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A theoretical analysis of the collisions of high-energy nuclei with nuclei is carried out by means of a simple
extension of the Glauber approximation. Effects of multiple collisions are taken into account. The general
formalism is applied to deuteron-deuteron collisions. Expressions are derived for single-, double-, triple-,
and quadruple-scattering amplitude operators for deuteron-deuteron collisions in terms of nucleon-nucleon
scattering amplitude operators. A new type of double-scattering effect, qualitatively quite different from the
Glauber “shadow” effect which was discovered for particle-deuteron collisions, is described. For the case of
nucleon-nucleon interactions described by purely absorbing (black) spheres, it corresponds qualitatively
to a “double-counting’ correction in the deuteron-deuteron absorption cross section. This effect corresponds
to collisions in which one nucleon in the incident deuteron interacts with only one nucleon in the target,
and the other nucleon in the incident deuteron interacts with only the other nucleon in the target. The
formalism is applied to a calculation of the deuteron-deuteron total cross section aaa. It is shown that the
contribution to ¢4q arising from the new type of double-scattering correction is approximately 50% of that
arising from the usual (i.e., shadow-type) double-scattering correction. Numerical results are compared
with measurements. A simple analysis of the deuteron-deuteron elastic scattering angular distribution is
presented. It is shown that for a rather large range of scattering angles away from the forward direction,
double scattering is the dominant process in elastic scattering, and that in this region the new type of double
scattering is quantitatively much more important than the usual double-scattering process which also
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‘appears in nucleon-deuteron collisions.

I. INTRODUCTION

HE simplest nucleus-nucleus collision involving
more than a total of two nucleons is the nucleon-
deuteron collison. In recent years a large number of
experiments involving interactions of high-energy
particle beams with deuterium targets have been per-
formed. Since the deuteron is a rather weakly bound
system, the incident-particle wavelengths for such
collisions may be considerably smaller than the average
neutron-proton separation in the deuteron. In such
cases one might be tempted to approximate particle-
deuteron cross sections by sums of the corresponding
free-particleneutron and free-particle-proton cross
sections, and to employ the usual impulse approxima-
tion. Various processes which occur in particle-deuteron
collisions have been analyzed by Franco and Glauber.*—3
It was shown that even at the highest available energies
effects of double interactions, such as double scattering
or interferences between single- and double-scattering
amplitudes, are quite appreciable. The deviation from
simple additivity of the nucleon cross sections in the
deuteron was striking for antiproton-deuteron total
cross sections, amounting at some antiproton energies
to as much as 20 to 409, of the free antiproton-nucleon
cross sections.l For high-energy proton-deuteron
collisions, the integrated elastic scattering cross sections
calculated with double interactions neglected differed
from those calculated with double interactions included
by approximately 20%.? For particle-deuteron elastic

* Work performed under the auspices of the U. S. Atomic

Energy Commission.
1V. Franco and R. J. Glauber, Phys. Rev. 142, 1195 (1965).

2V, Franco, Phys. Rev. Letters 16, 944 (1966).
3V, Franco, Ph.DD. thesis, Harvard University, 1963
(unpublished).
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collisions double scattering was predicted to be the
dominant mechanism at angles which are not too close
to the forward direction.!* Subsequent analyses by
Franco and Coleman* and by Franco® of recent proton-
deuteron elastic scattering data at 2 and 1 BeV strongly
suggest that this indeed is the case. In addition,
Bertocchi and Capella® have argued that the large
backward peaks in proton-deuteron elastic scattering
between 1.0 and 1.5 BeV appear to result from double
collisions. A recent analysis? of the angular distribution
of the sum of elastic plus inelastic proton-deuteron
scattering in terms of single and double scattering is in
good agreement with the measurements. Furthermore,
it has been shown’ that the treatment of double-
scattering effects in K*d charge-exchange collisions is
necessary for the proper extraction of the K*n charge-
exchange cross section near the forward direction from
the corresponding measurements of the K*d charge-
exchange cross section. Within the deuteron, therefore,
double-scattering effects are seen to be rather important.

The methods employed in the above analyses of
particle-deuteron collisions have also been widely
utilized for extracting neutron-proton total cross sec-
tions8 and the ratios of the real part to the imaginary
part of the neutron-proton forward elastic scattering
amplitudes? from proton-proton and proton-deuteron

4V. Franco and E. Coleman, Phys. Rev. Letters 17, 827 (1966).

5V. Franco, Los Alamos Scientific Laboratory Report No.
LA-DC-9964 (to be published).

6 L. Bertocchi and A. Capella, Nuovo Cimento 51A, 369 (1967).

7R. J. Glauber and V. Franco, Phys. Rev. 156, 1685 (1967).

8 See, for example, D. V. Bugg, D. C. Salter, G. H. Stafford,

R. F.)George, K. F. Riley, and R. J. Tapper, Phys. Rev. 146, 980
(1966).

9 See, for example, G. Bellettini, G. Cocconi, A. N. Diddens,
E. Lillethun, G. Matthiae, J. P. Scanlon, and A. M. Wetherell,
Phys. Letters 19, 341 (1966).
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measurements. In this manner information regarding
neutron-proton collisions has been obtained without
having to employ neutron beams.

Experiments have shown that high-energy scattering
by nucleons occurs predominantly near the forward
direction. Since triple and higher-order multiple inter-
actions in particle-deuteron collisions must take place
via at least one backward scattering process, they have
exceedingly small amplitudes. (We assume negligible
overlap of the target nucleons.) Furthermore, since at
least one backward scattering process plus one large-
angle (i.e., >90° in the laboratory system) scattering
process is necessary for triple or higher-order multiple
collisions to result in a net scattering in the forward
direction, such collisions would yield negligibly small
contributions to the deuteron total cross section, i.e.,
to the imaginary part of the deuteron forward elastic
scattering amplitude. On the other hand, if the incident
beam consists not of single particles but rather of
composite particles such as deuterons or more complex
nuclei, we should certainly expect at least double-
interaction effects to be quite significant, and it is
likely that for many reactions (e.g., elastic scattering)
even higher-order multiple scattering effects would be
important for some range of scattering angle. Their
importance would of course also be considerable if the
target contained more than two nucleons. A recent
experiment at Brookhaven'® has shown that the proton-
‘He elastic scattering angular distribution exhibits at
least one and perhaps two secondary maxima. These
maxima may be explained by the importance of double
and triple collisions in the two angular regions in which
the maxima occur, and calculations similar to those
presented in Refs. 1-4 were first applied to this case by
Czyz and Leéniak.!!

In the present work we derive an expression for the
scattering amplitude operator for high-energy nucleus-
nucleus collisions by means of an extension of the Glau-
ber approximation.!? The simplest nucleus-nucleus
collision in which the incident nucleus and the target
each contains more than one particle is the deuteron-
deuteron collision. Although the number of completed
high-energy deuteron-deuteron scattering experiments
is quite small, there have been several rather large-scale
experiments at Berkeley and at the Princeton-Penn
Accelerator which are presently being analyzed, and
and another which will soon be analyzed.!® In antici-
pation of data from these experiments we shall in the

10 H. Palevsky, J. L. Friedes, R. J. Sutter, G. W. Bennett,
G. J. Igo, W. D. Simpson, G. C. Phillips, D. M. Corley, N. S.
Wall, R. L. Stearns, and B. Gottschalk, Phys. Rev. Letters 18,
1200 (1967).

U W. Czyz and L. Leéniak, Phys. Letters 24B, 227 (1967); for
more recent calculations see, for example, R. H. Bassel and C.
Wilkin, Phys. Rev. Letters 18, 871 (1967).

12R. J. Glauber, in Lectures in Theoretical Physics, edited by
Wesley E. Brittin ef al. (Interscience Publishers, Inc., New York,
1959), Vol. I, p. 315.

18 M. Pripstein (private communication); M. Brazin (private
communication).
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present work specialize the results we obtain for general
nucleus-nucleus collisions to high-energy deuteron-
deuteron collisions and obtain a scattering amplitude
operator from which cross sections for a number of
elastic and inelastic reactions may be secured. The
theory leads in a natural manner to a consideration of
single, double, triple, and quadruple interactions.'
Quintuple and higher-order multiple interactions in
deuteron-deuteron collisions may occur only by means
of at least one backward scattering and therefore have
negligibly small amplitudes, particularly for small-angle
scattering (where in addition to at least one backward
scattering collision a second large-angle nucleon-
nucleon collision is required). The general results for
the deuteron-deuteron scattering amplitude operator
are then applied to a detailed investigation of the
deuteron-deuteron total cross section, and comparisons
are made with measurements. A brief analysis of elastic
scattering is also given.

There have been few theoretical analyses of deuteron-
deuteron collisions at high energies. Brander'® developed
a formalism for treating deuteron-deuteron elastic scat-
tering in the impulse approximation. Tubis and Chern!é
used the impulse approximation to calculate both the
differential cross section for elastic scattering and the
vector polarization. In these analyses the effects of
multiple interactions were neglected and the discussions
were restricted to elastic processes. Franco' gave an
expression for the total cross section which included
double, triple, and quadruple interactions and which was
applied to deuteron-deuteron collisions at an incident
momentum of 2.8 BeV/c. Queen!® treated multiple
collisions in elastic and total cross sections but neglected
all unbound intermediate states, an approximation
which is not reliable for high-energy collisions with such
a weakly bound target nucleus as the deuteron. How-
ever, an application to low-energy (i.e., 64 MeV)
scattering was given.

For the present analysis we adopt the Glauber ap-
proximation.!? This is a diffraction approximation which
is asymptotically correct for high-energy scattering at
small momentum transfers. It is similar in many respects
to the approximations used in diffraction theory in
physical optics. Each portion of the incident plane wave
is assumed to traverse the region of interaction along
a straight line path and to suffer a shift of phase and
change of amplitude which depend only upon the path

4 A quadruple interaction is one in which the proton and
neutron in the incident deuteron each interacts with both the
proton and neutron in the target deuteron. An example of a
quadruple interaction is furnished by the process in which the
proton in the incident deuteron is scattered by both nucleons in
the target deuteron, and the neutron in the incident deuteron is
scattered by the proton in the target and then interacts inelasti-
cally with the neutron in the target, producing additional particles.

150, Brander, Nucl. Phys. 36, 82 (1962).

16 A. Tubis and B. Chern, Phys. Rev. 128, 1352 (1962).

17V. Franco, University of California Lawrence Radiation
Laboratory Report No. UCRL-16694, 1966 (unpublished).

