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The Feynman rules for the Yang-Mills field, originally derived by Feynman and DeWitt from S-matrix
theory and the tree theorem, are here derived as a consequence of field theory. Our starting point is the
gauge-independent, path.dependent formalism which we proposed earlier. The path-dependent Green’s
functions in this theory are expressed in terms of auxiliary, path-independent Green’s functions in such a
way that the path-dependence equation is automatically satisfied. The formula relating the path-dependent
to the auxiliary Green’s functions is similar to the classical formula relating the path-dependent field vari-
ables to the potentials. By using a notation similar but not identical to Schwinger’s functional notation, the
infinite set of equations satisfied by the Green’s function can be replaced by a single equation. When the
equation for the auxiliary Green’s functions of electromagnetism is solved in a perturbation series, the usual
Feynman rules result. For the Yang-Mills field, however, one obtains extra terms; such terms correspond
precisely to the closed loops of fictitious scalar particles introduced by Feynman, DeWitt, and Faddeev

and Popov.

1. INTRODUCTION

HE discovery of the Feynman rules for the Yang-
Mills and gravitational fields by Feynman him-
self! has solved a long-standing problem in relativistic
quantum mechanics. Feynman only derived his pro-
cedure for diagrams with a single closed loop, but
DeWitt? has recently extended the procedure to di-
agrams of arbitrary complexity. Another general proof
of the prescription for the Yang-Mills field has been
given by Faddeev and Popov,® who used a functional
integration procedure which is probably equivalent to
that of DeWitt.

Feynman and DeWitt obtained their prescription by
a somewhat indirect method. From the Feynman rules
for nongauge particles they obtained the “tree theo-
rem,” which relates the contribution to the S matrix
from a closed-loop diagram to the contribution from a
diagram where the loop is opened at one point. They
then assumed that the tree theorem was valid in
theories with gauge particles; they were thus able to
derive the Feynman rules for the S matrix. The validity
of the tree theorem guarantees that the S matrix is
unitarity, and their results can almost certainly be
derived from an analyticity-unitarity calculation in
perturbation theory.

The question arises whether one can obtain the
Feynman rules within the framework of a field theory
of the Yang-Mills field or of gravity, and it is the
purpose of the present paper to attempt to do so. We
shall take as our basis the path-dependent theory of
gauge fields which we suggested earlier.? The theory was
originally formulated for electromagnetism and for
gravity, but it can be applied to any gauge field. The
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path-dependent theory of the Yang-Mills field has
been treated by Bialynicki-Birula.®

In the present paper we shall rederive the Feynman
rules for the electromagnetic field from the path-
dependent formalism, and we shall then derive the more
complicated Feynman rules for the Yang-Mills field. We
shall derive the Feynman rules for the gravitational
field in the following paper.

The fundamental principle of the path-dependent
formalism was to avoid the introduction of non-gauge-
invariant quantities. Thus the electromagnetic poten-
tials were not introduced, but were replaced by the
electromagnetic field variables F,,. Similarly, the
charged field variables ¢(x) were replaced by the path-
dependent but gauge-invariant variables ®(x,P). For
practical purposes one would like to introduce the
potentials as auxiliary variables, as one does in classical
field theory. By doing so one would be able to calculate
in terms of path-independent variables; one would
transfer to the path-dependent variables at the end of
the calculation. It is well known, however, that one
cannot introduce covariant potentials without en-
larging the Hilbert space and employing an indefinite
metric. For electromagnetism one can use noncovariant
potentials such as those of the Coulomb gauge. One
can then derive the Feynman rules after a certain
amount of algebraic calculation. It is possible to
formulate the Yang-Mills theory in terms of non-
covariant gauges, such as Schwinger’s modification of
the Coulomb gauge, or the Arnowitt-Fickler gauge.
However, the method which was used in electromag-
netism for deriving the covariant Feynman rules from
such gauges is not applicable here, at any rate without
essential modification. To our knowledge no such con-
sistent formalism has been given for the gravitational
field.

§ . Bialynicki-Birula, Bull. Acad. Polon. Sci. 11, 135 (1963).
6 J. Schwinger, Phys. Rev. 127, 324 (1962); R. L. Arnowitt
and S. I. Fickler, bid. 127, 1821 (1962).
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In the present treatment we shall avoid noncovariant
quantities and we shall therefore not introduce po-
tentials as quantum-mechanical operators. Instead, we
shall introduce auxiliary Green’s functions. In for-
malisms of quantum electrodynamics which employ
potentials, whether in the Coulomb or Lorentz gauges,
one can define Green’s functions

G”(x1,- . ';yl,' . .;zl’. . .)
=0|T{p(x1)- - -¢*(y1)- - -4 u(21)- - - |0).

One can also define path-dependent but gauge-invariant
Green’s functions

G’Ml’(xhply' b ;ylypl," try 81, )
=(0]| T{®(x1,P1)- - - ®*(y1,Py’)- - - F (1) - - - }| 0).

The latter Green’s functions can be expressed in terms
of the former. In our present approach, the path-
independent Green’s functions will be introduced, not
as vacuum-expectation values of time-ordered prod-
ucts, but as auxiliary functions in their own right. The
physical, path-dependent Green’s functions of our
theory will then be expressed in terms of the auxiliary
Green’s functions by using the same formulas as in
theories with potentials. The connection between the
path-dependent and path-independent Green’s func-
tions will guarantee that the path-dependence equations
are satisfied, as we shall verify explicitly. We then have
to find the equations which the auxiliary Green’s func-
tions must satisfy in order that the path-dependent
Green’s functions satisfy the correct equations.

For electrodynamics, such an approach has already
been carried out by Sarker.” He found that the equa-
tions satisfied by the auxiliary Green’s functions are
similar, but not identical, to the equations satisfied by
the Green’s functions of the Lorentz-gauge theory. The
difference is due to the fact that he started with
the Maxwell equations 0F,,(x)/(8x,)+ 7,=0, whereas
the Lorentz-gauge theory starts with the equations
[024,(x)+ 7,=0. Nevertheless, he showed that the
Green’s functions calculated by the usual Feynman
rules do satisfy the correct equations. The Feynman
rules were thus derived from a procedure which was co-
variant throughout and which did not make use of an
enlarged Hilbert space.

When we carry out a similar treatment for the Yang-
Mills field, we shall again find that the equations
satisfied by our auxiliary Green’s functions are slightly
different from the corresponding equations in the
(incorrect) Lorentz-gauge theory. As with electro-
magnetism, the difference is due to the dropping of a
term —924,/dx,9x, in the Lorentz gauge. In this case,
however, we shall find that the difference is important,
and that the solution to our equations contains terms
besides those given by the Lorentz-gauge Feynman
rules.

7A. Q. Sarker, Ann. Phys. (N. Y.) 24, 19 (1963).
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Our results will be the same as those found by Feyn-
man, DeWitt, and Faddeev and Popov. They showed
that the correct prescription was to take all Feynman
diagrams of the Lorentz-gauge theory, together with
Feynman diagrams containing closed loops of fictitious
scalar particles. In our treatment we shall find that
integrals corresponding to closed loops of scalar
particles appear directly in the solution of the Green’s-
function equations. We may associate such integrals
with closed loops of scalar particles if we wish, but this
is purely a mnemonic device. The fictitious particles
never occur in external lines, nor do they appear in the
intermediate states of the unitarity condition.

In our present formulation of the theory, the Feyn-
man rules are thus rules for calculating auxiliary
Green’s functions. We can then proceed to calculate
the gauge-invariant, path-dependent Green’s func-
tions, since we shall already have expressed them in
terms of the auxiliary Green’s functions. By using the
reduction formulas we can then calculate the S matrix.
The fundamental reduction formulas of the theory
involve the path-dependent Green’s functions. How-
ever, one can use these reduction formulas to derive
further reduction formulas involving the auxiliary
Green’s functions. Thus, from the Feynman rules for
the auxiliary Green’s functions, one can derive Feyn-
man rules for the S matrix by the usual reinterpreta-
tion of the external lines.

The equations for the Green’s functions are coupled
integral equations between an infinite number of such
functions. Moreover, when expressing path-dependent
Green’s functions in terms of auxiliary Green’s func-
tions, one finds that a single path-dependent Green’s
function is equal to the sum of an infinite number of
auxiliary Green’s functions. It would be clumsy, if in
principle possible, to carry out manipulations with such
infinite systems of equations. We require a shorthand
for expressing the infinite sets of equations as single
equations. The Schwinger functional notation provides
us with such a shorthand; Schwinger’s functional dif-
ferential equation is equivalent to the complete set of
equations for the Green’s functions. Unfortunately it
does not appear to be an easy matter to express the
equations for path-dependent Green’s functions in
Schwinger’s notation. We shall therefore use another
notation in which our fundamental quantity corresponds
to Schwinger’s §/8n rather than to #. We shall indicate
the connection between our notation and Schwinger’s
but we shall not assume knowledge of his notation.

In the following section we shall illustrate some of our
methods by using the A¢? theory. We shall find the dif-
ferential equations for the Green’s functions and shall
use them to construct the perturbation expansion. We
shall then develop our notation for simplifying the
writing of the differential equations. Essentially what
we shall do is to form a linear space of all Green’s func-
tions and to write the differential equations as equations
for vectors in this space. In Sec. 3 we shall treat the
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Fic. 1. Diagrammatic representation of Egs. (2.5).

electromagnetic field. We shall write down the equa-
tions for the path-dependent Green’s functions and
shall reexpress them in our shorthand notation. Working
within this notation, we shall then express our path-
dependent Green’s functions in terms of new, path-
independent, auxiliary Green’s functions. We shall
determine the equations which the auxiliary Green’s
functions should satisfy in order that the path-depen-
dent Green’s functions satisfy the required equations.
On solving them, we shall find that they lead to the
ordinary Feynman rules. In Sec. 4 we shall treat the
Yang-Mills field in a similar way. Here, however, we
shall find that the perturbation expansion contains
terms besides those given by naive Feynman rules.

2. DIFFERENTIAL EQUATIONS FOR
GREEN’S FUNCTIONS

In this section we shall summarize the method of
determining Green’s functions by solving differential
equations, and shall also develop our shorthand nota-
tion. The method is certainly not new but, as far as we
are aware, there is no easily available reference in which
it is described, and we therefore felt it worthwhile to
describe its application to non-gauge fields before
passing on to the gauge fields in which we are interested.

We shall treat the simple case of a neutral scalar
field with A¢® coupling. The field equations will be

(=)o (x)— 3N $(x)}*=0,

and the ¢’s will satisfy the commutation relations

(2.1)

Lo(x,0e(y,1) ]=[d(x,0(y,1)]=0,  (2.2a)
[b(2,0),0(y,0) 1= —i6°(x—y). (2.2b)
We can now define Green’s functions
Ga(w1,%2) = (0] T{¢(w1),6(22)} | 0), (2.3a)
Ga(ar,22,%5) = (O] T{p(w1),6 () ,8(5) } | 0) (2.3b)
Ga(o1,%0,03,%4) = (0| T{p (1) 9 (2) b (), () } | 0},
etc. (2.3c)

For formal purposes we may also define the Green’s
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functions
GO: <0 { 0> =1 )

Gi(x)=(0[¢(x)]0).

One method of obtaining the perturbation series for
the Green’s functions is to use the differential equations
satisfied by them. This is the method we shall use in
the following sections when treating gauge fields. Thus,
G will satisfy the equation

(O 2— u2)Ga21,%9) = ING3 (o1, %1,%2) + 104 (%1 —22) . (2.42)

Equation (2.4a) is obtained by applying the dif-
ferential equation (2.1) to the factor ¢(x1) of (2.3a).
The first term on the right of (2.4a) arises from the
interaction term in (2.1), while the second term is ob-
tained by applying the differential operator — 82/dx,?
to the time ordering itself. In deriving this term it is of
course necessary to use the commutation relation (2.2b).

The higher Green’s functions will satisfy similar
equations. Thus G; will satisfy the equation

(2.3d)
(2.3¢e)

(O 22— D) Ga(x1,%2,%3) = FAGa(21,%1,%2,%3)
+164(x1— x2) G1(ows) + 164 (21— x03) G'1(x2) .

