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In this paper we use a simple model to include the effects of nuclear charge change in p decay. We develop
the point-nucleus Fermi function for the daughter nucleus in perturbation theory to Z cP and corrections
to it arising from. the change in nuclear charge. The model considers only Coulomb interactions between
the static parent-daughter nucleus with the leptons and allows for pair creation. This model has been used
by Chem et al. and by Halpern and Chem to obtain analytical model dependences of the Rnite nuclear
size, screening, and static p-vertex correction to Grst order in o.. The divergences in the Fermi function are
shown to have the same source as the divergences occuring in this model due to the change in nuclear charge,
so that both types of divergence must be treated in the same manner, including the use of the same cutoff.
We 6nd that the Zn' contribution to the transition probability per unit time calculated from this model is
comparable to the screening correction, and thus must be included if one takes the screening into account.
An uncertainty has arisen in the literature concerning the incorporation of the first-order radiative cor-
rection into the Fermi function. We fin from this model that the approximate factorization previously used
in the literature to order at, is also valid to order n' for nuclei with Z less than that of Ap'. The validity of
this factorization for higher Z is still unresolved.

1. INTRODUCTION

~

CONSIDERABLE attention has recently been given~ to the precise determination of the vector coupling
constant G, for nuclear P decay. ' ' This attention has
been focused on the calculation of several small correc-
tions to the theoretical P-decay transition probability
obtained by using the point-nucleus Fermi function.
These corrections include the electromagnetic radiative
corrections4 ~ and the modilcation of the point-nucleus
Fermi function by nuclear size and structure sects, ' "
and screening of the nuclear Coulomb 6eld by the atomic
electrons. " " The vector coupling constant is calcu-
lated by applying these corrections to the experimental
fi values for a series of pure Fermi decays (0+-+ 0+).
The precise values of G„obtained are important
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in assessing the problem of universality in the weak
interactions. '

All of these corrections except the radiative correction
have in the past been treated by constructing numerical
solutions of the Dirac equation for suitably modified
static potentials, resulting in the modification of the
point-nucleus Fermi function. The radiative correction,
however, cannot be generated by a static potential, so
it has been treated in perturbation theory, using the
techniques of quantum electrodynamics. A simple
model has recently been discussed by Chem et u/. ' which
uses a perturbation calculation and is capable of treat-
ing analytically, and in a consistent manner, finite nu-
clear size, screening, and the Coulomb interaction be-
tween the electron and the static parent-daughter
nucleus (which gives rise to the bulk of the radiative
correction to order ot) as corrections to the point-nucleus
Fermi function. Halpern and Chem" have extended
this model to calculate the nuclear model dependences
of these effects. The results obtained are found to be
in good agreement with those obtained by other methods
for those simple static nuclear charge distributions that
have been considered previously in the literature. In
addition, they have considered a more realistic nuclear
model based on the nuclear charge distribution of
Hofstadter'~ and the single-particle simple-harmonic-
oscillator model for the nuclear matrix elements. It is
found that the model dependence of the 6nite-nuclear-
size correction is comparable to the screening correction,
making it imperative that one use the most realistic
nuclear model available. Since the screening is such a
small effect (&0.3% of fvi), it was realized that the
model used generates logarithmically divergent terms
of order Zn' that could be comparable to the screening
and that have their origin in the change in nuclear

"N. Brene, M. Roos, and A. Sirlin, CERN Report, Ref., T.H.
872, 1968 (unpublished)."R.Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
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charge during the P decay. In the present work, we use
the same basic held-theoretic model, which includes the
effects of nuclear charge change in P decay. We develop
the point-nucleus Fermi function to Z'o, ' and correc-
tions to it arising from the change in nuclear charge.
The model considers only Coulomb interactions between
the static parent-daughter nucleus with the leptons and
allows for pair creation. We show that these Zo.' con-
tributions are indeed comparable to the screening cor-
rection so that consistency requires that they be in-
cluded in applications where the screening is significant.
These Zn' terms form part of the radiative correction to
the P decay as is discussed below.

In treating the electromagnetic interaction in per-
turbation theory, one generates the effect of the usual
static-Coulomb interaction as well as the electrodynamic
effects associated with transverse photons. The Coulomb
interaction between the emitted P particle and the
static point-charge daughter nucleus has of course been
treated by solving the Dirac equation for an electron
in a Coulomb field, and results in the point-charge
Fermi function Fo(Z,E). Thus, in the perturbation
treatment one separates out that pari, of the transition
probability to a given order in n that can be identi6ed
with Ilo to the same order; the remainder is then re-
garded as a radiative correction to Fo(Z,E). This has
previously been done in the literature only to first order
in a, to which order no divergences appear in Fo(Z,E).
This so-called radiative correction can be further divided
into two parts. The first of these parts, which we call
the P-vertex correction, arises from those processes that
involve the interchange of virtual photons only between
the nucleus and the leptons. The second part arises
from processes that involve interchange of virtual pho-
tons among the leptons in addition to possible inter-
changes with the nucleus. These include processes nor-

mally associated with the charge and mass renormaliza-
tion of the electron.