18 N. M. Queen, Phys. Letters 13, 236 (1964).
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traversed. In the analysis we do not attempt to de-
scribe the interactions themselves in any direct manner.
Instead we express the various contributions to the
deuteron-deuteron scattering amplitude and cross
sections in terms of the nucleon-nucleon elastic scatter-
ing amplitudes and certain integrals of products of
these amplitudes, and in terms of the deuteron ground-
state wave function.

The analysis is begun by presenting some of the neces-
sary results of the Glauber approximation. In Sec. IT
we give the expression for the elastic scattering ampli-
tude for a simple two-particle collision. In Sec. III we
obtain the scattering amplitude for a collision between
a particle and a complex nucleus. In Sec. IV we calcu-
late the scattering amplitude for collisions between
two complex nuclei. We consider in Sec. V deuteron-
deuteron collisions and express the corresponding scat-
tering amplitude in terms of the free nucleon-nucleon
elastic scattering amplitudes and the deuteron ground-
state wave function. This amplitude may be used to
calculate cross sections for both elastic and inelastic
processes. An expression for the deuteron-deuteron
total cross section is derived in Sec. VI and is written
in terms of the proton-proton and neutron-proton
elastic scattering amplitudes in Sec. VII. Several
asymptotic expressions and simple approximate formu-
las for various special cases are obtained for the total
cross section in Sec. VIII. A new type of double-
collision correction to the total cross section, different
from the well-known Glauber shadow effect, is derived
and discussed in that section. The evaluation of the
deuteron-deuteron total cross section is presented and
compared with existing data in Sec. IX. In the final
section we present a simple analysis of d-d elastic scat-
tering and show a sample calculation at 4.42 BeV/c.

II. PARTICLE-PARTICLE COLLISIONS

We begin by summarizing some pertinent results of
the Glauber approximation.l'*? For collisions between
two particles the scattering amplitude operator ob-
tained in the Glauber approximation is simple in form.
If 7q is the momentum transferred from the incident
particle or projectile (labelled by the index p) to the
target particle (labelled by the index #) and % is the
wave number of the incident particle, the corresponding
scattering"amplitude operator G,(q,k) is given by.12

ik
Qpilq,k)=— / eud[1—eixm®g2%p , (2.1)
2w
which we shall find convenient to abbreviate as

ik
o)~ / T (b)d%,

™

(2.2)

where

T pi(b) =1—¢ixpe® (2.3)
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In these expressions b is the impact parameter vector
and is perpendicular to the direction of the incident
beam, and the two-dimensional integration is over the
plane of impact parameter vectors. The operator X,(b)
is a complex phase-shift function which depends upon
the interaction between the two particles. It should be
noted that the form (2.1) differs from the usual one
for the high-energy approximation to the elastic scat-
tering amplitude, which is given by a one-dimensional
integral. Equation (2.1) is valid for an interaction of
arbitrary shape,! and the phase-shift operator X, de-
pends in general on both the magnitude and orientation
of the impact parameter vector. Although it may be
valid to assume that the two-particle interaction
possesses azimuthal symmetry about the direction of
propagation of the incident beam, in which case the
usual form for the scattering amplitude would suffice,
it is generally not valid to make this assumption when
the projectile or target is a bound system of nucleons.
Therefore in preparation for our treatment of collisions
between more complex systems we shall use the more
general form for the scattering amplitude operator
given by Eq. (2.1).

If we denote the initial internal state (i.e., spin,
isotopic spin, etc.) of the incident and target particles
by |4) and the final internal state by | f), we may write
the amplitude A4 y;,,:(q,%) corresponding to a transition
from ) to | f), with a transfer of momentum 7%q from
the projectile p to the target ¢, as

Agi,p(@,k)= (| @pq,k) | 7). (24)

Hereafter the labels $ and ¢ shall be suppressed in the
amplitudes A4y, »(q,k). In particular, the elastic scat-
tering amplitude for simple two-particle collisions is

given by
Aiq k)= (i| @plq,k)|4). (2.5)

The expressions we have written for the scattering
amplitudes are of the correct form for describing the
collision of the incident and target particles in their
center-of-mass system. On the other hand, it has been
shown! that these expressions undergo very little change
of form when they are transformed to the laboratory
system. In fact, the scattering amplitudes in the labora-
tory system may be found from the expressions (2.1)
and (2.2) simply by substituting in them the laboratory
values of the incident momentum and momentum
transfers.

In comparing cross sections for collisions between
single particles and deuterons with those for collisions
between the same single particles and nucleons, use
must be made of at least two center-of-mass systems.
The reason for this is that in general the velocity of a
particle in the center-of-mass system for particle-
deuteron collisions is different from its velocity in the
center-of-mass system for particle-nucleon collisions.
For particle-deuteron collisions, therefore, it is con-
venient to refer all calculations of the scattering
amplitudes to the laboratory system.
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On the other hand, in comparing high-energy deu-
teron-deuteron cross sections with high-energy nucleon-
nucleon cross sections, only one center-of-mass system
need be used. That is, at high energies if we neglect
the internal motion of the nucleons in the deuteron
compared with the incident velocity of the deuteron,
the velocity of the center of mass of a deuteron in the
deuteron-deuteron center-of-mass system is very nearly
the same as that which one of the nucleons in the deu-
teron would have in a nucleon-nucleon center-of-mass
system. Nevertheless, we shall still refer all amplitudes
to the laboratory system since that system is most
convenient for discussing the general nucleon-nucleus
or nucleus-nucleus collision, and for comparing deu-
teron-deuteron collisions with both nucleon-deuteron
and nucleon-nucleon collisions.

It is important to note that the validity of the ex-
pression (2.2) for the scattering amplitude does not
depend in any manner upon the existence of a potential
function to describe the interaction. However, a complex
potential may always be found to describe high-energy
collisions. An application to scattering by complex
potentials has recently been made in an investigation
of neutron-nucleus interactions and the optical model.!?

III. PARTICLE-NUCLEUS COLLISIONS

In this section we describe the way in which the
amplitude for scattering by a bound system of nucleons
may be obtained.!!? For scattering of a high-energy
particle by a system such as a nucleus with internal
degrees of freedom, we note that the individual nucleon
velocities are generally small compared to the velocity
of the incident projectile. Provided the relative veloci-
ties between the incident particle and the nucleons in
the target do not correspond to energies of strong reso-
nances of the particle-nucleon system, it is asymptoti-
cally correct to consider the nucleons frozen in their
instantaneous positions during the passage of the inci-
dent particle through the system. For a fixed configu-
ration of 4 bound nucleons 1y, -+, rs the scattering
amplitude operator F(q,k,11,- - -,r4) would be

ik
F(q’k’rly' : '7r11)=”2'"" /eiq'brtot(b,rl, ce ',I'A)dzb , (3.1)

T
where

I‘M(b,n,- c o tg)=1—¢ixtot®.r1, 00,1 4) , 3.2)

and where X;oi(b,rs,- - - ,x4) represents the accumulated
effect of the passage of the wave representing the
incident particle through nuclear system.

Since the nucleons are in fact not rigidly fixed,
Tyot(b,ry,- - - ,r4) is to be regarded as an operator which
induces appropriate changes of the internal states of
the nucleus and the incident particle as well as changes
of the momentum state of the incident particle. The
scattering amplitude Fy(q,k) for the collision in which
the particle-nucleus system makes a transition from an

19V, Franco, Phys. Rev. 140, B1501 (1965).

HIGH-ENERGY NUCLEUS-

NUCLEUS COLLISIONS. I 1379
initial state |<) to a final state | f) and momentum %q
is transferred from the incident particle may be written
as the appropriate matrix element of the operator
F(q,k,11, - +,r4), so that

ik
Fﬁ(q,k)zg— f e f| Tyoy(b,rs,- - - x4) |$)d20.  (3.3)

In this expression (f|Tiot(b,t1,*--,14)|2) denotes the
matrix element of T'yot(b,ry,- - +,r4) between initial and
final states of the particle-nucleus system. Applications
of this result to particle-deuteron collisions are extensive
and have been referred to earlier. This expression has
also been used to describe scattering of charged particles
by hydrogen atoms by means of potential interactions.?

IV. NUCLEUS-NUCLEUS COLLISIONS

In this section we consider collisions in which the
incident beam, as well as the target, consists of extended
systems with internal structure, and generalize the
results of Sec. III to obtain scattering amplitudes for
such collisions. If the incident beam contains systems
with internal degrees of freedom, the initial and final
states of these systems, as well as those of the target,
must of course be taken into account. Furthermore, the
operator Iy will depend not only upon the nucleon
coordinates of the target, but also upon the nucleon
coordinates of the incident nucleus which we shall
denote by rayy,- - -,rn. (The incident nucleus therefore
contains N-4 nucleons.) The scattering amplitude
F,si(q,k) for collisions in which a nucleus incident
with momentum #%E transfers momentum 7q to the
target and makes a transition from an initial state |¢) to
a final state | ¢) and the target makes a transition from
an initial state |7) to a final state |f) is given by a
generalization of Eq. (3.3) and may be written in the

form
qu(‘l,k) = <¢fl F(q;k7r1y e )rN) I'I"'> ’
where the operator F(g,k,1y,- - - ,ry) is given by

(4.1)

ik
F(q;karly' * ’:IN)='2" /eiq.brtot(b,rl,' .. ,l‘N)dzb. (4.2)

T

In this expression I'y is given by

Ptot(b,fl, oo ry)=1—giXtot (b1, 1N) |

(4.3)

where X represents the resultant phase shift accumu-
lated by the wave representing the incident nucleus as
it passes through the target nucleus. The quantity
(@] Ttot| %) denotes the matrix element of I'yos between
the initial and final states of both the incident and
target nuclei. The vector b is the impact parameter
vector of the center of mass of the incident nucleus
relative to the center of mass of the target.

We shall assume that the nucleons in the incident
nucleus interact with those in the target nucleus by

20V, Franco, Phys. Rev. Letters 20, 709 (1968).
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means of two-body forces. The total phase-shift func-
tion X;o4 may then be written as the sum of the phase-
shift functions obtained by considering separately
collisions between all different combinations of two
nucleons subject to the restriction that one nucleon
belongs to the target and the other to the incident
nucleus. If we denote the components of the coordinates
11, - -+, ry perpendicular to the direction of the incident
beam (i.e., parallel to the plane containing the impact
parameter vector b) by si, - -+, sy, we may express the
total phase-shift function in the form

N A
xtl)t(b;rl" * ',l’N)= Z Z Xﬂ¢<b_st+sp) ) (44)

p=A+1 =1

where X,(b—s;+s,) is the phase-shift function that
would result from the interaction between a nucleon
with a laboratory momentum #%k/(N-4) at an internal
coordinate r, and a nucleon at rest at an internal
coordinate r;.

