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High-Energy Nucleus-Nucleus Collisions. I. General Theory and
Applications to Deuteron-Deuteron Scattering*
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A theoretical analysis of the collisions of high-energy nuclei with nuclei is carried out by means of a simple
extension of the Glauber approximation. Effects of multiple collisions are taken into account, The general
formalism is applied to deuteron-deuteron collisions. Expressions are derived for single-, double-, triple-,
and quadruple-scattering amplitude operators for deuteron-deuteron collisions in terms of nucleon-nucleon
scattering amplitude operators. A new type of double-scattering effect, qualitatively quite difterent from the
Glauber "shadow" e8ect which was discovered for particle-deuteron collisions, is described. For the case of
nucleon-nucleon interactions described by purely absorbing (black) spheres, it corresponds qualitatively
to a "double-counting" correction in the deuteron-deuteron absorption cross section. This eBect corresponds
to collisions in which one nucleon in the incident deuteron interacts with only one nucleon in the target,
and the other nucleon in the incident deuteron interacts with only the other nucleon in the target. The
formalism is applied to a calculation of the deuteron-deuteron total cross section

aqua.

It is shown that the
contribution to o ee arising from the new type of double-scattering correction is approximately 50% of that
arising from the usual (i.e., shadow-type) double-scattering correction. Numerical results are compared
with measurements. A simple analysis of the deuteron-deuteron elastic scattering angular distribution is
presented. It is shown that for a rather large range of scattering angles away from the forward direction,
double scattering is the dominant process in elastic scattering, and that in this region the new type of double
scattering is quantitatively much more important than the usual double-scattering process which also
'appears in nucleon-deuteron collisions.

I. INTRODUCTION

I ~HE simplest nucleus-nucleus collision involving
more than a total of two nucleons is the nucleon-

deuteron collison. In recent years a large number of
experiments involving interactions of high-energy

particle beams with deuterium targets have been per-
formed. Since the deuteron is a rather weakly bound

system, the incident-particle wavelengths for such

collisions may be considerably smaller than the average
neutron-proton separation in the deuteron. In such
cases one might be tempted to approximate particle-
deuteron cross sections by sums of the corresponding
free-particle —neutron and free-particle —proton cross
sections, and to employ the usual impulse approxima-
tion. Various processes which occur in particle-deuteron
collisions have been analyzed by Franco and Glauber. ' '
It was shown the, t even at the highest available energies

CGccts of double interactions, such as double scattering
or interferences between single- and double-scattering

amplitudes, are quite appreciable. The deviation from

simple additivity of the nucleon cross sections in the
deuteron was striking for antiproton-deuteron tota, l
cross sections, amounting at some antiproton. energies

to as much as 20 to 40% of the free antiproton-nucleon

cross sections. l' For high-energy proton-deuteron

collisions, the integrated elastic scattering cross sections
calculated. with double interactions neglected diGered

from those calculated with double interactions included

by approximately 20%.s For particle-deuteron elastic

*%'ork performed under the auspices of the U. S. Atomic
Energy Commission.

' 'V. Franco and R. J. Glauber, Phys. Rev. 142, 1195 (1965).
~ V. Franco, Phys. Rev. Letters 16, 944 (1966).

Franco, I'h, D. thesis, Harvard University, 1963
(unpublished).

collisions double scattering was predicted to be the
dominant mechanism at angles which are not too close
to the forward direction. '' Subsequent analyses by
Franco and Coleman' and by Franco' of recent proton-
deuteron elastic scattering data at 2 and i. BeV strongly
suggest that this indeed is the case. In addition,
Bertocchi a,nd CapeOa' have argued that the large
backward peaks in proton-deuteron elastic scattering
between i.0 and 1.5 BeV appear to result from double
collisions. A recent analysis' of the angular distribution
of the sum of elastic plus inelastic proton-deuteron
scattering in terms of single and double scattering is in

good agreement with the measurements. Furthermore,
it has been shown~ that the treatment of double-
scattcrlng cgects ln E+d cha, rgc-exchange colllslons is
necessary for the proper extraction of the E+n charge-
exchange cross section near the forward direction from
the corresponding measurements of the E+d charge-
exchange cross section. Within the deuteron, therefore,
double-scattering CGects are seen to be rather important.

The methods employed in the above analyses of
particle-deuteron collisions have also been widely
utibzed for extracting neutron-proton total cross sec-
tionss and the ratios of the real part to the imaginary
part of the neutron-proton forward elastic scattering
amplitudes9 from proton-proton and proton-d. euteron

4 V. Franco and E. Coleman, Phys. Rev. Letters I7, 82/ (1966).
'V. Franco, Los Alamos Scienti6c Laboratory Report No.

LA-DC-9964 (to be published).
'L. Bertocchi and A. Capella, Nuovo Cimento 51A, 369 (196'tt).
~ R. J. Glauber and V. Franco, Phys. Rev. 156, 1685 (1967).

See, for example, D. V. Bugg, D. C. Salter, G. H. Stafford,
R. F. George, K. F. Riley, and R. J. Tapper, Phys. Rev. 146, 980
(1966).

'See, for example, G. Bellettini, G. Cocconi, A. N. Diddens,
E. Lillethun, G. Matthiae, J. P. Scanlon, and A. M. Wetherell,
Phys. Letters 19, 341 (1966).
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measurements. In this manner information regarding
neutron-proton collisions has been obtained without
having to employ neutron beams.

Experiments have shown that high-energy scattering
by nucleons occurs predominantly near the forward
direction. Since triple and higher-order multiple inter-
actions in particle-deuteron collisions must take place
via at least one backward scattering process, they have
exceedingly small amplitudes. (We assume negligible
overlap of the target nucleons. ) Furthermore, since at
least one backward scattering process p/Ns one large-
angle (i.e., &90' in the laboratory system) scattering
process is necessary for triple or higher-order multiple
collisions to result in a net scattering in the forward
direction, such collisions would yield negligibly small
contributions to the deuteron total cross section, i.e.,
to the imaginary part of the deuteron forward elastic
scattering amplitude. On the other hand, if the incident
beam consists not of single particles but rather of
composite particles such as deuterons or more complex
nuclei, we should certainly expect at least double-
interaction effects to be quite signi6cant, and it is
likely that for many reactions (e.g., elastic scattering)
even higher-order multiple scattering effects would be
important for some range of scattering angle. Their
importance would of course also be considerable if the
target contained more than two nucleons. A recent
experiment at Brookhaven" has shown that the proton-
'He elastic scattering angular distribution exhibits at
least one and perhaps two secondary maxima. These
maxima may be explained by the importance of double
and triple collisions in the two angular regions in which
the maxima occur, and calculations similar to those
presented in Refs. 1—4 were 6rst applied to this case by
Czyz and L@4niak."

In the present work we derive an expression for the
scattering amplitude operator for high-energy nucleus-
nucleus collisions by means of an extension of the Glau-
ber approximation. " The simplest nucleus-nucleus
coOision in which the incident nucleus and the target
each contains more than one particle is the deuteron-
deuteron collision. Although the number of completed
high-energy deuteron-deuteron scattering experiments
is quite small, there have been several rather large-scale
experiments at Berkeley and at the Princeton-Penn
Accelerator which are presently being analyzed, and
and another which will soon be analyzed. " In antici-
pation of data from these experiments we shall in the

'0H. Palevsky, J. L. Friedes, R. J. Sutter, G. W. Bennett,
G. J. Igo, W. D. Simpson, G. C; Phillips, D. M. Corley, N. S.
Wall, R. L. Stearns, and B. Gottschalk, Phys. Rev. Letters 18,
12OO (1967).

"W. Czyz and L. Le4niak, Phys. Letters 24B, 227 (1967); for
more recent calculations see, for example, R. H. Bassel and C.
Wilkin, Phys. Rev. Letters 18, 871 (1967)."R.J. Glauber, in Lectures irI, Theoretical I'hysics, edited by
Wesley E. Brittin et al. (Interscience Publishers, Inc. , New York,
1959), Vol. I, p. 315.

"M. Pripstein (private communication); M. Brasin (private
communication).

present work specialize the results we obtain for general
nucleus-nucleus collisions to high-energy deuteron-
deuteron collisions and obtain a scattering amplitude
operator from which cross sections for a number of
elastic and inelastic reactions may be secured. The
theory leads in a natural manner to a consideration of
single, double, triple, and quadruple interactions. "
Quintuple and higher-order multiple interactions in
deuteron-deuteron collisions may occur only by means
of at least one backward scattering and therefore have
negligibly small amplitudes, particularly for small-angle
scattering (where in addition to at least one backward
scattering collision a second large-angle nucleon-
nucleon collision is required). The general results for
the deuteron-deuteron scattering amplitude operator
are then applied to a detailed investigation of the
deuteron-deuteron total cross section, and comparisons
are made with measurements. A brief analysis of elastic
scattering is also given.

