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The Feynman rules for the Yang-Mills 6eld, originally derived by Feynman and De%itt from S-matrix
theory and the tree theorem, are here derived as a consequence of Geld theory. Our starting point is the
gauge-independent, path-dependent formalism which we proposed earlier. The path-dependent Green's
functions in this theory are expressed in terms of auxiliary, path-independent Green's functions in such a
way that the path-dependence equation is automatically satis6ed. The formula relating the path-dependent
to the auxiliary Green's functions is similar to the classical formula relating the path-dependent 6eld vari-
ables to the potentials. By using a notation similar but not identical to Schwinger's functional notation, the
in6nite set of equations satis6ed by the Green's function can be replaced by a single equation. When the
equation for the auxiliary Green's functions of electromagnetism is solved in a perturbation series, the usual
Feynman rules result. For the Yang-Mills Geld, however, one obtains extra terms; such terms correspond
precisely to the closed loops of Gctitious scalar particles introduced by Feynman, DHVitt, and Faddeev
and Popov.

1. INTRODUCTION

HE discovery of the Feynman rules for the Yang-
Mills and gravitational Gelds by Feynman him-

self has solved a long-standing problem in relativistic
quantum mechanics. Feynman only derived his pro-
cedure for diagrams with a single closed loop, buI;

De%itt' has recently extended the procedure to di-

agrams of arbitrary complexity. Another general proof
of the prescription for the Yang-Mills field has been

given by Faddeev and Popov, ' who used a functional
integration procedure which is probably equivalent to
that of Blitt.

Feynman and De%itt obtained their prescription by
a somewhat indirect method. From the Feynman rules

for nongauge particles they obtained the "tree theo-

rem, " which relates the contribution to the 5 matrix
from a closed-loop diagram to the contribution from a
diagram where the loop is opened at one point. They
then assumed that the tree theorem was valid in

theories with gauge particles; they were thus able to
derive the Feynman rules for the 5 matrix. The validity
of the tree theorem guarantees that the S matrix is

unitarity, and their results can almost certainly be
derived from an analyticity-unitarity calculation in

perturbation theory.
The question arises whether one can obtain the

Feynman rules within the framework of a Geld theory
of the Yang-Mills Geld or of gravity, and it is the
purpose of the present paper to attempt to do so. %e
shall take as our basis the path-dependent theory of

gauge Gelds which we suggested earlier. ' The theory was

originally formulated for electromagnetism and for

gravity, but it can be applied to any gauge Geld. The
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path-dependent theory of the Yang-Mills Geld has

been treated by Bialynicki-Birula. '
In the present paper we shall rederive the Feynman

rules for the electromagnetic Geld from the path-
depe~dent formalism, and we shall then derive the more

complicated Feynman rules for the Yang-Mills Geld. Ke
shall derive the Feynman rules for the gravitational
field in the foHowing paper.

The fundamental principle of the path-dependent
formalism was to avoid the introduction of non-gauge-
invariant quantities. Thus the electromagnetic poten-
tials were not introduced, but were replaced by the
electromagnetic Geld variables Ii„„.Similarly, the
charged Geld variables p(x) were replaced by the path-
dependent but gauge-invariant variables C(cc,P) For.
practical purposes one would like to introduce the
potentials as auxiliary variables, as one does in classical
Geld theory. By doing so one would be able to calculate
in terms of path-independent variable; one would

transfer to the path-dependent variables at the end of
the calculation. It is well known, however, that one
cannot introduce covariant potentials without en-

larging the Hilbert space and employing an indehnite
metric. For electromagnetism one can use noncovariant
potentials such as those of the Coulomb gauge. One
can then derive the Feynman rules after a certain
amount of algebraic calculation. It is possible to
formulate the Yang-Mills theory in terms of non-
covariant gauges, such as Schwinger's modification of
the Coulomb gauge, or the Arnowitt-Fickler gauge. '
However, the method which was used in electromag-
netism for deriving the covariant Feynman rules from

such gauges is not applicable here, at any rate without
essential modiGcation. To our knowledge no such con-
sistent formalism has been given for the gravitational
GeM.

I.Bialynid~i-Birula, Bull. Acad. Polon. Sci. 11,135 (1963).
6 J. Schwinger, Phys. Rev. 127, 324 (1962); R. L. Argowitt

and S. L Pickier, ibid 12?, 1821 (1962). .
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In the present trea, tment we shall avoid noncovanant
quantities and we shall therefore not introduce po-
tentials as quantum-mechanical operators. Instead, wc
shall introduce auxiliary Green's functions. In for-
IDR118IQS of quRQtUIQ elcctl odynamics which cInploy
potentials, whether in the Coulomb or Lorentz gauges,
one can define Green's functions

One can also define pa, th-dependent but gauge-invariant
GrecQ 8 functions

G's~(&4F4' ' ' i y4F& &' ' ' i s4* ' ')
=(OIT{C(zg,Pr) . .C*(yr,Pg') F„,(sr) }IO).

The latter Green'8 functions can be cxpxessed in terms
of the f'ormer. In our present approach, the path-
independent Green's functions will be introduced, not
as vacuum-expectation values of time-ordered. prod-
ucts bUt Rs RuxlllRry functloDs lIl their owIl right. Thc
physical, path-dependent Green's functions of our
theory will then be expressed in terms of the auxiliary
Green's functions by using the same formulas as in
theories with potentials. The connection between the
path-dependent and path-independent Green's func-
tions wiH guarantee that the path-dependence equations
are satished, as we shall verify explicitly. Kc then have
to find the equations which the auxiliary Green's func-
tions must satisfy in order that the path-dependent
GI'ccn 8 functloQs sa'tlsfy thc correct cquatlons.

For electrodynamics, Such an approach has already
been carried out by Sarker. ~ He found that the equa-
tions satis6ed by the auxiliary Green's functions are
similar, but not identical, to the equa, tions satisficd by
the Green's functions of the Lorentz-ga, uge theory. The
difference is due to the fact that he started with
the Maxwell equations itF„,(x)/(Bz„)+j,=O, whereas
the Lorentz-gauge theory starts with the equations
O'A. (x)+j,=O. Nevertheless, he showed that the
Green's functions calculated by the usual Feynman
rules do satisfy the correct equations. The Feynman
rules were thus derived from a proceduxe which was co-
varia, nt throughout and which did not make use of an
enlarged Hilbert space.

When wc carry out a similar treatment for the Yang-
Mills Gcj.d, wc shaH again find tha, t the equations
sRtlsficd by oux' auxiliary GI'ccn s functions RI'c slightly
diferent from the corxesponding equations in the
(incorrect) Lorentz-gauge theory. As with electro-
magnetism, the difference is duc to the dropping of a,

term —Osd, /Bx„8x„in the Lorentz gauge. In this case,
however, we shaH find that the difference is important,
Rnd thRt thc solution to our cqURtloI18 contains terms
besides those given by the Lorentz-gauge Feynman
rules.

' A. Q. Sarker, Ann. Phys. (N. Y.) 24, 19 (1963).

Our results will be the same as those found by Feyn-
man, DCWitt, Rnd Faddeev a,nd Popov. They showed
tha, t the correct prescription was to ta,kc all Feynman
diagrams of the Lorentz-gauge theory, together with
Feynman diagrams containing closed loops of fictitious
scalar particles. In our treatment we shall find that
integrals corresponding to closed loops of scalar
particles appear directly in the solution of the Gxeen's-
function equations. Wc may associate such integrals
with dosed loops of scalar particles if we wish, but this
is purely a mnemonic device. The 6ctitious particles
never occur in external lines, nox do they appear in the
intermediate states of the unitarity condition.

In our present formulation of the theory, the Feyn-
man rules are thus rules for calculating auxiliary
Green'8 functions. Wc can then proceed to calculate
the gauge-invariant, path-dependent Green's func-
tions, since we shall already have expressed them in
terms of the auxiliary Green's functions. By using the
reduction formulas we can then calculate the 5 matrix.
The fundamental reduction formulas of the theory
involve. the path-dependent Green's functions. How-
ever, one can use these reduction formulas to derive
further reduction formulas involving the auxiliary
Green's functions. Thus, from the Feynman rules for
the auxiliary Green'8 functions, one can derive Feyn-
man rules for the 5 matrix by the usual reinterpreta-
tion of the external lines.

The equations for the Green's functions are coupled
integral equations between an infinite number of such
functions. Moreover, when expressing path-dependent
Grccn 8 functions 1D tcx'Dls of RUxihary GI'ccn 8 fUnc-
tions, one 6nds that a single path-dependent Green's
function is equal to the sum of an in6nite number of
auxiliary Green s functions. It would be clumsy, if in
principle possible, to carry out manipulations with such
infinite systems of equations. We require a shoxthand
fol cxpI'csslng thc lnflnltc sets of equations a,s slIigle
cquRtlons. Thc SchwiQgcI' fUnctloDR1 no'tRtloD pI'ovldcs
us with such a shorthand; Schwinger'8 functional dif-
ferential equation is equivalent to the complete set of
equations for the Green's functions. Unfortunately it
does not appear to bc an easy matter to express the
equations for path-dependent Green's functions in
Schwinger's nota, tion. We shall therefore use a,nothcr
notation in which our fundamental quantity corresponds
to Schwinger's 5/Bq rather than to g. %e shall indicate
the connection between our notation and Schwingcr'8
but we shall not a,ssume knowledge of his nota, tion.

In the following section we shall illustrate some of our
methods by using the )@' theoxy. Ke shall find the dif-
ferential equations for the Green's functions and shaH
usc them to construct the perturbation expansion. Wc
shall then develop our nota, tion for simplifying the
writing of the differential equa, tions. Essentially what
we shall do is to form a linear space of all Green's func-
tions Rnd to write thc dlGercQtlal equations Rs equations
for vectors in this Space. In gcc. 3 wc Shall treat thc
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functions
Ge=(OIO)=1, (2.3d)

GI(x) = (0 Iy(x) I 0). (2.3e)

FIo. 1. Diagrammatic representation of Eqs. (2.5).

electromagnetic 6eld. We shall write down the equa-
tions for the path-dependent Green's functions and
shall reexpress them in our shorthand notation. Working
within this notation, we shall then express our path-
dependent Green's functions in terms of new, path-
independent, auxiliary Green's functions. We shall
determine the equations which the auxiliary Green's
functions should satisfy in order that the path-depen-
dent Green's functions satisfy the required equations.
On solving them, we shall 6nd that they lead to the
ordinary Feynman rules. In Sec. 4 we shall treat the
Vang-Mills field in a similar way. Here, however, we
shall 6nd that the perturbation expansion contains
terms besides those given by naive Feynman rules.