Since X, and X,,, where ¢ and # label two target
nucleons, do not commute in general, the order in which
they occur in T is an important feature of the terms
in the scattering amplitude operator which describe
multiple scattering. In order to account for this non-
commutativity, the operator I';o; should be written as

Ptot(b,l‘l, tee ,l'N)

—(—epli T 5 Xpb—scbs) T, (45)

p=A+1 t=1

where the symbol { }; denotes the time-ordered
product. It is taken to mean that in the power-series
expansion of the exponential, whenever operators X
and X,, do not commute they appear in the order
(reading from 7ight to left) corresponding to that in
which nucleons ¢ and % interact with nucleon p.?!

The resulting scattering amplitudes are obtained by
means of Egs. (4.1), (4.2), and (4.5). Multiple scattering
effects are contained implicitly in the resulting scatter-
ing amplitude because we have summed phase shifts
rather than amplitudes. A total of (NV-4)4 orders of
multiple scattering are treated. This may be explicitly
demonstrated by resolving Eq. (4.2) in terms of the
individual nucleon-nucleon scattering amplitudes. We
shall do this for deuteron-deuteron collisions and show
how single-, double-, triple-, and quadruple-scattering
processes are explicitly taken into account. Higher
orders of multiple scattering require at least one back-
ward collision between nucleons and are consequently
neglected.

21 The use of completely antisymmetric wave functions to de-
scribe the N-particle system obviates the necessity of the time-
ordered product. However, it is often more convenient in dealing
with high-energy collision processes to antisymmetrize the wave
function describing the target, and to separately antisymmetrize
the wave function describing the incident nucleus. In this case
some effects of the time-ordering still remain.

FRANCO 175

V. DEUTERON-DEUTERON COLLISIONS

We shall apply the results of the preceding section to
collisions in which an incident beam of high-energy
deuterons interacts with a deuterium target, and ob-
tain the scattering amplitude operator for such colli-
sions. We shall assume that the nucleon-nucleon inter-
actions are precisely charge-independent and omit the
effects of their spin dependence, some of which have
been discussed for particle-deuteron collisions in Ref. 1.

We let r=r;—r, be the internal coordinate of the
target deuteron, where the indices 1 and 2 label the two
nucleons of that deuteron. Similarly, we let p=r;—r, be
the internal coordinate of the incident deuteron, where
the indices 3 and 4 label the two nucleons of that
deuteron. We let z and { be the projections of r and g
along the momentum 7%k of the incident deuteron center
of mass and let s and ¢ be the corresponding projections
in the plane perpendicular to k. Before the collision we
consider both the incident and target deuterons to be
in their ground states. Therefore since |¢) and |2) will
represent the same state, we set v=1. The states | f) and
| ) may represent excited states (i.e., unbound two-
particle states) or the deuteron ground state once
again. The scattering amplitude for collisions in which
a deuteron with momentum #%k transfers momentum
#q to the target and emerges in a final state |¢) and
the target deuteron is left in a final state | f) may be
written by means of Egs. (4.1), (4.2), and (4.5) as

F¢fi'5(q;k) = <¢fl F(q>k)r)9) I”) ) (5’1)
where the operator F takes the form
ik
Plaking) = [evo{1-exp(Lra(b—ts+in)
T
+Xu(b—4s—30)+Xs2(b+ 35+ 30)
+Xup(b+3s—30)D}+.  (5.2)

As a first step in separating the contributions of the
individual nucleons to the scattering processes, we
introduce the functions I'3;, T's1, I'ss, and T's defined in
terms of Xz1, X, X3z, and X by means of Eq. (2.3).
Let the notation 1 <> 2 denote the interchange of indices
1 and 2 fogether with the inversion r — —r1, and let 3> 4
denote the interchange of indices 3 and 4 fogether with
the inversion g— —p. We may then write the identity

4
{1—exp[i(Xart+Xa+Xa+Xe2) 1 =2 Ty, (5.3)
=1

where the T'; are given by

Pl: 24: i Ppt’ (5'4)

p=3 t=1
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—Ty={[Tul'su0()+3 > 4]+ [1 2]}
F{[Tulwb(z)+1 e 2]+[3 4]}

+{Tsle+3< 4}, (5.5)
I3=[Tals:T40(2)0(5)+ TeoT al's10(—2)6(S)
+ Tal'al'420(2)0(— )+ Tl laf(—2)0(—) ]
o2 Beo a4 1o2,304, (56

and

—Iy=[Tul's1T4T20(2)0(¢) + TaaTar Do Ta20(2) 0(—¢) ]

+[12,3<4]. (5.7
The function 6(2) is defined by
0(z)=1, for z>0 5.8)

=0, for 2<0.

We see that in I'y, T's, T'5, and I'y there are 4,10, 16,
and 4 terms, respectively. The arguments of the various
operators on the right-hand sides of Egs. (5.3)-(5.7)
have been suppressed, but are determined simply by
their indices which label the incident and target
nucleons.

An alternative and useful way of writing the ordered
products occurring in Eq. (5.2) is based on the identity

0(z)=3[1+¢(2)], (5.9)
where
e(z)=2/|2|. (5.10)

By substituting this identity and the corresponding one
for 0(¢) into Eqgs. (5.5)-(5.7) we obtain

—Dp=3{[{Tu,Ts1}+[Ta1, T Je(§) H[1 > 2]}
FH{Ta, T} +[Tu,TezJe(z) ]+ [3 > 4]}
H{[(Tale]+[3< 4]}, (5.11)

6T's=[{{Ta1,Ts1},Tao}+{Tar,TsrTua} [ 1+ e(3)e(¢) ]
F[{T41,Ts1},Tao Je(2)+ [ Tar, TsaTao ][ e(2)+ €(§) ]
+[{T41, 40} Ta11e(§)+[[Ta1,Ts1], Tz Je(2)e(6) ]
+[1 2]+ 3414+ [1 2,3+ 4], (5.12)
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4Ty= {[{Tal,T1Tso} 4 [Trl'a, T T2 Je({) ]
"H:l g 2]}+{[P41P31,P42P32]€(Z)+3 > 4}
+{[Tule,Tauls]e@) )+ (12, 3o4)}, (5.13)

where the brackets [, ] designate the commutator and
{,} the anticommutator.

If we substitute the expressions given by Egs. (5.3),
(5.4), and (5.11)—(5.13) into the integral (5.2) and shift
the origin in the b plane to carry out the first four
integrals, we obtain

4
F(q:kyr;!?):z: Fj(qyk,r:Q) ’ (514)
=1

where the contribution Fi(q,k,r,e) arises from single-
scattering processes and is given by

Fl(q,k,r,g) = z[e}iq- (s_v)aﬁ(qy%k)_l—eéiq. <5+")a41(‘l,%k)
e 0an(q f0)+e 0 Oan(q )], (5.15)

In this expression a,,(q,3%) is the scattering amplitude
operator for collisions of incident nucleon p having
momentum 3%k with target nucleon f, in which a
momentum 7%q is transferred to the target nucleon.??

In order to express the contributions F2, F3, and Fy
to the deuteron-deuteron scattering amplitude operator
which arise from multiple interactions in terms of the
basic free nucleon-nucleon scattering amplitude oper-
ators ap;, we note from Eq. (2.2) that @, is a Fourier
transform of the function I',;. An approximate inversion
of the transform is obtained by multiplying Eq. (2.2)
by exp(—iq-b) and integrating with respect to q over
a plane perpendicular to the direction of the incident
beam. We then secure

T'(b)= (2wik)? / eibg,{q)d?g, (5.16)

t=1,2; p=3, 4.

If we utilize this expression and the Fourier integral
representation of the two-dimensional § function, we
obtain for the multiple scattering contributions to the
deuteron-deuteron scattering amplitude operator the
results

Falakire) 2;11_3 / ({Leid =t ({aq(u),051(v) } + [aa(w),a5:(v) Je(§)) T+ [1 > 27}
+{[ef%t I ({aa1(u),000(v)} 4+ [aa1(u),002(v) Je(2)) ]+ [3 <> 47}

H{2e%" Van(Wan(v)+H[3 = 41)d,  (5.17)

Fy(q,k,1,0)=— (3n%k2)~! / (Let@s+a I ({{an(W),a51(u—W)},002(v) } -+ { 2a1(W), 0310~ W) ass(v) }[ 1+ e(2) () ]

-+ E{a41(W),dal(ll—‘ W)} ,042(")]6(2) + [041(W),0/31(u* W)a42(v)][e(z)+ G(f)]
+[{aa(W),a1(v) },a51(u— W) Je(¢) + [ [241(W), 251 (n— W) 1,a42(v) Je(2)e(£))]

F[1 e 2]+H[B3 4141 2,3 4])d%'d%", (5.18)

* From this point forward we shall often suppress the arguments % and % since, for a given experiment, they remain constant.
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and

7
F4(q’k:r79) = Py
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/ ({Leia s+ ({ g3 (x— W) @as(0—X),251(V+W—X) 235(x) }

+ [dal(x'“ W)asp(u—x),as(v+w— X)asz(x)]f(f NIH[1< 2]\}
-+ {e—i(q"s+q”~¢) [a41(x— W) (131(V+ wW— x),a42(u—— X)dsz(X)]e(z)-l- 3 4}

+{e i@ s [gy(x— W) ase(u—X),a51(v+W—X)a52(X) Je(2) e(§)+ (1 = 2, 3 > 4)})d?q'd%¢""d%q"" .

In these expressions u, v, w, and x are defined by

u=3q+q’, (5.20)
v=3q—¢', (5.21)
w=q'4q", (5.22)
and
x=q'+q"’+q". (5'23)

Equations (5.1), (5.14), (5.15), and (5.17)—(5.19) are
the general expressions we obtain for the deuteron-
deuteron scattering amplitude operator in terms of the
basic nucleon-nucleon amplitudes and the initial and
final states of the deuterons.