Equations (2.4a) and (2.4b) can be integrated to yield
the formulas

Ga(x1,%) = —FiN / A3 Ap(x1—x4) G3(%4,%4,%2)
+38p(w1—2x2),
Gs(w1,%2,%5) = — 31N / dwazAp(2%1— %) Go(%4,24,%2,%5)

(2.4b)

(2.5a)

43 Ap(x1—%2)G1(x3)
+ 3 Ap(21—x3)G1(w2) .

Equations (2.5) are illustrated diagramatically in
Fig. 1.

If we are working in perturbation theory, the first
Green’s function on the right of (2.5a) or (2.5b) will
be required to one order lower than that on the left,
since it contains an explicit factor N. The second term
on the right of (2.5a) is known explicitly, while that on
the right of (2.5b) only involves Gi. Hence, if we con-
struct the perturbation series order by order and, within
each order, construct the functions Gy, Gs, -+ suc-
cessively, the right-hand side of (2.5) will be known in
terms of previously calculated functions. We can
therefore construct the entire perturbation series in this
manner, and it is not difficult to see that we obtain the
usual prescription for Feynman diagrams.

In a field theory with a simple Lagrangian, such as the
Ap? theory, it is sufficient to write down the first few
equations (2.4) and (2.5); the form of the subsequent
equations is then fairly obvious. When writing down
equations for gauge fields and performing manipulations
with them, however, it would be somewhat cumbersome
to proceed in this manner. We require a notation in

(2.5b)
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which the whole series of equations (2.4) can be simply
displayed. In the remainder of the section we shall
develop such a notation. We emphasize that we are
doing nothing more than constructing a shorthand for
expressing the equations satisfied by the Green’s
functions.

We shall work with the linear space of the totality

of functions Co,Ci(%1),Ca(w1,%2), +--. A typical vector
in the linear space may be written

Co

Ci(x1) (2.6)

Co(w1x2)

The linear space is thus the sum of a series of subspaces

Co 0 0
0 Ci(x1) 0
0 0 Ca(x1,22)

The first subspace consists of a single vector, but each
of the other subspaces is itself an infinite-dimensional
subspace. Thus, the second subspace is the space of all
functions of a single variable x;, the third subspace is
the space of all symmetric functions of two variables
21 and x2, and so on. We shall denote the vector (2.6)
by the symbol |C). We are interested in the particular
vector
Go

Gl(x1)
Gz (x1 ,xz)

(2.7

where Go=(0|0)=1, and the remaining G’s are the
Green’s functions of our theory. We shall denote this
vector by the symbol |G).

We now define an operator ¢(x) acting in this space
as follows:
Co Cl(x)
C1(x1) _ Cg(xxl)
Cg(x1,x2) - Ca(xxlxg) ’

é(x) (2.8)

The variable x in the vector on the right is regarded as a
fixed parameter, while «;, %5, -+« are the variables cor-
responding to our linear space.

To avoid misunderstanding we must emphasize
that the operator ¢(x) corresponds to the quantum-
mechanical operator ¢(x), but that it is a totally dif-
ferent type of operator acting on a totally different
type of space. Once we have expressed the field theory
in terms of Green’s functions, we need no longer consider
the quantum-mechanical Hilbert space; the whole
theory has been expressed in terms of the c-number
equations (2.4). In order to express these c-number
equations in a simple way, we have defined a new linear

ELECTROMAGNETIC AND YANG-MILLS FIELDS

1583

space on which the operators ¢(x) act. The ¢’s do not
satisfy the quantum-mechanical commutation rules.
In fact, all the ¢’s and their space and time derivatives
commute with one another. The linear space of vectors
| ) is thus a totally different space from the quantum-
mechanical Hilbert space of vectors | ).

It would be inconvenient if we had to display equa-
tions such as (2.8) whenever we used them, and, in fact,
there is a standard notation for expressing (2.8) in a
more compact form. This notation is expressed in terms
of vectors in the dual space. A vector in the dual space is
written in the form (# |, and is defined by means of its
scalar products (H|C) with all vectors in our space
|C). The scalar products must depend linearly on |C).
We define the vectors (Ho|, (H1(%1)]|, (Ha(x1,%2)], « -+
in the dual space by the equation.

(HO l C) =Co,
(Hy(21) | C)=Ci(w1),
(Ha(%1,2) | C) = Ca(1,25)

C being the general vector (2.6). There is a single vector
(Ho|, a vector (Hi(x1)| for each value of #;, a vector
(H 2(1,%2) | for each combination of variables x1, %2, and
so on. A vector in the original space is uniquely defined
by its scalar products with all vectors (Ho|, (Hi(x1)],
(Hs(21,22) |, -+ - in the dual space.

We next construct the dual space of the space of
vectors (H|. If | C) is a vector in this space, it is defined
by its scalar product will all vectors (H | :

(Hn(xl,' . -xn) lC')=Cn’(x1’. . 'xn)-

However, the totality of functions Cy/, Ci/(x), Cy/(%1,%2),
- -+ define a vector in the original space with which we
started. There is thus a one-one correspondence be-
tween our original space |C) and our new space |C’),
which is such that corresponding vectors have identical
scalar products with all vectors (H|. The space of
vectors |C’), which is the dual of the space of vectors
(H|, may therefore be regarded as identical to our
original space of vectors |C).

Given any operator O acting in the dual space, we
can define an operator O acting in the original space as
follows:

(2.9)

#[{o|O)}={H]|O0}|C} (2.10)

for all vectors H in the dual space. We can therefore
use the notation (H|0|C) to express the scalar product.
Equation (2.10) can also be used to define an operator
in the dual space once the operator in the original space
is known.

It is now easy to express ¢ as an operator in the dual
space. By (2.9) and (2.8)

Hol{$(x)[C)}=Cu(x),
(H1(21) [ {$(x) | C)} = Co(x,x1)
(H2(x1,x2) I {(5(90) l C)} = Cs(x,x;[,xz) .

(2.11)
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Now, by (2.9),
(H1(%)|C)=Cu(a),

(Hy(x,%1) | C) = Calw,21) (2.12)
(H3(2,51,%2) | C) = C3(,21,%) .
From (2.11) and (2.12), we conclude that
(Ho|$(x)=(Hi(x)],
(H1(%1) | ()= (Ho(w,20) | (2.13)

( (1,5 | () = (H s(,21,4) |

since |C) is an arbitrary vector. For the vector
(H (x1° - %) |, Eq. (2.13) states that

(H (21" - %) I&(x)= (H pa (2,21 - xn)[ . (214

The notation of the dual space therefore allows us to
express (2.8) in the compact form (2.14), and we shall
use this notation in the remainder of the paper. We
should emphasize that the use of the dual space does
not involve any deep mathematics, but is purely a con-
cession to the printer. It would be perfectly possible
to rewrite every subsequent equation in this paper
without using the dual space. Every equation of the
form (2.14) would then be replaced by an equation of
the form (2.8).

We now define a new operator 5, which we shall
require when writing the right-hand side of (2.4). It is
defined as follows: ‘

(H (201,29, * - 20) | ()

= i (Hna(m,22, + -, L0, - 0w) ‘ dlx—x,). (2.15)

=1
The vector (Hn_i(%1,%z,-+,[%.],"*-,%,)| denotes the
vector which is obtained from (Hn(%1,%z," * * ,%r," * *,%n) |
by removing the variable x,. From (2.14) and (2.15) it
is easily seen that 7 and ¢ obey the commutation

relations:
[n(1),8(22) 1= — 84(w1—112) . (2.16)
Furthermore, from (2.15),
(Ho|n(x)=0. (2.17)

Equations (2.16) and (2.17) are sufficient to determine
n, since (H,41|n can be found from (2.14) and (2.16)
once (Ha|n| is known. We may therefore regard (2.16)
and (2.17) as the definitions of n; we can then easily
obtain (2.15).

Having defined the operators ¢ and 7, we can express
the Green’s functions equations in a compact form. Our
Eq. (2.9), which defines the vectors (H,|, shows that

(H, (10 %) |G)=G (1 - - %n). (2.18)
Hence Eq. (2.4a) may be written as follows:
(02— ) (Ha(1,22) | G) = 3N H 301, %1,02) | G)
+id(a1—2)(Ho|G).  (2.19)

STANLEY MANDELSTAM
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We now use (2.14) and (2.15) to express the vectors
(Ho(x1,22) |, (H3(o01,%2,%2) |, and (Ho| 8(x1—x2) in terms
of the single vector (H1(xy) ]| :

(H o(1,20) | = (Ha(22) | $(21) (2.202)
(Ha (xl,xl,xz) I = (Hl(xg) [é?(xl) 5 (220b)
(Ho| 81— 22) = (H1(2) | n(1).- (2.20c)

Equation (2.19) therefore becomes

(02— p?) (H1(%2) | (21) | G) = EN(H 1(22) | $2(%1) | )
Fi(H1(x) ! (1) IG) . (221)

Since the operator ([0:2—u?) in the first term of (2.21)
acts only on the variable x5, it may be taken inside the
scalar product. Thus

(Hi(xo) | (O 2= p2)$(1) | G) = SN(H1(x5) | $2(21) | G)
+i(H (%) | (1) | G). (2.22a)

Similarly, Eq. (2.4b) may be written in the form

(H 5 (295) | (O 12— p2)d (1) | G) = FN(H 5 (0,0) | $*(1) | G)
+i(Hy(2,23) | (1) | G) . (2.22b)
The general Eq. (2.4) can be obtained by replacing the

vectors (Hi| and (H,| in (2.23) by the general vector
(Hal:

Ha(wz: -+ #ny1) | (O 2= )b (21) | G)
= %)\(Hn(xz' e xn+l) 152(951) 'G)
Fi(H (22" + - Xnp1) | 9(x1) | G).

Since the vector (Hn(%z + - #at1) | in (2.22¢) is arbitrary,
we may rewrite the equation as an equation for the
vector G:

(02— (x1) | G) =g (1) | G)+in(x1) | G).  (2.23)

We have thus replaced the infinite set of equations for
the Green’s functions by a single equation for the
vector (G).

We can easily integrate (2.23) to give the result:

(2.22¢)

(¢:<x>+%ix [ 0 Y An(a— ) ()

- / dx'%Ap(x——x’)n(x’))]G)=0. (2.24)

Equation (2.24) is of course equivalent to the series of
Egs. (2.5) in our new notation.

It is worthwhile noticing that Eq. (2.23) has the
same form as the field Eq. (2.1), except for the term
in(x). This last term corresponds to the é&-function
terms in the equations for the Green’s functions.

We can relate our notation to Schwinger’s functional
notation by making the correspondence

) — 8/on(x), n(x)— n(x),
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and regarding the operators as acting on the Schwinger
functional. We have chosen to define ¢ as our funda-
mental quantity and to define 5 in terms of it, whereas
Schwinger proceeds in the reverse direction. The reason
why we have set up a new notation is that quantities
similar to ¢ may easily be defined in the path-dependent
formalism, whereas the quantities analogous to » are not
quite so simple. Qur notation is therefore more easily
applicable to the theories treated in this paper.

3. ELECTROMAGNETIC FIELD
Fundamental Equations

~In this section we shall derive the Feynman rules
for the electromagnetic field from the path-dependent
formalism. Such a derivation has already been given
by Sarker,” who used a method somewhat different
from that to be followed here. Nevertheless, it is worth-
while to rederive the results by the methods which we
shall use for the Yang-Mills field, since the methods will
be most easily understood by applying them first to
the simpler case of the electromagnetic field.

