the notation b~&= b„",x,'= x'" simply to keep
our formulas conventional with regard to upper and
lower indices. LIf we were using a Lorentz metric with
real time, the Kronecker delta 5'&' would be equal to
—8, ', while x would be equal to —x" (2= 1, 2, 3).]The
consistency condition (6.9) when applied to (6.10) leads
to

B2 B
~„+(2K)'" 4,. + 4,~

BS BSy BS BS BS Bx g

( 8 8
Bii~(x') =q'~(x') —

~
b„~+ 8,"—

I axi' ax„'

B
Bid

iax'" )
!

d'y'0" ~(x',y')I &„+(2K)'" 0„(y')
k

'
ay" ay"

84-(y'))—22(2K)'", l~"(y') (6 14)
ay" i

8 8 apgv 8 alflip 8
~

H(x')
axi ax" ax "ax ' ax')' ax'"/

apv + (2K) Ifl/vv

ax'" ax'"

The choice (6.14) for ttii/'(x') satisfies the consistency
condition (6.9), but it does not quite have the required
form (6.5). The last factor of (6.14) is just equal to
—(2K)'" times the operator V,(y'), apart from factor
ordering. The difference between the right sides of (6.14)
and (6.5) is, first that the factor gvv(y) in (6.14) is
ordered to the right of the other factors instead of to the
left, and second that the last term of (6.5) is absent. We

(6 11) therefore take the following choice for Bi"(x'), which is of
ax'/'/I the form (6.5):

a~"(y') 8. . . , 84-(y'))
v""(v') —-v'"lv')+ d'v'(v. . . +(2)'" Lv"(v')/) 8")j-l(2)'"v")v") lv""'(v', v')

Byf (r By
0' ay" )

BX» i(x',y') BX")' /'(x', y') BX" /'(x'/, y') BXi)' )'(x', y') )
(+(2 )'" — — + +

N. '~ By P ax"
where

( 8 8 8
X"/' )'(x',y') = —

~

8„/'+ 8„"— bi/' ~0"&(x' y') .
Eaxi' ax„' ax'" i

(6.15a)

(6.15b)

Having made this choice for 8, it is necessary to test the self-consistency condition (6.9). If we substitute (6.15)
in (6.9) we 6nd, after some straightforward but tedious algebra,

88""(x') 8 akp. (x')
+(2K)1/2 (Q (g )Biv(x )J (2K) I/2 BXv(x )

Bx'" BS"
B

= 4(2K) '" 8'(x' —y') i.=„—4(2K) '" b(x' —x') . (6.16)
0$'"
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The right side of (6.16) is of course undefined, but if we subtract infinities in the usual perturbation-theory manner
we shall get zero. In momentum space to the right side of (6.16) would have been 4i(2~)'"J pd4p 4—i(2~)"'J'pd'p
and we would normally have set the result equal to zero. Since we are only attempting to obtain results within
the heuristic framework of Feynman-diagram perturbation theory, we can set the right side of (6.16) equal to
zero, and the consistency condition (6.9) is proved.

Finally, therefore, we can take (6.7) as our field equations, with the function 8 given by (6.15) and the function
0"p(x,'y') defined in turn by (6.12). These equations are self-consistent and they imply the validity of our path-
dependent field equations (3.5).

VII. FEYNMAN RULES FOR GRAVITATIONAL FIELD

To determine the Feynman rules we must separate (6.7) into those terms which contain powers of ~'12 and those
which do not. Thus,

r BV"
(BivBppy8&pBpv BipBvp)Brr A +(2~)'i'pp iB"p ~~G) 0' Bx 'Bx"

where 5"& is a ' times that part of the Einstein tensor density g'~'m"& which contains at least one power of K. Equa-
tion (7.1) can be integrated to give

j.p(x') —',~(2.)«'(Bi.B.,+B„B„.—B,„B.,) dx"-,'~,(x'—x")l-(x")

—2(Bi.~p,+Bi,&p.—Bip&.,) dx"s &F(x'—x")g"(x")——,'(2~) 'I2(8i 8 +8), 8,—8),„8„) Cx",'6 p(x' -x")—

r B»' '(x",y') Bx'p '(x",y') Bx" (x",y') Bx" (x",y') )
By" By" By" Bx"p ).-=„.