The effects of single, double, triple, and quadruple
interactions have been separated by means of Egs.
(5.15) and (5.17)—(5.19). Each of these equations gives
the contribution arising from a particular degree of
multiple collision. Single collisions are described by Fj,
double collisions by F., etc. Each of these expressions
may be analyzed further according to whick nucleons
are involved in the collision and the order in which the

(c) 3 2
®)
!
(3)__———/
(d) 4 2
®)

Fic. 1. Schematic representation of single-collision processes
which contribute to deuteron-deuteron scattering. The particles
are labelled in their initial configurations, and the positions of the
circles indicate instantaneous positions of these particles. Particles
1 and 2 belong to the target deuteron, and particles 3 and 4 to the
incident deuteron.

(5.19)

interactions take place. The resulting terms may be
characterized in part by the different combinations of
two-body interactions between incident and target
nucleons which can be formed under the high-energy
small-angle scattering assumptions that all collisions
involve small momentum transfers and that the relative
instantaneous configurations of the nucleons within
each deuteron do not change appreciably during the
collision.

2 3
@ ® .9:‘:,(%
a
M“’
. - °

2
4 ]
2
@)
o o’::é’ N 5_:%
2
(c) 4 ] + 3 pl
3 4 2
]
(d) 4 ’2 + ‘J
3 i 4

2 1
(e) ‘_—_/./ . 6—_/()/'
3 ] 4 2
. ‘—/ ’2 ) 5_—/ ;I)
3 4
F1c. 2. Schematic representation of double-collision processes
which contribute to deuteron-deuteron scattering. The particles
are again labelled in their initial configurations, and the positions
of the circles indicate instantaneous positions of these particles.

Particles 1 and 2 belong to the target deuteron, and particles 3
and 4 to the incident deuteron.
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The contributions to the scattering amplitude oper-
ator which arise when the individual nucleon-nucleon
single interactions are considered separately are given
by the four terms comprising Eq. (5.15). Each term
represents a possible two-particle collision which may
be obtained by considering a nucleon in the incident
deuteron as the incident particle and a nucleon in the
target deuteron as the target particle. These kinds of
collisions are illustrated schematically in Fig. 1 (a)-(d).
In this figure, and in the three to follow, we have
labelled the particles in their initial configurations, and
the positions of the circles representing them are meant
to indicate instantaneous positions of these particles.
Particles 1 and 2 belong to the target deuteron, and
particles 3 and 4 to the incident deuteron. The positions
of the two arrowheads at the ends of the paths of par-
ticles 3 and 4 represent instantaneous positions of these
particles after the collision. The matrix elements of the
four terms in Eq. (5.15), taken between appropriate
initial and final states of the incident and target deu-
terons, add coherently to form the amplitudes obtained
in the usual single-scattering impulse approximation.

Although we do not explicitly show in Figs. 1-4 the
states of the nucleons after the collisions, they may of
course differ from their initial states. For example,
charge-exchange reactions may take place, so that the
charge states of various nucleons may change.

Equation (5.17) represents an approximate expression
for the double-scattering amplitude operator. Each term
in this equation results from a possible type of double
interaction. These types of collision processes are
illustrated schematically in Fig. 2. In each of the parts
(a)—(f) in this figure two diagrams are shown since the
term they represent includes double collisions in which
the order of the collisions may be reversed. Thus in
Fig. 2(a), for example, the first diagram represents
collisions in which first particle 4 interacts with particle
1, and then particle 3 interacts with particle 1. The
second diagram in Fig. 2(a) represents collisions in
which first particle 3 interacts with particle 1, and then
particle 4 interacts with particle 1. We should note that
only one diagram is actually necessary for each of Figs.
2(e) and 2(f) since I'yy and T generally commute,
as do T'y and T's. We have included a redundant
diagram in each of these figures mainly for purposes of
symmetry. Note that parts (e) and (f) are qualitatively
different from parts (a)-(d).

Equation (5.18) is an approximate expression for the
triple-scattering amplitude operator. Each of the terms
in this expression results from a possible type of triple
interaction. These types are illustrated in Fig. 3. In
Fig. 3(a) four diagrams are shown since the term repre-
sented includes triple collisions in which the order of
the individual collisions may be different. Two ad-
ditional diagrams may be drawn in Fig. 3(a). These
would represent the sequence of collisions 41, 42, 31
and 31, 42, 41. However, since T';; and T'y; generally
commute, these diagrams are equivalent to the first
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2
4 ;f + 3 ;;2
3 ] r; 1

(a)

+ a 2 + 3
3 2

(b) | <= 21n (a)

(c) 3 ~—» 41n (a)

(d) | =2 and 3 =>4 in (a)

F16. 3. Schematic representation of triple-collision processes
which contribute to deuteron-deuteron scattering. The particles
are labelled in their initial configurations, and the positions of the
circles indicate instantaneous positions of these particles. Particles
1 and 2 belong to the target deuteron, and particles 3 and 4 to the
incident deuteron. The notation “1 <> 2 in (a)” denotes the dia-
gram which is obtained upon interchange of particles 1 and 2 in
part (a), with corresponding meanings for the notation given in
parts (c) and (d).

and fourth diagrams, respectively, in Fig. 3(a). The
latter two diagrams represent the sequence of collisions
41, 31, 42 and 42, 31, 41. The terms in Eq. (5.19) which
involve different pairs of particles in the triple collision
than those represented by Fig. 3(a) may be illustrated
schematically by interchanging the nucleons in one or
both of the deuterons, as indicated in parts (b)—(d) of
Fig. 3.

Equation (5.20) represents an approximate expression
for the quadruple-scattering amplitude. It arises from
collisions in which each nucleon in the incident deuteron
interacts with both nucleons in the target deuteron.
These interactions are illustrated schematically in Fig.
4, Additional diagrams may be drawn but, as we have

2 !
4! ;j + 3 ;S
3 ! 3 2
|§ 2//:‘
+ 4 + 3
3 2 e 0

F1G. 4. Schematic representation of quadruple-collision processes
which contribute to deuteron-deuteron scattering. The particles
are labelled in their initial configurations, and the positions of the
circles indicate instantaneous positions of these particles. Particles
1 and 2 belong to the target deuteron, and particles 3 and 4 to the
incident deuteron.
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pointed out in our discussion of Fig. 3, they would be
equivalent to those already shown. The number of
diagrams needed to represent possible quadruple inter-
actions is greatly restricted by the high-energy small-
angle approximations mentioned earlier. Thus, for
example, the sequence of collisions 32, 31, 41, 42 is
omitted since the sequence 32, 31 requires the target
deuteron to be in an instantaneous configuration such
that >0 whereas the sequence 41, 42 requires the
instantaneous configuration to be such that 2<0.

Thus we see how, in this high-energy small-angle
approximation, the effects of multiple interactions are
explicitly included in the formalism. Quintuple and
higher-order scattering effects are absent from the ap-
proximation since they cannot occur when all collisions
are confined to small scattering angles.

VI. DEUTERON-DEUTERON TOTAL
CROSS SECTION

To consider the effects of multiple interactions on the
total cross section in a quantitative manner, we define
a total cross-section defect do to be the difference be-
tween the sum of the four free nucleon-nucleon total
cross sections at momentum 3%k and the deuteron-
deuteron cross section ogq(k) at momentum 7%k, and
write

04d(k) = 0a(3%)+0 pu(38) + 0 5o (58) + 00y (38) — 80, (6.1)

where the subscripts # and p in this expression refer
to neutron and proton, respectively. (If we assume
charge symmetry of nuclear forces, then onn=0pp
and opn=0np.) If the effects of multiple interactions
were neglected ¢ would be zero and the deuteron-
deuteron total cross section would be simply given
by the sum of the four individual free nucleon-nucleon
total cross sections, a result given in a simple impulse
approximation.

It will be instructive to analyze do in terms of con-
tributions 8¢, 803, and ds4 which arise from double,
triple, and quadruple interactions, respectively. We
therefore shall write

8o =802+ do3+d04. 6.2)

The deuteron-deuteron total cross section may be
calculated by applying to Egs. (5.1), (5.14), (5.15), and
(5.17)-(5.19) the optical theorem, which relates the
total cross section to the imaginary part of the forward
elastic scattering amplitude. The total cross section
caa(k) is given by

O'dd(k) = (41r/k) ImFm;(O,k, S,o') .

The free nucleon-nucleon total cross sections o,(3%),

where p and f represent a nucleon in the incident

deuteron and a nucleon in the target deuteron, respec-
tively, are given similarly by

o pi(3k) = (8n/k) Im(ii| ap(0,3%) | 4).

(6.3)

(6.4)
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To evaluate the cross-section defect we must make
use of integrals of the form

/ﬂﬂwwvm,

where ¥,(r) is the configuration-space wave function of
the deuteron ground state. Since s is the component of
the coordinate r lying parallel to the plane which con-
tains the momentum transfers q, this integral is equiva-
lent to the expression

x@=/wﬂwmva=ﬂ—@, (65)

which we recognize to be the form factor of the deuteron
ground state.

We notice immediately that the diagonal matrix
element in the deuteron ground state of all terms in
Eqgs. (5.17)-(5.19) which are linear in e(3) or ()
vanish. If we set ¢ equal to zero in these expressions in
Eq. (5.15) and use the optical theorem (6.3) and (6.4)
we obtain

doa= _2 Re(ii| / [S(@)au(q)as(—q)
k2
+15%(q)asi(q)asn(—q)Jd%|ii), (6.6)
30’3=——1-§' Im{iz| / S(q)S(q)
3mk3

X[{{onla+q), aa(—q)}, ae(—)}
+{au(q+4q), as(—q)awu(—q)} Jd%qd% | i), (6.7)

and

60’4:—-‘

8 .. r ” T/
i Re(u] /S(q)S(q Yan(q")au(—qa'—q")

X as1(—q—q")as(q+q'+q")d%qd?q'd?q" | ii).

In obtaining these expressions we have made use of the
antisymmetry of the total deuteron ground-state wave
functions with respect to interchange of particles 1 and
2 and with respect to interchange of particles 3 and 4.