There have been few theoretical analyses of deuteron-
deuteron collisions at high energies. Brander" developed
a formalism for treating deuteron-deuteron elastic scat-
tering in the impulse approximation. Tubis and Chem'
used the impulse approximation to calculate both the
diGerential cross section for elastic scattering and the
vector polarization. In these analyses the effects of
multiple interactions were neglected and the discussions
were restricted to elastic processes. Franco'~ gave an
expression for the total cross section which included
double, triple, and quadruple interactions and which was
applied to deuteron-deuteron collisions at an incident
momentum of 2.8 BeV/c. Queen" treated multiple
collisions in elastic and total cross sections but neglected
all unbound intermediate states, an approximation
which is not reliable for high-energy collisions with such
a weakly bound target nucleus as the deuteron. How-
ever, an application to low-energy (i.e., 64 MeV)
scattering was given.

For the present analysis we adopt the Glauber ap-
proximation. "This is a diffraction approximation which
is asymptotically correct for high-energy scattering at
small momentum transfers. It is similar in many respects
to the approximations used in diGraction theory in
physical optics. Each portion of the incident plane wave
is assumed to traverse the region of interaction along
a straight line path and to suffer a shift of phase and
change of amplitude which depend only upon the path

A quadruple interaction is one in which the proton and
neutron in the incident deuteron each interacts with both the
proton and neutron in the target deuteron. An example of a
quadruple interaction is furnished by the process in which the
proton in the incident deuteron is scattered by both nucleons in
the target deuteron, and the neutron in the incident deuteron is
scattered by the proton in the target and then interacts inelasti-
cally with the neutron in the target, producing additional particles.

~5 0. Brander, Nucl. Phys. 36, 82 (1962}.
6 A. Tubis and B. Chem, Phys. Rev. 128, 1352 (1962).
~V. Franco, University of California Lawrence Radiation

Laboratory Report No. UCRL-16694, 1966 (unpublished).
rs

¹ M. Queen, Phys. Letters 13, 236 (1964).



traversed. In the analys1s we do not attempt to de-
scribe the interactions themselves in any direct manner.
Instead we express the various contributions to the
deuteron-deuteron scattering amplitude and cross
sections in terms of the nucleon-nucleon clastic scatter-
ing amplitudes and certain integrals of products of
these amplitudes, and in terms of the deuteron ground-
statc wave function.

The analysis is begun by presenting some of the neces-
sRry results of thc Glaubcl approximation. In Scc. II
we give the expression for the elastic scattering ampli-
tude for a simple tvro-particle collision. In Sec. III we
obtain the scattering amplitude for a coDision betvreen
a particle and a complex nucleus. In Sec. IV we calcu-
late thc scattering amplitude for coOisions between
tvro complex nuclei. %C consider in Sec. V deuteron-
deuteron collisions and express the corresponding scat-
tering amplitude in terms of the free nucleon-nucleon
elastic scattering amplitudes and the deuteron ground-
state wave function. This amplitude may be used to
calculate cross sections for both elastic and inelastic
processes. An expression for the deuteron-deuteron
total cross section is derived in Sec. VI and is vrritten
in terms of the proton-proton and neutron-proton
elastic scattering amplitudes in Sec. VII. Several
asymptotic expressions and simple approximate formu-
las for various special cases are obtained for the total
cross section in Sec. VIII. A nevr type of double-
collision correction to the total cross section, diQercnt
from the well-knovrn Glauber shadow CGect, is derived
and discussed in that section. The evaluation of thc
deuteron-deuteron total cross section is presented and
compared with existing data in Sec. IX. In the anal
section we present a simple analysis of d-d elastic scat-
tering and show a sample calculation at 4.42 BeV/e.

II. PARTICLE-PARTICLE COLLISIONS

Kc begin by summarizing some pertinent results of
Glauber approximation. 'u For collisions betvreen

two particles the scattering amplitude operator ob-
tained in the Glauber approximation is simple in form.
If Aq is the momentum transferred from the incident
particle or projectile (labelled by the index p) to the
target particle (labelled by the index i) and k is the
vrave number of the incident particle, the corresponding
scattering amplitude operator Ct~~(g, k) is given by' "

(2.1)

vrhich vre sha11 And convenient to abbreviate as

(2.2)

In these expressions b is the impact parameter vector
and is perpendicular to the direction of the incident

beamed Rnd the two-d1menslonal lntcgI'Rtlon ls ovel the
plane of impact parameter vectors. The operator X„,(b)
is a complex phase-shift function vrhich depends upon
the interaction betvreen the tvro particles. It should be
noted that the form (2.1) differs from the usual one
for the high-energy approximation to the elastic scat-
tering amplitude, which is given by a one-dimensional
integral. Equation (2.1) is valid for an interaction of
arbitrary shape, ' and the phase-shift operator X~& de-
pends in general on both the magnitude and orientation
of the impact parameter vector. Although it may be
valid to assume that the two-particle interaction
possesses azimuthal symmetry about the direction of
propagation of the incident beam, in which case the
usual form for the scattering amplitude would suKce,
it is generally not valid to make this assumption when
the projectile or target is a bound system of nucleons.
Therefore in preparation for our treatment of collisions
betvreen more complex systems we shall use the more
general form for the scattering amplitude operator
given by Eq. (2.1).

If we denote the initial internal state (i.e., spin,
isotopic spin, etc.) of the incident and target particles
by Ii) and the 6nal mternal s~ate by If), we may write
the amplitude Ar;, ~~(q, k) corresponding to a transition
from

~
i) to

~ f), with a transfer of momentum Aq from
the projectile p to the target t, as

Ar, ,„,(q,k)= (f~ 8„~(q,k)ji). (2.4)

Hereafter the labels p and i shall be suppressed in the
amplitudes Ar;, „~(q,k). In particular, the elastic scat-
tering amplitude for simple two-particle collisions is
given by

A;,(q,k) = (i ~
C„,(q,k)

~
i). (2.5)

The expressions we have written for the scattering
amplitudes are of the correct form for describing the
colhsion of the incident and target particles in their
center-of-mass system. On the other hand, it has been
shown' that these expressions undergo very little change
of form when they are transformed to the laboratory
system. In fact, the scattering amplitudes in the labora-
tory system may be found from the expressions (2.1)
and (2.2) simply by substituting in them the laboratory
values of the incident momentum and momentum
transfers.

In comparing cross sections for collisions between
single particles and deuterons vrith those for collisions
between the same single particles and g.ucleons, use
must be made of at least tvro center-of-mass systems.
The reason for this is that in general the velocity of a
particle in the center-of-mass system for particle-
deuteron colhsions is different from its velocity in the
center-of-mass system for particle-nucleon collisions.
For particle-deuteron collisions, therefore, it is con-
venient to refer all calculations of the scattering
g,mplitl1des to the laboratory system.
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On the other hand, in comparing high-energy deu-
teron-deuteron cross sections with high-energy nucleon-
nucleon cross sections, only one center-of-mass system
need be used. That is, at high energies if we neglect
the internal motion of the nucleons in the deuteron
compared with the incident velocity of the deuteron,
the velocity of the center of mass of a deuteron in the
deuteron-deuteron center-of-mass system is very nearly
the same as that which one of the nucleons in the deu-
teron would have in a nucleon-nucleon center-of-mass
system. Nevertheless, we shaH still refer all amplitudes
to the laboratory system since that system is most
convenient for discussing the general nucleon-nucleus
or nucleus-nucleus coQision, and for comparing deu-
teron-deuteron collisions with both nucleon-deuteron
and nucleon-nucleon collisions.

It is important to note that the validity of the ex-
pression (2.2) for the scattering amplitude does not
depend in any manner upon the existence of a potential
function to describe the interaction. However, a complex
potential may always be found to describe high-energy
collisions. An application to scattering by complex
potentials has recently been made in an investigation
of neutron-nucleus interactions and the optical model. '9

III. PARTICLE-NUCLEUS COLLISIONS

In this section we describe the way in which the
amplitude for scattering by a bound system of nucleons
may be obtained. '" For scattering of a high-energy
particle by a system such as a nucleus with internal
degrees of freedom, we note that the individual nucleon
velocities are generally small compared to the velocity
of the incident projectile. Provided the relative veloci-
ties between the incident particle and the nucleons in
the target do not correspond to energies of strong reso-
nances of the particle-nucleon system, it is asymptoti-
caDy correct to consider the nucleons frozen in their
instantaneous posltlons dul'lng the passage of the lncl-
dent particle through the system. For a axed conlgu-
ration of A bound nucleons r~, ~ ~ ., r~ the scattering
amplitude operator F(q,k,rl, ",r~) would be

ik
F(q,k,rlt "tr")=— e"''»0»(b, rlt",u)d'b (3.&)

2%

initial state ~i) to a final state
~ f) and momentum Aq

is transferred from the incident particle may be written
as the appropriate matrix element of the operator
F(q,k,rl, ",r~), so that

ik
Fr;(q,k) =— e'&b(fI I'„»(b,rl, ",r~) Ii)d'b. (3.3)

2%

In this expression (f~ F»,»(b,rl, ~ ~ .,r~) ~i) denotes the
matrix element of Ft,»(b, rl, ",r~) between initial and
Anal states of the particle-nucleus system. Appbcations
of this result to particle-deuteron collisions are extensive
and have been referred to earlier. This expression has
also been used to describe scattering of charged particles
by hydrogen atoms by means of potential interactions. '0