We shall treat an electromagnetic field in interaction
with a charged scalar field. The equations of motion in
the path-dependent formalism are as follows:

(O —u?)®(x,P) =0, (3.1a)
(0= u?)2*(x,P)=0, (3.1b)
OF (%)
+jl'(x)=0: (3.10)
X

where ® and F are the scalar and electromagnetic field
variables, and the current density j is given by the
equation

Jo(x) = —1ie[®*(x,P)0,®(x,P)

—&(x,P)3,d*(x,P)]. (3.2)
The ®’s and ®*’s satisfy the usual commutation rela-
tions, which we shall not write down. The commuta-
tion relations between the ®’s and the F’s are

[‘I’(X,t,P),F;j(y,t)] = [q)*(x7t7P)1Fii(Y3t)]= 0 ’ (333')

[B(x,4,P), Foi(y,)]= —e / dE(y—DB(x,P), (3.3b)

[&*(x,t, P), Fo(y,f) T=¢ / dES(y—DBEP).  (3.30)

We employ the usual convention that Latin indices
range from 1 to 3, Greek indices from 1 to 4. The
integrals in (3.3) are to be taken along the path P. There
will be similar commutation relations between the
&’s and the F’s. The electromagnetic field variables

ELECTROMAGNETIC AND YANG-MILLS FIELDS

1585

themselves obey the commutation relations

[Fij(xxt))Fi'i'(Y5t)]=[FOi(X’t))FOi’(Y:t)]zoi (3.43,)
d d
[Foi(x,0),Fir(y,t)]=— i(l?w—-'— 5@'1———)
dy;  Oyx/
X8 (x—y). (3.4b)

The dependence of the operators on the path P is
given by the equations?

8.8(x,P)= —ie®(x,P) X F 1(2) o
5.9*(x, P) = 1e®*(x, P) X F 1(2)0 v

(3.5a)
(3.5b)

where 8,® is the change of ® caused by a change in the
path by an infinitesimal area o,, at the point z. If the
variation of F over the area is non-negligible; for
instance, if F contains & functions, we must rewrite
(3.5a) in the form

5.8(x,P) = —ied(x,P) / dow(8)F ().  (3.5¢)

For consistency of the path-dependence equations, we
require the homogeneous Maxwell equations

aF’"(x):o. (3.1d)

€Euvpo
X

We could replace (3.1d) by the more general condition
that the integral of the left-hand side over any volume
be a multiple of 27; we would then obtain the Cabibbo-
Ferrari-Coleman theory of magnetic monopoles. We
shall assume that there are no monopoles present.

Path-Dependent Green’s Functions

One defines Green’s functions of the path-dependent
variables in the usual way:

G(x,P; 9,P"; )= (0| T{®(,P),2*(y,P")} |0),

Gyl(,P;9,P'; %)
= (0| T{®(x,P),®*(y,P"),F(2)}|0), (3.6b)

and, in general,

(3.6a)

Gurpo e (@1, P10, Poy -« -5 91, Py Y0, Py o3 81,20, + )
= <0| T{é(xl’Pl)q)(x%Pa i 'q)*(ylypl)(b*(y2yp2) s
F(21),Fp0(22) - - - }|0)+ 8-function terms. (3.6¢)

We employ the circumflex to distinguish the path-
dependent Green’s functions from the auxiliary Green’s
functions which we shall subsequently define and which
we shall denote by the symbol G.

When defining Green’s functions of the F’s, one has
to add an extra term in order to make them covariant.

8In order to avoid any possible confusion with the 8 function,
we shall use a boldface d to denote a change in a quantity due to a
change in the path.
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Such a term is always necessary when the commutators
contain derivatives of § functions. The definition is
as follows:

G is(; 3 5w) = (0| T{F s(2),Fij(w)} | 0), (3.7a)
Goi0i; 5 2,0) = (0| T{Fo:(3),Fo;(w)} | 0)
+18:64(z—w). (3.7b)

It is not difficult to check that the Green’s function
defined by (3.7) with the extra term in (3.7b) are
covariant. Green’s functions involving more than two
F’s are similarly defined.

When writing down the field equations and path-
dependence equations for time-ordered products, we
shall as usual obtain terms from the change of the time
ordering. The information contained in the field equa-
tions refers to differentiation with respect to the end
point of the path, while the path-dependence equation
gives the change of a variable resulting from deforma-
tion of the path. In the process of such differentiation
or deformation, we may reach a situation where one
path P, together with its end point #, has some points
which are earlier and others which are later than an-
other point y. We then have to define what we mean
by time ordering. The commutation relations between
&(x,P) and &(y,P’) contain contributions from the
two end points x and y, while the commutation rela-
tions (3.3b) contain contributions from the point y and
an element d#; of the path P. We shall adopt the con-
vention that, whenever an end point or an element of a
path has its time ordering relative to an end point or
element of another path changed in the process of dif-
ferentiation or of deformation, we add the corresponding
contribution from the commutator to the time-ordered
product. This convention obviously fulfils the require-
ment that the time-ordered product of two operators
A(x,P) and B(y,P’) be changed by their commutator
when the time ordering of x,P with y,P’ is changed
completely.

We can now rewrite the field equations (3.1) as
equations for Green’s functions. We quote three such
equations for purposes of illustration. The Klein-Gordon
equation (3.1) gives us the following equation for the
two-point Green’s function of the scalar particles:

(O2—w)G(x,P; y,P)=id4(x—y).  (3.8a)

The Maxwell equation (3.1c) gives us a similar equation
for the two-point photon Green’s function:

5 VTEEEY
—Guppo(; 2,w) = 15("—‘— ———-)Gp,(zl,P; %0, P W) 3ymz0=2
Gz,, 621;' az2ﬂ

+z‘(—a—-aw~ ? a,,,)a4(z—w). (3.8b)

ow, We
When applied to the Green’s function
GMV'PU(x;P; y’P,; Z,'M)) ’
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the Maxwell equation becomes

J
G, pe(,P; y,P' 5 2,0)
9z,

a9\,
=ie("——'—' M)GPU(%P’ZI’P”; y:PI:Z%PH; w)21=12==
921, 92y

3 F) i
+i(*‘“5w— Bp»)’s"(Z—W)G(x,P; y,P")

ow, w,

+e</ _/ )dfv54(2'—' S)GA”(x,P;y’P/;w) . (380
P P

The second and third terms on the right of (3.8¢) result
from differentiating the time ordering; the second term
comes from the commutator (3.4) between F,,(2) and
F,.(w), and the third from the commutators (3.3b)
and (3.3c) between F,(z) and &(x,P) or ®*(y,P’).
Higher Green’s functions will satisfy equations similar
to (3.8c), with a sum of 8-function terms on the right.

The homogeneous Maxwell equation (3.1d) gives
simple equations when applied to Green’s function.
For instance,

J
e,‘,,ME——G,,,(x,P; ,P’;2)=0.

P

(3.8d)

One can also obtain path-dependence equations for
the Green’s functions from the path-dependence equa-
tions (3.5) for the field variables. We shall treat the
Green’s function

Guw(x,P; y,P'; 5)
=(0| T{®(x,P),®*(y,P"),Fn(2)}0), (3.9)

which is the simplest example where all the general
features occur. We are interested in the change of G
due to a change of the path P by an infinitesimal area
o w at the point . The change will consist of two parts.
The first is obtained simply by applying (3.5¢) to the
factor @ in (3.9):

ﬁw“)@uv(x,P;y,P'; z)= _ie/do'pv(w)

X{0| T{®(x,P),8*(y,P),Fpus(5),Fps(w)} | 0). (3.10a)

When expressing the time-ordered product on the right
of (3.10) as a Green’s function, one has to subtract
terms similar to the second term of (3.7b). Thus,

8, VG (%, P; 3,P'; 2) = —ie f dopo(2,P; y,P'; 2,w)

+3/{d0'0v(w)5;40—daou(w)avO}
XG(x,P; y,P)o(z—w). (3.11)
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The second possible effect of the deformation of the
path is the change of the time ordering itself. If part
of the path P was originally timelike earlier than the
point 3, but became timelike later after the change, we
obtain a contribution from the commutator. On apply-
ing the commutation relation (3.3b) we obtain the
following additional change in the Green’s function:

8(2)GMV(x:P73’)P,;Z)= “e/ (d&ﬁ,‘o—-df,ﬁ,o)ﬁ:"(z— £)

XG(x,P; y,P)3o{e(£s—20)}. (3.12)

The function e(£—2z) is the function which is =1
according to the sign of the argument. The factor
$6{e(£0—20)} is thus equal to =1 if the time ordering
of the path element d£ and the point 2 is changed by
the change of the path, otherwise it is zero. Equation
(3.12) may be rewritten in the form

ﬁw‘”G,‘,(x,P; y,P’; Z)= _e/{dUOP(E)SFO—dUOF(E)al‘O}

X 84(z—£)G(x,P; v,P’). (3.10b)

The integral in (3.10b) is to be taken over the area be-
tween the old and new paths.

We now observe the crucial feature that the right-
hand side of (3.10b) cancels against the second term of the
right-hand side of (3.11). The final result is thus

8uGuu(,P; 3, P’ 2)
=—1e f 40,0 ()G po(%,P; 9,P'; 2,w). - (3.10¢)

The higher Green’s functions obey similar path-
dependence equations.

Equation (3.10c) shows that the path-dependence
equation of the covariant time-ordered products is
similar to that of the field variables themselves. The
ordinary time-ordered products satisfy somewhat more
complicated path-dependence equations, which contain
terms such as (3.10b) that arise from the change of the
time ordering. Such terms are exactly cancelled by the
delta functions in the definition of the covariant time-
ordered product.

Condensed Notation for Path-Dependent Quantities

We now wish to write the field equations and path-
dependence equations for the Green’s functions in our
condensed notation. The method of doing so is a per-
fectly straightforward generalization of the procedure
followed in the previous section. We consider the totality
of functions :

A . ’ ’ .
Cﬂv.pf."‘(xl)Pl;x%P?r' R yl;Pl ,;Vz,Pz PRPE S P ')
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as vectors in a linear space. We denote a typical vector
by the symbol |C). The path-dependence equations of
the form (3.10c) are assumed, so that a vector is fully
specified once the functions are given for one choice of
path. Furthermore, we only consider functions which
satisfy the homogeneous Maxwell equation (3.8d);
indeed, we are forced to impose this limitation in order
that the path-dependence equations be consistent.

We now define the following vectors in the dual
space:

(ﬁul’»"'(xI;Pl,x%P%' *ts yl,Pll,' AR 2 TR |é)

=é#"»"'(x17P1,x2)P2:' . ;ylypl’)' L T ')' (3.138.)

Applying the path-dependence equations (3.10c) to
(3.13), we notice that the vector (H,(x,P;y,P’;3)]
satisfies the path-dependence equation

Su(H (2, P; 9,P';2) |
= *i@depa(W)(ﬁuv,pv(x;P; y’P’; Z,Z?J)[ . (3’143')

Similarly, the general vector in the dual space will
satisfy the path-dependence equation

ﬁw(ﬁph"'(thlax%Ph' *S yl,Pl,:' R T )[

= —iG/do'pa-(W)(ﬁpv,pu(xl;Plyx2P27' S
yhPl,,' 5 RBLW, )l 3 (3'14b)

where $,, represents the change in (| due to a small
change in the path P by an amount /'do,.(w).

