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The probability of an atom undergoing a transition to a given Gnal state by means of two-photon ab-
sorption is expressed for arbitrary Geld states in terms of the second-order normally-ordered Geld correlation
function, evaluated at the position of the atom. In the case of stationary Gelds, an expression for the absorption
rate is found which reduces to a particularly simple form for narrow-bandwidth 6elds near resonance. The
effect of Geld statistics is illustrated by comparing the absorption rate +~&oh) for chaotic or Gaussian light
to the rate e2&'& for laser light. The rate for laser light is calculated within the context of a particular model
based on the assumption of fixed fteld amplitude and random frequency modulation, and the chaotic light
to which it is compared is assumed to have the same (Lorentxian) power spectrum. When the width xr of
the 6nal atomic level is much greater than the bandwidth 5 of the 6eld, we obtain the previously derived
result req1'~&/req&o =2. When xr((b, on the other hand, the ratio between the two rates depends on the (mean)
frequency of the 6eld, and assumes the (maximum) value 4 when the field is exactly on resonance.

I. INTRODUCTION

A NUMBER of discussions' ' have recently ap-
pcRrcd of thc pI'oMcIn of tlic simultaneous RbsoI'p-

tion of two photons by atomic systems. Particular
attention has been paid to the dependence of the rates
for such processes on the statistics of the exciting 6clds.
Previous discussions have been based almost ex-
clusively, however, on a modal expansion of the field
thioughout thc I'cglon of spRcc under consldcI'ation.
Thc simplest RIiRlyscs assume that ollly onc n1odc of
the Geld is excited, and thus are unable adequately to
tRkc into Recount thc effects of time-dcpcndcDt Geld
correlations and field bandwidth. A more general
analysis of this kind, on the other hand, requires for its
applicability a rather detailed knowledge of the density
operator for Rll of the excited 6eld modes, which may
be difBcult to obtain in practice. In this paper, the rate
m2 for two-photon absorption by an atom undergoing a
transition from its ground state to a given excited state
is expressed in terms of the second-order (normally-
ordered) 6eld correlation function G&@(fi',fr', f1,4)
evaluated at the position of the atom. The two-photon
absorption rate is thus expressed in terms of a function
which plays a central role in the theory of counting
statistics for one-photon absorption. ~ s

The absorption rate for stationary 6clds is expressed
in terms of a double integral of a certain atomic response
function times the second-order spectral correlation
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function F&s1(o&t',&us', cei,res), in which the positive- and
negative-frequency arguments both sum to the fre-
quency of the 6nal atomic state. In the case of narrow-
bandwidth fiews near resonance, the expression for m2

is reduced to a single Fourier integral of the function
G&si(—f, f; f, f) —The .analysis, which is based on
second-order perturbation theory, is suitably generalized
to take into account the effects of (natural) linewidth,
both of the intermediate and of the final atomic states.

Two special cases—that of chaotic (frequency-
filtel'ed) 1'Rd1Rtioll, Rild 'tliat of amplitude-stablhzed
1Rscx' light —RI'c consldcl'cd ln dctRll. A model of lascl
light developed by previous authors is adopted, and
used to calculate the second-order 6eld. correlation func-
tion. The two-photon absorption rate m2&'& for laser light
ls then calculated, and compared to the rate m2&'") for
chaotic light with the same power spectrum. It is found
that if the mean frequency of the 6eld is exactly on
resonance (i.e., if it is equal to one-half the frequency
of the final state), then the two rates are related by the
fOI'IQU1R

m &o"~=4m &'&

for transitions to an inGnitely sharp Gnal atomic level.
This result remains valid a,s long as the width ~f of the
final state is much smaller than the bandwidth b of the
fieM. If xf&&b, on the other hand, wc obtain the pre-
viously derived' —' ~ result m2&'") =2+2('&. This relation
follows directly from a formula expressing m2 for
arbitrary fields as a simple factor times G'+ (0,0; 0,0), a
formula w111ch ls shown to bc valid lf the width of -thc
final state is much greater than the bandwidth of thc
field, and also if the 6nal levels which can be excited by
means of two-photon absorption occupy R broad band
of energies.