IV. NUCLEUS-NUCLEUS COLLISIONS

In this section we consider collisions in which the
incident beam, as well as the target, consists of extended
systems with internal structure, and generalize the
results of Sec. III to obtain scattering amplitudes for
such coHisions. If the incident beam contains systems
with internal degrees of freedom, the initial and final
states of these systems, as well as those of the target,
must of course be taken into account. Furthermore, the
operator F~,~ will depend not only upon the nucleon
coordinates of the target, but also upon the nucleon
coordinates of the incident nucleus which we shall
denote by r~+I,",r~. {The incident nucleus therefore
contains E Anucleons. ) T-he scattering amplitude
F~f;,(q)k) fol' colllsIOIls 111 which a Illlclells lllclclellt
with momentum kk transfers momentum Aq to the
target and makes a transition from an initial state ~t) to
a final state

~ y) and the target makes a transition from
an initial state ~i) to a final state

~ f) is given by a
generalization of Eq. (3.3) and may be written in the
form

F„r;,(q,k) ={qf(F(q,k,rl, ",r~) (i»),

where the operator F(q,k,rl, ~,r~) is given by

ik
F(q k rl r~)=— e'& "F»»(b r1 rg)d'b (42)

2x

In this expression F~,~ is given by

F~»(b, rl, ",r~) =1—e'«'«b't - '» (3.2) ptg»(b r1 ~ ~ ~ rN) = g —etxt t(b &t "' &N) (4.3)
and where X».»{b,rl, ~,r~) represents the accumulated
eGect of the passage of the wave representing the
incident particle through nuclear system.

Since the nucleons are in fact not rigidly Gxed,
F»»(b, rl, ',r~) is to be regarded as an operator which
induces appropriate changes of the internal states of
the nucleus and the incident particle as well as changes
of the momentum state of the incident particle. The
scattering amplitude F~;(q,k) for the collision in which
the particle-nucleus system makes a transition from an

'9 V. Franco, Phys. Rev. 140, 31501 (1965).

where X~,~ represents the resultant phase shift accumu-
lated by the wave representing the incident nucleus as
it passes through the target nucleus. The quantity
(yf ~

Ft,» ~i») denotes the matrix element of I"»,» between
the initial and anal states of both the incident and
target nuclei. The vector b is the impact parameter
vector of the center of mass of the incident nucleus
relative to the center of mass of the target.

Ke shall assume that the nucleons in the incident
nucleus interact with those in the target nucleus by

20 V. Franco, Phys. Rev. Letters 20, 709 (1968).
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means of two-body forces. The total phase-shift func-
tion X&,& may then be written as the sum of the phase-
shift functions obtained by considering separately
collisions between all diferent combinations of two
nucleons subject to the restriction that one nucleon
belongs to the target and the other to the incident
nucleus. If we denote the components of the coordinates
rj, , r~ perpendicular to the direction of the incident
beam (i.e., pal'allel to 'tile plalle contaming the iinpact
parameter vector b) by si, ~, s~, we may express the
t t lph se-hftf ct ninthefo

xi.i(b, ri,",rx)= Z Z x i(b—si+s ) (44)

where x„(b—s,+s,) is the phase-shift function that
wouM. result from the interaction between a nucleon
with a laboratory momentum kk/(Z-A) at an internal
coordinate r„and a nucleon at rest at an internal
coordinate I'].

Since X~) and &„„,where t and e label two target
nucleons, do not commute in general, the oIder in which

they occur in I"~,~ is an important feature of the terms
in the scattering amplitude operator which describe
multiple scattering. In order to account for this non-

comInutativity, the operator I'g, g should be written as

1'~.i(b,ri, " re)

We shaQ apply the results of the preceding section to
collisions in which an incident beam of high-energy
deuterons interacts with a deuterium target, and ob-
tain the scattering amplitude operator for such colli-
sions. Ke shall assume that the nucleon-nucleon intex-
actions are precisely charge-independent and omit the
eGects of their spin dependence, some of which have
been discussed for particle-deuteron colbsions in Ref. i.

%'e let r=rq —r2 be the internal coordinate of the
target deuteron, where the indices I and 2 label the two
nucleons of that deuteron. Similarly, we let y= r3—r4 be
the internal coordinate of the incident deuteron, where
the indices 3 and 4 label the two nucleons of that
deuteron. We let s and t be the projections of r and y
along the momentum Ak of the incident deuteron center
of mass and let s and e be the corresponding projections
in the plane perpendicular to lr. Before the collision we
consider both the incident and target deuterons to be
in their ground states. Therefore since

~
i) and

~
i) will

represent the same state, we set i=i. The states
~ f) and

~ y) may represent excited states (i.e., unbound two-
particle states) or the deuteron ground state once
again. The scattering amplitude for collisions in which
a deuteron with momentum kk transfers momentum
fiq to the target and emerges in a final state

~ q) and
the target deuteron is let't in a anal state

~ f) may be
written by means of Eqs. (4.1), (4.2), and (4.5) as

={1 exp/i g g x i(b si+s )j}+ (45)
&,r;;(q,k)=(q f~F(q,k,r,y) jii), (5 &)

where the symbol { }+ denotes the time-ordered

product. It is taken to mean that in the power-series
expansion of the exponential, whenever operators X„~

d X„d t t thy pp
'

th rd
(reading from right to left) corresponding to that in
which nucleons i and I interact with nucleon p."

The resulting scattering amplitudes are obtained by
means of Eqs. (4.1), (4.2), and (4.5). Multiple scattering
e6ects are contained implicitly in the resulting scatter-

ing amplitude because we have summed phase shifts

rather than amplitudes. A total of (E-A)A orders of

multiple scattering are treated. This may be explicitly
demonstrated by resolving Kq. (4.2) in terms of the
individual nucleon-nucleon scattering amplitudes. We
shall do th18 fol deuteron-deuteron COQisions aIld show

how single-, double-, triple-, and quadruple-scattering
processes are explicitly taken into account. Higher
orders of Inultiple scattering require at least one back-
ward collision between nucleons and are consequently
neglected. .

where the operator Ii takes the form

ik
F(q,k,r,p) =-

27r

e' {1—exp(ir x,i(b——,'s+-,'c)

+x4i(b ——,'s ——2s)+x„(b+-,'s+-,'e)

+x4~(b+ks —2~)j)}+ (5 2)

{&—exp/i(xai+x4i+xaa+x4i) j}y=Z 1'g) (5 3)

As a 6rst step ln sepaI'atlng the contributions of the
individual nucleons to the scattering processes, we

introduce the functions Fag I'4] I'32 and I"42 dedned in
terms of x,i, x„, x„, and x„by means of Eq. (2.3).
Let the notation j. +-+ 2 denote the interchange of indices
I and 2 together with the inversion r —+ —r, and let 3~ 4
denote the interchange of indices 3 and 4 fogeIher mich

the inversion y
—& —y. We may then write the identity

'~ The use of completely antisymmetric wave functions to de-
scribe the E-particle system obviates the necessity of the time-
ordered product. However, it is often morc convenient in dealing
with high-energy collision processes to antisymmetrize the wave
function describing the target, and to separately antisymmetrize
the wave function describing the incident nucleus. In this case
some cGccts of thc time-ordellQg stIll rcrnaH1.

where the I'; are given by

1'i=2 Z 1',i, (5.4)
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—F2= ffr31F318(t)+3~ 4]+f1++2])

+{I'81F32+ 3 &-+ 4), (5.5)

4F4 (DF41F42&F81F82}+fr41F42&F31F32]e(t)]

+{fF3IF328(s)+ 1+-+ 2]+f3 ~ 4]) +f1~2]}+(fr4IF3I,F,2F82]e(z)+3 ~ 4)
+ f fr31F32,F31F32]c{s)8(f')+(1~2, 3~4)), (5.13)

where the brackets f, ]designate the commutator and
r,= fr„r»r„8(s)8(f-)+r„r„r»8(—s)8(f) f, ) the anticommutator.

If we substitute the expressions given by Eqs. (5.3),+ " " "{) { f)+ 42 " "{ ) { &)] (5.4), and(5. 11)—(5.13) into theintegral (5.2) and shift

+f1~2]+f3~4]+f1~2 3~4] {56) the origin in the b plane to carry out the first four
integrals, we obtain

—r.=fr„r, r„r„8(s)8(f-)yr„r„r„r„8(s)8(—f.)]
+f1~ 2, 3+-& 4]. (5.7)

The function 8(s) is defmed by

F(q,k,r,8)=P F,(q,k,r,8), (5.14)

wllcrc 'tllc contribution Fi(q, k,r 8) al'iscs fl'onl slllglc-
scattering processes and is given by

8(e)=1, for s) 0
=0, for s(0. (5.8)

FI(q7kyr/8) =2fe&'«' a31(q)2k)+e"2''('+')a81(q —k)
+e &'2'('+'a32(q-2, k)+e &'2'(' ')a32(q 2k)]. (5.15)

8(s) =-', f1+8(s)],

8(s) =s/)s(.