I G) =0. (7.2)

In writing (7.2) we have used Eq. (6.15) for 8 and have
omitted the second term on the right of (6.15a), since
the contribution to the left side of (7.2) would be a pure
divergence. One can obtain more general gauges by
making the replacement

&).Bp.+B),.~p.—~) pB- ~ Bi.~p.+~).Bp. ~) pB..
—a 8„,+ 8)+ Bp,

Bx'~Ox' Bx'&Bx" Bx'"Bx"

+, , Bi. C3 '+t. . . , W'Cl ' (73)
gxlpgxly 8x"8x"8x"ax"

The first three terms on the right of (7.2) are the
terms we would have obtained by an uncritical use of
the analog of the Lorentz gauge. In this method one
writes the Einstein Lagrangian in the form

g — &(BivBpp+BipBpv BXpBvp)

XB- ~
]

"[~
'

I+~,.„(7.4)
vrvr, pv-vr ( Bxr j ( Bxr )

where 2;„~represents all terms in the expanded Lagran-
gian which contain at least one factor of a'". One then

uses the supplementary condition

(B""b»+8"pbp" 8"8"p)By—/Bx"=0

to rewrite the Lagrangian in the form

(7.5)

g i(BivBpp+gipBpv BkpBvp)err

X (Brtri p/Bx )(By,p/Bx')+ 2;, (7.6).
From the Lagrangian (7.6) one can construct Feynman
rules by following the standard procedure. The function
2; q is an infinite power series in the variables pp„, so
that there exist vertices with an arbitrary large number
of external lines. It is in principle straightforward to
find the factors associated with the m-point vertex, but
the algebraic complexity of the result increases rapidly
with e. We shall not carry through the algebra here; it
has been done in Ref. 3 for e= 3 and n =4. The graviton
propagator associated with the zero-order Lagrangian
in (7.6) is simply

Z 1
G,„...(p) = (B,.B„,+B„B„.—B,„B.,) . (7.7)

(2s)' p'+ic—
It is thus equal to the coeKcient of t ' on the left of
(7.2).

The presence of the last term on the left of (7.2) shows
that the simple Feynman prescription is not correct and
that additional vertices are necessary. We begin by
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expanding the function 0"p(x',y'), which is defined by
(6.12) and which occurs in the function x» p(x', y'), as
a perturbation series:

Thus, in momentum space,
b"~

dashed-line factor = — — . (7.11a)
(2zr) 4 —p'+ ie

0"p(x',y') =i P
n=l

Chi ' ' 'dh)) spaz)(X —Xi )

XB"pzz(2g)i)'sD»» yy (x ') —A (x '—x ')

X B)»sz(2g) i'»ps yi (x,)). . .

where
-,'A, (x.'—y') B ",

8 8 8 8
D"p,y,„=Spic„» j»(x') +B,' 4»(x')

Bx 8$8$ t9$

(7.8a)

The vertex factor is obtained by transcribing the factor
z(2~)'"Dip„) or z(2z)"'D"&p„) in (7.9) into momentum
space. Thus the vertex factor is given by

w(pip)pshaw")psp) =z(2%) (2K) (Bp B)) pi'ps+ Bp pi))ps"
—

&p"pipps, +&vppz p ps" s& "p—z pps") . (7.11b)

In (7.11b) the quantities pip and psv are associated with
the dashed lines, and the quantities psXzz with the solid
line, meeting at the vertex. If we wish we may sym-
metrize the vertex factor in lI. and zz. Finally, from (7.2)
and (7.9), we find

B B BP»(x) B—8p" 4»(x') —5„p

8$p 8$ Bx ~ 8$),

B)t)»(x') B
+-', B"p — . (7.8b)

8$ i' 8$,

The expression (7.8) can now be substituted in (6.15b),
which in turn can be substituted in the last term of (7.2)
to give the result

—,'i(2z) '"(hi, Bp,+Bi,lp, —B»5„)Q Ck"dhi'

Ch 'dy' 'Ap(x' x"-)b'(x"—y')(D" —+D" )

X ,'A&( "x—x, '-) B"»i(2~)'~sD»» „y,„(x,')

Xs+p(hl xs )Bv)psz(2g)1/2Dx&ps )p»ps(hs ) . . ~

-'A p(x '—y') B""p (7 9)

where D"p,„ is given by (7.8b) and

8 8 8 8 8 8
Di)p — B XBp B X +B i

Bp 8$ Bp Bs& 8$& 8$

(B B)B (B B B
+&"I,+, I

— —sa "I,+, . (7.1O)
(Bx ' By p J Bxi (Bx'p By'p Bx„'

The expression (7.9) is similar in form to the analo-

gous term in the equation for the Yang-Mills field. Again,
one can represent the term diagramatically by an
(ps+1)-sided polygon (Fig. 4), which is inserted into the
Feynman diagram in all possible ways. The solid lines
represent the gravitons, while the dashed lines are as-
sociated with the factor —,'A p (x„'—x,+i') B""p"+' in (7.9).