The model used in this paper treats only the static
part of the P-vertex correction. Berman' and Chem
et a/. ' have shown that this static P-vertex correction
accounts for ~ ~~ of the radiative correction to 6rst order
in 0., and gives rise to the bulk of the ultraviolet di-

vergence. The major part of the divergence to first order
in n is thus shown to arise because of the sudden change
in the charge of the nucleus associated with the P decay.
It is this divergence, which is directly associated with
the divergences in the Fermi function for nuclear P
decay, with which we are concerned in this paper, since

it has been our purpose to calculate Fo(Z,E) and cor-

rections to it in a consistent manner. The approximation
of keeping only the static P-vertex correction is consist-

ent with the previous treatments of Chem et aL3 and

Halpern and Chem, "which obtain the Fermi function
and analytical-model-dependent corrections to it using

the physical particle masses and charges, ignoring purely
electrodynamic-type corrections. Thus, using the same

The 6rst two terms are recognized as the expansion of

Fo(Z,E) to order Zn, so that we write

~=(FO)z +(R.C.)n, (1.2)

where (R.C.)n can now be interpreted as a radiative cor-
rection added to Fo(Z,E). Since we know Fo(Z,E) to all
orders in Zo, it is generally assumed that this portion of
the perturbation series can be summed to give

s)=Fp(Z, E)+(R.C.)n. (1.3)

Further, to this order in oi, we can factor Eq. (1.2) in

the form

a&(FO)z Ll+(R.C.)nj.
' B. Chem, Ph.D. thesis, University of North Carolina

(unpublished).

basic model to calculate the static 49-vertex part of the
radiative correction we are able to incorporate it con-
sistently as one of the several corrections to the point-
nucleus Fermi function.

It should be pointed out that even if one were to treat
all the divergences that appear in the radiative correc-
tion in some consistent manner, one would then have to
recalculate the Fermi function using this new "cutofI'"
since the point-nucleus Fermi function explicitly con-
tains a configuration-space cutoff and provides the
major part of the electromagnetic interaction between
the nucleus and the electron. Our approach treats those
divergences in the radiative correction that clearly arise
in the same manner as the divergences in Fo(Z,E). We,
of course, do not claim that our model'solves all of the
problems associated with the radiative corrections, but
it does contain the major part of the physics and makes
clear the way of treating some of the divergences in a
physically meaningful way, which is forced upon us if
we take the point-nucleus Fermi function as our starting
point. This is the point of view taken in our series of

papers previously referred to and that has implicitly
been taken in all previous calculations of the vector cou-

pling constant based on a universal Fermi interaction.
It has been pointed out" that the divergent contribu-

tion to Fo(Z,E) to order Z'u' is comparable to and of
the same sign as the ultraviolet divergent part of the
first-order static P-vertex correction. The model used
here produces both of these divergent terms and allows

us to show that they both arise from the same source
and have the same form so that the cuto6 procedure
used must be the same in both cases.

Furthermore, an ambiguity has arisen in the litera-
ture concerning the incorporation of the radiative cor-
rection into the Fermi function. ' "In a first-order per-
turbation calculation using a plane-wave expansion of

the electron 6eld operators, the transition probability
per unit time for a negatron decay is found to be pro-
portional to

io= 1+zZuE/P+(R C )o, . .
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Replacing (Ep)s, by Ep(Z,E) would now give

(p= Fp(Z, E)$1+(R.C.)n). (1.5)

However, as pointed out by Chem ef al.,' a proper
factorization of Eq. (1.3) is given by

=F (Z,E)L1+(R.C.) /E (Z,E)j. (1.6)

In fact, calculation of Eq. (1.3) to all orders would im-

ply that the complete radiative correction should replace
(R.C.)n in Eq. (1.6). Equations (1.5) and (1.6) differ

by terms of order Zu' and higher, which are especi. ally
signi6cant for heavy nuclei. In a recent paper, Brene,
Roos, and Sirlin" have discussed this last point and
have emphasized the importance of calculating such
Zo.' terms which contribute to the second-order radia-
tive correction. We discuss this point in detail in Sec. 4.