(5 9)

(5.10)

By substituting this identity and the corresponding one
for 8(f) into Eqs. (5.5)-(5.7) we obtain

—F2= l(D F41 r»}+fr41 F81]e(t')]+f1~ 2])
+ 2(L(F31,F42}+fF31,F42]e(s)]+f3+-) 4])

+ {fr„r.,]+f3 4]), (5.»)
6F8= f{{F41 F81} F42}+{F41 F81F42)f1+&(s)&(f)]

+Dr. ,r. },F.] ()+Lr,r r.]f ()+ (f)]
+D F41)F42) F31]8(t)+ffF31~F311F42]8{s)&Q )]
+f1~2]+f3~4]+.f1~2, 3~4], {5.12)

%'e see that in I'~, I'2, I'3, and F4 there are 4, i0, i6,
and 4 terms, respectively. The arguments of the various
operators on the right-hand sides of Eqs. (5.3)—(5.7)
have been suppressed, but are determined simply by
their indices which label the incident and target
nucleons.

An alternative and useful way of writing the ordered
products occurring in Eq. (5.2) is based on the identity

In this expression a„,(q,—,k) is the scattering amplitude
operator for collisions of incident nucleon p having
momentum -'Ak with target nucleon t, in which a
momentum Aq is transferred to the target nucleon. 2'

In order to express the contributionsP2, Ila, and F4
to the deuteron-deuteron scattering amplitude operator
which arise from multiple interactions in terms of the
basic free nucleon-nucleon scattering amplitude oper-
ators a~(, we note from Eq. {2.2) that a~& is a Fourier
transform of the function F„~.An approximate inversion
of the transform is obtained by multiplying Eq. (2.2)
by exp( —2q. b) and integrating with respect to q over
a plane perpendicular to the direction of the incident
beam. We then secure

I' (1)= (2)r2k)-I e '&'a,{q)d2g,
- (5.16)

3=1 2 p=3 4

If we utilize this expression and the Fourier integral
representation of the two-dimensional 8 function, we
obtain for the multiple scattering contributions to the
deuteron-deuteron scattering amplitude operator the
results

Z

F (q,k, r,8) =— ((fe'""+"'(f«1(u),a»(v))+ fa31(n) a»(v)]e(&))]+f1~ 2]}
+(Le'"' +' '(f «i(n), «2(v) }+f«1(u) a32(v)]e(s))]+ f3 ~ 4])

+{f2e*' (-'a3.(u)«2(v)]+ f3 ~4]))dV, (5.17)

W(gavu)= —(S '))-' f([v' "v &(((u„(w) u„(u "w')) u„(v))+(uu(—w) uu(u w)u„(v))((+ (v) (()j—

+ffa 1(W) a81(ll—W)')),,av42(V)]8(e)+ faQ(W) a31(n—W)a&2(V)]f8(S)+ 6(f )]
+f{a1{w),a .(v)},a8i(u —w)] (f )+ffa81(w), a31(»—w)],a 2(v)] (s)3(t ))]

+f1~ 2]+f3+-+ 4]+f1 &-+ 2 3~ 4])d2g'd2q" (5.18)
"From this point forward we shall often suppress the arguments k and ~qk since, for a given experiment, they remain constant.
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Z,(aX,r e) =— ({L~-'«"+~"'~({«x(x—w)«, (u—x),«i(v+ w —x)«2(x) }
2gak3

+L«~(x—w) «2(u —x),os'(v+w —*)«2(x)1~0))j+9~ 23}

+{e-'«"+&"'&L«q(x —w) g»(v+ w —x),u4~(u —x)«2(x)je(s)+3~ 4}

+{e-'«'~~"'~L«g(x—w) «2(ll —x),a/i(v+ w —x)a/2(x)le(s) e(i)+ (1~ 2, 3 4-+ 4)})d'g'd'q"d'g'". (5.19)

In these expressions u, v, w', and x are defined by

u=2%+q ~

~=~q

w=q +Q

(5.20)

(5.21)

(5.22)

x=g +g +g (5.23)

Equations (5.1), (5.14), (5.15), and (5.1/)—(5.19) are
the general expressions vre obtain for the deuteron-
deuteron scattering amplitude operator in terms of the
basic nucleon-nucleon amplitudes and the initial and
6Ilal stRtcs of the dcutclons.

The CGects of single, double, triple, and quadruple
interactions have been separated by means of Eqs.
(5.15) and (5.17)-(5.19).Each of these equations gives
the contribution arising from a particular degree of
multiple collision. Single collisions are described by F~,
double collisions by F2, etc. Each of these expressions

may be analyzed further according to which nucleons
are involved in the collision and the order in vrhich the

interactions take place. The resulting terms may be
characterized in part by the di6erent combinations of
two-body interactions betvreen incident and target
nucleons vrhich can be formed under the high-energy
smaB-angle scRttcllng assumptions that Rll colllslons
involve small momentum transfers and. that the relative
instantaneous con6gurations of the nucleons mthin
each deuteron do not change appreciably during the
colllslon.

I

FIG. I. Schematic representation of single-collision processes
which contribute to deuteron-«uteron scattering. The particles
are labeHed in their initial con6gurations, and the positions of the
circles indicate instantaneous positions of these particles. Particles
I and 2 belong to the target deuteron, and particles 3 and 4 to the
incident deuteron.

Fzo. 2. Schematic representation of double-collision processes
which contribute to deuteron-deuteron scattering. The particles
are again labelled in their initial configurations, and the positions
of the circles indicate instantaneous positions of these particles.
Particles j. and 2 belong to the target deuteron, and particles 8
and 4 to the incident deuteron.
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The contributions to the scattering amplitude oper-
ator which arise when the individual nucleon-nucleon
single interactions are considered separately are given
by the four terms comprising Eq. (5.15). Each term
represents a possible two-particle collision which may
be obtained by considering a nucleon in the incident
deuteron as the incident particle and a nucleon in the
target deuteron as the target particle. These kinds of
collisions are illustrated schematically in Fig. 1 (a)—(d).
In this 6gure, and in the three to follow, we have
labelled the particles in their initial configurations, and
the positions of the circles representing them are meant
to indicate instantaneous positions of these particles.
Particles 1 and 2 belong to the target deuteron, and
particles 3 and 4 to the incident deuteron. The positions
of the two arrowheads at the ends of the paths of par-
ticles 3 and 4 represent instantaneous positions of these
particles after the collision. The matrix elements of the
four terms in Eq. (5.15), taken between appropriate
initial and Anal states of the incident and target deu-
terons, add coherently to form the amplitudes obtained
in the usual single-scattering impulse approximation.

Although we do not explicitly show in Figs. 1—4 the
states of the nucleons after the collisions, they may of
course difter from their initial states. For example,
charge-exchange reactions may take place, so that the
charge states of various nucleons may change.

Equation (5.17) represents an approximate expression
for the double-scattering amplitude operator. Each term
in this equation results from a possible type of double
interaction. These types of collision processes are
illustrated schematically in Fig. 2. In each of the parts
(a)—(f) in this figure two diagrams are shown since the
term they represent includes double collisions in which
the order of the collisions may be reversed. Thus in
Fig. 2(a), for example, the first diagram represents
collisions in which 6rst particle 4 interacts with particle
1, and then particle 3 interacts with particle 1. The
second diagram in Fig. 2(a) represents collisions in
which Qrst particle 3 interacts with particle 1, and then
particle 4 interacts with particle 1.We should note that
only one diagram is actually necessary for each of Figs.
2(e) and 2(f) since F4s and Fst generally commute,
as do I'4~ and F32. We have included a redundant
diagram in each of these figures mainly for purposes of
symmetry. Note that parts (e) and (f) are qualitatively
diferent from parts (a)—(d).

Equation (5.18) is an approximate expression for the
triple-scattering amplitude operator. Each of the terms
in this expression results from a possible type of triple
interaction. These types are illustrated in Fig. 3. In
Fig. 3(a) four diagrams are shown since the term repre-
sented includes triple collisions in which the order of
the individual collisions may be different. Two ad-
ditional diagrams may be drawn in Fig. 3(a). These
would represent the sequence of collisions 41, 42, 31
and 31, 42, 41. However, since I'» and F42 generally
commute, these diagrams are equivalent to the first

(a)

2 in (a)

(c) = 4ln (a)

and fourth diagrams, respectively, in Fig. 3(a). The
latter two diagrams represent the sequence of collisions
41, 31, 42 and 42, 31, 41.The terms in Eq. (5.19) which
involve different pairs of particles in the triple collision
than those represented by Fig. 3(a) may be illustrated
schematically by interchanging the nucleons in one or
both of the deuterons, as indicated in parts (b)-(d) of
Fig. 3.

Equation (5.20) represents an approximate expression
for the quadruple-scattering amplitude. It arises from
collisions in which each nucleon in the incident deuteron
interacts with both nucleons in the target deuteron.
These interactions are illustrated schematically in Fig.
4. Additional diagrams may be drawn but, as we have

4

+ 4

Fro. 4. Schematic representation of quadruple-collision processes
which contribute to deuteron-deuteron scattering. The particles
are labelled in their initial con6gurations, and the positions of the
circles indicate instantaneous positions of these particles. Particles
1 and 2 belong to the target deuteron, and particles 3 and 4 to the
incident deuteron.