FIG. 4. A Feynman vertex corresponding
to the last terms of (8.2.)

an over-all factor —1. (7.11c)

As a mnemonic device we can associate the dashed
lines in Fig. 4 with fictitious particles. The presence of
the indices p and p in (7.11) shows that these pa,rticles
must be vector particles. The propagator associated
with the fictitious vector particles is given in (7.11b),
while the factor associated with a vertex involving two
fictitious vector particles and one graviton is given in

(7.11c).In addition, we must include a factor (—1) for
each closed loop of vector particles; such particles may
therefore be regarded as (very) fictitious "vector fer-
mions. " The vertices involving gravitions alone are
obtained by expanding the interaction term in the
Einstein Lagrangian, and we have observed that there
exist such vertices with an arbitrary large number of
lines. The only vertex involving the fictitious vector par-
ticles, however, is the vertex with two fictitious-particle
lines and one graviton line.

VIII. NONPERTURBATIVE FORMULATION OF
THE THEORY OF THE QUANTIZED

GRAVITATIONAL FIELD

Our work in the body of the paper, and indeed the
formulation of the equations of the theory given in Sec.
I, has been within the framework of perturbation
theory (to arbitrary order). We shall now attempt to
reinterpret the contents of Secs. II—VII without assum-

ing perturbation theory. Ke are not concerned here
with methods of obtaining a nonperturbative solution
of the field equations (7.2). Since we do not have a reli-

able method of solving the equations of other field

theories, it would probably be premature to investigate
nonperturbative approximations to the solution of (7.2)
at the present time. We wish simply to show that the
development leading to Eq. (7.2) can be understood

without perturbation theory.
The first point which must be examined is the defini-

tion of a time-ordered product. In theories of fields

other than the gravitational field, or in the perturbation
theory of the gravitational 6.eld, the definition of a time-
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ordered product is unambigious. In the general theory
of the gravitational Geld, however, one is faced with the
problem that one does not necessarily know the time
orderigg of two points from the characteristics of the
paths leading to them. We shall assume that there
exists an operator T'{R p»(x, P)R,r„g(y,P')), even if
the time ordering of the points x and y is not known.
Functions identical to time-ordered products have
sometimes been deGned in quantized Geld theories
without explicit use of time ordering. For instance, the
Green's function, instead of being defined as the
vacuum-expectation value of a time-ordered product,
is sometimes defined as the multiple derivative of the
S matrix with respect to changes of the external source.
The assumption that the operator 7"{Rp»(x, P)
XR, r„g(y, P')) has a meaning will be taken as a funda-

mental assumption of the theory.
The operator T'{R p»(x, P)R,r„&(y,P')) will no longer

be a product of two operators. We shall assume that it
is equal to a product of two operators, time-ordered in
the usual way, when the paths P' and P' are far apart.
We shall also assume that the covariant time-ordered
product satisfies the path-dependence equation (2.4)
and the field equations (2.12). Time-ordered products
of more than two operators are similarly deGned. We
have shown that Eqs. (2.9) and (2.10) are sufficient to
calculate the time-ordered product. Hence the assump-
tion that there exist operators which satisfy (2.9) and
(2.10), and which tend asymptotically to ordinary time-
ordered products, is sufhcient both to determine the
theory and to deGne the time-ordered products.

Next it is necessary to obtain a deGnitian of the path-
dependent 8 function, which occurs in the, field equa-
tions (2.12). The definition of this function is not trivial,
since we do not in general know whether two paths P
and P', whose endpoints are x and y, lead to the same
point. We shall assume that there exists an operator
&g(x—y), which depends on the paths P and P', and
which has the properties specified below. We shall fur-
ther assume that there exist covariant time-ordered
products such as

&'{R-p»(z,P") R.r.g(w P"')~(x—y)) (8 1)

and similar time-ordered products with any number of
R's. The time-ordered product (8.1) must satisfy the
6eld equations (2.12) in z and w, and the path-depen-
dence equations (2.9) for variations of the paths P" and
P'". The definition of the 8 function is then completed
by the following three requirements:

(i) If P and P' are coincident along their entire
lengths except for in6nitesimal portions at their ends
LFig. 2(b)j, the 8 function is defined as in Ref. 4.