II. TWO-PHOTON ABSORPTION PROBABILITIES
FOR ARBITRARY FIELDS

In evaluating the coupling between the fjeld and the
(hydrogenlike) atom under consideration, we shall work
in the dipole approximation, and ignore the cGects of
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into the right-hand side of Kq. (3.13) and then make
use of the definition (3.2) and the Fourier inversion of
Eq. (2.15). In this way we 6nd

XG&'I(—t, —t; t, t) g(klo) (3.15R)

=2g («)
«2= 2~g*(«)G'» (0)g(«)N(2«). (3.21)

tion with vanishing arguments,
' ' ~" and R Lorentzian

function of width f(f, centered at ~0 ———,'(of.
%C may remark that the propoxtionality of mq to

G'»(0) is a feature of all two-photon absorption
processes in which a broad band of 6nal atomic states is
accessible. We may extend our results to include photo-
ionization, for example, simply by integrating the rate
given by Eq. (3.15b) over the density of final atomic
states N(~r). If the function N(&of) varies slowly within
the frequency bandwidth of the 6eld, we 6nd

&&g&'&(—t, t; t,—t) g(«), (3.15b)
IV. CHAOTIC FIELDS: MODE INDEPENDENCE

where the last relation follows from Kq. (3.10). Thus
the two-photon absorption rate for narrow-bandwidth
stationary fields ls glvcQ ln terms of R slIQplc Fourlcr
integral of the second-order field correlation function,
%'ith both posltlvc-fI'cqucncy components equal to 5 Rnd
both negative-frequency components equal to —f.

The relations (3.15) were derived for the case of a
6nal state with 6xed energy hcoj, and Rre valid only if
the width of the final state is small compared to the
bandwidth of the 6eld,

(3.16)

or) equivalently, only if the lifetime of the 6nal state is
large compared to the coherence time of the 6eld. In the
general case, the two-photon absorption rate may be
obtained by substituting either of the Eqs. (3.15) into
Eq. (3.9) and performing the indicated integration.
VVC find

«k = 2g~ ((uk)

XGI'&(—t, t; t, t) g(«—) (3.17a)

where each of the single-mode density operators p~ is
statlollal"y (dlagoIlal 111 'thc s-quantum representation)
and is characterized by a geometric law for the
quantum-number probabilities:

s'k

Pk= g jllk}k k(Ilk) .
1+nk "' 118k

(4.2)

No restriction is made on the mean quantum numbers

as there would be, for example, in the case of thermal
I'adlatlon.

We note that the relations (4.1) and (4.2) are
equivalent to the moment relations

(@k&
I' ' 'A„ tA& ' ak )

~em @kg' ' "ilk'~ g ~kg'k~(o' ' ' 4z'k&(~I ~ (4 4)

A chaotic field may be defined as one for which the
6eld density operator factors into density operators
for each mode

(4.1)

=2g'(«) d') gi(2rkif —4~0) t—«f j Ej

Xg&»(—~, —i;~, ~) g(~,). (3.1/b)

(3.1g)

where the summation is taken over all permutations p
on e integers. The mean value of the product of two
cl'cation opcI'RtoI's Rnd two RnnihllRtlon opcI'Rtox's ls
thus

(+kg' okk' liked'skk}=@kgrikk[ 4g'kj~kk'kk+'4y''kk'4k'k j y (4 5)

and the second factorial quantum-number moment for
a given mode is

'tllcn thc fllllctlon g~ I(—$, f; f, 1) 111—Kq. (3.17b) 111Ry

be replaced by its value for (=0,
G&»(o)=—G&»(0,0; o,o) =([et(0)g'Le(0) jk), (3.19)

and hence wc have
Kf

«2=x*(«)G"'(0)g( );M, —, (3 2o)
-kKr + (2Glk —Glf)