(&'—z ')4 (x)—s&{4(x)}'=0

and the P's will satisfy the commutation relations

(2.1)

(2.2b)

We can now define Green's functions

Gs(xt, xz) = (0I 2'{(p(xt),y(x,)}I 0),

G (*, ,*)=(0I &{~(*),~("),~(x )}I0),

(2.3a)

(2.3b)

G4(xt, xz, xz,x4) = (0 I T{y(xt),y(xz),y(xs), y(x4) }I 0),
etc. (2.3c)

For formal purposes we may also de6nc the Greeli's

2. DIFFERENTIAL EQUATIONS FOR
GREEN'8 FUNCTIONS

In this section we shall summarize the method of
determining Green's functions by solving differential
equations, and shall also develop our shorthand nota-
tion. The method is certainly not new but, as far as we
are aware, there is no easily available reference in which
it is described, and we therefore felt it worthwhile to
describe its application to non-gauge 6elds before
passing on to the gauge 6elds in which we are interested.

We shall treat the simple case of a neutral. scalar
6eld with Xg' coupling. The field equations will be

One method of obtaining the perturbation series for
the Green's functions is to use the di6erential equations
satis6ed by them. This is the method we shall use in
the following sections when treating gauge 6elds. Thus,
G2 will satisfy the equation

(0 tz —pz)Gz(XI, Xs) = slIGz(XI, XI,Xs)+Z8'(XI—Xz). (2.4a)

Equation (2.4a) is obtained by applying the dif-
ferential equation (2.1) to the factor p(xt) of (2.3a).
The first term on the right of (2.4a) arises from the
Intel'acfloII tcl'111 111 (2.1) wlltlc flic second fcHI1 Is ob-
tained by applying the differential operator —8'/Bxe'
to the time ordering itself. In deriving this term it is of
course necessary to use the commutation relation (2,2b).

The higher Green's functions will satisfy similar
equations. Thus G3 will satisfy the equation

(Cl Iz —Zz')Gz(xt, xs,xs) = —',XG4(xt, xt,xs,xs)

+zb'(xt —x,)GI(xs)+zb4(xt —xz)GI(x,). (2.4b)

Equations (2.4a) and (2.4b) can be integrated to yield
the formulas

G,(xt,x,)= ——,'zX Cx4-', Ap(xt —x4)Gs(x4)x4, xz)

+-,'Ap(xt —x,), (2.5a)

G,(xt,xs,xz) = —-', zX dx4sAp(xt —x4)G,(x4)x4,xz,xs)

+-,'A p(xt —x,)GI(xz)

+-,'Ap(xt —xz)GI(xz). (2.5b)

Equations (2.5) are illustrated diagramatically in

Flg. 1.
If we are working in perturbation theory, the first

Green's function on the right of (2.5a) or (2.5b) will

be required to one order lower than that on the left,
since it contains an explicit factor ). The second term
on the right of (2.5a) is known explicitly, while that on
the right of (2.5b) only involves GI. Hence, if we con-
struct the perturbation series order by order and, within
each order, construct the functions G~, G2, ~ . suc-
cessively, the right-hand side of (2.5) will be known in
terms of previously calculated functions. We can
therefore construct the entire perturbation series in this
manner, and it is not dificult to see that we obtain the
usuRl plcscllptlon foI' FcynD1an dlRglRDls.

In a 6cld theory with a simple Lagrangian, such as the
XQ' theory, it is sufficient to write down the iirst few
equations (2.4) and (2.5); the form of the subsequent
equations is then fairly obvious. When writing down
equations for gauge 6elds and performing manipulations
with them, however, it would be somewhat cumbersome
to plocccd ln this IIlRnncI'. Wc I'cqullc R notRtlon ln



Co

Ci(xi)

Cg(xixg)
(2 6)

which the whole series of equations (2.4) can be simply
displayed. In the remainder of the section we shall
develop such R notRtlon. Wc CTQphaslze that wc RI'c

olng nothing DloI'c than constructmg R shorthand for
expressing the equations satished by the Green's
functions.

We shaH work %ith the hncar space of the totabty
of flinctioiis CD&Ci(xi),C2(xi, xo), ' '. A 'typical vec'toi'

in the linear space may be written

space on which the operators g(x) act. The p's do not
satisfy thc quantuIQ-Incchanlcal coIBIBUtatlon rules.
IQ fRct, Rll thc 4 8 Rnd their spRcc Rnd tiIDc derivatives
coIQDlutc %ith onc RQothcx'. The llQcRI' spRcc of vectoI'8

) is thus a totally different space from the quantum-
mechanical Hilbert space of vectors

~ }.
It would bc 1IlcoIlvcDlcnt lf wc had to dlsplRy equa"

tions such as (2.8) whenever we used them, and, in fact,
there is a standard notation for expressing (2.8) in a
xnoI'c COIDpact foI'IQ. This DotRtlon 18 cxpx'csscd 1D tcx'IQS

of vectors in the deal space. A vector in the dual space is
written in the form (H I, and is dsPned by means of its
scalar products (H~C) with all vectors in our space

~
C). The scalar products must depend linearly on j C).

We define the vectors (Hol, (Hi(xi) I, (H2(xi, x2) I,
ln thc dual space by the cquatloQ.

Ci(xi)

0 Cs(xi, xm)
~ 0 t

(Ho i C)=CO,

(Hi(xi) ( C)=Ci(xi),

(H2(xi, xs) i C)=Cg(xi, xm),

(2.9)

where Go=(0~0}=i, and the remaining G's are the
Green'8 functions of our theory. We shaH denote this
vector by the symbol

i G).
We now define an operator $(x) acting in this space

as follows:
'Co '

'Ci(x}
Ci(xi) C2(xxi)'*'C.(*.,") '='C.(**.*.) '. (2.8)

The variable x in the vector on the right is regarded Rs a
Qxed parameter vrhlle x~ x2 ~ ~ ~ are thc varlaMCS cor-
I'cspondlQg to oux' 1Ulear spRcc.

To avoid IQisunderstRnding %'c Inust CIQphasize
that the operator @(x) corresponds to the quantum-
mechanical operator it (x), but that it is a totally dif-
fcx'cQt type of opclRtox' acting on R totally d16crcnt
type of space. Once wc have expressed. the 6eM, theory
1Q tcrIQS of Gx'ccQ 8 functions, %cQccd no longer consider
the quantum-mechanical Hilbert space; the vrhole
theory has bccD cxplcsscd ln terms of thc c-Dumber
equations (2.4). In order to express these o-number
cquRtloQs ln R sonplc %'Ry» we have cl.cGQed R Dcw llIlcRx'

The erst subspace consists of a single vector, but each
of the othex subspaccs is itself an in6nitc-dimensional
subspacc. Thus, the second, subspace is the space of all
functions of a single variable x~, the third. Subspace is
the space of all symmetric functions of two variables
xi and x~, and so on. We shall denote the vector (2.6)
by the symbol

~
C}.We are interested in the particular

vectox'

Go

Gi(xi)

G2(xi, xs)

(Hl«IC)}=&(HIo}IC} (2.10)

for all vectors H in the dual. space. We can therefoxe
use the notation (H

~
0

~
C) to express the scalar product.

Equation {2.10) can also be used to define an operator
in the dual space once the operator in the original space
18 kTloWQ.

It 18 Dow easy to express @ Rs RQ opcx'RtoI' 1Q the dual
space. By (2.9) and (2.8)

(HOI H(x) I C)}=Ci(*),
(Hi(») I(0(x) IC)}=C2(x,»)

(H2{xi,xs) ( g(x) ( C)}=C3(x,xi,xm).

(2.11)

C being the general vector (2.6). There is a single vector
(Ho i, a vector (Hi(xi) i

for each value of xi, a vector
(H2(xi, x~)

~
for each combination of variables xi, x2, and

so on. A vector in the original space is uniquely delned
by its scalar products with all vectors (Ho~, (Hi(xi) ~,

(H2(xi, xs) ~, in the dual space
Ke next construct the dual space of the space of

vectors (H i. If
~

C') is a vector in this space, it is defined

by its scalar product will all vectors (H ~:

(H (xi, x ) iC')=C„'(xi," x ).
However, the totality of functions Co', Ci'(x), Cm'(xi, xs),
~ ~ ~ de6ne R vector IQ the orlgmal space %1th vrhlch %C
stRI'tcd. There 18 thus R oDc-oQc coll"cspondcncc be-
tween our original space ~C) and our new space ~C'),
which is such that corresponding vectors have identical
scalar products with all vectors (H~. The space of
vectors

~
C'), which is the dual of the space of vectors

{H~, may therefore be regarded as identical to our
original space of vectors

~
C).

Glvcn Rny operator 0 Rctlng ln thc duRl spRcc» wc
CRD de6DC an opcx'Rtol 0 acting ln thc orlglnal spRcc Rs
foBows:
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Now, by (2.9), We now use (2.14) and (2.15) to express the vectors
(a,(g„g,) I, (a,(g„g„g,) I, and (a, lg(gl —g,) ln terms
of the single vector (Hl(x2) I:

(H, (x) IC) =C,(x),
(H2(x, xl) I C) =Cl(x,gl),

(Ha(x, xl,x2) I C)=Ca(x,xl,x2). {2.20a)

(2.20b)

(2.20c)

(Hg(gl, xm) I
= (Hl(x2) I y(gl),

(H3(gl, gl, gl) I
= (Hl(x2) I @'(gl),

(Ho I h(xl —x2) = (Hl(x2) I g(gl}.

From (2.11) and (2.12), we conclude that

(a.l~(*)=(H.(*)I,
(H,(*,) Iy(g) =(H, (g,g,) I,

( p, (gl, g,}I @(g)={HI(x,xl,x2) I,
(2 13) Equation (2.19) therefore becomes

(»'—u')(HI(g. ) I i(») I G) =k&(HI(») li'(») I G)
+i(HI(xg) I g(gl) IG). (2.21}since IC) is an arbitrary vector. For the vector

(H„(gl ~ x„}I, Eq. (2.13) states that
Since the operator (C312—jP) in the first term of (2.21)
acts only on the variable xj, it may be taken inside the
scRlR1 ploduct. Thus

(H (xl g„)ly(g) =(H~I(g, gl g„)I. {2.14)

(a (*.) I(& '—~')4(*)IG)=l&(a ( ) Ii'(») IG)
+i(al(x2)

I g(gl) I G). (2.22a)

Similarly, Eq. (2.4b) may be written in the form

(H2(»*3) I (&I'—~')0(») I G)= 2&(H2(», »)14'(») I G)

+~(H2(g2, gs) I g(xl) IG). (2,22b)

The general Eq. (2.4) can be obtained by replacing the
vectors (Hll and. (H2I in (2.23) by the general vector
(a.I:

(a-(»" .*.+1) I
(l:11'—~'9(») I G)

2l (=a (» g~"l) Ii (») IG)

+i(a„(gm g~l) I y(gl) I G). (2.22c}(a.(x„x„",x„)I g(g)

The notation of the dual space therefore allows us to
express (2.8) in the compact form (2.14), and we shall
usc th1S notRtlon ln thc remainder of the paper. Ke
shouM emphasize that. the usc of the dual space does
not 1Qvolvc Rny dccp Inathematlcs, bUt ls pU1cly R con-
cession to the printer. It would bc perfectly possible
to 1cwrltc cvc1y subsequent cquatlon 1D 'th1S pRpcl
without using thc dURl spRcc. Every cqURt1on of the
form (2.14) would then be replaced by an equation of
the form (2.8).