I = = 2 and S =-= 4 ln (a)

Fzo. 3. Schematic representation of triple-collision processes
which contribute to deuteron-deuteron scattering. The particles
are labelled in their initial configurations, and the positions of the
circles indicate instantaneous positions of these particles. Particles
1 and 2 belong to the target deuteron, and particles 3 and 4 to the
incident deuteron. The notation "1~ 2 in (a)" denotes the dia-
gram which is obtained upon interchange of particles 1 and 2 in
part (a}, with corresponding meanings for the notation given in
parts (c) and (d).
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pointed out in our discussion of Fig. 3, they would be
equivalent to those already shown. The number of
diagrams needed to represent possible quadruple inter-
actions is greatly restricted by the high-energy small-
angle approximations mentioned earlier. Thus, for
example, the sequence of collisions 32, 3i, 41, 42 is
omitted since the sequence 32, 31 requires the target
deuteron to be in an instantaneous conhguration such
that s&0 whereas the sequence 41, 42 requires the
iQstRQtRneous conQgulatlon to be such that 8+0.

Thus we see how, in this high-energy small-angle
approximation, the effects of multiple interactions are
explicitly included in the formalism. Quintuple and
higher-order scattering sects are absent from the ap-
proximation since they cannot occur when all collisions
are con6ned to smRH scattering angles.

Ba=bo2+ Bo 8+ b.a 4. (6 2)

The deuteron-deuteron total cross section may be
calculated by applying to Eqs. (5.1), (5.14), (5.15), and

(5.1/) —(5.19) the optical theorem, which relates the
total cross section to the imaginary part of the forward

elastic scattering amplitude. The total cross section

aqua(k) is given by

a aa(k) = (4qr/k) ImF, ,;;(O,k, s,qr) . (6.3)

The free nucleon-nucleon total cross sections a ~,(-',k),
where p and t represent a nucleon in the incident
deuteron and a nucleon in the target deuteron, respec-

tively, are given similarly by

a aq(2k) = (8qrjk) Im(ii ( u~q(0;', k) ~ii) (6.4).

VI. DEUTERON-DEUTERON TOTAL
CROSS SECTION

To consider the sects of multiple interactions on the
total cross section in a quantitative manner, we deine
a total cross-section defect 80. to be the difference be-
tween the sum of the four free nucleon-nucleon total
cross sections at momentum —,'Ak and the deuteron-
deuteron cross section oqq(k) at momentum Ak, and
write

aug(k)=a„„(-,'k)+a, (-,'k)+a„(-,'k)+a „(-,'k) —ba, (6.1)

where the subscripts n and p in this expression refer
to neutron and proton, respectively. (If we assume

charge symmetry of nuclear forces, then 0. =~»
and o.„=o„a.) If the effects of multiple interactions
were neglected ba would be zero and the deuteron-
deuteron total cross section would be simply given

by the sum of the four individual free nucleon-nucleon

total cross sections, a result given in a simple impulse

Rpproxlm ation.
It will be instructive to analyze bo. in terms of con-

tributions bcr2, 80-3, and bo4 which arise from double,
triple, and quadruple interactions, respectively. We
therefore shall write

To evaluate the cross-section defect we must make
use of integrals of the form

where f,(r) is the conf(guration-space wave function of
the deuteron ground state. Since s is the component of
the coordinate r lying parallel to the plane which con-
tains the momentum transfers q, this integral is equiva-
lent to the expression

S(q) fe'e=)q(r)')'sr=s( —q), (6 5)

which we recognize to be the form factor of the deuteron
ground state.

We notice immediately that the diagonal matrix
element in the deuteron ground state of all terms in

Eqs. (5.1'/) —(5.19) which are linear in c(s) or e(f)
vanish. If we set g equal to zero in these expressions in

Eq. (5.15) and use the optical theorem (6.3) and (6.4)
we obtain

32
q =—Re(ie) f[S(q)e (q)e, (—q)

k~

+-',S'(q)a„(q)«~(—«)]d'g
~
ii), (6.6)

Rnd

Im('i
~

S(q)S(q')
37rk8

&&L{{«i(«+«'),~»(—«')}, «~(—q)}

+{~+(«+«'),~»(—«')«2( —«)}Pd'g&'g'I») (6 7)

Re(i~~ S(q)S(q')«g(q")«, (—q' —q")
m'k'

&«si( —q —«")«2(«+«'+«")A~'g'&'g" l~~) (6.g)

~a2= &(rmq+ &amq. (6.9)

The correction bo-2j corresponds to double collisions in

which both nucleons in one of the deuterons interact
with only one of the nucleons in the remaining deuteron,

In obtaining these expressions we have made use of the
antisymmetry of the total deuteron ground-state wave
fuQctions with 1espect to interchange of particles 1 Rnd

2 and with respect to interchange of particles 3 and 4.
It will be convenient and useful to further analyze

the double-scattering correction BIT2 into two distinct
contributions. The 6rst, denoted by btT», is given by
that part of ba~ which contains the factor S(g) in the
integrand. The second, denoted by bo-22, is given by that
part of ha 2 which contains the factor S'(g) in the inte-

grand. We may therefore write
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while the other nucleon acts as a "spectator" particle.
The correction b0.22 corresponds to double collisions in
which one nucleon in the incident deuteron interacts
with only one nucleon in the target, and the other
nucleon in the incident deuteron interacts with only the

other nucleon in the target, so that all four nucleons take
part in the collision, and there are no "spectators. "
The signi6cance of this latter double collision correction
to the total cross section mill be discussed more fully in
Sec. VIII.

The scatterlIlg arnp11tude operators G~g(«) which de-
scribe collisions between nucleons may be dealt vrith
most compactly by vrriting them in the form

o. (q) =f(q)+~. «g(«) (6 1o)

vrhere z„and vg are the isotopic spin operators for a
nucleon in the projectile and a nucleon in the target,
respectively. If we substitute this form in Eqs. (6.6)—
(6.8) and evaluate the expectation values of the isotopic
spin operators vrhich occur in them, we 6nd

32
~(a)Cf(«)f(-«)

k' —3g(q)g( —«)jA, (6»)
16

= ——R s'(g) Lf(q)f(—q)
k'

+3g(q)g( —«)]d'a, (6 12)
32

~(«)~(«') ImLf(«+q')f( —«')
xk'

&&f(—«)—5g(q+q') f(—«')g(—q)

+2f(q+q')g( —q')g( —«)jd'o&V (6 13)

~(«)~(«') «t f(«")f(—q' —q")f(—q —«")

&&f(«+q'+q")+21g(q")g(-q'-q")g(-q-q")

Xg(«+q'+q")+6f(q") g(—q' —q")g(—q—q")

Xf(q+q'+q") —12f(q")f(—q' —q")g(—q —«")

&&g(«+«'+«")3d'aA'dV' (6 14)

%e wish to note that an alternative vray of writing
the deuteron-deuteron cross section which will be par-
ticularly useful for comparing the theory with experi-
ment is to express aqua(k) in terms of the nucleon-
deuteron total cross section o.~q(-', )kplus correction
terms. (We assume charge symmetry of nuclear forces
so that o„~ o„~=o~——~ )The exp.ression for o~q is'

oNs(-', k) =o,„(-',k)+o ~,(2k) ——;ho2r. (6.15)

The deuteron-deuteron total cross section may then be
vrritten as

o gg(k) = 2o ~g(-,'k) —bo', (6.16)

vrhich may be regarded as a dehning equation for the
cross-section defect ho'. In analogy with Eqs. (6.2) and

(6.9), we may write

oo'= Bo2'+ Bo 8+ 8o 4 (6.17)

go 2'= So 2r'+ 8o.g2, (6.18)

VII. CROSS SECTION IN TERMS OF NEUTRON
AND PROTON ELASTIC SCATTERING

AMPLITUDES

In order to compare the measured deuteron-deuteron
cross section with the expression which vre have
derived for it, it is convenient to revrrite the theoretical
result in terms of the experimentally measured ampli-
tudes for nudeon-nucleon scattering. If we assume
charge symmetry of nuclear forces, so that f»= f „
and f„„=f „, then we may express all nucleon-nucleon
elastic amplitudes in terms of two independent ones,
say f» and f r The ampli. tudes f and g which we have
used in constructing the expression for the deuteron-
deuteron total cross section are related to the directly
observable amplitudes f» and f „via the equations

f(q) = lLf..(«)+f-.(«)j
g(q) = lLf-(«) —f-.(q)j (& 2)

Furthermore, g(q) is simply related to the charge-
exchange amplitude f,(q) by

g(q) = 2f.(«). (7 3)

The possibility of ending the amplitude g in two ways,
either through direct measurement of the charge-
exchange amplitude or by taking the di6erence of the
pp and ep elastic amplitudes, leads to a variety oi useful
vrays of expressing our results.