We are particularly interested in the vector obtained
by setting the functions C equal to the Green’s func-
tions G, and we denote this vector by the symbol |G).
Thus, from (3.13a),

(H,,v,~:(x1,P1,xz,P2,' °t ;ylypl’:' MR 2 Phi [G)

=pr,...(x1,P1,xq,J)2,- .. ;y1,P1',' (S P '). (313b)

Following the procedure of the A¢? theory, we next
define operators ®(x,P), ®*(»,P), and F,,(x) as follows:

(Hlﬂ’(xl)Plf ) yl)Pllﬁ' T2 TR ') l é(x)P)
=(ﬁm‘(x1)P1;x;P" ccy 3’1,P1'y‘ (AR TR ')I ) (3'153)

(glw'"(xl,Ply' *tS yl)Plly' tt331, ') l (i‘)*(x’P)
=(ﬁm‘(x1)P1)' *s ylrpl’sx,P;' MR PR °), ’ (3'15b)

(Ao (@1,Pr, 5y, P15 21,0 ) | F ()
=(EP0,M’»‘"(x17P1)' *S yhPl,;' Tty 3L%, ) I . (315C)

We also introduce quantities U(x,P), U(x,P), and
X,(z), analogous to the u’s of the previous section. They
are defined to correspond to the §-function terms on the
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right-hand sides of (3.8). Thus
(ﬁm’"'(xl;Pl)' o ;yhPlI)' RS i ) , U(x,P)
=Z (ﬁnv'"(xhpl:' : ';[xT)Pfl' Tt :V1,P1','

(ﬁlw"'(xlrpli' ‘ ‘33’1,P1',' try 8, )]U'(x,P)

=Z (ﬁul’(xlxply' ) ';yl)Ply' . ')I:yﬁPTI:l:' HRER PR 154(3\’?*317) ’

ﬁk)\,'“<x17pl)' *s ybPlI" AT TR ) IXV(Z)
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(3.162)

(3.16b)

] d
=2 ("“5«v-—5pv)(ﬁxx.---.lm,---(xl,Pl,' c Py s Eye (o] 0) |84 —20)

02,p 02,¢

Zr Yr
—ie(z / -y / )dsy(ﬁﬂ,..xxl,a,---;yl,Pl',--~;zl,~-->|a4<z—s>, (3.160)
r Py r Py

where po are the subscripts corresponding to the co-
ordinate z,. The operators U, U, and X, can alterna-
tively be defined from their commutation relations with
the ®’s, &*’s, and F’s. It follows from (3.15) and (3.16)
that

[T (x1,P1),8(x2,P5) = — 6%(x1—x2) (3.17a)
[U (21,P1),8* (25, P2) 1= [U (#1,P1),F.s(25) ]=0, (3.17b)
[U(w1,P1),3* (%0, P3) ] = — 84(x1— 1) , (3.182)

[U(21,P1),® (x5, P) = [U(21,P1),F (25) ]=0, (3.18b)

~ aJ bl
[X, (00, Fo(2) ] = — (ma,,m_—a,p)
axzp K20

X 34(301'— x2) 5 (319&)
z2

[X, (1), (e, Po) ] = e / d83(m—8)

Py

X &(x2,P5), (3.19b)
[X(20), 8 (0, Po) J=—1de | d&,6%(x1—%)
T @ Pr). (3.190)

Furthermore,
(Ho| U(x,P)= (Ho| U (x,P)= (Ho| X,(x)=0. (3.20)

As in the case of the scalar field, Eqs. (3.17)-(3.20)
define U, U, and X, completely. Perhaps it is worth-
while stressing again that (3.17)-(3.19) are in no sense
quantum-mechanical commutation relations.

The equations for the Green’s functions such as
(3.8) can easily be expressed in terms of the operators
we have just defined. Thus

[(@*—p)®(x,P)—iU(x,P)]|G)=0,
[(52_,“2)@*(95,}7) ——ﬂ]i(x,P)] I é): 0 ’

(3.21a)
(3.21b)

9 FEREEY N
[- W<x>~w(—— )«p*(xz,Pz)@(xl,Pl)imm
0y %1, 0%y

-iX,(x)] |®=0. (3.21c)

The derivation of (3.21) is exactly the same as the
derivation of (2.25). Apart from the last terms in the
square brackets, Egs. (3.21) have the same form as the
field equations.

The path-dependence equation (3.14b) may be
written as follows:

(gm’(x%PZy' o ;yhPl,)' R P )Iﬁw&’)(x’P)
=@ (50, P, 5 y1, P+ 53, |
X[:——ie&)(x,P)F,,,,(z)]. (3.22)

Since the vector (H| on the left is a general vector in
the dual space, we may write this equation as an opera-
tor equation

8, 2(x,P) = —ie®(x, P)F, 0 () oo (3.232)

In the same way we can write the following path-
dependence equation for &*:

80 D*(x, P) = e d*(x,P)F,,(3)00s.  (3.23b)

Thus the path-dependence equations, like the field
equations, can be expressed in a compact form in our
linear space. Again, the form of the equations (3.22)
is identical to the form of the path-dependence equa-
tions (3.5) for the field variables.

It should be noted that the path-dependence equa-
tions and the field equations are treated differently in
our formalism. When defining our linear space, we ex-
clude all functions € which do not satisfy the path-
dependence equations. The path-dependence equations
thus appear as equations on the vectors (H| of the dual
space [Egs. (3.14)], and finally as the operator equa-
tions (3.23). On the other hand, the field equations
select out a particular vector |G) from the linear space
of vectors |C). They are not operator equations, but
equations on the vector |G).

Auxiliary Variables

We now wish to obtain a perturbation solution for
the system of field equations (3.19) and path-depen-
dence equations (3.23). We shall do so by introducing
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auxiliary path-independent quantities which we shall
call ¢, ¢*, and 4,. The connection between &, &*, and
F., on the one hand, and , ¢*, and 4, on the other,
will be defined to be of the same form as the connection
between the corresponding field variables. Thus

@(x,P)=$(x)(1—ie/z dgujfﬂ(g)_%ez/z dt,
P

P

X/ dgv,‘q#(g)gr(gl)",‘ o ') ) (3243')

P

é*(x,P>=$*<x>(1+ie / a5 A, (51 [ &,

P P

I AOAE)+ ), (24
x/Pf ©L,E)+ ) (3.24b)

od,(x) 84, (x)

F(x)= ~ . (3.24¢)
0x, o,

Equations (3.24) leave the variables ¢, ¢*, and 4,

arbitrary to within a gauge transformation, and we

shall not define them further.

The definitions (3.24) require an enlargement of our
linear space. Let us define the new vectors in the dual
space:

(Hol=H,, (3.25a)
H(x)| =@ |§(x), (3.25b)
H(x;9)| =(Ho| $@)F* (), (3.25¢)

Hu(x;9;2) | = Ho|d®)F*3)Au(z), etc. (3.25d)

The path-dependent vectors (| of our original dual
space may then be expressed in terms of the vectors
(H| of our auxiliary dual space. To take an example,

(ﬁ(x;P; %P') l =(ﬁ0[ ‘T’(W,P)‘I’*(y,P')
[from (3.15)]

= @[ 80)| 1 /P — /P ’f)dsu/’l}(s)

([ = [ el [ - [ e
XAL(OALE)++ | Lirom (3.26)]

=(H(x; y)l—-ie( /P - f il)d&(Hn(x’y; 3]

o[-l e

X(an(x§y5 E:EI)H' e

[from (3.25)]. (3.26a)
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Similarly we may show that

' P P
(A ,.(x,P; 9,P'; )| = (a—ayx——a,,x)

2y %y

X {(Hx(x; ;9| —w( fP— /P f)dép(pr(x; ;2,8 |

ISAN(EAT

X(HXnV(x§ ¥;5,6E) l +-- } (3.26b)

We can similarly obtain formulas for any dual-space
vector (A| as a linear combination of auxiliary dual-
space vectors (H|.

It is not true, however, that the vectors (H| in our
auxiliary dual space can be expressed as linear com-
binations of the vectors (#| in our path-dependent dual
space. For instance, in the limit e — 0, Eq. (3.26) gives
us an equation for the curl of (H(x; y; 2)| with respect
to 2, but we have no equation for the divergence of
(Hx(x;v; 2)|. Thus the space of vectors (H| is larger
than the space of vectors (H|.

Our next step is to introduce the space of vectors
|C) dual to the space (H|. A vector |C) is defined by
its scalar products (H|C) with all vectors in the space
|H). For any vector |C) in our original space, the
scalar products (H|C) with any vector in the space
(A| is defined. We can therefore regard our vector
|C) as corresponding to a vector |C) in the original
space by equating the scalar products

#|0)=H|0).

Since the space of vectors (A | is only a subspace of the
space of vectors (H|, Eq. (3.27) does not define a
unique vector |C) if |C) is known. By saying that a
vector |C) corresponds to a vector |C) of our original
space we therefore fix certain of its components, but
we do not define it completely.

We can now define a set of functions

(3.27)

Cuone(®y 59570053, )

by taking the scalar product of the vector |C) with
all the vectors in the space (H|:

Cuone(®rye 591,331, )
=(Hpe (@1, 591,75 21,0+ +) | C).

The vector C is thus defined by the totality of functions
Cue(®1,°+* 3 91,0+ + 351, ++). We are particularly in-
terested in the vectors |G) corresponding to our original
vector |G). We therefore define

(3.28a)

Gy, 391,05 31,0)

=l (@, 591, 521,00 +)|G). (3.28b)
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By taking the scalar product of |G) with the dual-
space vectors on the left- and right-hand sides of
(3.26a), and applying (3.13b) and (3.28b), we obtain
the equation

Glw,P; y,P’)=G(x,y)——ie< / - / )d&G,.(x; y; £)
P P

l([-[)(-[)

Xa&/Gulw; y; £E)+ -+ -
From Eq. (3.26b), we obtain the equation

Gu(x,P;9,P’;2)

=(gz-;5ﬂ——6—z:5#x)[6x(x, y;8)— ( / / )df,,
Xpr(x;y;z,E)—%e2< f:— /P T)d&( /P - fP y)

XdE, Grpo(2; ;5 2,6, )+ - :l . (3.29b)

(3.29a)

We can similarly obtain formulas for any Green’s
function G in terms of the auxiliary Green’s functions G
and, indeed, Eqs. (3.25) are the general expressions for
such formulas in our shorthand notation. On the other
hand, equatlons such as (3.29) do not uniquely define
the G’s in terms of the G’s. This corresponds to the
fact that the vector |G) is not uniquely defined by the
vector |G).

The relations between the G’s and the G’s are the
same as we would have obtained if we had defined the
G’s by the equation

Guooe(@1y+ 3 91,0+ 531,00 7)

= (0| T{¢(w1) - -¢*(y1)- - - Ao(z)- -} 0)

and expressed the ®’s, ®*’s, and F’s in terms of the ¢’s,
¢*’s, and A’s by the usual formulas. The ambiguity in
the definition of the G’s corresponds to the gauge
ambiguity in the definition of the ¢’s, ¢*’s, and A4’s.
Needless to say, our present approach makes no use of
the ¢’s, ¢*’s, and A’s considered as quantum-mechanical
operators. The auxiliary Green’s functions G or,
equivalently, the auxiliary quantities @, ¢*, and 4,

are introduced directly, and the path- dependent
Green’s functions are related to them.

Our enlargement of the dual space (H| is thus
equivalent to introducing path-independent, auxiliary
Green’s functions G, and expressing the path-dependent
Green’s functions in terms of them by (3.29). The
reader may feel that we have adopted a rather long-
winded procedure for introducing these auxiliary
Green’s functions. However, it would be very cumber-
some to deal with the infinite set of equations (3.29) in
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practice, whereas the compact equations (3.24) are
easily handled. The necessity for expressing the
Green’s-function equations in a compact form will be
even greater when we treat the Yang-Mills and gravita-
tional fields.

Once we have defined the auxiliary quantities, our
first requirement is to verify that the definitions do
imply the correct path-dependence equations for the
@'s. It is not difficult to see that (3.24) does indeed
lead to (3.23).

We next define quantities 5, %, and {,, analogous to
the 5 of the previous section. We shall define them
directly by their commutation relations with the &, ¢*,
and 4,. Thus,

[n(er),B(2) ]= — 84(m1—2) , (3.30a)
Cn(22),6* (@) 1= [n (1), 4,(x2) ]=0,  (3.30b)

(A1), 6* (22) ]= — 8 (21— 02) , (3.30c)
[7(21),(2) 1= [(21),4u(x2) =0,  (3.30d)

[Su(@1), A (2) ]= — 8 d* (21— 22) , (3.30€)
[5u(@0),$(x2) 1= (1) ,$*(22) ]=0. (3.30f)

The definitions are completed by the equations

(Ho|n(x)=(Ho| 7(x)=(Ho| {:»(x)=0.  (3.31)

Equations (3.30) are equivalent to the definitions

(H oo (1,7 5 0,0+ 53,02 [ (%)
=3 (Hy (@, [0, 391, 0321, ) |
' X & x—x.), (3.322)
H (1,390,052, +) | 1)
=3 (Hp(r, 391, [yedy o321, )|
' X (x—v,), (3.32b)
(H oo (21,7 5 91,7 3 21,0 +) | 50()
=3 Hyoopro (1,3 91, -3 21y < 2]+
, X4 (x—2,). (3.32¢)

In the following development it will be useful to have
a special notation for the functions appearing in (3.24).
We thus define

V(Px)= l—iefz d&,A,(8)

~%62] dE“/ AT OLE) -, (3.330)
P P
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V(Px)=1+ie f | d&A,(%)
P

e / at, / &/ A (OA(E) 4 (3.33b)
P P

=V"YP,x). (3.33c)

Equations (3.24a) and (3.24b) may then be written
&(x,P)=V(Px)(x), (3.34a)

& (x,P) =T (P,%)¢*(x) = V-1(P,x)¢*(x). (3.34b)

The functions ¥ and V satisfy the equations

iv(x’P)= —ieAM(x) V(er) ’

Zu

(3.35a)

;—V(x,P)=ieA,,(x)T7(x,P). (3.35b)

Zu
Gauge Transformations

Equations (3.24) do not define the auxiliary quanti-
ties ¢, ¢*, and 4 uniquely. If one makes the infinitesimal
transformation

é(x) — $(x)+ienx(x)d(x),
¢* (%) — *(x) —ierx (x)d*(x) ,
A0 — A

Yu

(3.363)
(3.36b)

(3.36¢)

the path-dependent quantities defined by (3.24) re-
main unaltered. The transformation (3.36) is precisely
analogous to a gauge transformation in the usual
formalism.

