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The probability of an atom undergoing a transition to a given final state by means of two-photon ab-
sorption is expressed for arbitrary field states in terms of the second-order normally-ordered field correlation
function, evaluated at the position of the atom. In the case of stationary fields, an expression for the absorption
rate is found which reduces to a particularly simple form for narrow-bandwidth fields near resonance. The
effect of field statistics is illustrated by comparing the absorption rate ws for chaotic or Gaussian light
to the rate wy(® for laser light. The rate for laser light is calculated within the context of a particular model
based on the assumption of fixed field amplitude and random frequency modulation, and the chaotic light
to which it is compared is assumed to have the same (Lorentzian) power spectrum. When the width «; of
the final atomic level is much greater than the bandwidth b of the field, we obtain the previously derived
result wy(*D) /10, = 2. When x;<<b, on the other hand, the ratio between the two rates depends on the (mean)
frequency of the field, and assumes the (maximum) value 4 when the field is exactly on resonance.

I. INTRODUCTION

NUMBER of discussions'™® have recently ap-

peared of the problem of the simultaneous absorp-
tion of two photons by atomic systems. Particular
attention has been paid to the dependence of the rates
for such processes on the statistics of the exciting fields.
Previous discussions have been based almost ex-
clusively, however, on a modal expansion of the field
throughout the region of space under consideration.
The simplest analyses assume that only one mode of
the field is excited, and thus are unable adequately to
take into account the effects of time-dependent field
correlations and field bandwidth. A more general
analysis® of this kind, on the other hand, requires for its
applicability a rather detailed knowledge of the density
operator for all of the excited field modes, which may
be difficult to obtain in practice. In this paper, the rate
w, for two-photon absorption by an atom undergoing a
transition from its ground state to a given excited state
is expressed in terms of the second-order (normally-
ordered) field correlation function G® (/ty; t,ts)
evaluated at the position of the atom. The two-photon
absorption rate is thus expressed in terms of a function
which plays a central role in the theory of counting
statistics for one-photon absorption.”?

The absorption rate for stationary fields is expressed
in terms of a double integral of a certain atomic response
function times the second-order spectral correlation
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function F® (w,',w,’; wi,ws), in which the positive- and
negative-frequency arguments both sum to the fre-
quency of the final atomic state. In the case of narrow-
bandwidth fields near resonance, the expression for w,
is reduced to a single Fourier integral of the function
G®(—t, —t;t,8). The analysis, which is based on
second-order perturbation theory, issuitably generalized
to take into account the effects of (natural) linewidth,
both of the intermediate and of the final atomic states.

Two special cases—that of chaotic (frequency-
filtered) radiation, and that of amplitude-stabilized
laser light—are considered in detail. A model of laser
light developed by previous authors is adopted, and
used to calculate the second-order field correlation func-
tion. The two-photon absorption rate w,® for laser light
is then calculated, and compared to the rate ws® for
chaotic light with the same power spectrum. It is found
that if the mean frequency of the field is exactly on
resonance (i.e., if it is equal to one-half the frequency
of the final state), then the two rates are related by the
formula

W (eh) = 4gp, )

for transitions to an infinitely sharp final atomic level.
This result remains valid as long as the width «; of the
final state is much smaller than the bandwidth & of the
field. If k>b, on the other hand, we obtain the pre-
viously derived'2:5 result w,®© =2%,®, This relation
follows directly from a formula expressing w. for
arbitrary fields as a simple factor times G®(0,0; 0,0), a
formula which is shown to be valid if the width of the
final state is much greater than the bandwidth of the
field, and also if the final levels which can be excited by
means of two-photon absorption occupy a broad band
of energies.

II. TWO-PHOTON ABSORPTION PROBABILITIES
FOR ARBITRARY FIELDS

In evaluating the coupling between the field and the
(hydrogenlike) atom under consideration, we shall work
in the dipole approximation, and ignore the effects of

1555



1556

the term quadratic in the vector potential of the field.?
The Hamiltonian for the system of atom and field is then

Hi()=——p ()40, @.1)
mce

where p(t) is the momentum operator of the valence
electron, and A () is the (freely-propagating) vector
potential of the field, evaluated at the position (r=0)
of the atom. It may be decomposed into positive- and
negative-frequency parts,

A@)=a@®+al®),

in which the annihilation operator G(f) has the usual
modal expansion in a region of volume V,

Q)= (hcr/2V)2 T wi 2 ape— o,
k

(2.2)

(2.3)

In this expression, @i, wi, and & are the annihilation
operator, frequency, and polarization vector, respec-
tively, for the mode specified by the index k.