(akt'ak') = (aktek(aktak —1))=2nk'. (4.6)

The 6cld correlation functions are easily evaluated
vrith the aid of these relations and the modal expansion
(2.3) of the field. Restricting our attention to the values
of these functions when the spatial arguments are set
equal to zero, vrc find that the 6rst-order 6,eld correla-

'ustify this result has also been noted by R 8 Lehmberg thesis
0 ~ "The necessity of assuring a relatIvely broad 6nal level to

plopOltlOnal to thC SCCOnd-Order field COrrClatlon fuQC- Brandels University 1967 (unpUMlshe(i).
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G"' {«' «)—={0"(«') 8 («))

=r(«—«') „

r («) = (Iles/2 V)g es8s(ns/(us)e *"-)''

(4.7}

(4 9)

If we In&e Use of this relation and the modal expansion

(2.3) to evaluate G"', we find

G~') («,',«,'; «„«,}
=r («I—«I')r {«s—«s")+r («1—«s') r {«s—«I')

+(1/V)g(«, +«,—«,
'—«,'), (4.14)

where the function g is def'Ined as
Th.c px'oduct of RQ arbitrary QUInbex' of cx'cRtlon opera"
toI's Rnd Rnnihllatlon opcrRtors Inay' bc cxpI'csscd ln
terms of the 6rst-ordcr correlation function as'2

5'c4
g(«)=— —g AeAes(A —2ns)Ies 'e *"". (4 15)

(et(«I')" et(«„')e(«,) "8,(«.))
Gin, ) («1. . .«

I.
« . . .«)

= b- & G'"(«1'@II)) "G")(«.',4(-)) (4.10)

Thcsc relations» gcncx'Rllzcd ln RQ obvious In~cr to
diferent spatial as well as temporal points, provide a
charactcl'lzRtloQ of chaotic 6cMS fUHy equivalent to that
given by Eqs. (4.1) and (4.2) for the density operator.
It ls iInportant to rea]ize» however, that thc I'clatlons

(4.10) for the field correlation functions may be satis6ed
to R very high degree of approxilnation even when the
individual density operators pI, for the held modes have
forms very different from that given by Eq. (4.2).
Indeed, as we shall now show, the relations (4.10) are
vaHd in the limit V —+~, in RQ asymptotic sense

presently to bc dered» fol any 6cM ln which thc Inodcs
of oscNatlon RI'c statloQRl y Rnd stRtlstlcally lndc-

pendent of one another, irrespective of the statistics of
th.c individual nlodcs. This thcorcIQ» which ls R generali-
zation of the central limit theorem for a single random
variable, may be illustrated by evaluating the second-

order Geld correlation function, which, according to
Eqs. (4.10) and (4.8), is given for chaotic fieMs by

G1') («1',«,'; «„«,) =r («,—«,')r(«, —«,')

+r(«,—«,')r(«, —«,'). (4.11)

To cvRhlRtc this function foI' Rny dcQslty operator
satisfying Eq. (4.1), we first introduce the parameters

A=—{es"IIss),

which would be equal to 2ng' if Pg vrerc given by Kq.
(43). In thc general case, since the field modes are
assUIned to be stationary Rnd stRtlstlcally lIldcpcndeQt»

it is clear that the expression on the left-hand side of

Eq. (4.5) call be llollvalllshlllg Only lf: (R) k) =k),
ks= ks', but k)W ks,. (b) kl= ks', ks ——ki', but kl/ks; or,

(c) k)=ks=kl'=ks'. In cases (a) and (b), the quantity
on the left-hand side of Kq. (4.5) is just (as,te)s, )(&s,t«Is, )
—=ns,ns„while in case {c)it is Js,. These relations are

cqUlvRlcnt to thc formula

(~kg' e'ks' esgIIss) =nsP4s (4g'sg'4s'ss+ ~ki'kg'4s'k|)

+ (A 2ns )4 ss4ssi'4|') ' ~ {413)