We shall have to apply the transformation (3.36)
in writing down the equations of motion, and it will
be useful to construct the generator of such a trans-
formation. Let us define

0¢u(y)

Y(y)=—ien(y)d(y)+ien(y)d*(y)+ .

Y

(3.37)

From the commutation relations (3.30) one obtains
the equations

| f Oy YO0 B@) |=iex@d),  (3.382)

[ / dy Ti)x(3),6%(8) |=—iex(@)*(), (3.38)

1 @
[ f dy Y(5)x(9),Au(@) |= X(x)-

4 Oz,

(3.38¢c)
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Thus, comparing (3.36) with (3.38), we conclude that
the integral Sdy Y (y)x(y) does generate a gauge trans-
formation when it is commuted with any of our auxiliary
quantities. In particular, the integral /dy Y(y)x(y)
commutes with any of our path-dependent quantities
®, &* and F, since such quantities remain invariant
under a gauge transformation.

Field Equations

We now reexpress the field equations (3.21) for the
path-dependent quantities as field equations for the
auxiliary quantities. Our aim is to show that the
auxiliary Green’s functions can be expressed as a sum
of Feynman diagrams in the familiar manner.

The first term in the curly bracket of (3.21a) is
easily rewritten in terms of the auxiliary quantities.
From (3.34a) and (3.35a) it follows that

9 _ a o .
——«b(x,P>=V(x,m(———ieA,.(x))qb(x), (3.39)
I¢) 0

X Xy
and therefore

(O2—p2)&(x, P)=V(=,P)

a 2
x[(———iez,,(x)) —,ﬂ]qz(x). (3.40)
o

It is not much more difficult to express the second
term in (3.21a), namely the function U, in terms of
auxiliary quantities. The function U is defined by
(3.17) and (3.20). One can show immediately from
(3.30c), (3.30d), and (3.34) that the quantity V (x,P)#(x)
has precisely the commutation relations (3.17) with
&(x,P), &*(,P), and F,,(z). Further, from (3.31) and
the fact that % commutes with V, we deduce that

(#Ho| V (x,P)7i(x)=0.

Hence the quantity V(x,P)#(x) satisfies all the re-
quirements of (3.17) and (3.18), and we may write

U(x,P)=V(x,P)7(x). (3.41)

From (3.21a), (3.39), and (3.41), we may therefore
write the equation

V(x,P)[(:;—%-—ieﬁ,,y

><<s(x>~u2<z(x>—iﬁ<x>]|G)=o. (3.42)

Equation (3.42) implies (3.21a). The converse is not
true, since (3.21a) is an equation for the vector |G),
which does not define the vector |G) uniquely. Since
those components of |G) which are not determined by
|G) have no physical significance, we can define them
in any convenient manner, and we shall require that
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(3.42) be true. On multiplying by V(x,P) and applying
(3.33c), we obtain the field equation in its final form:

[(i—ieﬁn)zé(x)—u%(x)—iﬁ(x)] [G)=0. (3.43a)

ox,

The path dependence has been removed from Eq.
(3.43a), which is identical to the equation satisfied
by the Green’s functions of the Lorentz-gauge theory.
In our present derivation we have made no reference
to quantum-mechanical operators ¢, ¢*, or 4, however.

Equation (3.21b) may similarly be expressed as an
equation involving auxiliary variables:

[(%—{—ieﬁ&cﬁ*(x)—n”zﬁ*(x)—iﬂ(x)]IG)=0- (343b)

Before going on to express (3.21c) as an equation for
our auxiliary variables, we shall introduce an expres-
sion for the current and shall find the equations for its
divergence. We thus define

9 3
j“<x>=—ie(a*(@gj(x)—ax)ga—c—a*(x))

—e[D@)PFx)(x). (344)

Again, the definition of 7, in terms of ¢, ¢*, and 4 cor-
responds to the definition of the quantum-mechanical
operator j, in terms of ¢, ¢*, and 4. From (3.43) we
can easily show that

(ajn(x)

L

+en(x)<5(x)—eﬁ(x)$*(x))IG)=0- (3.45)

Equation (3.45) is the Takahashi-Ward identity in our
notation.
We now examine (3.21c). From (3.24c), we may write

4 8 194, 44,
— ,”=——-(———-— ) (3.4‘63.)
o, 0x,\Ox, 0%,
and, from (3.34) and (3.35),
a d \._ ~
.__ie( _ )@*(mez)@(xl’Pl) l z1=22
%1y, Oxy
9 -
— i 34 (i, o)
ox,
-~ a . T -~
—¢(x)(-+wAu)¢*(x)]
ox,
= 7,(x). (3.46b)

The first two terms in the square brackets of (3.21c)
are thus easily expressed. Furthermore, if we use (3.30e)
and (3.30f) to calculate the commutation relations of
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the operator {,(x) with the path-dependent quantities
defined in (3.24), we find that {,(x) fulfills all the require-
ments of the function X,(x), defined in (3.19) and
(3.20). We might therefore be tempted to write

X ,,(x) ={ V(x)
and to write (3.21¢c) in the form

[ 9 (a&(x) 84 ,(x)

ax,

(3.47)

>+fv(x)—i§'v(x)]lG)=0. (3.48)

dx,\ Ox,
Equation (3.48) is not consistent, however. By dif-
ferentiating (3.48) with respect to w,, we obtain the
consistency condition

7 )[G)=O.
x, oz,
The variable 7 does not satisfy this divergence condi-
tion. Instead, it satisfies the divergence condition
(3.45).

We therefore require a generalization of (3.48), which
we shall achieve by generalizing (3.47). The commuta-
tion relations (3.19) define X, within the original linear
space of our path-dependent Green’s functions, but
they do not fully define it within the enlarged linear
space. We are free to extend the definition into the
enlarged space in any convenient manner, but we must
do so consistently. The definition (3.47), as we have
just seen, is not consistent with the field equations.

We shall generalize the definition of X, by writing

X,(x) = 65(x) + / ByENYG),  (3.49)

where the function x has still to be specified. We have
shown that the second term of (3.49) generates a gauge
transformation and that it therefore commutes with
the path-dependent variables ®, ®* and F. Further-
more, (Ho| Y (y)=0, by (3.31) and (3.37). The right-
hand side of (3.49) therefore satisfies the conditions
(3.19) and (3.20) which define the operator X,(x).
Equation (3.48) is therefore generalized to read:

[a (aﬁ,(x) 34 ,(x)

0x,

)+jy(x>—ixv<x>]lc>=o, (3.50)

dx,\ Ox,
with the term X,(x) given by (3.49), and the operator
Y given in turn by (3.37). Equation (3.50), like (3.48),
does imply the truth of Eq. (3.21c).

We now have to choose the function ¥, in such a way
that the consistency condition

0X,(x)
—1

ox,

)[G)=0

ox,
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is satisfied. From (3.45) we observe that we can achieve
this by writing®

ad
X, (x)=¢u(2)——0O
Xy

x (an(x)

%

— i) 652
Furthermore, (3.52) does have the required form
(3.49), with

9
x(%,3) = —;D‘za‘*(x—y)- (3.53)

Xy

We therefore write Eq. (3.50) as follows:

[ i (a/I,(x) ai;(vx)

a3
)+Jn<x>——i§,(x>+i~—m*2
0x,

Ix,\ 0x,

Ou
X(Z2 i a0 [|61=0. @59

Fu

Equation (3.54) is consistent with the divergence condi-
tion and, since it is of the form (3.50), it implies Eq.
(3.21¢) as required.

Our final field equations are (3.43) and (3.54).
Equation (3.43a) can easily be expressed in integral
form:

a nd /
(¢7<x)—e f a3 (o= ) A, () ‘z(x)

X

+i / da'3Ar(x—2/) Au(a) Au(a) (")

+ / dx’%Ap(x——x’)n(x’))]G)=O. (3.55)

Equation (3.43b) can be expressed in integral formina
similar way. Turning to (3.54), we notice that it has
the general form

B
ax, ox;,

(3.56a)

9x,\0x,

where the consistency condition

d oh
2o

ax, (3.56b)

is satisfied. Equation (3.56) (with Feynman boundary

% One can obtain a more general form for X,(x) by replacing the
factor (8/dx,)CT* outside the parentheses of (3.52) by a general
vector a, satisfying d,a,=1. One can then obtain Green’s func-
tiorfls in noncovariant gauges such as the Coulomb gauge. See
Ref. 10.
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conditions) has the solution
f(x)=1%i [ dx'Ap(x—«')
Oh(x')\ da(x)
X(gv(x’)+ )+ , (3.57a)
' %y

where the function a(#x) is arbitrary. We may rewrite
the integral

oh(x a
(x,) as fdx’Ap(x—x')h(x'),

oz, oxy

/ dx’' Ap(x—x")

and we may then absorb it in the function e. Thus

a 7
fl@)=%i / da’ Ap(x—a/) () + Z(x)

(3.57b)

v

Applying the solution (3.57b) to (3.54) and putting
a’=0, we find that

(ff,(x)—-i / dx'3Ap(x—2") 7,(x")
—-/dx’%Ap(x——x’)i‘y(x’))IG)=O. (3.58)

We can obtain more general solutions of (3.54) by
adding a pure divergence to the terms within the curly
bracket. Such solutions correspond to taking nonzero
values for the function o’ in (3.57b). In particular,
another solution of (3.54).is the following:

. 92
[ﬁ,(x)—i/dx’(é,p—c D"2>
9,0,

62
Xir(a=w)= [ (5,0 o)
0x, 0z,

x%AF<x—x'>r,<x'>]lG>=o, (3.59)

where ¢ is any constant.

Equations (3.55) and (3.58) are exactly the equations
we would have obtained if we had started with the
Lagrangian

irs a d 1794,\*
e Grren [k
2L\ox, 0%, 2\ 9z,
and quantized in the usual way. Equations (3.55) and
(3.58) therefore lead to the usual Feynman rules, as
may also be seen by rewriting them as equations for
Green’s functions. Equation (3.59) leads to the Feyn-
man rules with more general covariant gauges; the
choice ¢=1 corresponds to the Landau gauge.
If we wish we may reexpress the equations for our
auxiliary quantities in the Schwinger functional nota-




1594

Fic. 2. Diagrams which correspond
to renormalization of the path-dependent
electron wave function.

tion by making the correspondence — §/8n, ¢*—
8/6%, A,— 6/6¢.. We then obtain equations which
are essentially equivalent to those of Zumino.? It is
not so straightforward, however, to express the equa-
tions for our path-dependent quantities in the Schwinger
functional notation, and we have therefore introduced
our present notation.

The auxiliary Green’s functions may be used to cal-
culate the S matrix in the usual way. The reduction
formulas of the path-dependent formalism relate the
S matrix elements to the mass-shell singularities of the
path-dependent Green’s functions G in p space. It can
be shown that the terms on the right of (3.29) which
involve integrations over £ do not lead to such sin-
gularities, so that we may use the auxiliary Green’s
functions G instead of the path-dependent Green’s
functions G. Strictly speaking it is not quite correct
that the terms on the right of (3.29a) which involve
integrals over £ do not contribute to the singularities of
G.In anintegral such as S p®dE\GA(%, =« 59,0+ 5 &0 ),
we obtain a singularity from the diagram in which the
external photon line leading to the point £ is attached
to the external (scalar) electron line leading to the
point x (Fig. 2). Such a diagram is associated with the
renormalization of the path-dependent electron wave-
function and makes no contribution to the .S matrix.