(6.19)

Equations (6.16)-(6.19) have an advantage over Eqs.
(6.1) and (6.2) since the main contribution to oqq is
vrritten as 2e~q, vrhich is directly measurable. Further-
more, the magnitude of the double-scattering correction
80.2' is generally substantially smaller than the magnitude
of the correction 802. Consequently any uncertainty in
the evaluation of bo2' leads to a smaller uncertainty in
the calculated value of 0~~ than does the corresponding
uncertainty in the evaluation of btT2.

The contributions to the deuteron total cross section
which arise from double, triple, and quadruple inter-
actions are represented by negatives of 8o2' (or Bo.2),
803, and 80-4. The signs of these contributions depend
mainly upon the phases of the free nucleon-nucleon
elastic scattering amplitudes. In the limiting case of
purely imaginary nucleon-nucleon elastic amplitudes
and no charge exchange, for example, the contributions
to the deuteron cross section which result from double
and quadruple interactions would both be negative,
vrhereas the contribution from triple interactions would
be positive.
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VIII. ASYMPTOTIC APPROXIMATIONS FOR THE
CROSS-SECTION DEFECTS

Ke have derived the expressions for the deuteron-
deuteron cross section in Secs. VI and VII by means of
the Glauber approximation. To obtain quantitative
estimates of the cross-section defect 80' or 50., a number
of integrals must be carried out, some of which involve
multiple integrations. In order to allow estimates of the
cross-section defect to be easily made, we shall reduce
the general results for 80' and 80. to a number of simpler
forms by means of the various approximations regarding
the deuteron ground state and the nucleon-nucleon
elastic scattering amplitudes. %e wish to emphasize,
however, that although the resulting expressions will be

quite easy to evaluate, greater accuracy woold be obtained

by explicitly performing the necessary integrals which

appear in the general expressions. We shall do these
integrals numerically in the next section.

%'e begin by considering the form which the cross-
section defect takes in the asymptotic limit of the
average deuteron radius, i.e., neutron-proton separation,
being much larger than the ranges of the high-energy
nucleon-nucleon interactions. In this limit the deuteron
form factor S(g) decreases from its value of unity at
g =0 much more rapidly than do the nucleon-nucleon
elastic scattering amplitudes. Consequently we may
approximate the contributions to the cross-section
defect which arise from double and triple interactions
directly in terms of the forward elastic scattering
amplitudes a„~(0) and integrals of the deuteron ground-
state form factor and of the square of the form factor.
The contribution from quadruple scattering is reduced
to an integral over a single momentum transfer variable
g. The integrals involving the form factors may be
written in terms of expectation values, in the deuteron
ground state, of functions of the neutron-proton
separation r. For spherically symmetric wave functions
these relations, which we derive in the Appendix, are

S(q)d'g= 23r &P;*&r) P;(r)dr-
r2

to the cross-section defect may be written by means of
Eqs. (7.4)-(7.7) and (8.1)-(8.4) as

go 33&~& =—(643r/h3)

XReg.,(0)f„(0)—-'f'(0) j(r '), (8 5)

ho&~.& =—(163r/h3) ReLf '(0)+f„'(0)+f,'(0)j

ho 3&"&= (32/h') Im{2f»'(0)f„~(0)+2f„~3(0)f»(0)
—f'(0)Lf-(0)+f„„(O)j)(&~3&„)3, (8.7)

and

l&o 4t"& =—Re {8f '(g) f„'(g)+f '(g)
k4

XD-'(g)+f. '(g) —1of-(g)f"(g)]
+7f. (g))d g(&-&.). (88)

The various real and imaginary parts of the different
products of nucleon-nucleon amplitudes may be ex-
pressed in terms of the real and imaginary parts of the
individual amplitudes. The imaginary parts of the
forward elastic scattering amplitudes may, in turn, be
expressed in terms of the nucleon-nucleon total cross
sections by means of the optical theorem. If we de6ne
n~; to be the ratio of the real to the imaginary parts
of the nucleon-nucleon forward elastic scattering
amplitudes,

n~;=Ref&, (0)/Imf&;(0), lj =n, p (8.9)

we obtain for 50.2~("), b0.22&"', and 80-3( ' the expressions

b~3&'"'=3r '{(1 n~-») „o,—o» ', $(a „a—»-)'—
(n"~.n—n»o»)—'j) &~'&e (8 1o)

ba»'"& = (1/4 ){(1—n»')o»'+(1 —n-')~.'
+L(o-. a-)' (n-.—-. n»—o-)'j)—

= 23r(r-3&e (8.2)

S3(31)d'g= 2x 4'*(t, )4'*(r)
2fp

r+o
Xin ~g, (r)iP, (t&)drdt& (8.3)

bg 3&"&=—(1/163r3){2o„„o 3(1—2n„~no —n ')
+2o»o-'(1 2n»n-. n-n') —(o-&+o.—n)—
XL(~, ~,n)' (.,n.,on»o»—)'1- —
+2(n-.~-.+n-~-)(o-.—o»)

X( -""—-.-))((-').)'. (8.12)
(8.4)

In the asymptotic limit of large deuteron radius, there-
fore, the contributions 802~ ",8022 ",b0-3'", and b04 "

The expression (8.8) for ho 4&"& may also be simpli6ed
if we make the additional assumption that the nucleon-
nucleon elastic scattering amplitudes fl;(g) in the inte-
gral may be represented by f3,(0) exp( 33A3;g3), w—here
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Ag; is a real constant. In that case we obtain the result

Ba 4'"I =(1/128s')(9a „„'o»'L(1—n„~»)'
(—a& „+a&„)']/(A „+A„,)+a„'(1 6—a&„'+a&»')/

2A»+o„„'(1 6—a& „'+a& ~4)/2A „
5~—„'~„,&1 3n—„,(n„„+a.„)+n.,n„']/

(s~.,+ 5~») Sa-.'—~»D 3~"&—~"+~»)
+- ~. ]/(-;~ .+-',~.,)&((~).)' (813)

Equations (8.10)—(8.12) require only np and pp total
cross sections, the ratio of the real to the imaginary part
of the np and pp forward scattering amplitudesa, nd a
deuteron ground-state wave function so that the various
expectation values may be evaluated. We shall give
estimates for these expectation values in the next
section. For 8o4 the slopes of the pp and np forward
clastic di6raction peaks are also needed.

In the high-energy limit we may expect the nucleon-
nucleon elastic scattering amplitude to be purely
imaginary (or nearly so) in the forward direction. If
o.„~' and n»' are negligibly small compared to unity,
Eqs. (8.10)—(8.13) reduce to

~., " = -'L ....-l(.,—„)']( ').,

&a22&"' = (1/«) La»'+a-'+(~-. —a»)']

"((„','(:;)&.&.
'"

g&r, &» =—(1/16m')(o. „+a„„)

XP —( )](( ))
2 49|T ~o.» Ogp Onp

$0 (~)— + -+
128~3 A„„+a„„2A„„2A.„

5&~v 4'» ((-).). (817)
k~ &+A~» 2~»+P n

Of course other combinations of simplifying assump-
tions may be made, and we shall not list here all the
posslbll1tles.

The contributions to the asymptotic cross-section
defect which arise from triple and quadruple inter-
actions contain as a factor the sqgare of the expectation
value, in the deuteron ground state, of the inverse-

square neutron-proton separation. Therefore in the
asymptotic limit of very large deuteron radius Bo-3("&

and 80.4(") are negligibly sma11. in magnitude and the
asymptotic cross-section defect bo- (") is approximately
given by ho &» =bcr21&"&+5&r2I&"' and bo'&"& is approxi-
Illatcly glvcll by &Ia' 480'2l +8aM ~

The double-collision correction 8t72~(~) given by Kq.
(8.10) is precisely four times the asymptotic result
obtained for the single particle deuteron cr-oss-sect—ion

defect. ~ This is not unexpected since it corrects for
double eolHsions of the type for which one nucleon in

1 1 r+p
(&rem)abs(&r»)sba ~

2~ 2rp ir—pi
(8.18)

A similar term with (a.„„),b, (a.»),b, replaced by
(&I y) b (0'y ) b occurs for processes in which the incident
neutron is absorbed by the target proton and the inci-

dent proton is absorbed by the target neutron.
The two correction terms for the absorption cross

section may also be obtained from a geometrical calcu-
lation. Wc again assume purely absorptive nucleon-
nucleon interactions and omit the effects of charge
exchange. What is determined in such a calculation is
the probability that given one nucleon in the incident
deuteron is absorbed by one nucleon in the target, the
other nucleon in. the incident deuteron is absorbed by
the other nucleon in the target. %hen this probability
is multiplied by the cross section for the absorption of