It will be convenient and useful to further analyze
the double-scattering correction 8o, into two distinct
contributions. The first, denoted by doa1, is given by
that part of 6o, which contains the factor S(g) in the
integrand. The second, denoted by o3, is given by that
part of ds, which contains the factor S%(g) in the inte-
grand. We may therefore write

50‘2=50'21+50'22. (69)

The correction dag1 corresponds to double collisions in
which both nucleons in one of the deuterons interact
with only one of the nucleons in the remaining deuteron,

(6.8)
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while the other nucleon acts as a “spectator” particle.
The correction do22 corresponds to double collisions in
which one nucleon in the incident deuteron interacts
with omly ome nucleon in the target, and the other
nucleon in the incident deuteron interacts with only the
other nucleon in the target, so that all four nucleons take
part in the collision, and there are no “spectators.”
The significance of this latter double collision correction
to the total cross section will be discussed more fully in
Sec. VIIL

The scattering amplitude operators a,.(q) which de-
scribe collisions between nucleons may be dealt with
most compactly by writing them in the form

ap(@) = fla)+=p ‘Hg(Q) ) (6.10)

where =, and =, are the isotopic spin operators for a
nucleon in the projectile and a nucleon in the target,
respectively. If we substitute this form in Egs. (6.6)-
(6.8) and evaluate the expectation values of the isotopic
spin operators which occur in them, we find

32
bon=——Re / S@L/@(—a)

” —3g(q)g(—a)Jd%g, (6.11)
doga= % Re / S f(—q)

2 +3g(q)g(—q) %, (6.12)
bor=— / S@S(@) Tl fa+a) f(—a')
X f(—a)—35g(q+q") f(—q)g(—a)
+2f(q+4q")g(—q)g(—q)Id%d*q’, (6.13)

and

8
S / S(@)S(a’) Re[£(q") {(—a'—q") f(—a—q")

X fla+4q'+q")+21g(q")g(—a'—q")g(—q—q")

Xglg+q9'+q")+6f(q")g(—d'—q")g(—a—q")

X fla+4q'+q")—12/(q") f(—a'—q")g(—q—q")
Xgla+q'+q") Jd*qdq'd’q". (6.14)

We wish to note that an alternative way of writing
the deuteron-deuteron cross section which will be par-
ticularly useful for comparing the theory with experi-
ment is to express o44(k) in terms of the nucleon-
deuteron total cross section oyq(3%) plus correction
terms. (We assume charge symmetry of nuclear forces
so0 that ¢ p3=0xs=0na.) The expression for oy, is’

aNd(%k)=a,,,,(%k)+¢rn,,(%k)—-%6crm. (615)

The deuteron-deuteron total cross section may then be
written as

add(k) = 20’Nd(%k)_ 60” 5 (616)

which may be regarded as a defining equation for the
cross-section defect é¢’. In analogy with Egs. (6.2) and
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(6.9), we may write
5U’= 50‘2'+ 30’3"‘ 60’4 (6.17)
and
502’= 50'21’+ 50’22 5 (618)
where
60’21’=%‘50'21. (619)

Equations (6.16)-(6.19) have an advantage over Egs.
(6.1) and (6.2) since the main contribution to c4q is
written as 2ox4, which is directly measurable. Further-
more, the magnitude of the double-scattering correction
do5’ is generally substantially smaller than the magnitude
of the correction dos. Consequently any uncertainty in
the evaluation of 8o’ leads to a smaller uncertainty in
the calculated value of o4q than does the corresponding
uncertainty in the evaluation of das.

The contributions to the deuteron total cross section
which arise from double, triple, and quadruple inter-
actions are represented by negatives of 802’ (or d03),
da3, and dos The signs of these contributions depend
mainly upon the phases of the free nucleon-nucleon
elastic scattering amplitudes. In the limiting case of
purely imaginary nucleon-nucleon elastic amplitudes
and no charge exchange, for example, the contributions
to the deuteron cross section which result from double
and quadruple interactions would both be negative,
whereas the contribution from triple interactions would
be positive.

VII. CROSS SECTION IN TERMS OF NEUTRON
AND PROTON ELASTIC SCATTERING
AMPLITUDES

In order to compare the measured deuteron-deuteron
cross section with the expression which we have
derived for it, it is convenient to rewrite the theoretical
result in terms of the experimentally measured ampli-
tudes for nucleon-nucleon scattering. If we assume
charge symmetry of nuclear forces, so that fpp=fan
and fyn= fnp, then we may express all nucleon-nucleon
elastic amplitudes in terms of two independent ones,
say fpp and fnp. The amplitudes f and g which we have
used in constructing the expression for the deuteron-
deuteron total cross section are related to the directly
observable amplitudes f,, and fa, via the equations

F@=3Lfpp(@)+ frr(a)] (7.1)
8(@) =3[ frp(@) —Fap(@)]. (7.2)

Furthermore, g(q) is simply related to the charge-
exchange amplitude f,(q) by

g@=3f(a). (7.3)

The possibility of finding the amplitude g in two ways,
either through direct measurement of the charge-
exchange amplitude or by taking the difference of the
pp and np elastic amplitudes, leads to a variety of useful
ways of expressing our results.

and
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We may, for example, write the cross-section defects Egs. (6.11)-(6.14), in terms of the observable amplitudes
for the deuteron-deuteron total cross section, given by in the form

32

Sog1= % Re f S@L1n2(0) for(— O —3fo(@) fe(—a) Jd%q, (74)
8

bog= “'E Re/Sz(Q)[fpp(Q)fpp(”‘l)+fnp(‘I)fnp(""l)+fc(Q)fc("‘I)]d29 ’ (7.5)

2
o= ;r.‘];; Im/S(Q)S(q,){6EfM(Q+q,)fm»("‘ Q) far(— O+ far(@F+a) far( =) fru(— )]

+ 2[f:np(‘l+q,)fnp(_ q,)fnp<_Q)'{'fnp((I‘I‘ql)fpp(" (I’)fpp(‘ Q)]‘l's[:fpp(Q‘I‘QI) + fanla+4q)]
X fo(—a) fo(— ) —9fela+a ) o(—a ) fou— D+ far(—a) I} d%qd?¢’,  (7.6)

and

do4= (x%*)~' Re / S@)S@)[4po(@") foo{ =0 =) frr{—a—q") far(q+q'+q")

+4100@") far(—=0'—4") far(—a—q") foola+a'+a")+ f2.(a") fo(— ' —q") fl—a—q") fro(q+q"+q")
+ fanl@) fo(—a' = ") fo(—q—0q") frp(a+a'+4") = 10f(a”) fo(— &'~ q") far(—a—0q") foplq+a'+q")
+71d") f(—d' =) f(—a—q") fela+q'+q") Jd*qd’q'd*q".  (7.7)

In Eq. (7.4) a contribution fapfsp—3%f.f. arises from each of the four diagrams in Figs. 2(a)-2(d). The term
foofop in Eq. (7.5) corresponds to Fig. 2(e), and the term fnpfnp+ fof. corresponds to Fig. 2(f). In Eq. (7.6) the
contributions which are bilinear in f, could have been written somewhat more symmetrically by using a term of the
form f,fppf.. However, such a sequence of collisions in deuteron-deuteron elastic scattering in fact is not possible
since as a result of the first charge-exchange process the charge states of the nucleons of the incident two-particle
system are different from those of the target nucleons. Consequently only a pn or #p collision (not a pp or nn
collision) may occur as the second scattering process.

Similarly, Eq. (7.7) could have been written more symmetrically by using terms such as fupfppfopfop, for
example. However, such a sequence of collisions in d-d elastic scattering is not possible within the framework of
the approximation that each incident nucleon interacts no more than once with a given target nucleon.

We may alternatively write the cross-section defect completely in terms of scattering amplitudes for charge-
preserving processes. If we note that these amplitudes can only depend on the magnitude, and not on the direction,
of the momentum transfers, we may write

32

do91= "']‘e‘; Re/S(Q)[anp(g)fpp(g)"‘% 202 (@) —3 frp?(g) 1%, (7.8)
16

dopp= ""];; Refs2(9)[fpp2(g)+fnpz(g)_fnp@)fm(g)]dz ’ (7.9)

8
do3= “‘;; Im f S(@)S(@)5 frrla+4) f. 22(0") fo(@)+5 1. 2(Q+a") fan(q') fs()
=3 foo(a+a") f2(@) f12() =3 fun(a+a) fur(q') fou(@) Jd%qd%q",  (7.10)

and

30’4'—‘

8
. Re / S@)S@I5fnr(@") foold'+a") fro(a+a") frra+a+q")

+4f, pp(q ”)f pp(q,+ q”) f np(@+ q")f wp(@+a'+q")—35 f pp(fl " f »o(d’+4q") f m)(Q'l’ q”) f np(‘l+ q+q”)
—=5fun(@") far(d+d") frr(a+a") forla+a'+a")+ f2o(0") for(d'+4") for(at ") for(a+a'+4q")
+ fun(@") farld'+a") far(+a") frola+a'+q") Jd?qd?dd?" . (7.11)
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VIII. ASYMPTOTIC APPROXIMATIONS FOR THE
CROSS-SECTION DEFECTS

We have derived the expressions for the deuteron-
deuteron cross section in Secs. VI and VII by means of
the Glauber approximation. To obtain quantitative
estimates of the cross-section defect d¢’ or 8o, a number
of integrals must be carried out, some of which involve
multiple integrations. In order to allow estimates of the
cross-section defect to be easily made, we shall reduce
the general results for §o’ and 8o to a number of simpler
forms by means of the various approximations regarding
the deuteron ground state and the nucleon-nucleon
elastic scattering amplitudes. We wish to emphasize,
however, that although the resulting expressions will be
quite easy to evaluale, greater accuracy would be obtained
by explicitly performing the necessary integrals which
appear in the gemeral expressions. We shall do these
integrals numerically in the next section.