4. YANG-MILLS FIELD

The massless Yang-Mills field appears to possess all
the essential complications of the gravitational field
while lacking some of the algebraic complications. It is
therefore instructive to consider this field before going
on to the gravitational field. We shall treat a self-
interacting Yang-Mills field, since interaction with
other fields does not introduce any new features.

The path-dependent formalism for the Yang-Mills
field has been examined by Bialynicki-Birula.® The
procedure followed is analogous to that used for the
electromagnetic field, with the difference that the Yang-
Mills field plays the dual role of the gauge field and the
charged field. The field equations are simpler in
appearance than the Maxwell equations of electro-
dynamics, since there is no additional current term.
They take the form

F ,,*(x,P)
—_—=0.
0%,
10 B, Zumino, J. Math. Phys. 1, 1 (1960).

(4.1a)
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We shall always use indices from the beginning of the
Greek alphabet to denote components in isotopic space,
indices from the middle of the Greek alphabet to
denote components in ordinary space. Note that F,
being a charged field, is path-dependent.

The path-dependence equation is a straightforward
generalization of (3.5):

0.5 ,%(%,P) = geapy F i (%,P)F P (2,P )0 ps.  (4.2)

As usual, $.F,,~ is the change of the variable F,,*
caused by a change in the path by an infinitesimal
area o,, at the point z. The path P’ is that portion of
P leading to 2. Equation (4.2) requires the following
consistency condition, which is analogous to the
homogeneous Maxwell equations:

dF ,,%(x,P)
o, (4.1b)

€uvpo
ox,

The equal-time commutators between the F’s will
contain terms analogous to (3.3) and (3.4). Thus

[Fija(xat;P)7Fi’i’ﬂ(Y>t)PI)]=0;
[Fo(x,t,P),F(y 1, P)]

(4.3a)

- 9 0
=— 'Léaﬁ(aik—_ 51‘;‘“) 8 (x—y)
9y; Oy

Fieasy [ A5 (x—DF3(y,), (4.3b)
[FOia(X;t)P))Fﬁfﬂ(y)t)P,)]

= ieaﬂ’v/ d£i63(x—' z)FOj‘Y(YJ)

P

icusy f Qe (y— D Far(x).  (4:30)
P

It is not difficult to check that Eqs. (4.1)-(4.3) are
consistent with one another and with Lorentz trans-
formations. In fact, the equations of motion and com-
mutation relations may be derived from the Lagrangian

=—i[Fw(x,P) ]

One may define path-dependent Green’s functions
in the usual way. As in the electromagnetic case, it is
necessary to include é-function terms if the Green’s
functions are to be covariant. The definitions are there-
fore as follows:

GoB,y,i(%1,P1,22,Ps)
= (0| T{Fy*(x1,P1),F:#(x2,P2)} | 0), (4.4a)

GaﬂOi,Oj(xlyP 1,%2,P2)
= (0| T{Fo:*(%1,P1),Fo;f(2,P2)} | 0)

+18apdis0' (11— %2).  (4.4b)
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Higher Green’s functions may be defined in a similar
way.

The field equations (4.1a) may be rewritten as equa-
tions for the Green’s function, analogous to Egs. (3.8)
for the electromagnetic Green’s functions. Thus the
two-point Green’s function satisfies the equation

9
_‘—Gaﬁuv,pw(xl,PlabeZ)

ax1,,
) 9
= 1,(—6,..—-
6x2,, E)xz,

6p,,)6a384(x1—x2). (4.5a)

The four-point Green’s function satisfies the equation

Gaﬁ75uv,p0.k).fw(x1P17x2P2,x3])3;x4P4)
0x1,

a 7] .
= 1:( 6av_—"6pv>6aﬂ64(x1— xg)G75,¢;,,a,(x3P3,x4P4)
X2p axz.,

-+two similar terms with 2 3, 24

x3
—1g€age / AE,84 (21— )G 5o en sro(¥2 P2, %3 P3,24P )

P2

+two similar terms with 2> 3, 2> 4. (4.5b)

The right-hand side of (4.5b) is obtained by differentiat-
ing the time ordering and applying the commutation
relations (4.3). Higher Green’s functions will satisfy
equations similar to (4.5b).

Equation (4.1b) implies that the Green’s functions
satisfy equations such as

9
eyvpv—a—Gapr,x)‘(xlyPhx2,P2)=0' (4‘5(:)

X1p

The path-dependence equations satisfied by the
Green’s function can be obtained from (4.2), by follow-
ing reasoning identical to that used for the electro-
magnetic field. Again the term arising from the varia-
tion of the time-ordering cancels against the term ob-
tained from the & function in the Green’s function [the
second term on the right of (4.4b)], and the final result
is

sz:Gaﬂ#l’:W(xI’Pbx2)P2)=geay‘fdaxx(x3)6e37“"~ﬂv,xX

X (21,P1,%2,P2,%3,P1").  (4.6)

In this equation, &., is the variation of G caused by a
variation of the path P; at the point x5, and Py’ is the
portion of P; leading to x;. The higher Green’s func-
tions satisfy similar path-dependence equations.

Condensed Notation

The condensed notation which we shall use is
very similar to that used in the two previous sections,
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and we need not explain it in detail again. We con-
struct the linear space of the totality of all functions
Cppec® " (21,P1,- - ). We then construct the dual space
and define the vector (ﬁ,,,...“"'(xl,Pl,---)| in the
usual way. We next define the operators F«,,(x,P) by
the equations

@B (x1,Py, - +) | Fo o (c,P)

= po P (@1, P15, Py )| (47)

We also define an operator U(x,P) which corresponds
to the right-hand side of (4.5):

(gxk.---sm(xlapl);' ot IU,,“(.’)C,P)

4] J
= Z ( 6:711_ 6pv>
* \0%,, 0%rq

X(ﬁx)\,---{pa]---ﬂm vl (1, Py - - [0, Pr ]+ 9l

Tr

X ayd(x—,) =g 3 ears / dt,

Py
X(ﬁxk.-uﬁm[7]6“.(371,})1,' * ') ! 64(xr'— E) ’ (48)

where y and po are the indices corresponding to the co-
ordinates #,, and the superscript [v]6 in (4.8) indicates
that vy is to be replaced by 6. The operator U may be
defined by its commutation relations

LU(1,P1), F o8 (2, P) ]

d a
= ( 600"_
6x2,, Bxg,,-

&,,)6,1564(901— xz)

+ geusy f A5 (i E)F, (1o, Py) . (49)

P2

Note that the right-hand side of (4.9) has terms cor-
responding to the right-hand sides of both (3.19a)
and (3.19b), this is because the variable F in the Yang-
Mills field plays the roles of the gauge field and the
charged field. Equation (4.9) must be supplemented by
the equation

(Ho| Uy(21,P1)=0, (4.10)

to complete the definition of U.

In our present notation, the field equations (4.5)
become

]

(—F,,,a(x,P) - iU,“(x,P)) [G)=0. (4.11)

ox,

The path-dependence equation (4.6) is
ﬁzﬁﬂﬂa(xyp)=geaﬁYFKXB(x’P,)ﬁﬂﬂv(x;P)O'K)\ ) (412)

where P’ represents the portion of P leading to the
point z.
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Auxiliary Variables

Following the procedure used in electrodynamics, we
shall attempt to express our path-dependent quantities
F in terms of auxiliary path-independent quantities A.
The formulas relating the #’s to the A’s will be the
same as the formulas relating the field variables F to
the potentials 4. Thus, following the results of Ref. 5,
we make the connection as follows:

Fwa(x’P)= Va'r(x;P)f"nv'y(x) ) (4.132)

where

a4, (x) 84, (x)
ox, dx,

+gensed 2@ A(x), (4.13b)

.f Wy(x) =

Va'v(xyp): 5a1+geaﬂ7f dgpgpﬂ(é)
P

z 3
geapicary [ dt, [ de A ALY

P P

z ¢ 14
+g3€aﬂeeéﬁﬂeﬂf7/ dsp/ déﬂf dzr”jf‘rﬁ(é”)
P P P

XASEAFE+---. (4.13¢)

If we compare (4.13) with (3.24) and (3.34), we ob-
serve that we have to take the curl of 4 and multiply it
by the function V in order to obtain the path-dependent
function F. Again, this is because the Yang-Mills
field is both a gauge field and a charged field.

Before going further it will be useful to obtain two
identities satisfied by the function V. For this purpose
it is convenient to obtain an alternative definition of V,
due to Bialynicki-Birula.® We introduce the following
unitary matrix in the Pauli spin space:

W(x,P)=L exp{—igfx dEpAp“(E)Ta} , (4.14)
P

where the matrices 7, are the Pauli matrices. The
symbol L indicates that the 7’s are to be ordered from
the beginning to the end of the path when expanding the
exponential. It is then not difficult to see that

W, P)rogW (#,P) =V ay(2,P)7a.  (415)
From (4.15) we can derive the identities
VeayVay=VyaVya=08yy, (4.16a)
€cseV sV 8= €apy Vi, (4.16b)
€r5eV asVpe= €apy Vi (4.16¢)

For future reference we shall add the following trivial
identity involving the €’s;

(4.16d)

Gaﬂ76a55+ Eaﬁseae'y'i’ €afe€ays™ 0.
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Another symbol which it will be convenient to in-
troduce is the following:

x

Va.,(x’,x,P) =0uy1g eaﬁ"// déﬂpﬁ(i})-{—gzea&ee;«,

z' P

X f at, / G AP AN+, (A1)
z' P z’ P

where &’ is a point on the path P. In other words,
Vey(a',x,P) is defined in a similar way to Ve, (x,P)
except that all integrals are taken from &’ to x instead
of from — co to x. The following relation may be verified
directly:

Vay(2,P)=Vas(&',P)Voy(«/,2,P),  (4.18)

where as usual P’ is the portion of P leading to «’.
If we differentiate (4.13c) with respect to the end-
point of the path of integration, we obtain the equation

d
—Vay(2,P)= geweg“*(x) Ves(,P).

X

(4.19)

As we shall see below, this equation will enable us to ex-
press derivatives of path-dependent functions in terms
of derivatives of auxiliary functions. Equation (4.19)
can be written in integral form,

V ay(8,P) = byt g / A6, OV wl(s,P), (420)

P

where we have used the boundary condition V ay= 684y
when g=0 or when ¥ — . By expanding (4.20) in a
power series in g, we recover the definition (4.13c).
Equation (4.19) or (4.20) may therefore be taken as a
definition of ¥ in place of (4.13c).

We can now show that the definitions (4.13) do lead
to the correct path-dependence equations (4.12) for F,
and we have carried out the algebra in Appendix A.
The formulas (4.13) can therefore be used to define
path-dependent quantities in terms of auxiliary
quantities.

The operator # will be defined in exactly the same
way as the analogous operators were defined in the two
preceding sections:

[0.%(x1),4,8(%0) ] = — 8apbud®(x1—x5),  (4.21)
(Ho|nu*(x)=0. (4.22)
We require an expression for the corresponding path-
dependent quantity U,*(x,P), defined by (4.9) and
(4.10), in terms of the auxiliary variables. In electro-
dynamics the quantity U(x,P) was equal to V(x,P)
Xn(x), and this suggests that the Yang-Mills operator
U,*(x,P) might be given by a similar equation:

Uy, P) = V (0, P07 () (4.23)

We shall verify (4.23) in Appendix A. The equality be-
tween the two sides of (4.23) is to be interpreted in the
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sense that they both have the same commutation rela-
tions (4.9) with the operators F,.f(x’,P’).

Once we have defined the operators A4,%(x), we
can construct our enlarged dual space of vectors
(H,...2"(21,-++)|. We can then construct the linear
space of vectors |G) and can define auxiliary, path-
independent Green’s functions G. The path-dependent
Green’s functions G can be expressed in terms of the
G’s by formulas analogous to (3.29). We shall not give
the details, which are the exact analog of the cor-
responding details in electrodynamics. We can also
write equations similar to (3.32) for the operators 7.