2. GENERAL FORMALISM

It is well known that the major electromagnetic
effect in P decay is the Coulomb interaction between the
emitted P particle and the daughter nucleus. This effect
was taken into account by Fermi' by expanding the
electron field operators in the set of angular momentum
states for an electron in the Coulomb 6eld of a point
nucleus with charge Ze. The transition probability per
unit time is proportional to

(2.1)
final Syias

where P(x) is to be evaluated at the point where the
decay occurs. If the nucleus is regarded as a point, then
P(x) must be evaluated at the origin. Only the j=x2
wave functions are nonzero at the origin, and in fact
they diverge weakly there. This divergence is avoided
by assuming that the decay is most likely to occur near
the nuclear surface, so that we set x=8, the nuclear
radius. The resulting expression, the point-charge
Fermi function, is given by

Fp(Z, E)=L2!/I'(1+2$p)g' exp(prZnZ/p)

X(2p~)'"~"
I
I'(5'p+&Z~/p) I'(1+5'p)/2 (2.2)

where,
So= (1—Z'n')'"
EP pr+ ~P

Expanding this expression to second order in Zo, , we
have

pp&+&(Z, E)= 1&~ZnE/p

+Lp pr'g'/pe+ 11/4—y —ln(2') jZ'n' (2.3)

where y=0.57721 is Euler's constant. The upper and
lower signs refer to P and P" decays, respectively. This
form explicitly displays the small distance cutoG to
lowest order; the cuto6 will of course appear in all
higher orders.

» F. Fermi, Z. Physik 88, 161 (1934).

The model that we use in the perturbation calculation
is the simplest model th'at is capable of generating the
Fermi function, including the 6nite-nuclear size and
screening, along with the essential features of the radia-
tive correction. As discussed in the Introduction, the
physical origin of the major part of the ultraviolet di-
vergence that occurs in the radiative correction to order
0. is due to the sudden change in nuclear charge due to
the P decay. This feature is explicitly displayed in this
model by the use of a diferent potential according to
whether the interaction precedes or follows the P decays.
The bulk of this contribution comes from the static
p-vertex correction„which we calculate in this paper.

We carry out the calculation using ordinary non-
covariant perturbation theory, in which only the lepton
6elds are quantized. For an allowed pure Fermi decay
we take the P interaction Hamiltonian

&s= 8' ~'& 4g'M'(1+v p)4„ (2 4)

and the Coulomb interaction Hamiltonian

, 0'(x')0.(x')
B,= —Zo. d'x' (2.5)

We employ the usual plane-wave expansion for the lep-
ton field operators. " The P-decay process, with the
static vertex corrections to second order, can then be
described by the diagrams in Fig. i. The time ordering
of the vertices is explicitly displayed in these diagrams,
with the time increasing upward. As discussed in Sec.
1, these diagrams give only the static P-vertex correc-
tions. Some typical electrodynamic-type corrections,
which also have a static limit, are shown in Fig. 2.
These may be interpreted as electromagnetic correc-
tions to the first-order P-vertex correction, and along
with the corrections to the electron lines, they are not
treated in this paper for the reasons discussed in the
Introduction. The transition matrix for an allowed pure
Fermi decay can then be written in the form

(f!Hr ~i)=g'M pN'(p)

X(/a+ (b+e)Zn+ (0+e+f+g+ 5+i)Z'n' j
+L « (f+g+2(h+—p))Z—n'+(h+ p)n'J&

X(1+ye)s (—g), (2.6)

where N(y) is a positive-energy free-particle electron
spinor, e (—q) is a negative-energy neutrino spinor,
3f~ is the Fermi-matrix element, and e, b, c, etc., are the
contributions from the respective diagrams in Fig. 1.
The explicit integrals for these diagrams are given in
Sec. 3.

%e see that the quantity in the erst square bracket
of Eq. (2.6) is exactly the contribution that would be

I

"See, for example, G. Kallen, Elementary Particle Physicg
(A.ddison-%esley Publishing Co., Inc., Reading, Mass. , 1964).
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mass to go to zero. ' The coordinate x is a nuclear coordinate. Since we are not concerned with 6nite-nuclear-size
corrections here, we will put x= 0 in what follows except where this would result in an ultraviolet divergence, in
which case we put x=R, a configuration-space cutoff of the order of the nuclear radius. In Eqs. (3.1d) through
(3.1i), II represents the momentum of the intermediate electron state that participates in the p vertex.