The time evolution of the state of the system of atom
and field in the interaction picture is governed by the
unitary time-development operator U’(#), which is
given, to second order, by the relation

1 t
U() = 14— / AWH ()
i

0

___;1‘1_2 f[ dhidts 0(ti—to)Hr () Hr(l2), (2.4)

where 8(r) is the step function

0(r)=1 for 720

=0 for 7<0. (2.5)

Let us now assume that the atom is initially in its
ground state |0) and that the field is initially in an
arbitrary purestate |¢)r. The probability that the atom
has been excited to a given final state | f) at time ¢ is

PO)=Z|wel{flU'B0)¥)r]*, (2.6)

where the summation extends over all field states | ¢)#.
The probability P(f) is given, in the general case, as the
sum of terms corresponding to the absorption and emis-
sion of arbitrary numbers of photons. Two-photon
absorption may be expected to contribute predomi-
nantly when: (a) one-photon absorption is excluded,
either by the vanishing of the matrix element (f| () |0)
or by the absence of field components oscillating at the

9 The contribution of this term is negligibly small in many cases
of interest. For a discussion of its effect see R. Guccione and J. Van
Kranendonk, Phys. Rev. Letters 14, 583 (1965); R. Wallace, ibid.
17, 397 (1966).
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frequency w; of the final state; and (b) when the
second-order processes which correspond to the succes-
sive absorption and emission of a photon are excluded by
the impossibility of satisfying the condition wi—wz=wy
with any two frequencies w; and w, within the band-
width of the field. We may note that conditions (a) and
(b) are both satisfied by a hydrogen atom, if the final
state is taken to be the 2s state, and if the field power
spectrum does not contain frequencies as high as that of
first excited level.

The probability that the transition to the final state
| f) has taken place through the absorption of two
photons could be evaluated by expanding the initial-
state vector |¢)r of the field in terms of photon number
states, and then appropriately restricting the summa-
tion over field states | ¢)r in Eq. (2.6), for each term in
the initial expansion. An equivalent and more useful
procedure is to continue to allow the summation to
extend over all field states, but (to second order) to
retain only that term in the expansion (2.4) of U’(#)
which contains a product of two photon-annihilation
operators. To simplify the resulting expression, we
introduce the (second-rank tensor) function

£ (ty,t2)=0(t1—12) (e/ Fmc) X f| p (t1) £ (12)| 0)
=0(t—12) (¢/Ime)* 2 p ripioei@imenitivits
@2.7b)

(2.7a)

Then the probability of two-photon absorption may be
written as

2

P*(’)i@l( / / dexdts r{0] Q1) G(1:) hb)pee(tx,tz))

4
=/j/[ dt’dty'dbdls
0

X &*(t1/,t2) rip| @1 () @ (62) R () B () [¥)r

XE(tt) (2.8)

in which the vector indices are summed in an obvious
manner.

The generalization of this relation to mixed initial
states of the field is

t
Pg(i)=///f dt1’dt2'dt1df~z
0

X £* (tllyt2’)G(2) (tl,’t2l 5 t1712)£ (tl,t2) (2'9)

in which the second-order field correlation function™®
G® is defined in terms of the initial density operator
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pr of the field as

‘ G(2) (lll,tzl; tl,tz)
=trr(pr@'(¢/) Q' (t) (L) G (L)). (2.10)

Equations (2.7), (2.9), and (2.10) thus specify the two-
photon absorption probability for arbitrary initial states
of the field in terms of functions defined separately in
terms of the noninteracting systems of field and atom.

We may remark that our result is formally identical
to that which we would obtain semiclassically, if we
identified the two-photon absorption probability as that
part of the atomic transition probability which is
induced by the term in U’() quadratic in the positive-
frequency part of the (classical) field. The statistical
average involved in the definition of G® would then
represent the possibility of an ensemble of classical
driving fields. This similarity to semiclassical theory is
not surprising, inasmuch as two-photon absorption is
inherently a stimulated process, the mathematical
description of which does not involve the noncommuta-
tivity of @(¢) and @f (). On the other hand, it should be
emphasized that many states of the quantum-mechani-
cal field are characterized by correlation functions
which have no classical counterparts. In a state contain-
ing exactly one photon, for example, the function G®
is identically zero, a relation which can never be satisfied
classically unless the field itself vanishes identically.