28 R. J. Glauber, Phys. Rev. 1QQ, 242 (1955).

one of the deuterons interacts with each nucleon in the
deuteron, i.e., for double collisions of the same type as
occur in particle-deuteron collisions. In d-d collisions
there are four times as many ways in which these col-
Hsions may occur. On the other hand the terms in Eq.
(8.10) represent processes in which one nucleon in the
incident deuteron interacts with one nucleon in the
target and the other nucleon in the incident deuteron
interacts with the other nucleon in the target. Since the
relative neutron-proton separation of each deuteron is
important in such processes, the wave function for each
deuteron appears in these terms. The origin of the two
terms may be illustrated by considering the deuteron
absorption cross section for purely absorptive nucleon-
nucleon interactions, so that n„„=n» ——0, and neglect-
ing charge-exchange effects. If we merely equate the
deuteron-deuteron absorption cross section to the sum
of the four free nucleon-nucleon absorption cross sec-
tions we must of course correct for the shadow e6ect
described by Glauber" for the single-particle —deuteron
case. For the absorption cross section, twice this cor-
rection is given by setting &I„„=n»——0 in Eq. (8.10}
with the nucleon-nucleon total cross sections r~; re-

placed by the corresponding absorption cross sections
(O'Ij) b .But II1 addltlon wc lulls't now col'lect fol' collllt. -

ing certain double-absorption processes hekt,'. For
example, (a„),b, corresponds to processes in which the
incident neutron is absorbed by the target neutron
while the incident proton may or may not be absorbed

by the target proton. Similarly (a»),b, corresponds to
processes in which the incident proton is absorbed by
the target neutron. These processes are not mutually
exclusive. Each of these two cross sections contain con-
tributions from those processes in which the incident
neutron is absorbed by the target neutron and the
incident proton is absorbed by the target proton. To
correct for counting these processes twice we must
subtract a term of the form
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one of the incident nucleons by one of the target nu-
cleons (which is the condition under which the proba-
bility is being calculated), the result which is obtained is

o.„~=g» and o.„„=o»we are led to the result be22&"&

=F80'2l ~ ~, so that th.e double-countlllg correction ls
approximately 50'P~ as large as the Glauber shadow
co11cctlon.

(0. g).b, IP,(s,s) I'dsds de
g

If'(~, t) I'di, (8 19) IX. EVALUATION OF THE TOTAL
CROSS SECTION

in which 8 is the region
I
s—eI (L(~& ),b./1rj'~' and f

d p dt th
'

d t l dj d
k to the target nucleons. In these expressions we have
used r= s+x and y =e+(. For average neutron-
proton separations much greater than the ranges of
nucleon-nucleon forces we may write

I4'(oZ) I'df'= lW'(s, &) I'4 «(8 2o)

(O'U)sbs

Therdore the resulting double-collision correction is
given by

( - )."(;).. 14,( |)I'l0;(, ) I'd df'd . (8.22)

It is shown in the Appendix that the expression (8.22),
with the indices mk and lj replaced by nn and pp, is
equal to the expression (8.18). The corresponding cor-
rection to the total cross section is very easily obtained
for the case in which the regions surrounding the nu-
cleons are black spheres by noting that in such a case
the total cross sections are equal to twice the absorption
cross sections. In this manner we obtain the erst two
terms of Eq. (8.15).The last term is a charge-exchange
correction which we have omitted in the geometrical
derivation. We should point out, however, that we have
previously derived Eq. (8.15) from more general grounds
and its validity does not require the black sphere model.

We have seen therefore that the double-scattering
correction 8&»' corresponds to the Glauber shadow, or
eclipse, effect for absorption, but that the double-
scattering correction b022 is of a different nature. It may
be considered largely a double counHwg correction since
we have seen that for purdy absorptive nucleon-
nucleon interactions its analog for the absorption cross
section corrects for counting certain double-absorption
pl'occsscs (c.g. , Rbsol'ptloll of llllclcoll / by nllclcoIl jRIll
absorption of nucleon rN by nucleon k) twice. "

We may obtain an estimate of the importance of the
double-counting correction relative to the Glauber
shadow correction in d-d collisions by means of Kqs.
(8.1)—(8.4), (8.13), and (8.14). If we assume a Gaussian
function e &'&' for the deuteron form factor and assume

~4 The double-scattering correction vras 6rst derived in Ref. j.j.
It has also been employed by the author in the double-scattering
corrections to vr-m scattering in the quark model. See V. Franco,
Phys. Rev. Letters j.s, j.159 (j.967).

Deuteron-deuteron total cross-section measurements
have been made by Debaisieux et al.25 and by Prip-
stein and Eberhard26 at incident deuteron momenta of
3.0 and 4.42 BCV/c, respectively. We shall therefore
evaluate 0 q~ at these momenta. A deuteron momentum
of 3.0 BCV/c corresponds to a kinetic energy of an
individual nucl'eon of 832 MeV." Similarly, a deu-
teron momentum of 4.42 BCV/c corresponds to a
kinetic energy of an individual nucleon of 1.46 BCV.
Since the approximation we have used is a high-energy
approximation, a more desisive comparison of the
theory with experiment must await future measure-
ments at higher momenta. 28

We shall evaluate the deuteron-deuteron total cross
sections by means of the relatively simple asymptotic
formulas derived in Sec. VIII and also by means of the
more general expressions obtained in Sec. VII. This
approach will give us an indication of the numerical
accuracy of the asymptotic approximations.

We begin by considering the asymptotic multiple
scattering corrections Eqs. (8.10)—(8.13). Equations
(8.10)—(8.12) were obtained from the general expressions

by assuming that the average neutron-proton sepa-
ration in the deuteron is much larger than the range of
nucleon-nucleon interactions. Equation (8.13) was ob-
tained by making the additional assumption that the
nucleon-nucleon elastic scattering amplitudes fl, (g)
are proportional to exp( ——',Al;g'), where Al; is real a
constant. To explicitly calculate the dd total cross
section we shall use Eqs. (6.16)-(6.19).The alternative
choice of Eqs. (6.1), (6.2), and (6.9) leads to identical
results for o.~~ provided r„„is extracted from measure-
ments of O.~g and a» consistently in both cases.

To perform the calculations, we require the expecta-
tion values (r ')g and (((2pr) 'lnI (r+p)/Ir —pI1)g)g.
These may be calculated from explicit representations
of the deuteron ground-statc wave function. We shall
consider two such representations. The first, 1PI, is the
most accurate fit given by Moravcsik'9 to the Garten-
haus wave function and includes a contribution from
the D state. The second, f2, is the ground-state wave
function Icfcrrcd to as (ps in Rcf. i. Thc cxpcctatlon

"J. Debaisieux, F. Grard, J. Heughebaert, R. Servranckx,
and R. Windmoldels Nucl. Phys. 70 603 (1965)' F.Grard (private
communication).

2' M. Pripstein and P. Eberhard (private communication).
V We neglect the internal motion of the nucleons in the

deuteron.
"Measurements of d-d cross sections at approximately /. 85

and 13.5 BeV are presently being analyzed. We thank Dr, M,
Bazin for this information.» M. J. Moravcsik, Null. Phys. 7, j.$3 (1958),
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TAaLE I. Neutron-proton total cross sections o„„&A}predicted
from pp and pd measurements. Values calculated using two dif-
ferent deuteron wave functions $1 and p2 are shown. The asymp-
totic relation (9.1) was used in the calculation. Pi,b refers to the
nucleon momentum.

Plgb ops(expt) ops(expt) cxyy

(S.v/. ) (-b) (-b)
1.50 47.0 81.5 —0.01
2.21 47.0 84.5 —0.20

~.~ o ~'~'(A) o.~'"'(A)
(mb) (mb)

—0.48 39.4 40.8—0.47 42.0 43.3

values of r ' are 0.313 F ' for 1PI and 0 384 F ' for 1'.
The expectation val«8 «(2') I »L(~+&)/ I" & I 3 are
0.162 F ' for 1' and 0 192 F ' for g 2."

In our calculations we also require a knowledge of
thc totRl closs scctlons 0'„d, r», RDd o.„»of thc rRtlo of
the rea1 to imaginary parts of the forward elastic SÃ
amplitudes 0,» and 0.„„,and of the slopes of the EE
forward di8raction peaks A» and A„~. In principle
these quantities can be measured. In practice, for a
calculation at a given momentum it may be necessary
to use assumed or theoretical values for those quantities
for which measurements at or near the appropriate
momentum do not exist. It may also be necessary to
use measurements made at slightly different momenta
for those quantities which have not been measured at
precisely the appropriate Inomentum.

For our calculations of dd cross sections at 3.0 and
4.42 Bev/c we require measurements at nucleon mo-

menta close to 1.5 and 2.21 Bev/c. We are therefore led

to the measurements of Bugg et c/. ' for o.~d and 0-„„at
1.41, 1.61, and 2.21 Bev/c. For n„„we use measure-
ments'" between 1.29 and 1.69 Bev/c and theoretical
predictions' for 2.21 Bev/c. For n„o we use measure-
ments"" at 1.69 BeV/o and theoretical predictions'
for 2.21 Bev/o.

The neutron-proton cross section O.„„may be ob-

tained by means of the asymptotic relation'

o g&~' =o +o --'bo.el&"I (9.1)

In Table I we list average values of 0», o-„d, o.», and
O,„„obtained from Refs. 8, 31, and 32 at average nucleon
incident momenta of 1.50 and 2.21 Bev/c. In the last
two coIumns we present the neutron-proton cross
sections calculated by means of Eq. (9.1) with the wave
fllllCtlo118 lpt alld tom. We Ilote 'tha, 't use Of 'the 'two dif-
ferent deuteron wave functions results in a diRcrence of

1.4 mb in the neutron-proton total cross section as
deduced. from the pp and pd cross sections. Conse-

quently, in addition to the possible inaccuracies arising
from the asymptotic approximations, which we shall soon

investigate, an additional uncertainty of the order of 1
mb may be expected from the uncertainty in the deu-

teron wave function. The use of the present analysis to
detect eRects of the order of 1 mb should therefore be
GlRdc with grcRt CRutlon.