R. J. Glauher, Phys. Rev. 131, 2M6 (B63).

In the limit of infinite quantization volume, the summa-

tion over discrete modes is replaced by V times an

integration over k space (along with a sum over polari-

sation vectors). It follows therefore, that if we keep the
Inodc cxpcctatlon values 8@ Rlld Jhs axed Rs fUQctloQs

of k (Rs wc must do, fol cxRIYlplc, to gllal'Rlltce 'tllat
G&') («', «) remain lixed), we shall 6nd that the function

g(«) approaches a constant. It is clear, then, that in this
lllllit 'tllc third tcrnl orl tile 1lgllt-l18lld side of Eq. (4.14)
approaches zero, and therefore tha. t the second-order

f)CM correlation function approaches the value (4.11)
for chaotic fields. Similar relations are easily derived

fol all of thc higher-order correlation functions» and lt
follows that the 6eld itself is chaotic, in the hrnit

V —+00, for any density operator of the form (4.1},
provided that each of the single-mode density operators

pp ls stationary.
To cvRlURtc the second-order spcctI'Rl corrclRtion

function defined by Eq. (2.15), we begin by introducing

the erst-order spectral function

v(~)—= C« e' 'I'(«) (4.16)

We find then by substituting Kq. (4.11) into Eq. (2.15)

G(2) /' / )r ~1)'xi') its{»,MS & ~I,~S)
= ~(~I'—~I)&(~s'—~s)v)„)„(~I)vx, x,(~s)

+«)(» —»}~(&s—&i)VI I (»)VI 'x (&s} (4 17)

where wc hRvc written the vcctol' lndlccs explicitly to
fRcllltatc latcI' wolk, Thc I'cdUccd second-order spcctl Rl-

6cld colx'clRtloQ function ls therefore

~"l~, 1;I,i.(»',~.'; ~l,~s) =&(~)'—»)Vi, i, (»)Vi, i,(»)
+b(~s' —~I)V)„ i, (»)Vi, ~,(») (41g)

To slmpllfy thc expression which 1'csults froIQ sUb-

stituting this relation into Eq. (3.7), we f)rst note that,

by virtue of the dcf)nitions (2.10), (2.15), and (3.2) and

tile colllInlltatlvlty of S(«i) RIld 8(«s) thc function
F&2} is invariant Under either of the interchanges

(~I,) 1) ~ (a s,) s) or (a I',) I') ~ (cps', Xs'), for arbitrary
6eMs. To make Use of these symmetry properties, @re

Introduce thc fUQctlon

gi,i,(~)—= s Cg).,x,(~)+gl,l, (~I—~)g (4 19a)

=gls4(&f ~) ~
(4.19b)
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V. ABSORPTION PROM LAPSE

Ussloxls GT qURntUIQ-/jet. statjstjcs jn tbe IRIlgURgeuthors" have devised a model o 818CUSSIOHS GT qURQ UIQ-

um tion of a Axed field amplitude,light based on the assumption of a xe e
doIDl VRTYIQg freqUCQCQ~ CRwith a small random y ea cr& g

. This IIlOQCI) %'1HC RS CC
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5.6)I I (&~s}t) I =I'",%'Blab %'C SbRlI &CQ USC tG CVR1URte C

RbSox'PtlGH. rate

'I Lecture XV; J.R. Klsuder snd E.C.+ Sccq 6R cx~Plc~ RH, Eq I cctQfc q ~ ~ .C.

Inc., New Pork, 1968), Chap. 9.

for RH f» UC R CRTQ~ 8 Ii beaiii inay be thought of as a statistical

'4K. C. G. Sudarshan, ys.d rsh Phys. Rev. Letters IQ, 2/'I (t96S)

.is R rcIRtiveIQ %clI-tMRRV&. fUIKtioD Gf%4cre I eq 18 3 rc R - loD Gf
tee(ref) =s. '
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din classical expressions. The
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t order 6CId-cmrclat~oQ
'

Q f~QCt&Q IS gI+CQ

m(t) =I"'~'" Go) (p, t)= (g*(t')~(t))(5.7)