In order to calculate the transition probability per unit time, vie need to construct the quantity

final spine
dQ+Q„l(flHlli) I', (3.2)

where we are summing over the 6nal lepton spins and directions since these are not observed in the particular ex-
pcrBllcnts of Ill tel cs't. Sllbstltutlllg Eq. (2.6) 111'to Eq. (3.2) alld pcrfoH111ng tllc lndlcatcd sllIlls glvcs

2'=2g"(4Ir)'I%I I' Tr(1+pe) Bat+(p)a}+{a'+(y)(b+c)+(b+c)'Xp(p) }aZ n

+(O'X~(p) (d+ e+f+g+h+i)+ (b+ c)I +(y) (b+c)+ (d+ e+f+g+ h+i)9+(y) a}~'n' j
+L

—(at X+(y)c+ctll+(p) a}n—(atoll+(y) (f+g+ 2k+ 2i)+ (f+g+ 2k+ 2i) I),„(p)a
+(b+ )'&+(p) + '& (p)(b+ )}~'+( '&+(y)(h+ ')+ '&+(y) +(h+ ')'4-(y) } 'jPI-(—If), (3 3)

~.(p) =(E+'p+t.u2E (3 3')

is the positive energy projection operator for the elec-
tron, and

glvlng

Ir (E+Pp) Ir 1 (E)
(c)=- +ny ——

I

—
I

—~—
8 P gP 2~(p2& 4p

&-(—a) = (~+n e)/2a (3 3/I) —
I

2—y —1n(pR) j. (3.5)
is the negat. lve energy projection operator for the
neutrino.

The combination (b+c) has been calculated by
Dalitz, " in connection with the Coulomb scattering
problem, and subsequently by Chem'8 as the zeroth-
order term in an expansion in powers of px, with the
result

The expression for (b+c) given in the first line of Eq.
(3.4) can also be obtained by an approximation pro-
cedure that will be used to evaluate some of the higher-
order terms. Integrals b and c can be separately arranged
to read

(b+c)=—

(2Ir)'

n'n y (Ih-
+ i+i Inl —,(3.4)

p t2

4m (E+n 1I+pp)
d'k

(2Ir)' (ly —kl'+lV)(E' —EI,')I

4Ir iIr'(E+Pp)
ln —

I

p 2p)

(b) = — d'k
(2Ir)'

E+EI (E+n lr+Pp)
X

2Eg, y— ' 6' E'—Ey,' p

4
+ d'k —

, (3.6)
(2 )' (ly-&I +~)2E. '

where we have set 5=0 where possible in the last line. (c)=
The integral c itself has been calculated by Halpern»

xj
(E+n I+P&)

~ 2EI ~(lp —1II'+LB)(E'—Ea')p

Pro. 2. Some typical static contributions to the radiative
correction @which have been neglected in this paper.

"R. H. Dalitz, Proc. Roy. Soc. (London} A206, 509 (I95I}.

d'k . (3 y)
(I y—1 I'+~2)2E,

In each case the second term diverges for large k while
the 6rst term does not, but in (b+c) the second terms
exactly cancel. The denominators in the Grst term
nearly vanish for k=p so that we expect these inte-
grands to be sharply peaked in the region k= p. In this
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43 of the corresponding term in the expansion of
Fp(Z, E). This gives us considerable confidence in the
approximation of the 6nite parts of the Zo,' and n' terms
since the terms themselves are quite small.

4. RESULTS AND DISCUSSION

Wc hRvc scen ln Scc. 2 thRt thc slInplc xIlodel used

produces the logarithmically divergent Z n2 term which

occurs in the expansion of the point-nucleus Fermi func-
tion. In addition, making use of the decoupling approxi-
mation described in Sec. 3, we obtain a good approxi-
mation to the nonlogarithmic Z'n' terms. Thus, we have
isolated (Fp) z~ ~ in the transition probability so that the
remainder of the transition probability represents the
static P-vertex correction to order a' as given by this

model.
One of the more signi6cant results of this calculation

is the relation of the divergence in the static P-vertex
correction to that in the Fermi function. These two

divergences are seen to arise from the same source so
that the cutoQ procedure must be the same in both cases.
This result also raises the possibility that the divergence

in the static P-vertex correction may be isolated in the
same manner as that in Fp(Z, E). This approach is con-

trasted with that of KaHen, 22 SirHn, 23 and others, which

treats the divergence in the radiative correction from

an elementary-particle viewpoint, but does not relate

1t to thc Fclmi function. S1ncc Rs wc have cInphRslzcd

Fp(Z, E) contains the major part of the electromagnetic

correction, the treatment of the radiative correction

must be consistent with it.
We now apply the results of Sec. 3 to the question of

an approximate factoI'1zatlon of thc tI'Rnslt1on plobR-

bility. The dominant contributions to co, to order n', are

taken from Eq. (3.18), giving

co=Fp(Z, E)z~ ~—(2/z)(y+ln(pR))a —(2E/p)
X(y+ln(pR))Za'+(3/m')(y+ln(pR))'a'. (4.1)