(ii) The covariant time-ordered product (8.1) satis-
fies a path-dependence equation analogous to (2.9) for
variations in the paths P or P'.

' We require this assumption in order to apply Feynman bound-
ary conditions, and also to use the reduction formulas.

(iii) The covariant time-ordered product satis6es the
equations

T'{R,p»(x, P)R,r„g(w,P")8(x—y))
= 'P'{R.p»(y, P')R, r„g(w,P'")b(x y)—),

T'{R p»(z, P")R,r„g(x,P)b(x y)—)
= T'{R p»(z, P")R,r„g(y,P')b(x —y)) .

Requirement (i) ensures that the 6 function has the
appropriate properties when two paths end at or near
the same point, while requirement (iii) ensures that the
b function is zero if the paths do not lead to the same
point.

The condensed notation introduced in Sec. III made
no use of perturbation theory, and we can take that
section over into our nonperturbation treatment. In
Sec. IV, however, where we defined the path-dependent
variables in terms of auxiliary variables, we must
modify our approach. In perturbation theory, all formu-
las were to be expanded in powers of the operator P,
and they were equivalent to formulas involving the
Creen's functions. Now, however, the formulas are to
be regarded as genuine formulas involving operators
in a linear space and not as a shorthand for perturbation
theory. The operators g are known from their de6nitions,
and we then have to find operators V(x,P), W(x,P,x'),
and R p»(x, P) which satisfy the equa, tions of Sec. IV.
Once the operator R p„g(x,P) and the vector ~G) are
known, we can write the matrix elements (EEg~R p»
X(. ,P) ~G), (E&g(R,p»( p)R, r„g(y,P') (G), etc. These
matrix elements will be the ( reen's functions 6 p~{)

X(,P), G p», ,r„g(~,P'), etc. To calculate the path-
dependent ( reen's functions from the auxiliary &.:.reen's
functions is thus a nontrivial problem involving operators
in our linear space.

Another point to be verified in Sec. IV (actually in
the Appendix) is that the path-dependent 8 function,
deGned in terms of the path-independent b function by
(A5), does satisfy conditions (i)—(iii) above. It is not
de cult to show that the conditions are in fact satisGed.

The remarks which we have just made in connection
with the formulas of Sec. IV apply equally to the Geld
equations (6.7). The function g'Igggg"&, when expanded
in powers of P, gives rise to an in6nite series. The equa-
tion thus connects an infinite number of ( reen's func-
tions or, equivalently, there exist vertices with an arbi-
trarily large number of lines. If we are not using pertur-
bation theory, we therefore have to regard (6.7) as a
genuine operator equation in our linear space. Given
the operators g and g, we have to 6nd a vector ~G)
satisfying (6.7).

By making use of our linear space, we can therefore
express the gravitational 6eld equations as equations
for path-independent quantities. We have given the
perturbation solutioa to these equations. Any more
adequate treatment would involve at least all the di%-
culties of quantum Geld theory. One ca,n of course sum



subsets of perturbation diagrams in the usual way and
can construct approximation schemes such as the Bethe-
Salpeter scheme. It has frequently been suggested that
an adequate treatment of the quantized gravitational
Geld might remove the divergence diKculties both from
the gravitational fields equations themselves and from
the equations. of other Geld theories. If one could con-
struct an approximation scheme with these features,
either by starting from Eq. (6.7) or by summing subsets
of perturbation diagrams, one would have achieved
major' progress. At the moment, however, one does not
have any indication of how to proceed.

Zoic added il manlscript: Faddeev and Popov
(unpublished) have extended their method of Ref. 3 of
the preceding paper to the gravitational field. Their
results are the same as those of Feynman and DBVitt
and those of the present paper, though they di8er some-

what in appearance since the variables used are diBerent

[(—g)'isg"" instead of g„„7.With such variables one can
replace the fictitious vector particles by fictitious scalar
particles if and only if one uses the Landau gauge. For

the gravitational field, Faddeev arid I'opov do not
relate their ansatz to a Geld theory.