I&—s~o(~~'& CXP &tochRBtic fUQctiOH of t1Mc.
w assume that the 6eld is generated by a

source OscllIRtlng at thc requcQ
RB s19%'ly varylQ

satis yin — e hase of the 6eld at time t issatisfying (ho}(t))=0.The phase o e

() +tt+s (t) (5.8a)

I&-&'I

drdr'S(~ —r' f,
2

Aq (t) = dt't)o) (t'). (5.8b)

(a~(t)a~(t'))=—s(t—t') (5.9)

itiRI hase qe t0 be uxufoxmIy dis-%C RSS~C the HlltIRI phRSC (pe

tributed between
stationarity. The frequency mo a i

Gags' un rrtwd0m p:T cans nts
of do}(t) are given in terms o
~CtJOQ

from E s. 5.11)and (5.12b)where tlie last step follows from qs, .
= 1 for r between t and t', anby putting f r = or r

Otherwise.
th OrreIRtIon time for thcI ct US DOw Rssumme t Rt t e Car

h smRHer @RQCBC IMUIRtH)B IS IQg,cFRQdorn frcqU, CQcy

Idcr. VVc ID' then RpproxI-RQy' 0 ex" Ither tlIlM vs Qeed coQsI
mate the function r(r) y

(5 14)

oo

dr f(r).
2 ~io

E . (5.13) that the function 1'(t)We 6nd then from Eq.
de6ned by Eq. (4.8) is given in t is imi

(LLo) (tr) ~ Ao}(tm„+1))=0, (5.10a)
(5.16)

( ))=(2"~!) 'Z6'(4o)-4(i))".(ko)(ti) ' ' 'Ao)l tm~gy=
of the LCM is thos the LorcntzIRnTile P0%'er spcctrUIQ Gf t c c

fUQCt1OX1

&«(t.&.. )-t.&.)), (5.5.j.ob =I — — —. - (5.17)v(~) =I-

4
ecoQd-Or cx' c cod 6 M orrcIRt&on function Is given by

er aH permutations p on 2+
11 1acterlzation of a ]0111

CxtCQ S 0}VCX' R

iQtmtegCI'S. AB CqC MVRICQt C RI'RC C

ter-CSS IS 1Q CIIDtermS Of the CharmGBUSSIRQ

istic fttlc

The S

«') t 't 't t —= K*(ti')5'(t~')S(t, )K(t,)), (5.18)4 )4 j ~1p 2 =
rRQdoIQ proc

b E . (3.10) is therefore

ti0wul

and the function 8@) de6ned y q.
(5 11) given byxL'f(r})—= (exp i d Av(r}f( }

VrhICh iS giVCQ by"

(~})=~m —( & & ( r ~ )
=e —— drdr'f{r) &(r—r')f{r')=exp

2

for arbitrary functions j(r).
'~ The j.'elation (5.$2a) Mes

unctionVf1 nuYi the cxpQQcnt18 u
VaDSble,GausSlRB, x'odom vaD

(5.12a)

ste follows from Eq. (5.12a) and the

stochastic function ho}(t .

('"") "g .f t 'f .n g
. 'h

if $l RDd f2 Rrc Pos3.$j.&c. ctlDMS

4 (t&)'j') is then, by virtue oAagoQRI term suc4 Rs 4y l, c o
Eqs. (5.8b)„ (5.9), and {5.14),ci tha, t HM lntcgl'R1

(5.20)

from the fact a
ln Kq. (S.ii) lS ltSc g, L.



A cross term, such as 2(b, y(/i)4~/ (/s) }in Kq. (5.19),
may be similarly evaluated. Denoting by fg the smaller
of the t%'9 terms fI Rnd fq, %'c And

2(~9 (/i)~9 (/s)) =4f «
=4f Lk(&i+/s) —s I ~1—tsl 3 (5 21)

By using these relations and similar ones for the remain-
ing terms in the statistical average in Eq. (5.19), we
6nd that the second-order correlation function for R

fixed-amplitude random frequency-modulated field is"'

g"'(/ ',l'; l,4)=I' pl:b(l/ —
& I+ I I

'—/ 'I
—I/1-4'I -

I
ts-l. 'I -14-/s'I -

I
4-&1'I}j (5 22)

vrhich is explicitly independl, ent of thc origin of time, and
thus valid for all (positive and negative) values of its
argUHleIlts.