To express Py(f) in terms of the Fourier components
of the field, we begin by making use of the Fourier
expansion of the step function

© -y
€ wT

7
0(r)=— do
21 J—w i€

in Eq. (2.7b). By then changing the variable of integra-
tion from w to ww;, we find that the function £ (#;,%)
may be expressed in the form

(2.11)

: )
L£(t,t2) =; /dw g(w)eilos—wltrtinty (2.12)
T

in which the function g(w) is defined as

e \? 1
g (w)s(—) 2 prii————.
fimc/ 7

w—w;+1€

(2.13)

By substituting Eq. (2.12) for £(t,t,) into Eq. (2.9), we
find

e f/ [ awasaas

X e——i(uy—w’) t1’—iw’ o’ +i(wf—w) tit+ivts

XGD (1185 t,ta) ] gw). (2.14)
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It is clear from this relation that the probability of two-
photon absorption involves products of two positive-
frequency and two negative-frequency field components,
whose frequencies sum to (approximately) w; and —wy,
respectively.’® If the field consists of a pulse of finite
extent, then the probability of two-photon absorption
after the pulse has passed the atom may be expressed in
terms of the second-order spectral correlation function

6(2) (0)1,,0.?2,; wlywl’)

E/[// dtlldt2ldt1dt26—iw1’tx’—imz’t2'+iw1t1+iw2t2
—w

XGO (4! 15 hota)  (2.15)

as
P2=//dw’dw g*(w")

XG® (wr—0', ' ;wr—w, 0)g(@). (2.16)
III. TWO-PHOTON ABSORPTION RATES
FOR STATIONARY FIELDS

In many cases of interest, the fields we deal with do
not consist of a pulse of finite duration, but may be
considered to continue indefinitely for all times. A
stationary field is defined as one whose statistical
properties are independent of the choice of the origin of
time. The second-order field correlation function, for
example, obeys the identity

G(2) (t1’,l2'; ll,l‘zz)-‘—‘G&) (l1’+7‘, tz'+T; t1+1', tg-l-‘r) (31)

for all times 7. It should be emphasized that this relation
and the corresponding relations for all of the other field
correlation functions are all that is necessary to specify
stationarity. In particular, the presence of off-diagonal
matrix elements in the z-quantum expansion of the
density operator is not excluded, as it would be, for
example, if we also required that the modes of oscilla-
tion of the field be statistically independent of one
another.

The condition (3.1) on G® implies that the spectral
correlation function G® defined by Eq. (2.15) has the
form

G® (w1 w1 5 w1,09) = (w1 +wa' —w1—wy)

XE® (i w5 wi,wa).  (3.2)
The function F®, which we shall call the reduced
second-order spectral correlation function, is defined
only for arguments satisfying the §-function condition
wi'+wy’=wi+ws. One way of evaluating it is to use
Eq. (3.1) to express G®(ty,ty’; t1,t2) in terms of its
value for 2,=0, and then to translate the three remain-

9 Note added in proof. This relation has been derived in a semi-
classical context by G. Fornaca, M. Tannuzzi, and E. Polacco,
Nuovo Cimento 36, 1230 (1965).
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ing variables of integration in Eq. (2.15) by the amount
—is. We find

F® (0 ,wy; 01,05)

=(27r)“1 /// dll’dtz’dtle—iwl'tl'—z’wa’tg’+iw1t1

XGD (419 ;1,0).  (3.3)

The probability of two-photon absorption between
the initial time and the time { may be found by similarly
evaluating the expression in curly brackets in Eq. (2.14).
We have then

Py(l)= (2)? f / do'des
(t—t2)

t
Xg*(w’){ / dts f / / div'dtsdl
0

—t2

X e—i(w/—m’)tl’—iw' to'+i(ws—o)t1
XG50 @ ()

If the time ¢ is much greater than the inverse bandwidth
of the field,
1>>(1/Aw), (3.5)

then we may approximate the limits on the integrals
over ¢, £y, and £y’ by == . The probability Ps(?) is then
proportional to time

P2(t> =w2(w!)t ’
where we have, by virtue of Eq. (3.3),

walws)= (2m)~! / f do'dw

Xg*(@)F® (0~ o' 0i—0, 0)g(@).

(3.6)

(3.7

This is our fundamental result for the two-photon
absorption rate for stationary fields.

Our calculation has so far not included the effects of
(natural) linewidth, either of the intermediate or of the
final atomic states. Such effects are most simply taken
into account by introducing damping terms into the
basic equations for the amplitudes of the atomic states.
One finds in this way that the effect of linewidth in the
intermediate states is represented by replacing the
function g(w) given by Eq. (2.13) by the function

g@)= (—f—) > b ()

mc J w—wj—l—%i/{j
in which «; is the decay rate by spontaneous emission
from (and hence the natural linewidth of) the state | 7).
The width of the final state, on the other hand, is

B. R. MOLLOW
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represented by averaging the result for a given final-
state energy over a Lorentzian line-shape function!® of
width ky, so that we have

K
’“’2:51 ] & ()43 T wa (o), (3.9)
m

where #iw; is the mean energy of the final state, and
wa(ws+v) is given by Egs. (3.7) and (3.8), with
W w f+ V.