We now de6ne a new operator q, which we shall
require when writing the right-hand side of (2.4). It is
dc6ncd Rs follows:

=g (a„,(g„g„",Ig„]," x„)l|(g—x„). (2.15)

Ln(* ),i(*)]=—&'(* —*). (2.16)

Thc vcctol (H~I(gl~g2~' ' ')I g„),' ' ')g~) I
denotes tllc

vector which is obtained from (H„(xl,x2, ,x„, ,x ) I

by removing the variable x,. From (2.14) and (2.15) it
is easily seen that q and p obey the commutation
relations:

Since the vector (H„(x2 g~l) I
in (2.22c) is arbitrary,

we may rewrite the equation Rs an equation for the
vector 6:

(&"-I')~(gl) IG)=-:l@'(»)IG)+'~(») IG). (223)

We have thus replaced the in6xute set of equations for
the Green's functions by a single equation for the
vector (G).

We can easily integrate (2.23) to give the result:
Furthermore, from {2.15),

(Holist(g)=0. (2.17}

Eqllatlolls (2.16) aIld (2.17) alc suKclcnt 'to dctcl'Inlllc

q, since (a~I I Ii can be found 'from (2.14) and (2.16)
once (H„Iq I

is known. We may therefore regard (2.16)
and (2.17) as the definitions of g; we can then easily
obtain (2.15).

Having deaned the operators @™and q, we can express
the Green's functions equations in a compact form. Our

Eq. (2.9), which defines the vectors (H„l,shows that

(H„(xl x ) IG)=G(xl x„). (2.18)

Hence Eq. (2.4a) may be written as follows:

(HI2 —Il')(Hg(gl, g2) IG)=-,'x(aa(gl, gl, x2) IG)
+94(gl —gg)(HO I G) . (2.19)

dx'!ap(~ —g')q(d))
~
Gj =0. (224)

Equation (2.24) is of course equivalent to the series of
Eqs. (2.5) in our new notation.

It is worthwhile noticing that Eq. (2.23) has the
same form as the field Eq. (2.1), except for the term
ig(g). This last term corresponds to the b-function
terms in the equations for the Green's functions.

We can relate our notation to Schwinger's functional
Dot*tion by making the correspondence

4(x) ~ S/S~(g), ~(g) ~ ~(x},



Rnd regarding the operators as acting on the Schwingcr
functional. We have chosen to de6ne g as our funda-
Incntal quantity Rnd to de6ne g 1Q terms of ltd whcrcRS
Schwinger proceeds in the reverse direction. The reason
%'hy wc hRvc sct up 8, ne%' notation ls thRt quantltlcs
similar to @may easily be de6ned in the path-dependent
formahsIQ, %'lMrcRs thc quRIltltlcs analogous to g Rlc not
quite so simple. Our notation is therefore morc easily
applicable to the theories treated in this paper.

(3.4a)

Xb'(x—y). (3.4b)

tht.'msclvcs obey the commutation relations

LF' (x&),F' '(y&)j=l Fo'(x&) Fo' (y, &)j=o,
8 8

tP;(xt),P;a,(yf}j ,—i(=l;,
~3'I

In this section we shaH derive the Fcynlnan rules
for the electromagnetic 6eld from the path-dependent
formalism. Such a derivation has ah'eady been given
by Sarkcr, ~ who used a method soIQc%'hat cMerent
from that to be followed here. Nevertheless, it is worth-
while to rederive the. results by the methods which wc
shaH use for the Pang-Mills Geld, since thc Inethods will
bc most easily understood by applying them 6rst to
thc simpler CRsc of thc clcctl GIQRgnctlc 6cld.

Wc 84Rll tlcRt Rn clcctroIDRgDctlc Geld in intcI'Rctlon
with a charged scalar 6eld. The equations of motion in
the path-dependent formalism are as follows:

S,C (x,P) = —~sC (x,P)XF„,(s)o.„„,(3.5a)

S,e*(~,P)=i~'(*,P)XF„,(s)~„., (3.5b)

where o,4 is the change of C caused by R change in the
path by an i~itesimal area 0-„.at the point s. If thc
varlatlon of Ii ovex the area ls Don-Degbglble; for
instance, if I' contains 8 functions, we must rewrite
(3.5a) in the form

S,C(x,P)=—kC (x,P) do„(s)F„,(s) (3.5.c)

For consistency of the pRth-dcpcndeDcc equations, wc
require thc homogeneous Max%'cll cquatlons

(&'—u')C'(*,P)= o

(&'—~')C'*(*,P)=0

BF„.(x)
+j„(x)=0,

(3.la)

We could replace (3.1d) by the more general condition
that the integral of the left-hand side over any volume

(3 $c) be a multiple of 2Ei we would 'tlmn obtain the Cablbbo-
F-- -Cl ~ th"~ f -g-t:pl" %
shRll RssuIQc that there RI'c Do IQonopolcs pI'cscnt. .

where 4 and, F are the scalar and electromagnetic 6eld
variables, and the cuxrent density j is given by the
cquRtlon

j,(x)=—MLC *(x,P)B,C (x,P)
—C(~,P)a„C*(*,P)j. (3.2)

Thc 4 8 RIll C' 8 satisfy tlM usuRl CGIQIQutatlon I'elR-

tlons, which wc shall not write down. Thc CGIQIQuta-
tloD relations bctwecD thc 4 8 and thc E 8 Rx'c

LC(x,f,P),F;;(y,t)Q=LC (x,t,P),F;;(y,t)j=o, (3.3a)

l:C(x,~,P) Fo'(y, &)j=—«5'b'(y —()C'(x,P), (33b)

Le~(x, t,P),F„(y,t)j=s dP,b'(y g) C. (x,P) . —(3.3c)

%c employ the usual convention that Latin indices
range from I to 3, Greek indices from i to 4. The
integrals in (3.3) are to be taken along the path P.There
will be similar commutation relations between the
4'8 and the Ii's. Thc electromagnetic Geld variables

One dc&Des Green's functions of the path-dependent
variables in the usual way:

G(x,P; y,P'; )=(ol r(c(*,P),c*(y,P') }l o), (3.6a)

C„„(x,P; y,P'; s)
= «le~(*,P),~*(y,P'),F..()}lo&, (3.6b)

andy ln general

(+»P&p»P» "' '
i y»P& 0'»P& )

' ' '
i s»s» * ')

= (0 l
T(C (x»Pg)C(x»P2)" C*(y»Pg)C'(y»P2) ~ "

F„,(sg),F,.(s2) ~ }l
0)+5-function terms (3.6c).

employ thc clrcuD16cx to dlstlngulsh the path-
dependent Green's functions froIQ the auxiliary Green'8
functions which wc shall subsequently dc6nc and which
we sh& denote by the symbol G.

%hen dining Green's functions of the I'8, one has
to Rdd RIl cxtI"a tcrIQ ln order to IQakc thcIQ covarlant.

8 In order to avoid any possible confusion with the 8 function,
we shall use a boldface 5 to denote a change in a quantity due to a
change in the path.
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the Maxwell equation becomes

G„,,o (x,P; y,P';s, w)
(3./a)G„,„,(;;s,w) =(Ol T{F„,(s),F;,(w)) I0&,

Go'.o(' ', )=(0IT{Fo'()Fo/( )}Io&
+ih "a'(s—w) (3.'/b)

f a a
=iel — G„(x,P,si,P";y,P', s,,P";w)„=„,

kasi„as,
„

Such a term is always necessary when the commutators
contain derivatives of 8 functions. The definition is
as follows:

It is not dificult to check that the Green's function
defined by (3./) with the extra term in (3./b) are
covariant. Green's functions involving more than two
F's are similarly dered.

When writing down the field equations and path-
dependence equations for time-ordered products, we
shall as usual obtain terms from the change of the time
ordering. The information contained in the 6eld equa-
tions refers to diBerentiation with respect to the end
point. of the path, while the path-dependence equation
gives the change of a variable resulting from deforma-
tion of the path. In the process of such differentiation
or deformation, we may reach a situation where one
path I', together with its end point x, has some points
which are earlier and others which are later than an-
other point y. Ke then have to define what we mean

by time ordering. The commutation relations between
4(x P) alld @(yP ) collf aiii contributions fl olll tile
two end points x and y, while the commutation rela-
tions (3.3b) contain contributions from the point y and
an element dpi of the path P. We shall adopt the con-
vention that, whenever an end point or an element of a
path has its time ordering relative to an end point or
element of another path changed in the process of dif-
ferentiation or of deformation, we add the corresponding
contribution from the commutator to the time-ordered
product. This convention obviously fu16ls the require-
ment that the time-ordered product of two operators
A(x,P) and B(y,P') be changed bv their commutator
when the time ordering of x,I' with y,E' is changed
completely.

We can now rewrite the field equations (3.1) as
equations for Green's functions. We quote three such
equations for purposes of illustration. The Klein-Gordon
equation (3.1) gives us the following equation for the
two-point Green's function of the scalar particles:

(CI,'—p,')G( , xPy, P') =i a'(x y) . (3.8a)—
The Maxwell equation (3.1c) gives us a similar equation
for the two-point photon Green s function:

+il — b., ——8„la'(s w)G(—x,P; y,P')
(aw, aw.

!c o)
+e — Id),P(s—$)G„(x,P; y,P', w) . (3.8c)

The second and third terms on the right of (3.8c) result
from differentiating the time ordering; the second term
comes from the commutator (3.4) between F„„(s)and

F,.(w), and the third from the commutators (33b)
and (3.3c) between F„.(s) and C(x,P) or C*(y,P').
Higher Green's functions will satisfy equations similar
to (3.8c), with a sum of a-function terms on the right.