The statistical constancy of the 6cM amplitude may
be exhibited by evaluating Kq. (5.22) at ts'=Ps, and
then noting that the resulting expression is independent
of ts .. if we make use of Eq. (5.16) and the definitions
(4.8) and (3.10), we find

G&»(~,',l„.~„~,)=16&»(~,',l,).

correlation function. If we substitute Eq. (5.16) for
I"(l) into Eq. (4.23), we find

4(2b+-,'«/}
ws& '=I'I g(«) I

— — ——— — (5.»)
(2b+ s K/) s+ {2«—Gi/) s

In the hmit in which the vridth of the 6nal state is
much greater than the bandwidth of the field (s/»b),
the rates given by Eqs. (5.26) and (5.27) approach the
values given by Eq. (3.20), where G&" (0) is equal to Is
for cohcrexlt light RIKI. 2P for cbRotlc 4ght. Thc ratio
between the absorption rates is therefoxe' 3 5

ws&~1/we&'1 =2 for s/&&b, (5.28)

R result which also 1S VR1Mi, according to Eq. (3.21), for
photoionization by nmans of two-photon absorption. '6

In the limit «~&b, however, which corresponds to
transitions to Rn IMitely sharp linc, the rates given
by Kqs. (5.26) and (5.27) approach the asymptotic
values

ws&" =I'I g(~ ) I ',
4b'+ {«-xroi/) '

wi'"'= I'I g(~o) I ',
fi +(«soi/)

(5.30)

() LG ()3
%'hlch holds for Gaussian 6elds.

Lct us no%' RSSUQM that thc 6cld bandwidth 4Q=b
and mean frequency ae satisfy Eqs. (3.11}and (3.12).
Then %"c xnay evaluate thc t%9-photon absorption
rate m~&'} for our model of laser light by making use of
Eq. (5.22} for g&" in Eq. (3.17b). We find then

ws&~& =4ws&'1 for s~gg
(«soi/)C(b, (531)

WMc 1f tile bcRnl 1Sfal' 08 rcsonRncc )but with («—sroi/)
still satlsfymg Kq. (3.12)j, tile two rates sre equal,

2(4b+-', «/)ws"'=I'I g(«) I
'- — (5 26)
{4b+xsa/)'+ (2&co—oi/)'

ws&'"1 =ws&'1 for &t/c&fi

(~s——,'oi/)&&b. (5.32)

These results for transitions to a very sharp level, unlike
the relation (5.28) for a (relatively) broad level, depend
upon the specific form (5.22) of the second-order field
correlatloH. function& Rnd hence on thc particular IQodcl
vN have adopted for lRscr light.

It is instructive to compare this result to the tvro-
photon absorption rate m2('") for chaotic 5clds gath the
s~c po%cr spcctrUIn, ~d. hence the same erst-order

»'Rois eQeE je pro»f. 3. Picinhono snd E. Boileau D; Opt.
Soc. Am. SS, 784 (196/)j have analyzed in detail the model of
laser light that we have presented. They obtain formulas for the
6eld correlation functions of all orders, and 6nd the result C'5.22)
for the second-order correlation function.

16 This result has been con6rmed experimentally by F. Sgjga
and S. Xmamurs, Phys. Letters 25A, /O6 (19@).

Thc ratio between these rRtcs depends oIl thc amount
by %which thc Qlcaa frequency ceo of tbc Md divers from

(5.25) the resonant frequency -', oi/. If the beam is exactly on
resonance) thc t%'o"photon absorption rate for chaotic
light ls four tlIDcs thRt fox' laser light&