In the asymptotic formulas the quantities A» and

A„~ appear only in 804. Since 804 will turn out to be
quite small, inaccuracies in measurements of A» and.

A„~ will not RRect the calculated values of Odd signifi-

cantly. For our calculation at t2hk=1. 50 Bev/o we

obtained a value of A»=O. I89 F2 by making a least-
squares ftt of pp data at 1.39 BeV/c. 33 Since np measure-

IDCDts lD this encl gy rcglon Rl c 1RcklDg wc hRvc Rssumed

A„o=A». For our calculation at -', 5k=2.21 Bev/c we

have used the measured value" A» ——0.207 F', and

again wc have assumed A„„=A».
In Table II we present the values of 0-dd and the vari-

ous cross-section defects calculated from the asymptotic
relations (8.10)—(8.13).We note that use of the different

wave functions results in a diRerence of 2.2 mb in the
calcu1ated values of Odd. The cross-section defect result-

lllg from double-scattering collectlolls (Jolt +80'22) 18

an order of magnitude greater than the magnitude of

the cross-section defect resulting from triple-scattering

corrections, which in turn is an order of magnitude (or
more) greater than the cross-section defect resulting

from quadruple-scattering corrections. The new type of

Tmr, E II. Calculated values of the asymptotic cross-section defects and fg(g total cross sections. QI and p~ refer to the two deuteron
wave functions used in the calculations. EI&b refers to the deuteron momentum. The measured pd cross sections tr2,g(expt) refer to proton
mOmenta Of ~aPI,b.

~1ab
(BeV/c)

3.00
3.00
4.42
4.42

(A}

(mb)

99
12.2
9.1

11.2

(A}

(mb)

4.0
4.8

5.2

g~ {A}

(mb)

—1.9—2.8—1.5—2.3

0.2
0.3
0.0
0.0

12.2
14.5
12.0
14.1

oq~&» (theor)
(mb)

150.8
148.5
157.0
154.9

2o ~(expt)
(mb)

163.0
163.0
169.0
169.0

Preliminary estimates indicate that au(expt) is approximately &140 mb (Ref. 3S). This is a lower limit since events for 0 & -3+0.01 (Bev/o)~ have
not been included in the analysis of the measurements (Ref. SS). Our calculation of the dd elastic scattering, presented in Sec. X, indicates that the elastic
scattering cross section for 0& -t& 0.01 (Bev/c)» is 11 mb. %'hen this is added to 140 mb, we arrive at a value for odd(expt) of 1S1 rnb, which ia
very close to the predicted values.

"The two expectation values for @2 are related by a factor of exactly 2. The factor relating the two expectation values for $1
happens to be nearly, but not exactly, 2.

"L.M. C. Dutton, R. J. W. Howells, J. D. Jafar, and H. B.Van der Raay, Phys. Letters 258, 245 (1967), and references cited
therein.

L. Kirillova, V. Nikitin, M. Shafranova, V. Sviridov, L. Zolin, Z. Korbel, L. Rob, Kh. Chernev, P. Devinski, L. Khristov,
P. Markov, Z. Zlatanov, N. Dalkhazhav, D. Tuvdendorzh, Ngo quang Huy„Hquyen dinh Tu, and Truong Bien (unpublished).

» P. G. McManigal, R. D. Kandi, S. ¹ Kaplan, and B. J. Moyer, Phys. Rev. 137, 8620 (1965).
'4 A. M. Eisner, K. L. Hart, R. I. Louttit, and T. W. Morris, Phys. Rev. 138, 8670 (1965).
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double-scattering correction, 80.22, which we described
in detail earlier, is approximately 43% of the Glauber

shRdow correction 8021 ) ln good aglcc111cnt with oui
rough theoretical estimate of 50% described in the
previous section.

Wc shall now repeat our calculations using the more
general relations (7.8)—(7.11). We assume that the
nucleon-nucleon amplitudes may be expressed as

k
ft,(g, —',0)=—ot„(i+o.t„)s

—i"'ss', i=e,p.
8x

The two-, four-, and six-dimensional integrals can then
be reduced to single and double integrals which may be
done analytically for its and numerically for iPt.

In Table III we show the neutron-proton cross sec-
tion calculated by means of Eq. (6.15). )The corre-
sponding results obtained from the asymptotic expres-
sion (9.1) were shown in Table I.j By comparing
Tables I and III we note that use of the asymptotic
expression (9.1) to determine o „„from measurements of
0&d Rnd 0'» tends to lntI'oducc R numerical inaccuracy
of ~1 mb in magnitude.

In Table IV we present the values of Odd and the
various cross-section defects calculated with Kqs.
P.8)—(7.11). (The corresponding results obtained from
the asymptotic formulas were shown in Table II.) By
comparing Tables II and IV we note that usc of the
asymptotic formulas tends to introduce a numerical
inaccuracy in the calculated deuteron-deuteron cross
scctlon of ~1 mb ln magnitude. Although thc cI'oss-
section defects 80-' calculated by the two methods
diifer by 5%, the dd total cross sections diBer by only

rs%%uo. At high energies, therefore, the asymptotic
formulas appear reasonably adequate for calculating
rdd to a numerical accuracy of a few percent.

A't 3.0 Bev/c, the dd cross sections calculated with the
impulse approximation (i.e., 2o~s) are 33% higher
than the measured value, whereas the values calculated
with the multiple scattering corrections are 22%
higher. (However, see Pots added its proof in Table IV.
Taking 141 mb as the measured value, we would replace

TABLE III. Neutron-proton total cross sections o„~ predicted
from pp and pd measurements. Values calculated using two dif-
ferent wave functions QI and $2 are shown. The relation (6.15)
was used in the calculation. PI b refers to the nucleon momentum.

+lab
(SeV/c)

1.50
2.21

0 nn(exp t}
(-b)
47.0
4"/.0

0's&(e&pt}
(mb)

81.5
84.5

~ n(A)
(mb)

39.9
42.4

~"(A)
(mb)

39.9
42.4

33% and 22% by 16% and 6%, respectively. ) To com-
pare the calculations at the higher momentum of
4.42 BeV/c we must await. the completion of the
analysis of the data. However, preliminary estimates
indicate that the measured value of the dd total cross
section is approximately 140 mb." This is a lower
limit since events for 0& —t&0.01 (Bev/c)s have not
been included in the analysis of the measurements. "
Our calculation of the dd elastic scattering cross section
for 0& —3&0.01 (Bev/c)' is ~11 mb. When this is
added to 140 mb, we arrive at a value for ops(expt)
of j.sj. mb which is very close to the predicted value.

In order to determine some glalitatiee aspects of the
elastic scattering processes, we shall make the simpli-
fying assumptions that

f.s(as&) =f»(as&)

f,„(rf sIr) =(ko/8tr)(i+n)s &~s', -
(10.2)

(10.3)

S(g)=s ~s'. (10.4)

The difI'erential cross section may then be written

X. ELASTIC SCATTERING ANGULAR
DISTRIBUTION

In this section we shall discuss brieQy the elastic
scattering of deuterons by deuterons. The differential
closs scctlon ls givcll by

TAaLz IV. Calculated values of the cross-section defects and iM total cross sections. i/I and $2 refer to the two deuteron wave func-
tions used in the calculations. Ei,b refers to the deuteron momentum. The measured pd cross sections O~q(expt) refer to proton momenta
of gPlab.

+lab
(3eV/c)

3.00
3.00
4.42
4.42

PI

|t I
$2

10.7
10.8
9.7
98

3.7
4.5
40
49

202
2%2

1%7

1%7

0.2
0.3
0.1
0.1

12.5
13.3
12.1
13.0

Oqq(theoret)
(mb)

150.5
149.7
15'.9
156.0

%sf' (expt)
(mb)

123~6b
123~6b

163.0
163.0

169.0
1. 0

a Preliminary estimates indicate that trdd(expt) is approximately &140 mb (Ref. 35). This is a lower limit since events for 0 & -t&.0.01 (BeVyc)s havenot been included in the anslysis of the measurements (Ref. 35). Our calculation of the dd elastic scattering, presented in Sec. X, indicates that the elasticscattering cross section for 0& —t& 0.01 (BeV/c)~ is ~11 mb. When this is added to 140 mb, we arrive at a value for trdd(expt) of 151 mb, which isvery close to the predicted values.
Note added ie proof. Professor Grard has kindly informed us that the measurements at 3.00 Bev/c do not include corrections for elastic events inwhich $150 Mev/c is transferred to the target deuteron. We calculate this correction to be 18 mb, which when added to 123 mb yields ~141 mb.This result is quite close to our predicted value. {This¹tealso applies to Table II.)
M. Pripstein (private communication}. We wish to thank Dr. Pripstein for this information.
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