An interesting simplification of these results occurs
for narrow-bandwidth fields near resonance. Let us
introduce the function G® (¢//,ty’; f1,t2) by means of the
definition

G® (tll,tzl; tl,tg) = 6"""0(‘1”"2'_‘1—”)9(2) (t]_,,tzl; tl,tg) , (3.10)

where wo is the mean frequency of the field. We note that
G® is approximately constant when the difference
between any two of its arguments is much less then the
reciprocal bandwidth 1/Aw. We now assume that Aw is
small enough so that the function g(w) varies by small

relative amounts over the range Aw,
gloAw)=g(w), (3.11)

and that the mean frequency wo of the field is near
enough to the resonant frequency %w; so that the
relation

glo= (wo—jw))~g(w) (3.12)

is satisfied. Then, since the function F® is nonvanishing
only when all of its arguments are within the range Aw
of wy, it is clear that we may replace the function g(w)
in Eq. (3.7) by its value for w=wo. We then have

wa(wy)= (27)71g* (o)

x[ f / do'des FO (07— o, o' 07—, w):lg(wo)
=(21r)"1g*(wo)l: / f f / dooy/dorg!durndy

X 8 (w1 +we'—ws)d(w1twe—wy)

XF® (w1 w5 wl,wg):\g(wg). (3.13)
Let us now substitute the identity
8 (w1’ Fw'—ws)d(witwe—wy)
=28 (w1/Fws'+witwe— 2ws) 8 (wi'Fws’ —wi—ws)

0
— ﬂ.—-l‘[ dt e——i(w1'+m2'+w1+w2—2coj)t
—00

XS(w1’+w2’—w1—w2) (314)

10 When collisional processes contribute to line-broadening, the
Lorentzian function must be replaced by a more general line-shape
function. See, for example, M. L. Goldberger and K. M. Watson,
Collision Theory (John Wiley & Sons, Inc., New York, 1964),
Chap. 8.
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into the right-hand side of Eq. (3.13) and then make
use of the definition (3.2) and the Fourier inversion of
Eq. (2.15). In this way we find

7,()2(60;)= Zg*(wo)l:/ dt g?test

-0

XG® (=1, —t; ¢, t):lg(wo) (3.15a)
= Zg*(wo)[/ dl ei(2wf—40’0)t

—00

XGO (—1, —31, t)]g«ao), (3.15b)

where the last relation follows from Eq. (3.10). Thus
the two-photon absorption rate for narrow-bandwidth
stationary fields is given in terms of a simple Fourier
integral of the second-order field correlation function,
with both positive-frequency components equal to ¢ and
both negative-frequency components equal to —¢.

The relations (3.15) were derived for the case of a
final state with fixed energy #wy, and are valid only if
the width of the final state is small compared to the
bandwidth of the field,

k<K Aw (3.16)

or, equivalently, only if the lifetime of the final state is
large compared to the coherence time of the field. In the
general case, the two-photon absorption rate may be
obtained by substituting either of the Eqs. (3.15) into
Eq. (3.9) and performing the indicated integration.
We find

Wo= zg*(wo) f dt g2lwst—kslt]

XGD(—t, —1;8,1) |g(wo) (3.17a)

=2g*(wo) / dt et @us—4wo) t—xslt|

XGD (=1, —1;4,1) |g(wo). (3.17b)
If the width of the final state is large compared to the
bandwidth of the field,

k> Aw, (3.18)

then the function §® (—¢, —¢;4, £) in Eq. (3.17b) may
be replaced by its value for =0,

G (0)=6®(0,0;0,0)=(a’(0)PLa(0) ), (3.19)
and hence we have

9= * o G(2) 0 (O])) — . 320

wemg @G Ogton| T 20

The two-photon absorption rate in this limit is thus
proportional to the second-order field correlation func-
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tion with vanishing arguments,—35 and a Lorentzian
function of width «y, centered at wo=3w;.