APPENDIX

In this Appendix we shall give the proofs of two re-
sults quoted 1n Sec. IV. The fllst 18 tliat the deGnition
of R p~b(x, P) in terms of g x(x') does lead to the path-
dependence equation (3.6). We begin by examining the
function V(x,P) and calculating the change which oc-
curs when the path I' is varied by a small area 0 p at
the point s (Fig. 3). Equation (4.10) for V can be
written in integral form as follows:

V '(sP) f d=s—zV "(sP)Vz'(sP')

Xfd'z'VZ(sP', s') ('„'(s').

If the path I' is deformed by an amount r p at the
point s, we can use Stokes's theorem to Gnd the change
of V just beyond the point s. Thus

8
SV~"(s+, P')= ——,

' A -- V,('(s,P')Vp"(s, P') d's'W(s, P', z')P„,x(z') o,p
amP g~

( 8
=—,' 8 i V;(s,P')Vp"(s,P')S

I
7 d

d's'W(s, P',s') f'„„"(s')

—V~P(s,P') V (s,P') Vp"(s,P') d4z'W(s, P',s') f'„,"(s')I'p.&(z')

Vp'(z, P') V—(s,P') V~)'(z,P') d'z'W(s, P',s') I'„."(s')f',.(z') o p.

In the last two terms of this equation we have used. (4.10) and (4.11) to express derivatives of V in terms of the
V's themselves. We may use Eq. (4.9) to rewrite the derivative (8/8s )W(s,P', s') as —V P(s,P') (n/Bs'P) W (s',P', s').
On doing so and rearranging some of the dummy indices X, p, v, and p, we Gnd that

IIVzz (s+, P') = ,'V„"(s P ') Vz' (s P"—)V-; (s P')fd's'lV(z P',s')

8 8

,
-f'..'(z') —,f'.,"(s')+I';"(s')I'.. (s') —f'-"(z')f'.. (s') lo-p

,'V„'(z P)'Vz'(s P') V:—(s P') .fd'z'lV{zP', s')Vz„„(s')z,
2V(,"(s,P')Rd, p (—s,P')op[from (4.15) a. nd (4.14)7

B (ss,Pd')R~ p(s{,)P')o p.

This equation may be brought into a form resembling (3.6) by noting that

i[J,d(s), V,"(s,P)7= —o„,Vpx(s, P)+bd, V,"(s,P).

bV,"(s+, P') = ,'iR, (),p(s,P')[J,d(s),-V,"(s,P)7o p.

We have thus far only proved (A1) when the argument s+ is a point just beyond that at which the path was de-

formed. However, we can now readily extend (A1a) to arbitrary arguments:

av, (x,P)=,'iR„.p(s,P')[J„(z),V,"(x,P)7~.„ (A2a)

bW(x, P,x') = xdiR„(; p(s,P') [J„d(s),W(x,P,x')7(v p. (A2b)



Equations (A2) are proved by examining Eqs. (4.9) and (4.10), which define the functions V and W. To begin with
Eq. (4.10), the two sides undergo the following changes when V undergoes the change (A2a):

BV ~{x,P) BV "(x,P)
h =,'iR,—i,r(s,P') J,i(s),

Bxp Bxp

8~ fpx—'V."(xI') Vp (op)W(xpx') f'„,'(x')

(A3a)

= iiR„gq(xp') J„&(s), —fCh'V "(x I') Vp" (xp)W(x I' x')f'„p(x') . (A3b)

On the other hand, it is permissible to apply the operator J'~~(s) to Eq. (4.10) at all points except the point s, since
(4.10) must hold for the original and for the rotated path. Hence

BV "(x,P)
~7)(s), = &„i(s), — d'x'V &(x,P)Vp"(x,P)W(x,P,x')I'„„"( x), xmas.

8$p
(A4)

From (A3) and (A4), we observe that the changes of the two sides of (4.10) are the same when V and W undergo
the transformation (A2), except possibly at the point x= s. One can prove in the same way that the changes of the
two sides of (4.9) are the same. Hence, since V and W satisfy (4.9) and (4.10), we can conclude that V+BV and
W+bW satisfy these equations, except possibly Eq. (4.10) at the point x=s. The development leading to (Ai)
showed that V+8V also satisfies (4.10) along the new path near x=s, so that the functions V+6 V and W+BW
satisfy (4.9) and (4.10) along the entire new path. Since Eq. (4.9) and (4.10) are the definitions of V and W, we
have proved Eqs. {A2).