We begin by considering the form which the cross-
section defect takes in the asymptotic limit of the
average deuteron radius, i.e., neutron-proton separation,
being much larger than the ranges of the high-energy
nucleon-nucleon interactions. In this limit the deuteron
form factor S(g) decreases from its value of unity at
¢=0 much more rapidly than do the nucleon-nucleon
elastic scattering amplitudes. Consequently we may
approximate the contributions to the cross-section
defect which arise from double and triple interactions
directly in terms of the forward elastic scattering
amplitudes ¢,:(0) and integrals of the deuteron ground-
state form factor and of the square of the form factor.
The contribution from quadruple scattering is reduced
to an integral over a single momentum transfer variable
g- The integrals involving the form factors may be
written in terms of expectation values, in the deuteron
ground state, of functions of the neutron-proton
separation 7. For spherically symmetric wave functions
these relations, which we derive in the Appendix, are

1
f S@dg=2r / WO

=21 (r2); (8.2)

and
1
[ S(Q)dg=2n f b0, -

Xm(l:r;

=2”< iln(:;»)d'

In the asymptotic limit of large deuteron radius, there-
fore, the contributions 8a1(4, 8924, d03(4), and oy

)%(r)\h(e)drdo 8.3)

(8.4)
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to the cross-section defect may be written by means of
Egs. (7.4)-(7.7) and (8.1)-(8.4) as

8oy ~ — (64 /%2)
XRe[ f25(0) f55(0)—3 £:2(0) ¢r—2)a,
So22 ™ ~ — (16m/k2) Re[ f252(0)+ fus?(0)+ £:2(0)]
r+p

G, oo

803D =~ (32/k%) Im{2 f,(0) f2.5(0)+2 fu*(0) f55(0)

(8.5)

— [HOLf2p(0)+ (0T} (2)a)?,  (8.7)
and
s Re [6r0nr0+10
'
X[ f22*(@)+ fn5(@)—10£55(q) fau(g)]
+71:4g)}dq((r2)a)*. (8.8)

The various real and imaginary parts of the different
products of nucleon-nucleon amplitudes may be ex-
pressed in terms of the real and imaginary parts of the
individual amplitudes. The imaginary parts of the
forward elastic scattering amplitudes may, in turn, be
expressed in terms of the nucleon-nucleon total cross
sections by means of the optical theorem. If we define
ay; to be the ratio of the real to the imaginary parts
of the nucleon-nucleon forward elastic scattering
amplitudes,

a;;=Ref1j(0)/Im f;;0), 1 j=np

we obtain for 80214, 0224, and §o34) the expressions

(8.9)

8051 = (1= anp0pp)0np0 29— 5[ (0np—0 pp)?
— (@nsTnp—appopp) "1} (r2)a, (8.10)
8094 = (1/4m){(1— )0 5>+ (1 —tn )0
FL(np—0pp)* = (np0nr—0pp055)*]}

r+p

d X<<5}1; ln<,r—pl )>d>d, (8.11)

do3 =~ —(1/1672){ 20 np0 532 (1= 20 50 p— 0t p2)
+20 pp0np (1— 20 p0tnp—ny?) — (0nst050)
X [(‘-"np_amr)z’_ (@nponp— Qpp0 pp)?]
+ 2(anp” noFCpp0 pp) (o'np_ L)

X(@nponp—0pp0pp)} ((r2)a)>.  (8.12)

The expression (8.8) for 8044 may also be simplified
if we make the additional assumption that the nucleon-
nucleon elastic scattering amplitudes f;;(¢) in the inte-
gral may be represented by f3;(0) exp(—%1Aq?), where
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A5 1s a real constant. In that case we obtain the result

8oy~ (1/1287"3) { 9°'np2°'pp2[(1 - anpaﬁp)z
—(anptapp)?]/(Anyt A pp) 00 (1= 6apt+ay,")/
24 5t 0 (1= 6002+ np) /24 0p
—50pp°0ns[ 1— 3app(apptan p) + anzﬂpps]/
(3Anpt34 pp) - 50',,,,30',,,,[1 - 3anp(anp+0‘pp)
+ppny’ ]/ (3 Appt34an)} (a2 (8.13)

Equations (8.10)-(8.12) require only #p and pp total
cross sections, the ratio of the real to the imaginary part
of the np and pp forward scattering amplitudes, and a
deuteron ground-state wave function so that the various
expectation values may be evaluated. We shall give
estimates for these expectation values in the next
section. For 804 the slopes of the pp and np forward
elastic diffraction peaks are also needed.

In the high-energy limit we may expect the nucleon-
nucleon elastic scattering amplitude to be purely
imaginary (or nearly so) in the forward direction. If
anp? and ay,? are negligibly small compared to unity,
Egs. (8.10)—(8.13) reduce to

8091 =T 000 pp— %(an“‘app)zj <’_—2>d ’ (8.14)
oo ) =~ (1/47") [Upp2+°'np2+ ("np_ 0'“,)2]
1 r+p
(DY s
2r0 \|r—p|// o/ 4
b0y = — (1/16”2) (Unp+°'pp)
X [20,,,,0’,,,,— (Unp‘opp)2](<r2>d)2 s

(8.16)

and
2 4
A

1287\A pyt-App 24,5 2Aup

1 00 np20pp2  Tppt
N / 7o Tpp | Tpp

56 pp°Tnp 50120 pp

- (r=2)a)*. (8.17)
3Anp 540 %Am,—}-%Anp)

Of course other combinations of simplifying assump-
tions may be made, and we shall not list here all the
possibilities.

The contributions to the asymptotic cross-section
defect which arise from triple and quadruple inter-
actions contain as a factor the square of the expectation
value, in the deuteron ground state, of the inverse-
square neutron-proton separation. Therefore in the
asymptotic limit of very large deuteron radius o4
and 8044 are negligibly small in magnitude and the
asymptotic cross-section defect o4’ is approximately
given by 804 =874+ 50224 and 60’4 is approxi-
mately given by 80’4 = 380914 480954,

The double-collision correction dos14 given by Eq.
(8.10) is precisely four times the asymptotic result
obtained for the simgle-particle-deuteron cross-section
defect.” This is not unexpected since it corrects for
double collisions of the type for which one nucleon in
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one of the deuterons interacts with eack nucleon in the
deuteron, i.e., for double collisions of the same type as
occur in particle-deuteron collisions. In d-d collisions
there are four times as many ways in which these col-
lisions may occur. On the other hand the terms in Eq.
(8.10) represent processes in which one nucleon in the
incident deuteron interacts with one nucleon in the
target and the other nucleon in the incident deuteron
interacts with the other nucleon in the target. Since the
relative neutron-proton separation of eack deuteron is
important in such processes, the wave function for each
deuteron appears in these terms. The origin of the two
terms may be illustrated by considering the deuteron
absorption cross section for purely absorptive nucleon-
nucleon interactions, so that a,,=a,,=0, and neglect-
ing charge-exchange effects. If we merely equate the
deuteron-deuteron absorption cross section to the sum
of the four free nucleon-nucleon absorption cross sec-
tions we must of course correct for the shadow effect
described by Glauber?® for the single-particle-deuteron
case. For the absorption cross section, twice this cor-
rection is given by setting an,=a,,=0 in Eq. (8.10)
with the nucleon-nucleon total cross sections oy; re-
placed by the corresponding absorption cross sections
(0'25)aps- But in addition, we must now correct for count-
ing certain double-absorption processes fwice. For
example, (¢xn)ans COrresponds to processes in which the
incident neutron is absorbed by the target neutron
while the incident proton may or may not be absorbed
by the target proton. Similarly (o pp)ans corresponds to
processes in which the incident proton is absorbed by
the target neutron. These processes are not mutually
exclusive. Each of these two cross sections contain con-
tributions from those processes in which the incident
neutron is absorbed by the target neutron and the
incident proton is absorbed by the target proton. To
correct for counting these processes twice we must
subtract a term of the form

1,1 r+p

—(—1
2r \2rp  |7—p]|

>(0'nn)abs(0'pp)abs . (818)

A similar term with (0un)abs(0pp)ans replaced by
(0°n.p)abs (0 pn)ans OCCUrs for processes in which the incident
neutron is absorbed by the target proton and the inci-
dent proton is absorbed by the target neutron.

The two correction terms for the absorption cross
section may also be obtained from a geometrical calcu-
lation. We again assume purely absorptive nucleon-
nucleon interactions and omit the effects of charge
exchange. What is determined in such a calculation is
the probability that given one nucleon in the incident
deuteron is absorbed by one nucleon in the target, the
other nucleon in the incident deuteron is absorbed by
the other nucleon in the target. When this probability
is multiplied by the cross section for the absorption of

28 R, J. Glauber, Phys. Rev. 100, 242 (1955).
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one of the incident nucleons by one of the target nu-
cleons (which is the condition under which the proba-
bility is being calculated), the result which is obtained is

(O mi)ie / IVi(s,7) | dsdz fsd«r f Wi(o,0) e, (8.19)

in which 8 is the region |s—eo|<[(07;)ans/7 ]2, and !
and m correspond to the incident nucleons and j and
k to the target nucleons. In these expressions we have
used r=s4z and p=o¢-+¢. For average neutron-
proton separations much greater than the ranges of
nucleon-nucleon forces we may write

/ s do /~ : [ilo,8) [ 2ds ~ :; [¥i(s,) | 2dg / S do (8.20)

~ (01s)ube / [i(s,0) . (8.21)

—00

Therefore the resulting double-collision correction is
given by

(0mie)abs(02;)abs f [Wi(8,) | 2|¢i(s,2) | 2dsdidz.  (8.22)

It is shown in the Appendix that the expression (8.22),
with the indices mk and Ij replaced by nn and pp, is
equal to the expression (8.18). The corresponding cor-
rection to the total cross section is very easily obtained
for the case in which the regions surrounding the nu-
cleons are black spheres by noting that in such a case
the total cross sections are equal to twice the absorption
cross sections. In this manner we obtain the first two
terms of Eq. (8.15). The last term is a charge-exchange
correction which we have omitted in the geometrical
derivation. We should point out, however, that we have
previously derived Eq. (8.15) from more general grounds
and its validity does not require the black sphere model.

We have seen therefore that the double-scattering
correction dosy’ corresponds to the Glauber shadow, or
eclipse, effect for absorption, but that the double-
scattering correction doss is of a different nature. It may
be considered largely a double counting correction since
we have seen that for purely absorptive nucleon-
nucleon interactions its analog for the absorption cross
section corrects for counting certain double-absorption
processes (e.g., absorption of nucleon / by nucleon j and
absorption of nucleon » by nucleon k) twice.?

We may obtain an estimate of the importance of the
double-counting correction relative to the Glauber
shadow correction in d-d collisions by means of Egs.
(8.1)-(8.4), (8.13), and (8.14). If we assume a Gaussian
function ¢=#*¢ for the deuteron form factor and assume

24 The double-scattering correction was first derived in Ref. 17.
It has also been employed by the author in the double-scattering
corrections to w-m scattering in the quark model. See V. Franco,
Phys. Rev. Letters 18, 1159 (1967).
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Tnp=0pp a0d App=a,, we are led to the result dozs4
=18001'4, so that the double-counting correction is
approximately 509, as large as the Glauber shadow
correction.