The homogeneous Maxwell equation (3.1d) gives
simple equations when applied to Green's function.
For instance,

8
G„,(x,P; y,P'; s}=0.

88p
(3.8d}

S„~»G„(xP. y,P', s) = ie do,—.(w)

&&(0I &{C(x,P),@*(y,P) F„,(.) F..(w))10&. (3.»a)

One can also obtain path-dependence equations for
the Green's functions from the path-dependence equa-
tions (3.5) for the field variables. We shall treat the
Green's function

G„,(x,P; y,P; s)
=(01&{+(*,P),~*(y,P') F,.()}l0&, (3.9)

which is the simplest example where all the general
features occur. We are interested in the change of 6
due to a change of the path I' by an infinitesimal area
cr „„atthe point m. The change will consist of two parts.
The first is obtained simply by applying (3.5c) to the
factor C in (3.9):

8 8 8 When expressing the time-ordered product on the right

G ("sw)=ie G,(z, P z, P w). . . of (3.10) as a Green's function, one has to subtract
a„sasai„soterms similar to the second term of (3."/b). Thus,

+il — a-— a,. Ia'(s —w) (3 8b) 8„Gi»„,( , xPy, P'; s) = ie dao, (x,P—; y, P', s,w)
f a a

When applied to the Green's function

G„., (x,P, y,P, s,w),

+e {~o'o„(w)ago—igo'oy(w)pro)

XG(x,P; y,P')a~(s —w). (3.11)



The second possible CG'ect of the deformation of the
path is the change of thc time ordering itself. If part
of the path I' was originally tilnelikc earlier than the
point s, but became timclikc later after the change, we
obtain a contrlbutlon froIQ thc commutator. On apply-
ing the commutation relation (3.3b) we obtain the
following additional change in the Green's function:

&")G,.(~,P,y,P', s) = —e (&].S,o—&g„b,o)5'(s —()

as vectors in a Hnear space. Wc denote a typical vector
by the symbol

~
C). The path-dependence equations of

the form (3.10c) are assumed, so that a vector is fully
spcc16cd once thc functions aI'c given fol one choice of
path. FurtherDlore wc only consider functions which

satisfy 'tile llolllogcllcous Maxwell cquatlo11 (3.8d);
indeed„we are forced to iInpose this limitation in order
that the path-dependence equations be consistent.

Ke now de6ne the following vectors in the dual
spacc-

(8„„...(xi,Pi,x»Pg, ",yi,Pi', , si, i C)
=C„,,...(xi,Pi,x»P», yi,Pi', , si, ). (3.13a)

&&G(~,P; y,P')kg{i(b—«)} (3»)

t() (8„,(x,P; y,P'; s) i

Thc fliilctioil e()0—so) 1s 'tlic flliictioil whicll is &1
according to the sign of the argument. The factor Applying the path-dependence equations (3.10c) to
-,'$(e($0—so) } is thus equal to +1 if the time ordering (3 13) we notice that the vector (8„„(x,P; y,P', s)

~

of the path element d$ and the point s is changed by satisfies the path-dependence equation
thc change of the path, otherwise it is zero. Equation
(3,12) may be rewritten in the form

5 &'&G„,(x2'; yP'; s) = af (8 s—())b„, df o„(&)8—„) ie —do„.(w)(8„,,.(x,P; y,P'; s,w)
~
. (3.14a)

XV(s—g)G(*,P; y,P). (3.10b)

The integral in (3.10b) is to be taken over the area be-
tween the old and ncw paths.

Wc now observe the crucial feature that the sight-
hand side of (3.10b) cancels against fhe second term of the

right hand side of-(3.11).The final result is thus

"o„G„„(x,P; y,P'; s)

=—ie do,.(w)G„„,.(x,P; y,P'; s,w). (3.10c)

The higher Green's functions obey simila, r pa,th-
depcndcncc cquatlons.

Equation (3.10c) shows that the path-dependence
equation of the covariant time-ordered products is
slmllar to that of thc 6cld varlablcs thcmsclvcs. Thc
ordinary tlInc-ordclcd pI'oducts satisfy somewhat Inorc
comphcated path-dependence equations, which contain
terms such as (3.10b) that arise from the change of the
time ordering. Such terms are exactly canccBcd by the
delta, functions in the de6nition of the covariant time-
ordered product.

Condensed Notation for Path-Dcycndent Quantities

Ke noir wish to write the 6cld equations and path-
dependence equations for the Green's functions in our
condensed notation. The method of doing so is a per-
fectly straightforward generalization of the procedure
followed in the previous section. Wc consider the totality
of functions

~ /~ y&e~.- (*4~ 4~»~ »' '
) y4~ »y»~ &1

' ')si)s» '')

Similarly, the general vector in the dual space wiH

satisfy the path-dependence equation

5„(8„., (x,P,x»P»; y,P ', ; s, . ) i

ie d—o;.(w)(8„,,.(xi,Pi,xiPg,

y„P,',"",s„w," )i., (3.14b)

where S„represents the change in (8~ due to a small
change in the path Pi by an amount J'do, (w).

We arc particularly interested in the vector obtained
by setting the functions 0 equal to the Green's func-
tions G, and we denote this vector by the symbol ~G).
Thus, from (3.13a),

(8„,,...(xi,Pi,xg,P», yi, Pi', , s,, )G)
=6„., (xi,Pi,x;,Pi, ~,yi,Pi', , si, ~ ). (3.13b)

Following the procedure of the X(t ' theory, we next
define operators C (x,P), C ~(x,P), and F„„(x)as follows:

(8„.(x),Pi, ~, yi,Pi', , si, ) ( C(x,P)
=(8„,(x„P„*,P,";y„P,',";s„")~, (3.15a)

(8„,...(s„P„"",y„P",,"",s„*")(C(x,P)
=(8„,(xi,P), , yi,Pi',x,P, ;si, )i, (3.15b)

(8,....(xi,P» ~, yi, Pi', ~, si, ~ ) i P„„(x)
=(8,.„„...(x),P), ",yi,Pi', , sip, ) (. (3.15c)

Wc also introduce quantities U(x,P), U(a,P), and
X„(s),analogous to the ))'s of the previous section. They
are dc6ned to correspond to thc $-function tcrIns on the
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right-hand sides of (3.8). Thus

(A„,...(»,Pi, , yi,Pi', ~, si, ) i U(x,P)

=Q(H (xi Pi [x P] yiPi' . .si .)ib'(x —x) (3.16a)

{H„,...(»,Pi, . , yi,Pi', , si, . ) i U(x,P)

=Q (8„.(»,Pi, , yi, Pi, ,[y„,P„'], ; si,
~

6'(x—y„),
H„)„...(»,Pi, . , yi, Pi', ~, si, ~ ) i X„(s)

8 8
=Z s,— s,.)()i., i,.&,...(x„P„";y„P,', ";s„"Lsj" )18(s—s)

BSpp 8Spir

(3.16b)

Ze 2— fit )
id&,(H„i,...(xi,Pi, , yi, Pi', ~, si, ) i P(s—(), (3.16c)

I

where pa. are the subscripts corresponding to the co-
ord1natc sp. Thc oPcxatoI's U~ Uy Rnd Xgp cRn RlterTla"

tivcly be delned from their commutation relations with
the 4's, 4*'s, and P's. It follows from (3.15) and (3.16)
that

(3.17a)

[U{*P ) 4'*(* P )]=EU(,P ),~..(»)]=0 {31»)
LU(,P ),4*(*.,P.)]=-b'(*—*), (3.18a)

[U(*„Pi)4(» P,)]=[U(*,P,)P„,(»)]=0, {3.18b)

XS (*,—»), (3.19a)

ye(», P,), (3.19b)

[X.( ),4'(*.,P )]=-' «,~'(* -l)
I'2

&4" x2 I'2 . 3.19c(, ) ( )
FUI'tbcl IQOrC,

(Ho~ U{x,P) =(Ho~ U(x,P)={HO~X„(x)=0. (3.20)

E(&'—) ')4(*,P)—iU(~,P)] IG)=o (3 2»)

E(a' —~')4'(x, P)—iU)(x,P)][G)=0, (3.21b)

As in the case of the scalar fmld, Eqs. (3.17)-(3.20)
define U, tj, and X„completely. Perhaps it is worth-
while stressing again that (3.1/}-(3.19) are in no sense
quantum-mechanical commutation relations.

Thc cquatloIls foI" thc GI'ccn s functions such. Rs

(3.8) can easily be expressed in terms of the operators
wc have Just dered. Thus

The derivation of (3.21) is exactly the same as the
derivation of (2.25). Apart from the last terms in the
square brackets, Eqs. (3.21) have the same form as the
6cld equations.

The path-dependence equation (3.14b) may be
written as follows:

(&„.(»,Pi,";yi,Pi', , si, ) t
S„e(x,P)

=(&.(» Ps . yi Pi'

X[ ie4(xP)f) p.(s)].
Since the vector (H

~
on the left is a general vector in

the dual space, we may write this equation as an. opera-
tor equation

5„4(x,P) = k4(x,P)P—„(s)0,. (3.23a)

In the same way @re can write the following path-
dependence equation for 4":

S.e'(*,P)=@4*(xP)5'„{s)~,. (3.23b)

Thus thc path-dependence equations~ hlM the Beld
equations) cRn bc expressed ln R compact forIQ 1n ouI'

linear space. Again, the form of the equations (3.22)
is identical to the form of the path-dependence equa-
tions (3.5) for the field variables.

It should be noted that the path-dependence equa-
tions and the 6eld equations are treated diGerently in

our formalism. When de6ning our linear space, we ex-

clude all functions C which do not satisfy the path-
dependence equations. The path-dependence equations
thus appear as equations on the vectors (H ~

of the dual

space [Eqs. {3.14)], and fmally as the operator equa-
tions (3.23). On the other hand, the 6eld equations
select out a particular vector

~
G) from the linear space

of vectors ~C). They are not operator equations, but
equations on the vector ~G).

8 ' 8 8
P„„(*)ie —— 4—*(*„P,)e(g„P,) ~

.. .,=-8' BXIp BX2p

Agxjhary Vari.ables

%c now wish to obtain R perturbation solution fo1

{321c) the system of field equations (3.19} and path-depen-
dence equations (3.23). We shall do so by introducing
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~ ~ ~ ~
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v(p, x) =1+ref d(,I„p)

= V-'(P, x).

TllUs comparing (3.36) wltll (3.38), wc conclude 'tllRt

the integral fdy Y{y)x(y) does generate a gauge trans-
formation when it is commuted with any of our auxiliary
quantities. In particular, the integral J'dy F(y)x(y)

A~~p(k)4V)+ ' ' ' (3.33b) commUtcs with ally of oU1' path-dependent quantltlcs
P C, 4, and Ii, since such quantities remain invariant

(3 33 )
under R gallgc 'tl'Rllsfollllatloll.