It now follows at once from (4.15) and (A2) that

BR,r„e(x,P)= ,'i R,i.p{s,P'—)PJ„i{s),R,r,p(x,P)ja.p.

This is the required path-dependence equation (3.6), which has thus been shown to follow from our definitions.
Before we prove our next result, Eq. (4.11),we shall have to derive one further formula, a formula relating the

path-dependent and path-independent 8 functions. We shall show that

~'(*—x) =f&'~'~'x'&(~, &,~'8'b, &,v') Li(~')j '"&'(~'—r'), (AS)

where g is the determinant of the matrix gi„. We shall assume this relation to be true at one value of x (for ally)
and, at that value of x, we shall show that the derivative of the right side with respect to x is equal to Bb'(x—y)/
Bx . Since the equation is true at the beginning of the path from our boundary conditions, @re shall thereby have
proved it in generaL Proceeding in this manner, we 6nd

~(
d'x'd'y'W(x, P,x') W(y, P,y') Lg(x') j '"84(x'—y')

Iax. k

8
d x'd'y'V "xI' lV xPx' 5' yI'y' g x' '~'54 x'—y' from 49

Bx'~

d4x'd'y'V "xI' 8' xI' x' 5" y P y' F & x' g x' -'"84 x'—y'

a+ d x'd'y'V "(x,P)W(x,P,x')W(y, P,y')Lg(x') j '"- &'(x'—y')
Bx'"

8V,~(x,P)
d4x'd4y'V. ~ x,I V» x,~ V» x,~ W x,Z,x' m" y,Z,y' g x' -~~2~» x'—y'

Bxp

a
d'x'd'y'V "(x,P) Vi p(y, P) (W(x,P,x') W(y, P, F')I g(x)g ' '5'(x —y))
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«om (4.9)-(4.11).Since we are assuming (A5) at the value of x under consideration, for all y, we can now deduce
that

a
d»x'd Yw(x Px'}w(y Py'}Q(x}g '"8»(x—y})Bxo

8V."(x,P) 8
= V„p(x,P) 8'(x y) —V "—(x,P) V),p(y, P) 8'(x y—)

8$p

8 8 8
= —V "(y,P)Vv(y, P) &'(x—y) =— &'(x—y) =— b'(x—y) .

BXp 8y~

T»»s the equation that we wished to prove. The physical meaning of Eq. (A5) is that the path-dependent &

function is g-' ' times the path-independent, coordinate-dependent 5 function. Such a result is not surprising; the
factor g '" is the reciprocal of the volume element in the non-Euclidean coordinate system.

We now prove that (4.17) is a possible expression for Usi(x, P), in the sense that they both have the same com-

mutation relations with the operator R,r„}}(y,P'). From (4.16a), we obtain

V(g(y'))
Ln""(x'),f(g(y'))3 = —2(2~)'"

Bgi„(x')
(A6)

Hence, in order to find the commutator of g"}'(x') with any function of g, we require to know the derivative of that
function with respect to g. We shall therefore begin by supposing that g&,„(y') undergoes a change

~R}} (y') =&}.~'(x'-y')

and shall find the corresponding changes in the functions V "(y,P'), IV(y, P',y'), »d F},}.} (y').
First let us find the change in the variable f'»' when g},„undergoes the change (A/). It follows at once from

the de6nition of F that

&I „"b')= —-',g"'(y')0}."I'„"(y')+b,"&,"~/r}y"—~."&,"~/~y'" —~."&."c}/~ ")~( '—y')h".

From (ASa) we can calculate the integral J'dy'V. "(y,P—') Vr}'(y,P')W(y, P',y')& I', '(y'), w»ch we sh»»«d w"en

treating Eq. (4.10). Thus multiplying (ASa) by the factor —V,"(y,P')Vr'(y, P)R'(y, P',y'), using (4.14) for the

factor g" (y), and rearranging some dummy indices, we find that

d4y'V, "
y,P' Vg& y,P' 8' y P' y' 8 " y'

ifpy v;(}'&=}}",(y'& }~ 8'& }~ '(~';~ }."~,b,'~", }'('}'('—}"}"~

+if~»y'},"(y»'}~»»(y }"}}'»"(}'»'}i}'»&»» ~ '(}'»'}

8—~,b r V."(y,P') —bp. ~,Vr"(y,P') )IV(y»', y')
Qy

P

from (4.9). We can simphfy (ASb) by taking the factors V„"( p)xand Vq "(y,P) in the second term to the right of

the djfferentjal operators. Using (4.10), we find that the terms obtained by doing so cancel the first «rm «(ASb)
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d y'V "(y,P') V '(y, P')~(y, P',y')». ,*(y')