We may remark that the proportionality of ws to
G?®(0) is a feature of all two-photon absorption
processes in which a broad band of final atomic states is
accessible. We may extend our results to include photo-
ionization, for example, simply by integrating the rate
given by Eq. (3.15b) over the density of final atomic
states #(wy). If the function #(w;) varies slowly within
the frequency bandwidth of the field, we find

wo=2mg* (o) G (0) g (wo)7 (2w0) . (3.21)

IV. CHAOTIC FIELDS: MODE INDEPENDENCE

A chaotic field may be defined as one for which the
field density operator factors into density operators
for each mode

pF=I’;I Py (4.1)

where each of the single-mode density operators py is
stationary (diagonal in the #-quantum representation)
and is characterized by a geometric law for the
quantum-number probabilities:

1 Tk nk .
pi= Z( ) lmee | . (42)
1+ﬁ'k "k 1+ﬁk
No restriction is made on the mean quantum numbers
= (@' ax), (4.3)

as there would be, for example, in the case of thermal
radiation.

We note that the relations (4.1) and (4.2) are
equivalent to the moment relations

<ak1'% .. 'ak'.,?akl. . .akm>

= Oumllry * oy Z 5k1'kp<1)' te akn’kz:(n) ’ (4'4)
P

where the summation is taken over all permutations p
on # integers. The mean value of the product of two
creation operators and two annihilation operators is
thus

(@ @y @y @ry) =Tt T O by O by Oy haObyny ], (4.5)

and the second factorial quantum-number moment for
a given mode is

(ak"a;}) = (ak*ak (artar—1))=2n,2. (4.6)

The field correlation functions are easily evaluated
with the aid of these relations and the modal expansion
(2.3) of the field. Restricting our attention to the values
of these functions when the spatial arguments are set
equal to zero, we find that the first-order field correla-

U1 The necessity of assuming a relatively broad final level to
justify this result has also been noted by R. H. Lehmberg, thesis,
Brandeis University, 1967 (unpublished).



1560

tion function is given by

GO (¢ n=(a'(¥)a () (4.7)
=T(-1), (4.8)
where
()= (hc¥/2V)Y &ir(Fir/wi)e ¥t 4.9)
%

The product of an arbitrary number of creation opera-
tors and annihilation operators may be expressed in
terms of the first-order correlation function as'?

(@) @M (ta") B (1) - G (tm))
= 5an(n) (I.’-l" . -tn'; 1+ .tn)
=8wm 2 GVt lp) - -GV (' tpm) . (4.10)
P

These relations, generalized in an obvious manner to
different spatial as well as temporal points, provide a
characterization of chaotic fields fully equivalent to that
given by Egs. (4.1) and (4.2) for the density operator.
It is important to realize, however, that the relations
(4.10) for the field correlation functions may be satisfied
to a very high degree of approximation even when the
individual density operators p; for the field modes have
forms very different from that given by Eq. (4.2).
Indeed, as we shall now show, the relations (4.10) are
valid in the limit ¥V -—o, in an asymptotic sense
presently to be defined, for any field in which the modes
of oscillation are stationary and statistically inde-
pendent of one another, irrespective of the statistics of
the individual modes. This theorem, which is a generali-
zation of the central limit theorem for a single random
variable, may be illustrated by evaluating the second-
order field correlation function, which, according to
Eqgs. (4.10) and (4.8), is given for chaotic fields by

G(g) (t]_,,tz’ 5 tl,tz) =T (lfl— tl')l‘ (iz— tzr)
4T (=t T(t—t). (4.11)

To evaluate this function for any density operator
satisfying Eq. (4.1), we first introduce the parameters

Jr={a:a:?), (4.12)

which would be equal to 272 if p, were given by Eq.
(4.3). In the general case, since the field modes are
assumed to be stationary and statistically independent,
it is clear that the expression on the left-hand side of
Eq. (4.5) can be nonvanishing only if: (a) ki=k{,
ko=ky, but ki1£ks; (b) ki=Fky, ko=Fky, but ki#k,; or,
(c) ky=ky=Fky=Fk,'. In cases (a) and (b), the quantity
on the left-hand side of Eq. (4.5) is just {@x,ax,)(ar,' ar,)
=1iy,fir,, While in case (c) it is J,. These relations are
equivalent to the formula

(@ Oy Oy @)y =Tt Ty (kg ks Oy g+ Oy kO 1r)
A+ (T y— 272k,) Oy kyOkghs? Oty by »

2R, J. Glauber, Phys. Rev. 131, 2766 (1963).