Equations (3.24a) and (3.24b) may then be written FieM Equations

C (x,P) = V(P,x)y(x),

The functions V and V satisfy the equations

V(x,P') = -I',eA„(x)V(x,P),
gp

We now reexpress the field equations (3.21) for the
path-dependent quantities as field equations for the

C,*(xP) V(P x)p(x) V-i(P x)gs(x) (334b) auxiliary quantities. Our aim is to show that the
auxiliary Green s functions can be expressed as a sum
of Feynman diagrams in the familiar manner.

The first term in the curly bracket of (3.21a) is
8 easily rewritten in terms of the auxiliary quantities.

From (3.34a) and (3.35a) it follows that

8
V(x,P)=fez„(x)V(x,P).

8$p,
(3.35b) C(x,P)= V(x,P)~ —feÃ„(x) iq(x), (3.39)

BXfs Bxp

and thel efol'e

(0'—ll')C (x,P)= V(x,P)
Equations (3.24) do not define the auxiliary quanti-

tlcs Q, $, Rnd 2 uniquely. If GIic Illakcs the lllfilll tcslnlR1

transformation

y(x) ~y(x)+k),x(x)j(x),
y*(x) ~ $*(x) fed(—x)P(x),

~x(x)
A„(x)-+ A„(x)+X-

8$p

(3.36a)

(3.36b)

4 V(y)x(y),4(*) =~ex(x)4(x),

the path-dependent quantities defined by (3.24) re-
main unaltered. The transformation (3.36) is precisely
analogous to a gauge transformation in the usual
formahsIQ.

We shall have to apply the transformation (3.36)
in writing down the equations of motion, and it will
be usefu1 to construct the generator of such a trans-
formation. Let us de6ne

8'.(y)
F(y) = I'ee(y)e(y)+—~e~(y)i'(y)+- (3 3&—)

~3'~

From the commutation relations (3.30) one obtains
the equations

(8 —i'„(x)
f

—II' y{x). (3.40)&ax„"i
It is not much more dificult to express the second

tcrI11 111 (3.21R), llallMly flic fUllctloll U, lll tcl'IIls of
auxiliary quantities. The function U is de6ned by
(3.17) and (3.20). One can show immediately from
(3.30c), (3.30d), and (3.34) that the quantity V(x,P)q(x)
llas precisely tllc collilillltRtloll 1'clRtlolls (3.1t) w1th

C (x,P), C*(x,P), and F„,(s). Further, from (3.31) and
the fact that q commutes with V, we deduce that

(Hoi V(x,P)g(x) =0.

Hence the quantity V(x,P)))(x) satisfies all the re-
quirements of (3.17) and {3.18), and we may write

U(x,P)= V(x,P) r)(x). (3.41)

V(x,P) j

&ax„

&(@(x) y'y( )xi—r)(x)
~
G)—=0. (3.42)

From (3.21a), (3.39}, and (3.41), we may therefore
write the equation

Eqllafloll (3.42) IIIlpllcs (3,21R). Tile collvcl'sc ls llo't

dy I'(y)x(y)~4 (x) =—fex(x)4*(x) j (3 38b) true, since (3.21a) is an equation for the vector ~G},
which does not dcfine the vector ~G) uniquely. Since

Bx(x) those components of
~
G) which are not determined by

&y F(y)x(y),&,(*) = (3 38c) ~G) have no physical significance, we can define them
8$IS in any convenient manner, and we shall require that



(3.42) be true. On multiplying by V(x,P) and applying
(3.33c), we obtain the field equation in its final form:

the operator f;(x) with the path-dependent quantities
defined in (3.24), we find that f'.(x) fulfills all the require-
ments of the function X„(x),defined in (3.19) and
(3.20). We might therefore be tempted to writei 9

]
— — —~eZ„[y(x) —((i'y(x) i—i7(x) f G) =0. (3.43a)

&ax„ (3.47)X,(x)=f;(x)

and to write (3.21c) in the form
The path dependence has been removed from Eq.

(3.43a), which is identical to the equation satisfied
by the Green's functions of the Lorentz-gauge theory.
In our present derivation we have made no reference
to quantum-mechanical operators P, (f *, or )1, however.

E uation 3.21b) ma similarl be ex ressed. as an
eq

8 (8J,(x) 82„(x))
I+a.(x)—4'(x) (G) =o (3 48)

ax„& ax„ax„)
( y y p

uation involving auxiliary variables: Equation (3.48) is not consistent, however. By dif-
ferentiating (3.48) with respect to x„,we obtain the

~ ~+kZ„~y~(x)—p' *(x) i'(—x)
~
G) =0. (3.43b)

8 8 $8Jy 8Zp)

ax„" ax„&ax„ax„)
and, from (3.34) and (3.35),

(3.46a)

fa8)—ie) — ~C*(xm,P2)C(xi, Pi)(„.,
&ax„ ax„)

Before going on to express (3.21c) as an equation for
our auxiliary variables, we shall introduce an expres-
sion for the current and shall 6nd the equations for its
divergence. %e thus de6ne

8 8i (*) ~~.(P(~& ((~) ((~) P(~—))
8$p Bgp

—e29,(x)j2&'(x)j(x). (3.44)

Again, the definition of g„in terms of (t, 4, and 2 cor-
responds to the de6nition of the quantum-mechanical
operator J„in terms of (t, (t. *, and A. From (3.43) we

can easily show that

ra~.(*)
+en(x}e(x)—en(x)0'(x)

I I G) =o (3 45)
k ax,

Equation (3.45) is the Takahashi-Ward identity in our
notation.

We now examine (3.21c).From (3.24c), we may write

ag, (x) 8&,(x))
I[G)=0.

ax, ax„)
The variable g does not satisfy this divergence condi-
tion. Instead, it satis6es the divergence condition
(3.45).

We therefore require a generalization of (3.48), which
we shall achieve by generalizing (3.47). The commuta-
tion relations (3.19) define X„within the original linear
space of our path-dependent Green's functions, but
they do not fully de6ne it within the enlarged linear
space. %e ale free to extend the de6nltlon into the
enlarged space in any convenient manner, but we must
do so consistently. The definition (3.47), as we have
just seen, is not consistent with the 6eld equations.

Vfe shall generalize the de6nition of I, by writing

X.(*)= t( )x+ &yx.(xa)F(y), (3.49)

where the function g has still to be speci6ed. %e have
shown that the second term of (3.49) generates a gauge
transformation and that it therefore commutes with
the path-dependent variables 4, C~, and F. Further-
more, (Ho~ F(y)=0, by (331) and (3.37). The right-
hand side of (3.49) therefore satisfies the conditions
(3.19) and (3.20) which define the operator X„(x).

Equation (3.48) is therefore generalized to read:

8 82„(x) 82„(x)
~

~+y„(x)—ix„(x) ~G)=0, (3.50)
8$~ 8$p, Oxide

=X.(x).

—4 {x) +kS„~y*(x)ax„)
(3.46b)

with the term X„{x)given by (3.49), and the operator
F given in turn by (3.37). Equation (3.50), like (3.48),
does imply the truth of Eq. {3.21c).

Ke now have to choose the function y, in such a way
that the consistency condition

The first two terms in the square brackets of (3.21c)
are thus easily expressed. Furthermore, if we use (3.30e)
and (3.30f) to calculate the commutation relations of

((ag,{x) 8X,(x))—i
/
fG)=0

k ax„ax„) (3.51)



l75

0

is sa
' . (3.45) we observe tha w18 satlsGcd. Fl0m

this by writing'
the solutioncond&t1ODS

t9

X,(x)=1;(x)—

8
x =— CI '8'(x —y).X.(xa') =— (3.53)

E . (3.50) as follows:%C therefore write Eq.

88 (BS„(x) BA„(x)
-Bxp k Bxp 8xp

iG)=0. (3.54)X zeg—{x)y(x)+zeg(x)y*(x) I

"*x . (3.52)z-ey(x)y(x)+zeg(x)y (x)
k ax„

the required forID(3.52} does have the reqFurthermore, 3.
(3.49), with

f„(x)=-',z Cx'hp(x —x

xBh(x')) Ba(x)
Xi g,(x')+, , a

gp

Bh(x')
dx'ap(x —x')

8$y
dx'hp(x —x')h(x'),8'

'n the function a. Thusthen absorb it m eand we may

(3.5/b)Cx'hp(x —x')g, (x')+f,(x)=gz x p

tion (3.57b) to (3.54) and puttingA 1 ing the solutionppy

e ma rewriteu x) is arbitrary. We m yvrhere thc function c x ls
the integr'al

'
tent with the divergence co

50) i't llllplies Eq.f the form (3. , ilnce 1t ls otion and, since
'

are ( . 3.54).
.21c) as required.

6eld equations are . 3.Our 6nal e
'

are
(3.43a} can easi y cEquation

f

, ~e(*')
(x)—e dx 22 p(x —x'x —e ", —x' S„(x')

Cx'sire(x —x')1'„(x')
~( }=— d*. ..—~, ' G =0. (3.5g)

uu an
'

ore enera solutions of (3.54} byc can

g ce to the terms
ra e . s correspon oracket. Such solutionsbra e . s

another solution of . , 1

+z x2 pd '-'6 (x—x')J„(x)d — —' ' J. (x')j(x') a„(x)—z dx'~ S„,—e

dx' ,'hp(x —x')g(x )- tG) =0. (3.ss) p
' ' — Cx'i 8„,—e Q-'

In 1n
it has

where e is any
Equations (3.55) an

we wou ld have obtained i we
Lagrangian

X~z&p(x—x')t;(x)
~

)=z p —' ' G =0, (3.59)

~v Is8 Bh

8x~ 8xp 8xy ax,

ressed in integral for a
3.54), wc ilotlcc

b CRD bc cxplcssc 1

Sllnl Rrl %'Ry. Turn1ng to . )

the general form

where thc consistencyw cre coition

(3.56b)

unwaryu u %1th Feynman bound. E nation (3.56) wit . ull1s sat1s6e . qu mIt

orx„x yrea Inore general forln fo9 One can obtain a more ge o
~ octal e eS offactor (a/Bx )~

atlSfglIlg pQy =vector a sa y
tions ln noIlcovarlan
Ref. 10.

1(BA„
zan fqP (

-- zeA„[@—-—J

uations (3.55) ane usuRl %ay. qua . nRn uant1Eed. 1D:t
(31.58) therefore lea

b rcwrltlng C QSH1ay also be shen by
'

e
en's funct1ODS. q

ovariRDt gauges ' the
h ice @=I correspon s oc oc

1Ccxpr'css r ourIf we wish we m y
3 Qtltlcs 1n thc Sc w1ngRuXlllary quRQ 1



STANLEY MAN DELSTAM

FIG. 2. Diagrams %'hich correspond
to renorInalization of the path-dependent
electron @rave function.

We shall abvays use indices from the beginning of the
Greek alphabet to denote components in isotopic space,
indices from the middle of the Greek alphabet to
deDotc components In ordinary space. Note that I«,
being a charged field, is path-dependent.