Gauge Transformations

The gauge transformations are given by the equation

A o) > A,(x)

X« .
+>\( z (x)+g€a37x7(x)-qnﬂ(x))- (4.24)

X
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If we compare (4.24) with (3.36) we notice that terms
corresponding to the right-hand side of (3.36a) and
(3.36¢) appear on the right of (4.24). This is once more
due to the fact that the Yang-Mills field plays the dual
role of gauge field and charged field.

Let us first investigate how the operators defined in
(4.13) transform when 4 undergoes the transformation
(4.24). From (4.13b) one can verify directly that

fuva(x) - f/wa(x)+)‘g5aﬁ7Xv(x)_gnﬁ(x) . (4.25)
The function V transforms in a similar way:
Vay(#,P) = Vay(2,P)+-Ageysex (2) Vas(x,P).  (4.26)

The easiest way of verifying (4.26) is to show that
(4.19), which may be taken as the defining equation for
V, remains invariant when 4 undergoes the trans-
formation (4.24) and V the transformation (4.26).
Under such a transformation, the two sides of (4.19)
transform as follows:

i} 9 AIxe(x,P) d d
~—Vay(,P) — ""Vav(xyp>+)‘ge7ﬁe( V as(,P)+xe Va&(x,P)>='—Va7(x7p)+7\g€we
Xy ox, X X ox,
aXe(x:P )
5 V as(%,P)+-Ng2eyseesrnxe(6) A, 1(x) V oy (2, P) 4.27)
X
from (4.19), *
aXe(x)

geysﬂu‘(x) Va&(x;P) - gey‘,e}f”f(x) Vaé(x;P)+)‘gev5e_a—‘_Va6(x’P)

Y

FAgeyse eei’vxﬂ(x)g S@)V as(x,P) +Agleyse 58§'v‘q ﬂi(x)x‘ﬂ(x) Va (x;P )

o~ Ixe(x) -
= gemA”f(x) Vas (x,P)+)\g€75€T Vas(x’P)+)\g2€1€n€€5fx’l(x)A #f(x) Vaa(x,P) ’ (428)

from (4.16d). Comparing (4.27) and (4.28), we observe
that the changes in the two sides of Eq. (4.19) are the
same, so that (4.19) is invariant under the transforma-
tion (4.24), (4.26). Thus the change in V is given by
(4.26).

We can now find the change in F as defined by
4.13):

vaa(x;P) - ﬁpva(x,P)+)\gévane(x) Vaa(x,P)f:L,,"(x)
FAgeyseV ay(#,P)x (%) fu(x) [from (4.25) and
4.26)]
=F,*(x,P).

The variable F,,2(x,P) is therefore invariant under the
transformation (4.24), and we are justified in calling
it a gauge transformation.

To define a generator of the gauge transformation,
we construct the operator

X

an,p
Vs(5)= 1.5(5)

+ eﬁe&ﬂﬂa(y)gne(y)

Vu

aJ
=(«sgs——+eﬁeaff;<y))my). (4.29)
9y,

The integral N /dyYs(y)xs(y), when commuted with
A,(x), does give (4.24). We thus conclude that the
integral /'dyYs(y)xs(y) commutes with all our path-
dependent variables F,%(x,P). Furthermore, since V
undergoes the transformation (4.26), we conclude that

| [as Tioh)Vn(eP) |

= —geysexs(%) Vaelx,P). (4.30)
Field Equations

Our aim is now to express the field equations (4.11)
as equations for the auxiliary variables. The first term
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of (4.11) is easily transformed:

a3
—F,,(x,P)

X

i} -
=V ay(#,P) f1" ()

ox,

9 o
= Vav(xap)gx—fuv’y(x)**— €Eyde Vaﬂ(x)A ”C(x)fw‘y(x)

[from (4.19)]

6 -~ -~ ~
= Va‘/(x’P)(;"fnvy(x)‘{' e'ybeA [As(x)fyve(x)) . (43 1)

Lu

We have seen that the second term —iU,*(x,P) of
(4.11) is equivalent to the operator —iV 4, (x,P)n,"(x)
in the sense that they both have the same commuta-
tion relations with the operator F,.f(x’,P’). We may
therefore be tempted to rewrite the field equations
(4.11) as follows:

9 .
Vw(x,P)(gc—f,.n<x>+evsemx)
Xf,w‘(x)—inﬂ(x))]G)=0. (4.32)

However, we shall show below that the consistency of
Eq. (4.32) requires that its last term satisfy a divergence
condition similar to the corresponding condition in the
Maxwell equation of electrodynamics, and we shall
have to generalize it if the condition is to be satisfied.
We shall follow the procedure used in electrodynamics
and shall make use of the fact that the commutation
relations (4.9), which define the operator U,*(x,P)
uniquely in the original linear space, do not define it
uniquely in the enlarged linear space. We employ this
freedom to find a definition of U,*(x,P) which gives
consistent field equations. We begin by writing

Uua(xyp)': Va7<x;P)nv7(x)+/dy YB(y)XaBI(x;y) (4’33)

where x’ is arbitrary. Since the second term commutes
with every gauge-invariant operator, the right-hand
side of (4.33) maintains the correct commutation rela-
tions (4.9). All the terms in the equation of motion
(4.32) have a factor Ve, (x,P) in front of them, and it
will be convenient for us if the last term in (4.33) also
such a factor. We therefore define

Xaﬁl(xyy)z Va'y(x:P)X’Yﬁ(x)-
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Thus,
U,,“(x,P)r— V,,,y(x,P)n.,V(x)

+ f 0y Vo)V arli Phns(isg). (4:34)

The factor Vay in the second term of (4.34) is still not
in front of the other factors, but we can move it into
this position by using the commutation relation (4.30)
The equation then becomes

0,55, P) = Vo t, P )+ / 0V a5, P) P s(3)08(5,3)

— geyicV ac(%,2)Xys(%,0) = Vo (x,P)8,7(x), (4.35)

where

0,7(x) = n,7(x)+ / dy?y, ﬁ(:v)x-/ﬁ(x,y)'f-g €yseXes(X,%)

on,5()
S [ dy( "ay > +g€ﬂesvn5(y)/fp‘(y))xw(x,y)

+geysexes(2,x), (4.36)

from (4.29).
We can thus generalize the field equations (4.32)
to read

J
Vw(x,m(g;fw(x)
+e»,a£,ﬁ(x)ﬂf(x)—ieﬂ(x)> |G)=0, (4.37)

with 6 given by (4.36). If we multiply (4.37) by Vay,
sum over &, and apply (4.16a), we obtain the equation

J - .
(""fuﬂ(x)"' eyaEA,“‘(x)fw‘(x) —‘7:0»7(95)) l G)=0. (4.38)
ox,

The path dependence has been removed from (4.38),
and we shall adopt it as our field equation. By taking
the gauge-invariant derivative

9 ~
Ba'y'”’“’*‘geaﬂ'yA #

Xy

of the factor within the parentheses we can easily show
that the last term must satisfy the consistency condition

0
(a.,ya—+geaﬂyz,ﬂ<x>)on(x)=o. (439)

Xy

We have to choose the function x in the definition
(4.36) of 8 so that (4.39) is satisfied.

In order to orient ourselves we shall first find a func-
tion 6,%, of the form ,%+4-6,2, which satisfies (4.39). The
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term 6,’* will not have precisely the form of the second
term of (4.36), but we shall then be able to modify it
so that all conditions are satisfied. The following func-
tion clearly satisfies (4.39):

0
X[ﬂys-éx—“-}-geyequ‘(x)]m"(x), (4.40)

where the matrices I and Ejg represent the symbols
0oy and eqsy, considered as matrices in a and v. The
superscript (1) on 6 indicates that it is not our final
definition of this operator. Equation (4.40) can be re-
written without using reciprocals of operators as
follows:

0, (x) = n,*(x)—

ad
f 3y Our(iy)

Xy

a3
X(évsg*-l-gewﬁn‘(y))m"(y), (441)
where “

i) d
(——6a.,+ ZeaprArP() )——O.,;(x,y) = 8004 (x—7y). (4.42)
9 Oxy

£oN

The right-hand side of (4.41) resembles that of
(4.36). The differences are, first that the operator 4 in
the second term of (4.41) is ordered to the right of the
other operators whereas it should be ordered to the
left, and second that the last term of (4.36) is missing.
Let us therefore change (4.42) to bring it into the correct
form (4.36):

0 =no(a)— [

+g51e6nu5(y)gne(y))

" (y )
Y,

a a
X— 'Oav(x>y)"geaﬁv“‘“‘oﬂv(x’y)[z=zn (4.43)
ax, 0x,

with the function O still defined by (4.42). In Appendix
B we shall calculate the value of the expression

9 -
(5a75"—+gaﬁ‘y‘4 vﬁ(x)>0v‘y(x)

Xy

(4.44)

and shall show that it is zero, so that (4.43) is a per-
missible, consistent choice for the function 6.

Rules for Feynman Diagrams
We can rewrite Eq. (4.38) in the form

[ d (aﬁ,“(x) aZ,.“(x))

I, 0%, 0%y

+gi»“(x)—i0,(x)]lG)=0, (.45)
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O——O-

Fic. 3. Diagrammatic representation of the equation for the
two-point Green’s function in the Yang-Mills theory.

+
+

where
04,7(x)
jw<x>=eaﬁ~,(-z.ﬁ<x) a
0z,
94,7(x) 04,7 (x
+2,0(x) 4,502 ))
oz, 0xy

+geapyeysed () A,5(x)4,5(x). (4.46)

By integrating (4.45) in the usual way and using (4.43)
for 6, we obtain the result

(A,“(x)-—ig ] dx'3Ap(x—2') j,*(x')
- f dx'3Ap(x—2")n,*(2') — geapy / dx'3Ap(x—2')

]
X0 )|-2)|6)=0, (47
o,

where O is defined by (4.42). We have omitted the
middle term of (4.43), as it is a pure divergence. If we
wish we may generalize (4.47) by replacing the pro-
pagator 8,5A(x—x') by [8,,—c(3%/9x,9x,) 02 3Ap
X(x—2a'); we then obtain other gauges such as the
Landau gauge.

If the last term of (4.47) had been absent, we would
have obtained Feynman rules similar to those for elec-
trodynamics. The equation for the Green’s function
could then be represented graphically as in Fig. 3, with-
out the second-last diagram. For simplicity we have
exhibited the equation for the two-point Green’s
function; equations for higher Green’s functions can be
similarly represented. The three- and four-point
v;rtices have the following factors associated with
them:

vs(pr,u; p2,8,7; p3,7,p)
=4(2m) eapr[ (P2~ p3) ubsp+ (ps— P)r8up
+(P1—52)pbu] (4.48)
(a3 Po,Bv; bs,y,0; p4,8,0)
=—(27) eapeccys (8upbvo— 8u0dy,)
- (27") 4€a7¢5e56 (6[41'3,)0'— ) ,,,6,,,)
— (27) €asc€epy(8 uobpo— Oupdra).  (4.49)
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One could then construct Feynman diagrams by ar-
ranging the vertices (4.48) and (4.49) in all possible
ways. In fact, Eq. (4.47) without the last term is
identical to the equation we would have obtained by
starting from the Lagrangian

1704,%\? 94,* 04,*
Y Bt
2\ oz, ox, Ox,

+ teapyeased fA,7 A, 04, (4.50)
and writing down “naive” Feynman rules in the usual
way.