(4.13)
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If we make use of this relation and the modal expansion
(2.3) to evaluate G®, we find

GO (4 b5 tayte)
=T (tl— tl’)I‘ (tz— tzl) +T (il—' tzl)r (tz—" 151’)

+ 1/ M Gttta—t/—1t"), (414)
where the function g is defined as
h2ct
I =——3 tirre(Jp— 27ip) w20k, (4.15)
4V &

In the limit of infinite quantization volume, the summa-
tion over discrete modes is replaced by V times an
integration over & space (along with a sum over polari-
zation vectors). It follows therefore, that if we keep the
mode expectation values 7; and J; fixed as functions
of & (as we must do, for example, to guarantee that
GO (¢ f) remain fixed), we shall find that the function
g(t) approaches a constant. It is clear, then, that in this
limit the third term on the right-hand side of Eq. (4.14)
approaches zero, and therefore that the second-order
field correlation function approaches the value (4.11)
for chaotic fields. Similar relations are easily derived
for all of the higher-order correlation functions, and it
follows that the field itself is chaotic, in the limit
V —w, for any density operator of the form (4.1),
provided that each of the single-mode density operators
or is stationary.

To evaluate the second-order spectral correlation
function defined by Eq. (2.15), we begin by introducing
the first-order spectral function

y(w)= dt et (7).

—0

We find then by substituting Eq. (4.11) into Eq. (2.15)

(4.16)

GO\ g (@105 01,09)
= 8 (w1’ —w1) 8 (s’ — w2}V (@) Vaga (@2)

+ 8 (w1’ — w2) 8 (w2 — ) yagn @DV (w2) ,  (4:17)

where we have written the vector indices explicitly to
facilitate later work. The reduced second-order spectral-
field correlation function is therefore

FOy (01509 5 01,09) = 8(w1’ — 1) yay (@) 1agng(w2)

+8(w —w)Tawn (@) (ws) . (4.18)

To simplify the expression which results from sub-
stituting this relation into Eq. (3.7), we first note that,
by virtue of the definitions (2.10), (2.15), and (3.2) and
the commutativity of @(f;) and @(f2), the function
F® is invariant under either of the interchanges
(wi,M) € (wo,\2) or (wi/,\) <> (wo',\e), for arbitrary
fields. To make use of these symmetry properties, we
introduce the function

(4.192)
(4.19b)

Bna@)=3an @)+ (0r—©)]

=&\ (wr—w),
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which may be expressed in dyadic notation as

)

Pribio Piobsi
X$ — :
i Lo—wit3ic; —otwr—owiLic;

] . (4.20)

It is-clear then that we may replace the function g(w)
in Eq. (3.7) by the function g(w), so that we have, for
arbitrary (stationary) fields

wa(wy)= (2m)1 / / de'des

X NF® (wy—o', o' 0r—w, w)g(w). (4.21)

If we now make use of Eq. (4.18) in Eq. (4.21), we
find that each term on the right-hand side of Eq. (4.18)
contributes equally, and we obtain

wa(wy)=7"" / deo

Xtr[g*(@)y (wr—w)Z(e/—w)y(@)], (4.22)

in which tr indicates summation over vector indices.
Equation (4.22) thus expresses the two-photon absorp-
tion rate for chaotic fields in terms of the spectral
first-order field correlation function vy (w).

Let us now consider the case of narrow-bandwidth
fields near resonance, i.e., fields with bandwidth Aw and
mean frequency wp satisfying the conditions (3.11) and
(3.12). We also specialize to the case of plane-polarized
fields, and evaluate g(w), G®, and T' with all vector
indices in the direction of field polarization. We find
then from Egs. (3.17a) and (4.11) that the two-photon
absorption rate to a final state of width «; is

0

wy=2[g(wo)[* [ dt eI ()]

=00

(4.23)

V. ABSORPTION FROM LASER LIGHT

A number of authors® have devised a model of laser
light based on the assumption of a fixed field amplitude,
with a small randomly varying frequency, leading to
phase diffusion. This model, which has been expressed
in terms of the complex amplitude of a single field mode
within the laser cavity, is easily modified so as to
describe the field at a fixed point outside the cavity. In
this section we shall review the model briefly, and
calculate the second-order field correlation function,
which we shall then use to evaluate the two-photon
absorption rate.