The path-dependence equation is a straightforward
generalization of (3.5):

tion by making the correspondence p-+ 8/8I«, g*—&

6/bI«v A~ ~ 8/bf'v Wc. 'tllcll obtRIII equations whlcll
are essentially equivalent to those of Zumino. '0 It is
not so straightforward, however, to express the equa-
tions for our path-dependent quantities in the Schvtringer

functional notation, and we have therefore introduced
our present notation.

The auxiliary Green's functions may he used to cal-
culate the S matrix in the usual vray. Thc reduction
formulas of the path-dependent formalism relate the
8 matrix elements to the mass-sheB singularities of the
path-dependent Green's functions G in p space. It can
be shown that the terms on the right of (3.29) which
involve integrations over $ do not lead to such sin-

gularities, so that we may use the auxiliary Green's
functions G instead of the path-dependent Green's
functions G. Strictly speaking it is not quite correct
that the terms on the right of (3.29a) which involve
integrals over f do not contribute to the singularities of
G. In an integral such as J' p*dgI,GI,(» ~ ~; y, ~ ~; p, ~ ),
we obtain a singularity from the diagram in which the
external photon hnc lcadlllg 'to tllc po111t $ Is attaclled
to the external (scalar) electron line leading to the
point x (Fig. 2). Such a diagram is associated with the
renormalization of the path-dependent electron wave-

function and makes Do contribution to the 5 matrix.

&.F„'(»P)=gs.s,F„,&(x,P)F,.s(s,P')~p. . (4.2)

As usual 8 F„ 18 thc chaQge of the varlablc
caused by a change in the path by an in6nitesimal
area o„atthe point s. The path I" is that portion of
P leading to s. Equation (4.2) requires the following
consistency condition, which is analogous to the
homogeneous MaxweH equations:

LF;,'(x,«,P),F,", s(y, «,P') j=0,

$Fs, (x,«P),F;s&(y, «,P')j
8 8 )= —ebs 8g, —8;; — 5'x—y

By&'

Byte)

(4.3a)

+ss s, d&;8'(x ()F;p(y,«), —(4.3b)

LFo' (x,«,P) Fs'(y, «P')j
d$ ~'(x 5)Fo'—(y «)

The equal-time commutators between the P's wiH
contain terms analogous to (3.3) and (3.4). Thus

aF„.-(»P)
—=0-.

8/Is

'O B. Zuminov J. Math. Phya. lv 1 (&960).

(4.1a)

The massless Yang-Mills Geld appears to possess aH

the essential complications of the gravitational 6eld
vrhile lacking some of the algebraic complications. It is
therefore instructive to consider this 6eld before going
on to the gravitational Geld. We shaH treat aself-
interacting Yang-Mills Geld, since interaction vrith

other Gelds does not introduce any Dew features,
Thc path-dependent formahsm for the Yang-Mills

6eld has been examined by Bialynicki-Birula. s The
procedure followed is analogous to that used for the
electromagnetic Geld, edith the difference that the Yang-
Mills 6eM plays the dual role of the gauge Geld and the
charged Geld. The Geld equations are simpler ie
eppeuramce than the Maxwell equations of electro-

dynamics, since there is no additional current term.
They take thc form

+s& s~ ~4&'(y —()Fs'(»). (4 3c)

It is not difficult to check that Fqs. (4.I)-(4.3) are
consistent %ith onc another and vQth Lorcntg trans-
formations. In fact, the equations of motion and com-
mutation relations may be derived from the Lagrangian

~= —'LF""(»P)j'
Onc may de6ne path-dependent Green's functions

in the usual way. As in the electromagnetic case, it is
necessary to include 5-function terms if the Green's
functions are to be covariant. The deGnitions are there-
fore as follows:

~4r

G vv, v'j (»)PIpgvPs)
= (OI T(F„„(»PI),F;;~(»Ps)) I 0), (4 4a)

G"~s;,gg(», PI,»,Ps)
=(0I 2'&Fs' (&~ PI) Fs«S(» Ps)}I0&

+Q.&r;«S'(*&-»). (4.4b)



Higher Green's functions may be defined in a similar
%ay.

The Geld equations (4.1a) may be rewritten as equa-
tions for the Green's functiori, analogous to Eqs. (3.8)
for the electromagnetic Green's functions. Thus the
two-point Green's function satis6es the equation

8
pt pp(»tPitx3tP3)

8$&p

(3.8 8
B„Ib.pb'(*.— ). (4.5 )

EBx3p Bx3p

The four-point Green's function satisfies the equation

8
pp, ptt, px, rtt(»Pltx3P3tx3f 3tx4P4)

Bgi,p
8 8

b..— 8„ib pb4(xi —x3)G&3„i„„(x3P3,x4P4)
(Bx3p Bx3p

+two similar terms with 2++ 3, 2 4-+ 4

and we need not explain it in detail again. VVe con-
struct the linear space of the totality of all functions
Cp„... '"(xi,Pi, ), We then construct the dual space
and define the vector (8„,... "'(xi,Pi, )~ in the
usual way. We next deane the operators F „„(x,P) by
the equations

(&p'-'"(»,Pi " ) IP "(»P)
=(8,.„„...P "'(xi,Pi,x,P', ) i. (4.7)

We also define an operator U(x,P) which corresponds
to tile right-hand side of (4.5):

(8, P-(x„P,)," tU, -(»P)

tt8 8

. &Bx„, Bx„.
'

X(~pi, "]pp]" (xltPlt ' ' ' [s"tP"3 ) I

Xb,b4(x x,) —gQ—4 ~3

3gplpp 4fkl'b (*i $)G plF&px Ttt(xSP3tx3'P3tx4P4)
I'2

+two similar terms with 2 ~ 3, 2 ~ 4. (4 5b)

The right-hand side of (4.5b) is obtained by differentiat-
ing the time ordering and applying the commutation
i'clatloils (4.3). Higllel' Gl'ceil s fllilctloils will satisfy
equations similar to (4.5b).

Equation (4.1b) implies that the Green's functions
satisfy equations such as

X(+.& ...p- ] ] - (xi Pi " ) ~
B4(x„—g) (4.S)

where y and pr are the indices corresponding to the co-
ordinates x„,and the superscript (yjb in (4.8) indicates
that p ls to be zeplRced by B. The opelatol U IQRy be
de6ned by its commutation relations

LU. (x],Pi),P„P(x„P3)1

/8
b.. b.p ~b pb—4(» x3)—

&Bx3, Bx„ i
8

pptpp G pp, pX(xltPltx3tP3)
8$yp

(4.5c)
+gp-p.

drab'(»

$)P,.&(—x3,P3) (4.9).
The path-dependence equations satis6ed by the

Green's function can be obtained from (4.2), by follow-

ing reasoning identical to that used for the electro-
magnetic field. Again the term arising Irom the varia-
tion of the time-ordering cancels against the term ob-
tained from the b function in the Green's function t the
second term on the right of (4.4b)), and the final result
ls

G p„„,(»,Pi,x3,P3)=gp ]ftr ](x3)G p,p, i

X(*,P,*„P,*,P '). (46)

(Upi U„(xi,P,)=o, (4.&0)

to complete the dednition of U.
In our present notation, the 6eld equations (4.5)

become

Note that the right-hand side of (4.9) has terms cor-
responding to the right-hand sides of both (3.&9a)
and. (3.19b), this is because the variable F in the 'Fang
Mills 6eld plays the roles of the gauge 6eld and the
charged 6eld. Equation (4.9) must be supplemented by
the equation

In this equation, 5, is the variation of G caused by a
variation of the path I'i at the point x3, and I' j' is the
portion of I'j leading to xe. The higher Green's func-
tions satisfy similar path-dependence equations.

~

~

8
p„:~*,p) —*tt,.(*,p)) y~ = o.

BXp

The path-dependence equation (4.6) is

b*~, (*,P)=gp.p,~..p(x,P')P„:(x,P)~„„

(4.11)

The condensed notation which we shall use is where P' represents the po~tion of I' leading to the
very similar to that used in the two previous sections, point s.
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sense that they both hive the same commutation rela-
tions (4.9) with the operators F,.~{x',P}.

Once we have defined the operators A„(x),we
can construct our enlarged dual space of vectors
(H„... '"(xi, ~ ) j. We can then construct the linear
space of vectors ~G) and can define auxihary, path-
1ndcpendent Green s functions 6, Thc path-dependent
Green s functions G can bc cxprcsscd in terms of thc
G's by formulas analogous to (3.29). We shall not give
the details, which are the exact analog of the cor-
responding details in electrodynamics. Ke can also
write equations similar to (3.32) for the operators I).

Gauge Transformations

The gauge transformations are given by the equation

A. „(x)+A„-(x)
ax-(*)

+~ +),"~.x.(~)A'(~)) (4 24)
8x~

jf we compare (4.24) with (3.36) wc Iiotlcc tllRt terms
col'IcspoIldlIlg 'to tllc llgll't-lland side of (3.36R) Rlld
(3.36c) appear on the right of (4.24). This is once more
due to the fact that the Yang-Mills 6eld plays the dual
role of gauge 6eld and charged, 6eld.

Let us 6rst investigate how the operators de6ned in
(4.13) transform when A undergoes the transformation
(4.24). From (4.13b}one can verify directly that

TJl.e function V transforIns ln a sllTBlar %'ay:

V.,(*,P) ~ V.,(x,P)+ Xg~,&.~,(x)V.,(*,P). (4.26)

The easiest way of verifying (4.26) is to show that
{4.19), ~hi~h may be taken as the defining equation for
V, remains invariant when 2 undergoes the trans-
formation (4.24} and V the transformation (4.26}.
Under such a transformation, the two sides of (4.19)
transfo1TQ as foOOKS:

V „(x,P) —+

8$p 8Sp,

air, (x,P) a ) a
V ~(x,P)+Age„(), V ()(x,P)+x, V (){x,P) i= — V,(x,P)+egg„,ax„ax„)ax„

ag, (x,P)
X V I(x,P}+Kg'e„I,air„x.{x)S„&(x)V r{x,P), (4.27)

8
from (4.19),

ax, (x)
ge~,&„'{x)V I(x,P) ~ ge7(),A„'(x)V ()(x,P)+Kg~, (). V ()(x,P)

gp,

+Kg'e, i,e,r,y„(x)A„r(x)V ()(x,P}+Kg'e„(),e()r,Z„'(x)x„(x)V r(x,P)

ax, (x)=ge, (),A„'(x)V I(x,P)+Age~i; -- V ()(x,P)+Kg'e„,„e,i'„(x)S„r(x)V()(x,P), (4.2g')
8gil

from (4.Nd). Comparing (4.2'I) and (4.28), we observe
that the changes in the two sides of Eq. (4.19) are the
same, so that (4.19) is invariant under the transforma-
tion (4.24), {4.26). Thus the change in V is given by
(4.26).