IX. EVALUATION OF THE TOTAL
CROSS SECTION

Deuteron-deuteron total cross-section measurements
have been made by Debaisieux ef al.® and by Prip-
stein and Eberhard?® at incident deuteron momenta of
3.0 and 4.42 BeV/c, respectively. We shall therefore
evaluate o4q at these momenta. A deuteron momentum
of 3.0 BeV/c corresponds to a kinetic energy of an
individual nucleon of ~832 MeV.? Similarly, a deu-
teron momentum of 4.42 BeV/c¢ corresponds to a
kinetic energy of an individual nucleon of ~1.46 BeV.
Since the approximation we have used is a high-energy
approximation, a more desisive comparison of the
theory with experiment must await future measure-
ments at higher momenta.?

We shall evaluate the deuteron-deuteron total cross
sections by means of the relatively simple asymptotic
formulas derived in Sec. VIII and also by means of the
more general expressions obtained in Sec. VII. This
approach will give us an indication of the numerical
accuracy of the asymptotic approximations.

We begin by considering the asymptotic multiple
scattering corrections Egs. (8.10)-(8.13). Equations
(8.10)—(8.12) were obtained from the general expressions
by assuming that the average neutron-proton sepa-
ration in the deuteron is much larger than the range of
nucleon-nucleon interactions. Equation (8.13) was ob-
tained by making the additional assumption that the
nucleon-nucleon elastic scattering amplitudes f1;(q)
are proportional to exp(—24.4?), where A;; is real a
constant. To explicitly calculate the dd total cross
section we shall use Egs. (6.16)—(6.19). The alternative
choice of Egs. (6.1), (6.2), and (6.9) leads to identical
results for ¢44 provided o, is extracted from measure-
ments of o,4 and ¢,, consistently in both cases.

To perform the calculations, we require the expecta-
tion values (r2)q and (((2or)~* In[(r=+p)/|7r—p|1)a)a-
These may be calculated from explicit representations
of the deuteron ground-state wave function. We shall
consider two such representations. The first, ¥, is the
most accurate fit given by Moravcsik?® to the Garten-
haus wave function and includes a contribution from
the D state. The second, ¢, is the ground-state wave
function referred to as ¢s in Ref. 1. The expectation

2 J. Debaisieux, F. Grard, J. Heughebaert, R. Servranckx,
and R. Windmolders, Nucl. Phys. 70, 603 (1965); F. Grard (private
communication).

26 M. Pripstein and P. Eberhard (private communication).

%" We neglect the internal motion of the nucleons in the
deuteron.

% Measurements of d-d cross sections at approximately 7.85
and 13.5 BeV are presently being analyzed. We thank Dr, M,
Bazin for this information.

2 M. J. Moravcsik, Nucl. Phys. 7, 113 (1958).
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TasLe I. Neutron-proton total cross sections o,,¢4 predicted
from pp and pd measurements. Values calculated using two dif-
ferent deuteron wave functions ¥ and y¥; are shown. The asymp-
totic relation (9.1) was used in the calculation. Pap, refers to the
nucleon momentum.

Pub  oppexpt) opalexpt) « Cnp  Tnp@ (1) Tnp™ ()
BeV/c) p?mbg) p(ml)g) i ? ?mb) : pmb) ?
1.50 47.0 81.5 —0.01 —048 39.4 40.8
2.21 47.0 8.5 —020 -—-047 420 43.3

values of 72 are 0.313 F-2 for y; and 0.384 F~2 for ..
The expectation values of (27p)~* In[(r+p)/|7—p|] are
0.162 F~2 for ¢ and 0.192 F~2 for y,.%0

In our calculations we also require a knowledge of
the total cross sections o4, 6 pp, and a,,, of the ratio of
the real to imaginary parts of the forward elastic NV
amplitudes oy, and a.p, and of the slopes of the NV
forward diffraction peaks 4,, and 4,, In principle
these quantities can be measured. In practice, for a
calculation at a given momentum it may be necessary
to use assumed or theoretical values for those quantities
for which measurements at or near the appropriate
momentum do not exist. It may also be necessary to
use measurements made at slightly different momenta
for those quantities which have not been measured at
precisely the appropriate momentum.

For our calculations of dd cross sections at 3.0 and
4.42 BeV/c we require measurements at nucleon mo-
menta close to 1.5 and 2.21 BeV/c. We are therefore led
to the measurements of Bugg et al.® for ops and opp at
1.41, 1.61, and 2.21 BeV/c. For a,, we use measure-
ments’! between 1.29 and 1.69 BeV/c and theoretical
predictions® for 2.21 BeV/c. For a,p, we use measure-
ments332 at 1.69 BeV/c and theoretical predictions?
for 2.21 BeV/e.

The neutron-proton cross section o,, may be ob-
tained by means of the asymptotic relation’

0.1

o'pd(A) za,,p—l-a,,p—%aagl“” .
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In Table I we list average values of o pp, 054, pp, and
anp obtained from Refs. 8, 31, and 32 at average nucleon
incident momenta of 1.50 and 2.21 BeV/c. In the last
two columns we present the neutron-proton cross
sections calculated by means of Eq. (9.1) with the wave
functions ¥ and ¥,. We note that use of the two dif-
ferent deuteron wave functions results in a difference of
~1.4 mb in the neutron-proton total cross section as
deduced from the pp and pd cross sections. Conse-
quently, in addition to the possible inaccuracies arising
from the asymplotic approximations, which we shall soon
investigate, an additional uncertainty of the order of 1
mb may be expected from the uncertainty in the deu-
teron wave function. The use of the present analysis to
detect effects of the order of 1 mb should therefore be
made with great caution.

In the asymptotic formulas the quantities 4,, and
A,, appear only in dos. Since oy Will turn out to be
quite small, inaccuracies in measurements of 4,, and
A, will not affect the calculated values of o4q signifi-
cantly. For our calculation at $%k=1.50 BeV/c we
obtained a value of 4,,=0.189 F2 by making a least-
squares fit of pp data at 1.39 BeV/c. Since np measure-
ments in this energy region are lacking, we have assumed
App=App. For our calculation at 37%k=2.21 BeV/c we
have used the measured value** 4,,=0.207 F2, and
again we have assumed A ,,= 4 5.

In Table IT we present the values of ¢4 and the vari-
ous cross-section defects calculated from the asymptotic
relations (8.10)-(8.13). We note that use of the different
wave functions results in a difference of ~2.2 mb in the
calculated values of ¢44. The cross-section defect result-
ing from double-scattering corrections (3a21’+8022) is
an order of magnitude greater than the magnitude of
the cross-section defect resulting from triple-scattering
corrections, which in turn is an order of magnitude (or
more) greater than the cross-section defect resulting
from quadruple-scattering corrections. The new type of

Tasie II. Calculated values of the asymptotic cross-section defects and dd total cross sections. ¥; and ¥ refer to the two deuteron
wave functions used in the calculations. P refers to the deuteron momentum. The measured pd cross sections oa(expt) refer to proton

momenta of 3Piap.

Piap Sag’ (4 d020(4) Sa3(4) da4() 8o’ (4) 44 (theor) aaalexpt) 20 pa(expt)
BeV/c) (mb) (mb) (mb) (mb) (mb) (m (m (mb)
3.00 Y1 9.9 4.0 —1.9 0.2 12.2 150.8 1236 163.0
3.00 Y2 12.2 4.8 —2.8 0.3 14.5 148.5 12346 163.0
4.42 2 9.1 44 —-1.5 0.0 12.0 157.0 a 169.0
4.42 23 11.2 5.2 —23 0.0 14.1 154.9 a 169.0

a Preliminary estimates indicate that oda(expt) is approximately >140 mb (Ref. 35). This is a lower limit since events for 0 < —150.01 (BeV/c)? have

not been included in the analysis of the measurements (R

ef. 35). Our calculation of the dd elastic scattering, presented in Sec. X, indicates that the elastic

scattering cross section for 0< —¢< 0.01 (BeV/c)? is ~11 mb. When this is added to ~140 mb, we arrive at a value for saa(expt) of ~151 mb, which is

very close to the predicted values.

% The two expectation values for ¥ are related by a factor of exactly 2. The factor relating the two expectation values for y1

happens to be nearly, but not exactly, 2.

siT, M. C. Dutton, R. J. W. Howells, J. D. Jafar, and H. B. Van der Raay, Phys. Letters 25B, 245 (1967), and references cited

therein.

221, Kirillova, V. Nikitin, M. Shafranova, V. Sviridov, L. Zolin, Z. Korbel, L. Rob, Kh. Chernev, P. Devinski, L. Khristov,
P. Markov, Z. Zlatanov, N. Dalkhazhav, D. Tuvdendorzh, Ngo quang Huy, Hquyen dinh Tu, and Truong Bien (unpublished).

3P, G. McManigal, R. D. Eandi, S. N. Kaplan, and B. J. Moyer, Phys. Rev. 137, B620 (1965).

3 A. M. Eisner, E. L. Hart, R. I. Louttit, and T. W. Morris, Phys. Rev. 138, B670 (1965).
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double-scattering correction, dos2, which we described
in detail earlier, is approximately 43%, of the Glauber
“shadow correction” 8as1/, in good agreement with our
rough theoretical estimate of 509, described in the
previous section.

We shall now repeat our calculations using the more
general relations (7.8)-(7.11). We assume that the
nucleon-nucleon amplitudes may be expressed as

k
flp(Qf%k) ="8—"Ulp(7:+alp)6—%‘d et , = n,p .
vy

The two-, four-, and six-dimensional integrals can then
be reduced to single and double integrals which may be
done analytically for ¢, and numerically for ¥1.

In Table IIT we show the neutron-proton cross sec-
tion calculated by means of Eq. (6.15). [The corre-
sponding results obtained from the asymptotic expres-
sion (9.1) were shown in Table I.] By comparing
Tables I and III we note that use of the asymptotic
expression (9.1) to determine ¢,, from measurements of
opq and o5, tends to introduce a numerical inaccuracy
of ~1 mb in magnitude.

In Table IV we present the values of g4¢ and the
various cross-section defects calculated with Eqgs.
(7.8)—(7.11). (The corresponding results obtained from
the asymptotic formulas were shown in Table IL.) By
comparing Tables IT and IV we note that use of the
asymptotic formulas tends to introduce a numerical
inaccuracy in the calculated deuteron-deuteron cross
section of ~1 mb in magnitude. Although the cross-
section defects ¢’ calculated by the two methods
differ by ~5%, the dd total cross sections differ by only
~3%. At high energies, therefore, the asymptotic
formulas appear reasonably adequate for calculating
oqq to a numerical accuracy of a few percent.