18 See, for example, Ref. 7, Lecture XV; J. R. Klauder and E. C.
G. Sudarshan, Fundamentals of Quantum Optics (W. A. Benjamin,
Inc., New York, 1968), Chap. 9.
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To develop our analysis in quantum-mechanical
terms, we begin by introducing the cokerent siates'? of
the field, which are particularly useful when the
physical quantities we are dealing with are expressible
as expectation values of normally ordered products of
field creation and annihilation operators. A coherent
state with complex amplitudes {a;} may be expressed
in terms of the vacuum state |0)r by means of the
relation

‘ {Ozk} >F= exp[fk_: (ak“ak——ak*ak)] , 0)1;' y (5,1)
and has the eigenvalue property
al{a})r=a{a})r. (5.2)

For a wide variety of field states, the density operator
for the field may be written in the P representation!®

‘PF='/(I}‘I @ar)P({ar})| {ar})r rl{en}|, (5.3)

where P({ax}) is a relatively well-behaved function of
the oscillator amplitudes a;. Normally ordered moments
may be written in the P representation in a form closely
resembling the corresponding classical expressions. The
nth-order field correlation function, for example, is
given by

GO (b’ -+ 1y) = f (I )P (o)

xg[%*({ak},t,-'w({ak},tj):l, (5.4)

where P({ar}) is the weight function for the initial
density operator for the field, and

A({ax},)= (he?/2V)12 % wi Pgeiort, (5.5)

Here we have again restricted our discussion to the case
of equal spatial points 7;=0, and to simplify our calcula-
tions we have assumed the field to be plane-polarized.

The classical form of Eq. (5.4) enables us to carry out
discussions of quantum-field statistics in the language
of classical probability theory. If the weight function
P({a:}) is non-negative definite (as we shall assume it
to be), then we may speak of the expansion (5.3) of the
density operator as representing an ensemble of
c-number fields of the form (5.5). A light beam with
fixed amplitude I', for example, is described by a
weight function P({ax}) which vanishes for all values
of {az} except those for which

[ A} t) | =12, (5.6)
for all £. Such a beam may be thought of as a statistical

#E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).
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ensemble of fields of the form

N(t)=112g—ie) | (5.7)
where ¢(2) is a stochastic function of time.

Let us now assume that the field is generated by a
source oscillating at the frequency w(f)=wo+Aw(f),
where Aw(?) is a small, slowly varying function of time,
satisfying (Aw(#))=0. The phase of the field at time # is
thus . v
o) = potwi+Ap(l), (5.8a)

where

Ap()= f ' dAa(t). (5.8b)

We assume the initial phase ¢, to be uniformly dis-
tributed between 0 and 2w, as we must to insure
stationarity. The frequency modulation function Aw(#)
is assumed to be governed by a (real) stationary joint
Gaussian random process : This means that the moments
of Aw(f) are given in terms of the second-moment
function

(B () Ao (1)) =F (1~ 1) (3.9)

by the formulas
(AO) (tl) s Aw (t2n+1)> =0, (5.10a)

(A (tr)- - - Aw(tan))= 2mm) T 2 Tty —to) -

XF(tpen-n=—Ipen), (5.10b)

where the sum extends over all permutations p on 2z
integers. An equivalent characterization of a joint

Gaussian random process is in terms of the character-
istic functional

x[f(r)]2-<expl}'fdr Aw(—r)f(r):]> , (5.11)

which is given by

X[ f(r)]= exp{——% <[ / dr Ao (r) f(r)T)} (5.122)

1
=exp{—-2- //d‘fd?‘ f(D)F(r—1")f(r )}
(5.12b)
for arbitrary functions s (7).

16 The relation (5.12a) follows from the fact that the integral
within the exponential function in Eq. (5.11) is itself a (real)
Gaussian random variable,
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The first-order field-correlation function is given by

GO )=(A*)AD)

tl
=Ie~iuo(t—t')<exp(i/ d-rAw('r))>
t

le=e']

1
= Jg—twoli~t") exp(—“z- /f drdr'ﬁ‘('r—'r’)) ,
0

(5.13)

where the last step follows from Egs. (5.11) and (5.12b)
by putting f(r)=1 for 7 between ¢ and #, and f(r)=0
otherwise.

Let us now assume that the correlation time for the
random frequency modulation is much smaller than
any other time we need consider. We may then approxi-
mate the function F(7) by

F(7)~2b6(7), (5.14)

where

1 ]
b=-2-/—w dr F(7). (5.15)

We find then from Eq. (5.13) that the function I'(f)
defined by Eq. (4.8) is given in this limit by

P(t) = Je—iwot—bltl (5.16)

The power spectrum of the field is thus the Lorentzian
function

o 2
Y oyt

The second-order field correlation function is given by
GO (15 tte) = A* (LA (L) AWAE)), (5.18)

and the function G® defined by Eq. (3.10) is therefore
given by

9(2) (il'!t2’; tl:t2)
=IXexp{i[Ap(t/)+ Ao () — Ap(t) — Ao (t)1})
=I*exp{—3{[Ae(t)+Ap(t)
—Ap(t)—Ap() 1))}, (5.19)

where the last step follows from Eq. (5.12a) and the
definition (5.8b) of Ae(%) as an expression linear in the
stochastic function Aw(t).