We can now find the change in P as defined by
(4.13):

I'„p(x,P) -+ P„„~(x,P)+Age, I,y, (x)V,(){x,P)f„,&(x)

+Age, i,v „(x,P)x,(x)f„„'(x)/from (4.25) and

(4.26)g

The variable P„.(x,P) is therefore invariant under the
transformation (4.24), and we are justified in calling
it a gauge trans formation.

To de6ne a generator of the gauge transformation,
%c construct thc operator

a~'{y)
Vs(y) = — +~ es.'(y)~;(y)

~3'»
8

~pk —

&ps) ga p gp, p ~ 4.29
Bfp,

The integral l), j'dyv()(y)g()(y), when commuted with
Z„(x),does give (4.24). We thus conclude that thc
»tcg«1 J(Eye(y)Xp(y) commutes with all our path-
depcildc11t. VRI'Iablcs P»~($&P). Furthermore since V'

undergoes tlm transformation (4.26), wc conclude tha, t

~y Vsb)xn(y), V-.(x,P)

= —go~().y(){x)V,(x,P). (4.30)

Oui RHII is now to express thc fiel equations (4 11)
as equations for the auxITtary variables. +he 6rst terln



of (4.11}18 caslly transformed:

8 —P„„.(g,P)
8$p

8= V „(g,P) — J,„~()x+ „c,v I(g)A„'(g)f„,&(g)
8$fs

Prom (4.19)j

Thus'

U,.(*,P)= V.„(x,P),„()
+ ~»s{y)V-.(g,P)x p(*,y). (4.34)

Thc fac«r V ~ in the second term of (4.34) ls still not
in front of the other factors, but we can move it into
this position by using the commutation relation {4.30)
The equation then becomes

U„(x,P) = V „(x,P)g„&{x)+ dyV„„(x,P) Fp{y)x~p(g, y)

8
y ( p} I,(g}+g,g R(g}I .(g}) (43$}

—g' I v-4P}x l(~A=&'. tAP}&."(*} (43&}
8$p

where

~~.'{y)
=&"(*}+ dy +g~~ ».'{y)~;{y) Ix&s(x,y)

~3'~

Wc have seen that the second, term IU, (g—,P) of g„v(g)=Il„~{g)+dy p'&(y)x„&(g,y)+« „X„(gx)
(4.11) is equivalent to the operator iv ~(—g,P)}t„&(x)
ln thc sense that they both hRvc thc saMc comIQQtR-

tion relations with the operator F„s(g',P). We may
therefore be tempted to rewrite the field equations
(4.11) as follows:

V-.(x»)l J'."( )g+~v &1'( )g
}} 8

hag„

+g&p}}eg,I(g,x}, (4.36)
from (4.29}.

Wc CR11 tlllls gcncrahse the geld cqus tions (4 32)
to read

However, we shall sh

Kq. (4.32) requires th
condition similar to the corresponding condition in the
Maxwell equation of electrodynamics, Rnd we shall

have tQ generalize lt if the condltlorl ls to be satisfjed.
We shall follow the procedure used in electrodynamics

Rnd shall make use of the fact that the commutation
relations (4.9), which define the operator U„~(g,P)
uniquely ln the original linear space, do not define lt
uniquely in the enlarged linear space. We employ this
freedom to find a definition of U, (x,P) which gives

consistent 6CM equations. Ke begin by writing

with ~ given by (4.36}.If we multiply {4.3f) by V
'"m ov~ ~ Rnd Rpl ly {4«R}, we obtain the equ«ion

f. "(~}+e„hA'(g}}„:(~}ie, (x})}G} o(43—8}=
Bxp

The pRtll dependence llas been removed from (4, 3g)
Rnd wc shaH adopt it Rs our fi.eId equation. By taking
thc gauge-lnvarlant dcQvatlvc

Xj„„(x)-i,„(x)IIG) =O. (4.32) V,(x,P)
I

— f„„'(g)hag„"
ow below that the consistency of +".~.'(*)f;(*)-8, (*) IIG}=o, (4.3~}
at its last ternl satisfy R divergence

U„-(x,P)= V.,(x,P)~. (x)+ &y &s(y)x.s'(x,y) (433)

where y„'is arbitrary. Since the second term commutes

with every gauge-invariant operator, the right-hand
side of (4.33) maintains the correct commutation rela-

tions (4.9). All the terms in the equation of motion

(4.32) have a factor V ~(x,P) in front of them, Rnd it
will be convenient for us if the last term in (4.33) also

such R factor, We therefore define

, , {;y)= V(* )P,x(*s).

of thc factor within the parentheses we can easily shove
that the last term must satisfy the consistency condition

t9

+a"s~ '(~})&,'(*}=o.
BXp

{4.39)

Qe have to choose the function g in thc Qefj.nition
(4.36) of 0 so that (4.39) is satisfied.

In order to orient ourselves we shall 6rst find. R-func-
tion 8,",of the form }l,"+8,™,which satisfies (4.39).The



term 8,' will not have precisely the form of the second
term of (4.36), but we shaH then be able to modify it
so that aH cond1t1ons are sat1s6ed. The follovv1ng func-
tion clearly satis6es (4.39):

8 t& 8 )8
8„&II (x)=y,"(x)— i I +gZpSIS(x) iax„ I axI»xI

eee

x a,I
— +g~,.A'. '(g) n.'(g), (44o)

8$p

710. 3. BiagramInatic representation of the equation for the
tv'-point Green's function in the Vang-Mills theory.

vrhere the Inatrices I and Zp represent the symbols
%here

$~~ Rnd eNS~& cons1dcl'cd Rs IQRtrlccs 1I1 cK Rnd 'r. Tile gp(g) —g s g s(g)
superscript (1) on 8 indicates that it is not our 6nal ag„
de6nition of this operator. Equation (4.40) cs,n be re-
vrritten @without using reciprocals of operators as
foHovrs:

8A, '& x ag„&g
+23„t'(x) —A„)I(g)

ax„ i8
8„&')~(x) = Il„~(x)— dy 0.„(*,y)

8$y +g~ p&~~~.&,s(g)ri„'(x)A;(x). (4.46)

By Illtcgl'Rtlng (4.45). m thc llsual way and. usmg (4,43)
X~ a~I- — +g~~e()&„'(y) ~&I„'(y), (4.41) for 8, we obtain the result

ay„
where

( A: (e) &&fee ', e—e(e e')'-&:(»)-'
8,+go„s„XII((g)i — 0,()(x,y) =8 Ib'(x—y). (4.42)

(ax1 )ax1

Thc right-hand side of (4.41) resembles that of
(4.36). The differences are, first that the operator &I in
the second term of (4.41) is ordered to the right of the
other operators vrhereas it should be ordered, to the
left~ RIld sccolld that thc last tc1111 of {4.36) ls Inlsslng.
Let us therefore change (4.42) to bring it into the correct
form (4.36):

(ae, '(y)
8&'e(g) = &I&~(g}— dy~ +g&7&PI)& (yQ» {y)

8
X 0.,(*y)-a"u

with the function 0 still de6ncd by {4.42). In Appendix
3 ere shaH cakulate the value of the expression

8
+&.&.& '(e) )e."(e) (4 ee)

ax.

and shall show that it is zero, so that (4.43) is a peI-
xQissible, consistent cho1ce fo1 the function 8.

We can rewrite Eq. (4.38) in the form

8 (8J. (x) 8A„(g))
ag„& ax„ax,

+gi:(*)—'8.(*) IG)=o, (443)

A'~kg x—x' y„g'—gg„p~ d'g'&~g~ g—gI

X----0s,(x',y)t. , „~IG)=0, (4.4y)

where 0 is de6ned by (4.42). Wc have omitted the
mid(Hc term of (4.43) s,s it Is a pure divergence If wc
wish we may generalize (4.47) by rcplacmg thc pro
paga«r @..~(g—*') by La„—~(a'/ag„ag,)g- j-;g
X(x—x)& wc thc11 obta111 other gs,uges such Rs thc
LRH.dau gMlge.

If thc last term of (4.4f) had been absent wc wogd
have obtained Feynman rules similar to th~se for elec
trodynaDl1cs. The equation for the Green~s function
coUM then be represented graphjcaHy as jn pjg
oiit tile sccojld-last diagram, F()r simplicity
exhibited the equation for the tv'-point Green's
function; equations for higher Green s functlor18 can bc
similarly represented. The three- and four-point
vertices have the following factors associated, %1th
them

I)~{PI&&)(&II&P»P&" & P&)&V&P)

='(2 )"-s,L(p. p),a,+(—p, p,)„a„,—
+(PI-P,},a„.j (4.4s)

~i(PILI; Pa,P,~; ps,y,p; pe, a,~)
=—(2x)"-I".,I(a.,a.—8„.8„,)

(2&(')'&age&ep()(a„,b„-8„,J„,)
(2&) &N()e&esg(a»ea»~ 8~~$„,). (4.49)—
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One could then construct Feynman diagrams by ar-
ranging the vertices (4.48) and (4.49) in all possible
ways. In fact, Eq. (4.47) without the last term is
identical to the equation we would have obtained by
starting from the Lagrangian

1 BA„)' t'BA. BA„
~

+-,'e pv~
— A„~A.&

2 ax„i k ax„ax„
+x~e p~o g,A„~A„&A„'A„'(4.50)

and writing down "naive" Feynman rules in the usual

way.
The presence of the last term in (4.47) shows that

the naive Feynman rules are not correct and that there
are additional terms in the perturbation expansion.
From (4.42), we can expand 0 as a perturbation series

in g as follows:

Op (x y) = —~ P dxg dx„'ar(x x-,)ignis—s Ag (x,)
n=O

X ,'hp(x—g xg)~—ge, r„A„&(xp) ee,„A,'(x„)
~&u

l9

X -hr(x —y) . (4.51)
BX)tr 2

When (4.51) is substituted in the last term of (4.4'I),
we obtain the result

8
dx'dxg dx -'hr(x —x')~go,.s hr(x x&)

n 0 J BXy 2

8
)($gfpggAQ (xg) Ar(xl x2)

Bxg, 2

vertices: ro(pqn, p2po. ,pqy) = —(2')'ge s7pa, , (4.53b)

an over-all factor —1. (4.53c)

In (4.53c), the quantities p~, n and p~, y refer to the
dashed lines, the quantities p2, Po to the solid lines
representing the Yang-Mills quanta. We notice that
the vertex factor is not symmetric in the two dashed
lines; it involves a factor ps, but no factor pq, . It is for
this reason that we have drawn arrows on the dashed
lines in Fig. 3. The factor ps, in (4.53b) is associated
with the line directed away from the vertex.