The presence of the last term in (4.47) shows that
the naive Feynman rules are not correct and that there
are additional terms in the perturbation expansion.
From (4.42), we can expand O as a perturbation series
in g as follows: :

Opy(,y)=—1 Y [ dxy - -dxg3Ap(a—x1)igegscAr’(%1)

n=0
a .
X——3Ap(w1—22) igecrad 5 (29) - - eguin A ot (1)
0x1\

X (4.51)

9 1A( |
- Xn— .
g Ty

Xro
When (4.51) is substituted in the last term of (4.47),

we obtain the result

© a1
Z [dx’dxl. . .dx,%AF(x—x')igeyaﬂg—l—gAp(x'—xl)
Xy

n=0 J

d 1
Xigegsedad (1) —— ~Ap(21—%2)
oxn

~Ap(xa—a'). (4.52)

Xigeeg,,A“f(xz) e EGL'yA v‘(xr)

Xra

The expression (4.52) has the form of an integral
which occurs in Feynman diagrams, and the contribu-
tion (4.52) to (4.47) has been represented by the second-
last diagram of Fig. 3. The summation sign represents
the sum over polygons with any number of dashed lines,
and corresponds to the summation over # in (4.52).
The dashed lines and vertices are associated respectively
with the factors 1Ap(x,—%,41) and ige(d/dx,) in (4.52).
Thus, in momentum space, the following factors are
associated with the dashed lines and the vertices at
which they end:

1 5«5
dashed lines: :

(2m)t —pitic

(4.53a)
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vertices: w(pia,poBe,p3y)=—(2m)geas pss ;  (4.53b)

an over-all factor —1. (4.53c)
In (4.53c), the quantities p1, a and ps, v refer to the
dashed lines, the quantities ps, Bo to the solid lines
representing the Yang-Mills quanta. We notice that
the vertex factor is not symmetric in the two dashed
lines; it involves a factor ps, but no factor p.. It is for
this reason that we have drawn arrows on the dashed
lines in Fig. 3. The factor p;3, in (4.53b) is associated
with the line directed away from the vertex.

The presecription for constructing Feynman diagrams

‘}'is therefore to draw three-particle and four-particle

vertices with factors (4.48) and (4.49), and also polygons
with any number of dashed lines and with factors (4.53)
associated with them. The three- and four-point
vertices, as well as the vertices of the polygons, are
then to be joined by solid Yang-Mills lines in all
possible ways.

The Feynman rules for our theory are the same as
those for a theory with ficititious scalar particles as
well as the Yang-Mills particles. The Feynman diagrams
contain three- and four-point vertices involving the
Yang-Mills lines alone. The factors (4.48) and (4.49)
are associated with these vertices. In addition, the
diagrams contain vertices involving two scalar lines
and one Yang-Mills line. Associated with such vertices
are the factors (4.53b). There is a further factor —1
associated with each closed loop of scalar particles. The
scalar lines only occur as internal lines and only in
closed loops.

Note added in manuscripl. Faddeev and Popov
(unpublished) have shown that their functional-
integration prescription® can be related to Schwinger’s
formulation of the Yang-Mills theory.® This therefore
provides an alternative derivation of the Feynman
rules from a quantized field theory. Faddeev and
Popov have restricted themselves to Landau gauge.

APPENDIX A

We first show that the definitions (4.13) do lead to
the correct path-dependence equation for the Yang-
Mills #s. Our results will be almost trivial once we have
found the path-dependence equation for V. We shall
begin by finding the change of V due to a small change
of the path P near its end point by an amount ¢,,. It
follows at once from (4.20) that

] d
8.V ay(x,P)= geyse(a—xzﬁap—g;:ﬁﬂp)

X {‘Zfbe(x) Vaé(x;P)}o'lW ’ (Al)

where 3, is the change of V,,(x,P) caused by a change
of the path P near the point x itself. By using (4.19)
to differentiate the factor Vas(x,P) on the right of
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(A.1), we can transform the equation to read

34,(x) 94 ,(x)

dox, Xy

8zVa7(x;P)=g678eVa6(x)P)<

84, (x) 04 ,(x)
=g6765Va5(x>P)< -
ox, ox,
34, (x) o4 ,(x)
=ge.,5¢Va5(x,P)< -
ox, ox,
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)U“,-{-gze,a,ea;,,Va;(x, P) {J,‘(x)ﬁ,,"(x) —-X,.‘(x)g,,"(x)}a,,y
)0,.y+g‘*e.,;sVa;(x,P)eawzf (%) A, (%)ou  [from (4.16d)]

'rgfenrg»”(x)xqr((x))%FgéyaeVaa(x,P)f,‘.‘(x)a,w [from (4.13b)]

= geaptV (2, P)V (%, P) fur(*)os  [from (4.16b)]

= geaptF P (%,P)Viy(%,P)o,, [from (4.13a)].

We can now generalize (A2) to obtain the change in
V caused by a change in the path P at an arbitrary
point z. We write

Vay(®,P) =V ae(z,P)V o (2,4,P)

the point z being chosen just beyond the region where
the path is varied, so that the factor V., (z,x,P) re-
mains unchanged. Applying (A2) to the factor V,.(2,P’),
we find

8:V ay(#,P) =[8.V ae(2,P") ]V &y (2 4, P)
=geasiF wP(@,P)Vi(2,P")V y(2,2,P)0
= geapiF P (2,P") V1o %,P) 0

from (4.18).

Equation (A3) is the path-dependence equation for V.
By substitutin‘% in (4.13a), we find the path-dependence
equation for F, and it does have the required form
(4.12).

We now turn to the verification of (4.23). We have to
find the commutator between the operators V qy(21,P1)

(A3)

Fu

(A2)

0
5(5—Vﬁ6(x2,P2)> =Ngepar V(22 P2)8 wb*(x1—22)+\ EM(

Xn,7(x1) and F,o8(xs,P5), and to show that it is given
by (4.9). We begin by finding the commutator between

the operators Vaq(x1,P1)n,7(#1) and Vgs(xs,Ps). From
(4.21),

[Va'y(xly I)l)nvy(xl)’ Vﬂﬁ(x%P?)]

= Vay(xlyl)l) Vﬂ5(x2)P2) . (A4)

61;,7(9(71)

To evaluate the right-hand side of (A4), we first show
that Eq. (4.19), which defines V, is invariant under the
transformation

Vgs(x2,P2) — Vg5 (x5, P3)
z2
FAgesaV 5ol Ps) / 584 (ri—5), (ASa)
Py

A1 (x) = A (1) 4NV ay(21,P1)8,00'(x— 7). (ASb)

For, under the transformation (AS), the additions to
the two sides of (4.19) are as follows:

d =
V;a(xz,Pz))f d£,54(x1— f)

X2,u Py

z2
=Ngegar Via(%2,P2) 8,0% (01— x2) + N egarg €amed u(22) Vs (2, Ps) / d&8'(x1—§), (A6a)
Pg

from (4.19).

8L gesned u(x2) V gy(22, P2) J=NgesneV ae(21, P1) V (22, P2) 8,84 (2t1— %)

+A 5ﬂa§geﬁﬂth#e(x2) V!‘n(x2:P2)

z2

dE,B"(xl— E)
Py

x2
=Ngegar Via(22,P2) 8,04 (21— 29) + Negargesmed p(%2) V gy(262, Pa) / d&é4(x1—¢), (A6b)
Py

from (4.16c). We observe that the right-hand sides of (A6a) and (A6b) are equal, so that Eq. (4.19) is invariant

under the transformation (AS).
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From the fact that the change (A5b) in 4,” results in the change (A5a) in Vgs(%s,Ps), it follows that

5 =
V ay(o61,P1)————V gs(%2,P2) = gegas Vis(x2,P2) | dE,64(x1—E), (A7)
Y xl) P2
and therefore that
3
LV ay(21,P1)n, (1), V ps (22, P2) 1= — gepas Vs (o, Pa) | dE0%(21—8). (A8)
Py

The commutator between the operators Vo, (x1,P1)1,7(%1) and f,,%(xs) is easily found from (4.13b):

~ - d d
I:Va'y(xlapl)ﬂv'y(xl)yfwa(m)]= - Vav(xI;Pl) fpws(x2)= - wa (xl)Pl)[(—Bva— 5”)53754(901-—362)

EDN %34

6
oA »Y (xl)

+ gesyel OvpA o (22) — Byod p(202) J6% (21— xg)] =— Va-,(xz,Pz)I:(—?——ﬁ,,——6-6.,,)55.,64(901— xg):' (A9)

X2p 0%,

on using Eq. (4.19) for the derivative of the operator Vy.
We can now finally find the commutator between the operators Vay(21,P1)n,Y(¥1) and F,A(x2):

LV ay (@1, P10, (1) F o P (2, P 2) 1= [V ey (01, P1) 1, (1), V g3(%2, P) Foo®(22) ]

z3
= _geﬁafV§5(x2:P2)fpva(x2)f dgv64(xl"$)_'va1(x2,P2) Vﬁ&(x2,P2)
P2

ad ]
X( Ovo— Gy,,)éa.,&“(xl—xg) [from (A8) and (A9)],
Y20 Y20

a2 d 9
= geapslpot (2, P) / d&é“(xl-s)—(——a”— ayp)aa,ga(xl- %), (A10)
Py X2p X2

from (4.16b). We observe that the operators Vay(®1,P1)n,7(21) and U,%(x1,P1) do satisfy the same commutation
relations (4.9) with the operators F,,#(xs,P3).

APPENDIX B

In this Appendix we shall evaluate the expression (4.44), with 6 given by (4.43), and shall show that it is zero.
We shall thereby have verified the consistency condition on the Yang-Mills field equations.
We can divide (4.44) into the sum of four terms:

]

0
() (5 ar—+g eaﬂv‘q () )nvy(x) = w2 (x)+g éaﬂvg A@)m(x), (Bla)
x, 9

Xy

@ - [ dy[(aa.,gfjgeaﬁyzyﬂ(x)) ,(a"j(y)+gemm(y)z,,«y))]g'}_oﬂ(x,y)

Yu

62
=geaﬂ7(5"5_0-rﬂ(x>y)

YyOXy

ad
— gerep A, 4(0)—O00i (2,9) ) , (B1b)
axp z=y

z=y

from (4.27),

I - d a
(lll) - /dy( "6 (y) +gemm.6 (y)A p!(y))(‘sa‘y'a‘;' Xgeaﬂ*rgbﬂ(x) )a_"oﬂ’ (x)y)

Vu Xy

d
= —;—n,“(x)—g ea,s.,nﬂ(x)/T #(x), (B1c)
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from (4.42),

i) V]
(iv) (6«1———+ g faﬂ'r‘q 'yﬂ(x))( — vt ag;ost(x,y) , z==v)

ox,

ELECTROMAGNETIC AND YANG-MILLS FIELDS

1603

9 /90 i}
=_g€u7ﬁa_ (‘a'_oﬁv(x’y)lz=v)~g2€a5757fﬁgvﬂ(x)'é_‘06r(xyy)lx=u~ (B1d)
(4 xy

Xy

Expressions (B1a) and (B1c) are equal and opposite, ex-
cept for the different ordering of the factors 7,7(x)4,5(x).
Thus the total contribution of these two terms to (4.44)
is

8€ap VEZ L@, (x)].

On adding (B1b) and (B1d) and using (4.16d), we find
the result (4.16d), we find the result

(B2a)

J 0
—geaw(ax aﬂe+gmﬂf<x))-a—-ow<x,y>1x_,,. (B2b)

Xy

Finally, on adding (B2a) and (B2b), we obtain the
equation

a3
(aa75—+geamvﬂ<x>)an<x>=ge.,ﬂ,[z,ﬂ<x)w<x>3

Xy

a J
—& ea?ﬁ(ax Oget-g Gﬁéeg »(x) )‘a"ow(x:y) I e=y- (B3)

Xy

With the aid of (4.21) and (4.42), we can rewrite (B3)

in the form

d
(5a7‘é‘_+g€aﬂ'r‘qvﬂ(x)>0ﬂ(x) = g€apyOpyOndt(x—x)
Xy

—geayslpydndi(x—x). (B4)

If we allow subtraction of infinites as one usually does
in perturbation theory, we can set the right-hand side
of (B4) equal to zero. If we had been working in mo-
mentum space, the § function in (B4) would have taken

the form
Jas

and we would have set (B4) equal to zero owing to the
vanishing of the integrand. Thus, insofar as perturba-
tion theory for local fields has any meaning at all, we
may write

(BS)

d
(60,.,5—4- geaprd ,ﬁ(x))()ﬂ (x)=0. (B6)
Xy

We conclude that (4.38), with 6 given by (4.43), is
consistent.