To simplify the evaluation of the statistical average
in Eq. (5.19), let us begin by choosing the (arbitrary)
origin of time far enough in the past so that all four
times 2, &/, t,, and ¢, are positive. The value of a
diagonal term such as ([A¢(41) J?) is then, by virtue of
Egs. (5.8b), (5.9), and (5.14),

{[Ap(t) 7 =20t.

(5.17)

(5.20)
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A cross term, such as 2{(Ap(t1)A¢(t2)) in Eq. (5.19),
may be similarly evaluated. Denoting by /< the smaller
of the two terms #; and ¢z, we find

2(Ap(t)Ap(ls)y=4bi<
=4b[5 (tto)—3 | ti—1a] ] (5.21)

By using these relations and similar ones for the remain-
ing terms in the statistical average in Eq. (5.19), we
find that the second-order correlation function for a
fixed-amplitude random frequency-modulated field ist5*

GO (1t ; tryte) =12 exp[b(| ta—to| + |12/ — 1|
— =t — [ta—t' | — | ta—1' | — |ta—28"])], (5.22)

which is explicitly independent of the origin of time, and
thus valid for all (positive and negative) values of its
arguments.

The statistical constancy of the field amplitude may
be exhibited by evaluating Eq. (5.22) at #)’=t,, and
then noting that the resulting expression is independent
of t,: if we make use of Eq. (5.16) and the definitions
(4.8) and (3.10), we find

G® (tll,tz; tl,tz) =TGD (¢ ,1). (5.23)

When all four arguments of G® are equal, we have

G?(0)=I=[G™(0)]2, (5.24)
in contrast to the relation
G®(0)=2[G™(0) ], (5.25)

which holds for Gaussian fields.

Let us now assume that the field bandwidth Aw="5
and mean frequency w, satisfy Egs. (3.11) and (3.12).
Then we may evaluate the two-photon absorption
rate wy® for our model of laser light by making use of
Eq. (5.22) for G@ in Eq. (3.17b). We find then

2(4b+3%«y)
(4b+3xs)2+ (2wo—wp)?

It is instructive to compare this result to the two-
photon absorption rate w,©® for chaotic fields with the
same power spectrum, and hence the same first-order

wy W =1T2|g(wo) | 2

(5.26)

152 Note added in proof. B. Picinbono and E. Boileau [J. Opt.
Soc. Am. 58, 784 (1967)] have analyzed in detail the model of
laser light that we have presented. They obtain formulas for the
field correlation functions of all orders, and find the result (5.22)
for the second-order correlation function.
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correlation function. If we substitute Eq. (5.16) for
I'(t) into Eq. (4.23), we find

4 (2b+ %Ii/)
(2b+317)*+ (2w0—))?

In the limit in which the width of the final state is
much greater than the bandwidth of the field (k. >b),
the rates given by Eqs. (5.26) and (5.27) approach the
values given by Eq. (3.20), where G®(0) is equal to I?
for coherent light and 272 for chaotic light. The ratio
between the absorption rates is therefore—3:5

wy @) =TI*| g (wo) |2 (.27

W /1,® =2 for kb, (5.28)

a result which also is valid, according to Eq. (3.21), for
photoionization by means of two-photon absorption.!®

In the limit «,<<d, however, which corresponds to
transitions to an infinitely sharp line, the rates given

by Eqgs. (5.26) and (5.27) approach the asymptotic
values

wy P =T1?|g(w) | —————,  (5.20
it ety O

(ch) IZI ( )[2 26
Wy =12 g(wo .
b+ (w0—hoy)?

The ratio between these rates depends on the amount
by which the mean frequency w, of the field differs from
the resonant frequency jwy. If the beam is exactly on
resonance, the two-photon absorption rate for chaotic
light is four times that for laser light,

o (eh) = 4qgp, (D

(5.30)

for K f<<b

(wo—dw)b,  (5.31)

while if the beam is far off resonance [ but with (wo—24w;)
still satisfying Eq. (3.12)], the two rates are equal,

ks<Lb
(wo—3ws)>>b. (5.32)

These results for transitions to a very sharp level, unlike
the relation (5.28) for a (relatively) broad level, depend
upon the specific form (5.22) of the second-order field
correlation function, and hence on the particular model
we have adopted for laser light.

Wy (R = w,®  for

16 This result has been confirmed experimentally by F. Shiga,
and S. Imamura, Phys. Letters 25A, 706 (1967).