= l f &s ~~r V."b»') ~/~y» ~~r Vs "(y,P') ~/~y. 4—.V~"( y, P') ~/~yr) dw (A8c)

d (*',y)= d'y'V "(y P')V (y,P')1VbP,y»(*-y)f, (A9a)

The function d is symmetric in P and g:
4~(»y) =&v(»y) . (A9b)

Equation (A8c) may be simpli6ed further by noting that

4 V~"b P') &"V—~"b,P') =~V.p(y), V."(y,P')j

YV "(yP')Vr (yP') lV(yP' y')» =-'~~~~rp &(y) V (yP)]a/ay -S, V, (yP)a/ayr~d„(* y) (Agd)

We ca»ow»vestiga« the effect of the change of II', given by (A8d), on the change of the functions V,"(y,P')
and lV(y, P',~') de6ned by (4 9) and (4.10). We shall write the result and shall show that it does satisfy (4.8) and
(4.10), 'n writing the result we were guided by Eq. (3.3) for the function U. The result is as follows:

h V,"(y,P') = —,
' d»(L~~~(» V '(y»') j~.(~) ds(*',n)+ ~ds(*',n)~s(~) V."(y,P')) k~s.V~—'(y»')~a~(+' y)

hlVbP'»')=l' d~ &LJ. (~)Pb»'y')j~, (~)~ (*', )+'~ (~', )~ ()lV(yP', y')}. (A11)

To verify' (A10) and (A11), we calculate the resulting changes of the two sides of (4.9) and (4.10).The change of
the left side of (4.10) is

BV,"(y,P') 8 BV:(y,P') )=r'~&m P~a(y), V.'(y,P')j A~(&' y)+~&s~(&' y)
~yr ~ye ~ys

i & BV;(y,P') BV."(y,P') )+- de~ J,s(~), ~,(v)des(~', v)+~de~(*', n)&s(v)
~3't.

OVAL"(y,

P)
k~s —ds~(*',y) k&s.V~ "(y,P'-) A~(*',y) (A»)

The change of the right side of (4.10) is equal to the sum of two terms. The erst is given by Eq. (A8d), and the
second is B,s fo11ovrs:

dY~f V."b,P') Vr'b, P')lVb, P' y')) f'""(y')

~,s(~), &'y V."(y,P') Vr'b P')lV(y, P',y') 1'.,'(y') ~,(v)de~(~', n)
P

+'d (*,~»(~)l dy V:(y,P)V (y,P)~(y,P,y)f'„(y')
i

(
i

+-: ~'y'E~. V "(y,P') Vr'(y P')+~sr V."(yP') V '(y»')Ãb»'y')1'"'(y')&s ( '»).
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We can now show that the right side of (A12) is equal to the sum of the right sides of (ASd) and (A13). We first
note the equations

BV;(y,P')
J„s()i),

3't

BV,"(y,P')
~()(n) = —

&~(e)~l f&Y)'(s', )")&r'(x&')))'(x)")&..'b)
l

(A14a)

(A14b)

Equations (A14) are obtained by applying the operators J))„(q) and 8()(&) to Eq. (4.10); it is permissible to do so,
since (4.10) must hold for the original and for the rotated or displaced paths. Using (A14), we observe that the
terms on the right of (A12) and (A13) which involve an integral over gr are equal. Using (4.10) and (A9b), we can
show tha, t the two terms on the right of (A12) which involve a derivative of V with respect to y are equal to the
last two terms of (A13). The right side of (ASd) is equal to the sum of the remaining terms on the right of (A12).