The presecription for constructing Feynman diagrams

,
'is therefore to dra~ three-particle and four-particle
vertices with factors (4.48) and (4.49), and also polygons
with any number of dashed lines and with factors (4.53)
associated with them. The three- and four-point
vertices, as weH as the vertices of the polygons, are
then to be joined by solid Yang-Mills lines in all
possible ways.

The Feynman rules for our theory are the same as
those for a theory with 6cititious scalar particles as
well as the Yang-Mills particles. The Feynman diagrams
contain three- and four-point vertices involving the
Yang-Mjjjs lines alone. The factors (4.48) and (4.49)
are associated with these vertices. In addition, the
diagrams contain vertices involving two scalar lines
and one Yang-Mills line. Associated with such vertices
are the factors (4.53b). There is a further factor —1
associated with each closed loop of scalar particles. The
scalar lines only occur as internal lines and only in
closed loops.

Pote added iN manuscript. Faddeev and Popov
(unpubhshed) have shown that their functjonal-
integration prescription' can be related to Schwinger's
formulation of the Yang-Mills theory. ' This therefore
provides an alternative derivation of the Feynman
rules from a quantized Geld theory. Faddeev and
Popov have restricted themselves to Landau gauge.

&(ige,r„A„r(xg) es„A..'(x„) -hr(x„—x'). (4.52)
8$)g 2

The expressjon (4.52) has the form of an integral

which occurs in Feynman diagrams, and the contribu-

tion (4.52) to (4.4'/) has been represented by the second-

last diagram of Fig. 3. The summation sign represents
the sum over polygons with any number of dashed lines,

and corresponds to the summation over n in (4.52).
The dashed lines and vertices are associated respectively

with the factors —,'hp(x, —x~g) and age(8/Bx„) in (4.52).
Thus, in momentum space, the following factors are

associated with the dashed lines and the vertices at
which they end:

APPENDIX A

We first show that the definitions (4.13) do lead to
the correct path-dependence equation for the Yang-
Mills P's. Our results will be almost trivial once we have
found the path-dependence equation for V. We shaH

begin by 6nding the change of V due to a smaB change
of the path I' near its end point by an amount o„„.It
follows at once from (4.20) that

S.V.,(x,P)=go„,8x„ax„)

dashed lines: )
(2m )4 —p'+ io

(4.53a)

where 5, is the change of p', (xg) caused by a change
of the path I' near the point x itself. Ily usjng (4.19)
to differentiate the factor y.,(x,p) on the „ght of
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(A.1), we can transform the equation to read

(8J„(x) BA „(x))
SaV a, (X,P) =g2„2,V a2(X,P)

~

— ~a„v+g'2„2,22r„V r(X,P)(S„'(X)J„&(X) 2—„'(X)J„2(X)}0»
& ax„ax,
(BA„'(x) BX„'(x))

=g2, 2.V 2(X,P)l — Ir»+g2&2r2Var(X, P)2II&ek'(X)A„&(X)~„v DrOm (4.16d)]
Bxg Bxv

BS„'(x) BA „'(x)
=g2, 2, V 2(X,P) — +g2,„pi„"(x)A.r(x) ~o„.=g2~2, V 2(X,P)f„„'(x)o„,Lfrom (4.13b)]a*„a.,

=g2 prV p, (xP) Vr2(X, P)f„.'(x)&r„, )from (4.16b)]

= ge prF„.P(X,P) Vr„(X,P)o„„[from(4.13a)]. (A2)

We can now generalize (A2) to obtain the change in

V caused by a change in the path P at an arbitrary
point s. We write

V „(x,P)= V,(z,P')V, „(z,x,P),
the point s being chosen just beyond the region where
the path is varied, so that the factor V,„(z,x, P) re-
mains unchanged. Applying (A2) to the factor V, (z,P'),
we find

Xq.~(xi) and F, p(x2, P2), and to show that it is given
by (4.9). We begin by finding the commutator between
the operators V 2(xi,P1)g,~(xi) and Vpi(x2, P2). From
(4.21),

L Va„(X1,Pi) 2tv&(X1), V pi(X2, I'2) 7

Va2(X1v~ 1) Vp2(X2vP2) . (A4)
bA „&(Xi)

To evaluate the right-hand side of (A4), we first show
that Eq. (4.19), which defines V, is invariant under the
transformation

S,V ~(X,P)= fS,V, (z,P')]V,2(z x,P)
=ge prF „„P(z,P') Vr, (z,P') V,2(z,x,P)o

„„

=g2.prF„„P(z,P') Vr„(X,P)o„„, (A3)
VpJ(X2vP2) ~ Vp2(x2vP2)

+Xg2par Vr&(X2,P2) d$vb'(xi $), (ASa)—
P2

A„&(x)~J„&(x)+XV„(xi,P1)b„„h'(x xi). (ASb—)

For, under the transformation (AS), the additions to
the two sides of (4.19) are as follows:

from (4.18).
Equation (A3) is the path-dependence equation for V.

By substitutin in (4.13a), we find the path-dependence
equation for, and it does have the required form
(4.12).

We now turn to the verification of (4.23). We have to
find the commutator between the operators V „(xi,P1)

ll' 8
hi Vpi(X2, P2) =Xgep r Vri(X2, P2)b»h'(xi —X2)+pep ri Vr2(X2, P2) i

df„b'(xi $)—
&ax„ &a.,

„

= Xg a2pV r( r2x22v)P~h»(x1 x2)+Xfp rg222 Zap (xv2) V ( r22Pxv)2

from (4.19).

g[g 22„,A „'(X2)Vp„(X2,P2)]=hg 22„V,(xi,P1)Vp„(x2,P2)b„.b'(xi —x2)

d(.b'(xi —&), (A6a)

+~&Parg&llvlalv (x2) Vr2(x2vP2) d(v~ (X1 $)

=Xg2parVrb(x2vP2)bpvfl (x1 X2)+Xfparg&22gp (x2) Vr2(x2&P2) d$„b'(xi $), (A6b)—

from (4.16c). We observe that the right-hand sides of (A6a) and (A6b) are equal, so that Eq. (4.19) is invariant
under the transformation (AS).
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From the fact that the change (ASb) in 2„"results in the change (ASa) in Vsb(xm, P~), it follows that

and therefore that

V (»P) V~~(x P)—g~ rVr(x P)
Wp(x, )

dp, a4(»—$), (AI)

LV v(» Pi)e"(») Vw(xaP2)3= ge-«rVw(x2, Pa) ~S&'(xi h)— (As)

The commutator between the operators V»~(x~, P~)g„&(x~)and f,.'(x2) is easily found from (4.13b):

8 f 8 8
LV.,(»4&i)»'(») f"'(»8= —&. (» +i) -f"'(»)= —&. (~4&i)

l
&-— 4)I4,&'(»—»)

82'(xg) &ax2, axm,

f 8
+ge„,La„,a, (x,)—8„.A, (x,)]8'(x,—x,) = —V.„(x„P,) I

axmp

8,.— 8., Ia»8&(x,-x,)
ax,. 'i

on using Eq. (4.i9) for the derivative of the operator V ~.
We can now finally find the commutator between the operators V „(xq,Pq)y„(xq) and P„(xm):

LV„(»,P))q„&(xg)g„s(xg,P2))= fV, (x&,P&)fi,&(xg), Vpg(xg, Pg)f,.'(x )2j

g~~.r V—w(», P2)f.'(») d$,8'(xg-$)- V „(xg,Pg) Vpg(xm, P2)

8 8
XI ~..— &; I@,~'(xi —*2) D«m (AS) and (A9)j,

axgp axmg

g 6oNFpa (x2&P2)
8 8

d6&'(» —$)—I 8,.— 8„la. a(s,x—x,), (Al.O)
&ax,p ax„)

from (4.16b). We observe that the operators V „(»,Pq)gp(xq) and U„(x&,Pq) do satisfy the same commutation
relations (4.9) with the operators P„(xm,P2).

APPENDIX 3
gn this Appendix we shall evaluate the expression (4.44), with 8 given by (4.43), and shall show that it is zero,

e shall thereby have veri6ed the consistency condition on the Yang-Mills held equations.

We can divide (4.44) into the sum of four terms:

8 ) 8
+g -~ & '( ) ln" ( )= —g. (*)+g ~,~,'( )y.'(*),

& "ax„'"i" ax,
"

) fan'(y)
(-) — &y I 8-. +g"s.&'(*)-I l

— +g r ~'(»&.'(y)
I O. (,y)ax„&& ay„]ax.

from (4.27),

f 8
=g~«s. l O.s(x y), —g'e.s~.'(x) — o~r( y)xI, (&lb)

~ayvaxs' g y axe ~ y)

f» "(», , if+g"..'(»~. (y) lla-, & I .,~. (*) I o„(*,»
axe

8
~ (x)—g~-s.~"(x)~.'(x),

8$g
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from (4.42),

(
+g'-p.&v'(x)

I

—g~vr~- -om(xa) I -.
I

ax. E ax.

8(8 ) 8
g—~-.p I Op. (xa) I .-I g—'p-p~"r~4p(x) om(x, x) I*-. (»d)

ax„&ax,
' i ax,

Expressions (81a) and (8 ic) are equal and opposite, ex-
cept for the different ordering of the factors g„&(x)J,p(x).
Thus the total contribution of these two terms to (4.44)
ls

ge.p, [A„p(x)gp'(x) j. (82a)

(8 )8—
g -, I &.+g &,'(*) 0.„(*,) I.„.(82b)'

&ax„ /Bx„

On adding (Bib) and (81d) and using (4.16d), we find
the result (4.16d), we 6nd the result

in the form

8
+e ~ &'(*.))~'(*) g~=~~A ~ (* *')—

ax„ —
gee~pi) p,8,.P(x—x) . (84)

If we al1ow subtraction of inlnites as one usua11y does
in perturbation theory, we can set the right-hand side
of (84) equal to zero. If we had been working in mo-
mentum space, the iI functi'on in (84) would have taken
the form

Finally, on adding (82a) and (82b), we obtain the
equation

+gp.pe~'(x) I~"(x)=V«pe[~'(x)n "(x)j(
E "ax„'" j"

and we woukl have set (84) equal to zero owmg to the
vanishing of the integrand. Thus, insofar as perturba-
tion theory for 1ocal 6eMs has any meaning at al1, we
may write

( 8 ')) 8
gp-.pl

— bp+gpw& '(*)
I OAxa)I-' (»)

&ax, i ax,

I s., +g..„J,(*) Is, (*)=o.
k "ax„'" )" (86)

We conclude that (4.38), with 8 given by (4.43), is
With the aid of (4.21) and (4.42), we can rewrite (83) consistent.