At 3.0 BeV/c, the dd cross sections calculated with the
impulse approximation (i.e., 20x4) are ~33%, higher
than the measured value, whereas the values calculated
with the multiple scattering corrections are ~229,
higher. (However, see Note added in proof in Table IV.
Taking 141 mb as the measured value, we would replace
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TasrLe III. Neutron-proton total cross sections o,, predicted
from pp and pd measurements. Values calculated using two dif-
ferent wave functions y; and y; are shown. The relation (6.15)
was used in the calculation. Piap refers to the nucleon momentum.

Plap opp(expt) opa(expt) onp(Y1) onp(¥2)
(BeV/c) (mbg) (mb (mb) (mb)

1.50 47.0 81.5 39.9 39.9

2.21 47.0 84.5 424 424

339% and 229, by 169, and 6%, respectively.) To com-
pare the calculations at the higher momentum of
4.42 BeV/c we must await the completion of the
analysis of the data. However, preliminary estimates
indicate that the measured value of the dd total cross
section is approximately 140 mb.3% This is a lower
limit since events for 0< —¢50.01 (BeV/¢)? have not
been included in the analysis of the measurements.3
Our calculation of the dd elastic scattering cross section
for 0<—1<0.01 (BeV/c)? is ~11 mb. When this is
added to ~140 mb, we arrive at a value for o44(expt)
of ~151 mb which is very close to the predicted value.

X. ELASTIC SCATTERING ANGULAR
DISTRIBUTION

In this section we shall discuss briefly the elastic
scattering of deuterons by deuterons. The differential
cross section is given by

(do/dD) a=|Fisis(a,k) |2 (10.1)

In order to determine some gualitaiive aspects of the
elastic scattering processes, we shall make the simpli-
fying assumptions that

f"p(g;%k) = fmr(g,%k) H (102)
foo(@,5k) = (ko/8)(i+a)e 34, (10.3)

and
S(q) =¢34 (10.4)

The differential cross section may then be written

. TaBLE I_V. Calculated_values of the cross-section defects and dd total cross sections. ¥y and s refer to the two deuteron wave func-
tions used in the calculations. Piap refers to the deuteron momentum. The measured pd cross sections apa(expt) refer to proton momenta

of 3Piap.

Prap Sy’ o2z a3 o4 oo’ oaa(theoret) aaalexpt) 26 pa(expt)
(BeV/c) (mb) (mb) (mb) (mb) (mb, (mb) (mb (mb)
3.00 Y1 10.7 3.7 —2.2 0.2 12.5 150.5 1234-6P 163.0
3.00 1123 10.8 4.5 —2.2 0.3 13.3 149.7 1234-6P 163.0
4.42 Y1 9.7 4.0 —-1.7 0.1 12.1 156.9 a 169.0
442 2 9.8 49 —1.7 0.1 13.0 156.0 a 169.0

& Preliminary estimates indicate that oad(expt) is approximately >140 mb (Ref. 35). This is a lower limit since events for 0 < ——t§0.01 (BeV/c)2 have
not been included in the anslysis of the measurements (Ref. 35). Our calculation of the dd elastic scattering, presented in Sec. X, indicates that the elastic
scattering cross section for 0< —¢<0.01 (BeV/c)? is ~11 mb. When this is added to ~140 mb, we arrive at a value for aad(expt) of ~151 mb, which is

very close to the predicted values.

b Note_added in proof. Professor Grard has kindly informed us that the measurements at 3.00 BeV/c¢ do not include corrections for elastic events in
which §15_0 MeV/c is transferred to the target deuteron. We calculate this correction to be ~18 mb, which when added to 123 mb yields ~141 mb.
This result is quite close to our predicted value. (This Note also applies to Table II.)

% M. Pripstein (private communication). We wish to thank Dr. Pripstein for this information.
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For a deuteron momentum of 4.42 BeV/c, corre-
sponding to a nucleon momentum of 2.21 BeV/c, we
have used the average values 0 =44.5 mb, a=—0.335,
and 4=0.207 F2. The value of B is taken to be! 1.30 F?.
The results are shown in Fig. 5 where four intensities
are plotted against —f#, the negative of the square of
the four-momentum transfer. The curve labelled 1

(10.5)

I ] T ' T | T l T | T
|04 . ]
dd elastic scattering
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F1G. 5. Differential cross sections in the laboratory system for
deuteron-deuteron elastic scattering for an incident deuteron
momentum of 4.42 BeV/c plotted as a function of the negative
squared four-momentum transfer —#. The solid curve labelled 4
is the theoretical prediction, using nucleon-nucleon data, with all
single-, double-, triple, and quadruple-collision processes taken
into account. Curve 1 represents the contribution of single-
scattering processes alone. Curve 2 represents the contribution of
single- and double-scattering processes. Curve 3 represents the
contribution of single-, double-, and triple-scattering processes.
The shape of the curve in the interference region, —¢~0.16
(BeV/c)?, is quite sensitive to the phases of the nucleon-nucleon
scattering amplitudes which are not yet known accurately.
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contains only the single-scattering contribution. The
curve labelled 2 contains both single- and double-scatter-
ing contributions. The curve labelled 3 contains single-,
double-, and triple-scattering contributions. The curve
labelled 4 contains contributions from all four orders
of multiple scattering. Near the forward direction single
scattering is dominant, but it falls off extremely rapidly.
For 0.1 (BeV/c)2<—150.2 (BeV/c)?, the single- and
double-scattering amplitudes interfere appreciably,
resulting in a minimum near —¢=0.16 (BeV/c)2
Although in the forward direction the magnitude of the
double-scattering amplitude is much smaller than that
of the single-scattering amplitude, it decreases much
more slowly. Consequently, for —{20.16 (BeV/v)?
double scattering is more important than single scatter-
ing. In addition to an interference minimum, a double-
scattering maximum appears at —i~0.26 (BeV/c)?,
beyond which the differential cross-section decreases,
but at a much slower rate than it does near the forward
direction.

It is interesting to note that in the double-scattering
region, the contribution to do/dQ arising from the new
type of double-scattering correction described in Sec.
VIII (i.e., the one corresponding to doe for the total
cross section) is substantially greater than the familiar
type of double-scattering correction first described by
Glauber for particle-deuteron collisions. This is not
surprising. This new double-scattering process takes
place when one nucleon in the incident deuteron inter-
acts with one nucleon in the target, and the other
nucleon in the incident deuteron interacts with the
other nucleon in the target. These two interactions can
occur simultaneously. Consequently a large momentum
may be transferred to a deuteron without there being
a large momentum transferred to one nucleon in a
deuteron relative to the other nucleon in that deuteron.
In other words, a large momentum may be transferred
to the nucleons in the deuteron without breaking it up,
by transferring the momentum to the deuteron center
of mass. This is easily done by having the two nucleons
in the incident deuteron collide simultaneously with the
two nucleons in the target, and this can be done quite
readily by the new type of double-scattering process
described in Sec. VIII. The usual familiar double-
scattering process describes collisions of an incident
nucleon firsi with one nucleon in the target and later
with a second nucleon. A simulianeous double scattering
in this type of process could only occur if the neutron
and proton in the deuteron were overlapping, a con-
dition which rarely occurs in such a weakly bound
system.

A more analytic explanation for the greater impor-
tance of the new type of double-scattering process in
do/dQ is obtained by inspection of Eq. (5.17) for the
double-scattering amplitude operator. The only ¢
dependence of the new double-scattering process arises
from terms like asi(w)as2(v). However, the ¢ dependence
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of the usual familiar double-scattering process arises
from, in addition to bilinear forms in the a,,’s, a factor
such as exp(3q-s) which in turn yields an additional
factor S(3¢) in the elastic amplitude. This is a very
rapidly decreasing factor and hence away from the
forward direction thé resulting terms are quite small
compared with those that do not contain this factor,
i.e., compared with the terms representing the new type
of double-scattering process.

APPENDIX

In this Appendix we derive Egs. (8.2) and (8.4). Using
the definition of the form factor of the deuteron ground
state, Eq. (6.5), and assuming a spherically symmetric
wave function, we may write

fS(q)d2 =[ei‘l"hl/(r)[2drd2g. (A1)

Let r=s-z, where s is the component of the coordinate
r lying parallel to the plane which contains q. The
integral (A1) may then be expressed in the form

[s@aa= [onspisapasiaeg @
=42 / d®D(s) [¢(s,2) [2d2sdz,  (A3)

where §®(s) is a two-dimensional §-function. Carrying
out the integration over s, we obtain

[ starg=sr [ woora @
=5 [ ly@)lar (A3)
0
1
=2 / tp*(r)—2¢(r)dr (A6)
7
= 27!'(7"'2>,1. (A7)
This is the result stated in Eq. (8.2).
To derive Eq. (8.4) we write
[s@ae= [ewemyo) i ary a9
=4"2/ 8 (s+8)¥(s5,9)|*
X |¥(s',2') | 2d2sd?s'dzds’  (A9)
= 1672 / g(s)dzs, (A10)
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where
1 ]
(0= [ o)l (A11)
[¥(p) |2

= ) —'—"“——'(p2_sz)1/2pdp. (A].Z)
Therefore we may write

” =y
f S%(q)d%q=32%3 / sds g(s) [ ——dr. (Al13)

0 s (72__32)1./2

If we interchange the order of integration we obtain
[s@eg=s2st [ 11w ar
0

% T sds ) (Al

_/; (,,2_82)1/zgs )
© T sds

=321r-/; I!//(T)l’dff W
[¥(o)|? ;

./(9—82)1’2p g

If we now interchange the order of the p and s integra-
tions, we find

(A15)

/ Sa)g=32n" /o " 1) o dr{ f " 196)20do

/ [(o? —32)(72_32):]1/2 /: [¥(o) | f’dp

/ [(e? —82)(72—32)]1/2} (A16)

The s integration is evaluated to be
sds r+p
f 1 ln(~————>. (A17)
o [st—(o*+2)s>+p2r ]t —p
Therefore Eq. (A16) becomes

Il
-

[s@ie=162 [ worrrar

f [¥(p) |%0dp ln(I e

r—op|

=2n({ @ ln[ (::ﬂ> >

This is the result stated in Eq. (8.2).

) (A18)

(A19)