We can similarly show that the changes (A10) and (A11) of V and W' are consistent with Eq. (4.9). The changes
of the two sides of this equation are as follows:

8
W(y, P',y') 1=2~4L~~s(y) W(y,P',y')j dpi(*'-, ~) 2~~rd—s~(*',y') W(y, P',y')

BV(y,P', y') BW(y,P',y'))
+hi A~ ~.p(n), ~,(~)dpi(*', n)+~dpi(*', ~)~s(~) I (A15)

idpi(—z', g) Bp(y) Vr'(y, P') W(y, P',y') + ', hprdpg(z', y) V-(;"(y,P') — W(y, P,y'). (A16)

The first term on the right of (A15) is zero. This is because the symbol i)J„()(y),W(y, P',y')j is the change of W
caused by a rotation of the path I' about the point y, the end of the path. Such a rotation cannot change a variable
which has no tensor indices. The second term on the right of (A15) is equal to the last term on the right of (A16),
by {4.10) and (A9b). As in our previous example, the terms on the right of (A15) and (A16) which involve an in-

tegral over gr are equal to one another. Hence the right sides of (A15) and (A16) are equaL We have thus verified
that (A10) and (A11) satisfy the de6ning equations for V and W, so that (A10) and (A11) do give the change of V

and W when g undergoes the change (A7).
Next we find the change in the path-independent Riemann tensor r),„„{y'),defined by (4.2a), when g undergoes

the change (A7). Since our main object is to find the change of the path-dependent Riemann tensor, given by (4.15),
we shall actually calculate the product V, V|&V„"Vy&$'br~ „„,. The calculation is similar to the calculation leading to
(ASc), and we need not give the details. The result is

~,{y)~.{y)E~))r~»~i)((~',y)1+k ~ R n~{y,P')4 &»4~(&',y) (A17)

We can now calculate the change in the path-dependent Riemann tensor (4.15). Inserting (A10), (A11), and

(A17) in (4.15), we 6nd that

8R,r, (){y,P') = ,' A B„(y)8,(y)(ip-r(')»dp()(x', y) ,' A R,r„,{y—,P—)bp, b»dpi(x, y)

+ ',i di)()(/J-, ()(ri),P,r„e(y,P)JB,(g)dpi(z', g)+avdp()(x', )(I)8s()t)R,r„()(y,P')) . (A1S)
Qf

The functional derivative 8R,r„()(y,P )/bgi„(x ) is the coeKcient of h),„on the right of (A18), symmetrized in X and
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BR r,s(y,P')
~~{y)~ (y)L(~pr~»+~ps%)dp ""(x',y)j l—~ R.r;(y,P')(4 ~ +4 ~.)dp ""(x',y)

gg (xI) ae+rs~p y++8

+'-d .(~p& +& ~ ){P.(),R. , (y,P')]~.()d ™(*',)+'d ""( ', )~ ()R. (y,P')) (A19)
Qt

where d p s&( xy) is the coef5cient of hq„ in the function dps(x', y), i.e.,

(~ a)"'fd =y &~''ix'& )&~ ('y & ")s'(x'& y )&''(,~''—y') (A20)

The right side of (A19) resembles that of (3.31), except that the h functions 8'(x—y) Lor 8'(x—ri)] are here replaced
by

dpi'&(x',

y) Lor

dpi'"&(x',

g)j.However, from (A20), (A5), and (4.14), it follows that

d4x'Vqp(xP) V„s(xP)W(x'P, x')Pg{x')j '"d „""(x',y) = 8 ~8psh'(x —y) .

We can therefore multiply both sides of (A19) by the factors V~p(x, P)V„~{x,P)W{x,P,x')Pg{x')]"', and integrate
over x', to obtain the 6nal resu1t'

8R.r„s(y,P')
d'x'Vgp(x, P) V„s(x,P)W(x, P,x')fg(x')]-'"

egg„( )x

A 8„(y)8,(y)Dbpr8»+apso&r)8'(x y)$ ', A—R,r„,—(y-,P')(bp, b»+ "opsos, )8'(x—y)

+4i drl, (8p, osg+ bpgos, ){/J. g(7/), R,r,s(yP'))a„(ri) o'(x—7/)+ 1'8'(x ri) ay(rt)R, r,—s(yP') ) . (A22)

Since the right side of (A22) is the same as that of (3.3), apart from a factor —2~, we can conclude from (A6) that

2-»s&»& d4x'V„. (x,P)V»(x P)W(x P x')(g( xg-'»q"( x) =U.p(x P) (A23)

in the sense that both sides of this equation have the same commutators with R.r„s(y,P').
'In this equation, the "beginning of the Greek alphabet" over-laps into the middle. Ail subscripts in (5.20) refer to the local

Euclidean system and are to be regarded as belonging to the beginning of the alphabet.