As in the erst order, it is possible to factor this expres-

sion to second order. The result, analogous to Eq. (1.4),
1s

ot =F,(Z,E)(1—(2/z) (7+in(pR))a
+(3/z')(y+ln(pR))'a'), (4.2)

while the expression analogous to Eq. (1.5) is

or ~Fp(Z, E)(1—t (2/pr)(y+ln(pR))a

+2(E/p) (y+1n(pR))Za'
—(3/ ')(~+»(pR))' '3/Fo(Z, E)) (43)

Here„we have dropped the terms of order Z'ne, Zo.'s e
and higher, as well as the smaQ nonlogarithmic terms in

Kq. (3.18). It must be pointed out that rapid conver-

gence of the series for Fp(Z, E) depends greatly on the

parameter Zn, which ranges from 0.05 for 0'4 to

"G.Ka,lien, Nucl. Phys. 81, 22~ (19@).
28 A. Sirlin, Phys. Rcv. 164, 1767 I;1967).

~0.2 for Co". The approximate factorization in Kq.
(4.2) also seems to rest on the assumption that Za and
n can be formally treated as independent expansion pa-
rameters. It is dificult to provide a physical interpreta-
tion of this assumption. If wc formally let 0, -+ 0, then
we find pp —+1 rather than pp~Fp(Z, E), which we
would expect in the treatment of a small correction in
perturbation theory. We emphasize that the conver-
gence of the static P-vertex correction portion of the ex-
pansion is not well established. We have seen that the
higher-order terms continue to diverge with the order
of the divergence increasing with the order of the ex-
pansion. There are of course an inhnite number of such
terms and it is not clear that they can be summed. The
existence of signi6cant Z-dependent terms in the radia-
tive correction is also somewhat disturbing in view of
the nature of the source of the radiative correction as
described in Sec. 2.

Concerning the rapid convergence of the static P-
vertex correction, we note that the Zu' term in the
square bracket of Kq. (4.3) is not necessarily negligible
when compared with the u term. The ratio of these terms
ranges from 0.46 for 0" to 0.59 for Co". The 0.'
term is down by an order of magnitude, being 0.07
times the 0. term. For heavy elements, inclusion of the
Zo,' term would result in a signi6cant reduction of the
radiative correction to the ft values. Thus for Co", the
6rst-order value of 1.5%%uoP would be reduced to

0.6%%uo, whereas application of Eq. (4.2) would result
in a negligible change in the corrections given in the
literature. We point out that the Zo,' term is of the
same order of magnitude as the screening correction so
that this ambiguity must be resolved if these small cor-
rections are to be rdiably applied. For light elements
such as C"or 0"the difference between using Eq. (4.2)
ol' Eq. (4.3) ls so siiiall 'tllat i't wollld be iiiasked by 'tile

experimental errors so that the approximate factoriza-
tion can be used with considerable conddence. For the
intermediate case of A126, for which the nuclear matrix
element is felt to be well known, the difference between
the two cases is comparable to the experimental error.
The Al" decay then stands on the borderline between
what we call light and heavy nuclei in this sense. Thus,
one can only unambiguously incorporate the static
P-vertex correction into Fp(Z, E) to Z'a' for elements
with Z less than that of Al and for precise determina-
tions of G., one should restrict oneself to such decays.
Such a conclusion has also been reached by Brene et al."
based on a discussion concerning the factorization of the
radiative corrections to order n. Our results conlrm the
approximate validity of the factorization to order OP.

The present status of the theory of weak interactions
and the importance of the value of the vector coupling

constant for nuclear P decay make it imperative that
a de6nitive treatment of the radiative corrections be
achieved. Such a treatment must regard the Fermi func-

tion as fundaInental and provide a method of unambigu-
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APPENXHX

We must also make some comment about the sensi-
tivity of the cuto6 dependence of the quantities that
appeaI' ln the tlansltlon probability. FlI'st, we consldel
the effect on the erst-order static p-vertex correction.
We have

d(R.C.) /dR= —2a/mR, (A1)

ously extracting both the Z dependence and the diver-
gence treated in this paper from the radiative correction.

If the approximate factorization expressed by Eq.
(4.2) is indeed valid, it would be important to be able
to sum the series in the curly bracket in a manner similar
to that used in the Fermi function. For a typical decay
of interest, the quantity 2a(y+in(pR))/m is on the order
of 0.025 so that it would be a useful expansion parameter.
We could then, to a good approximation write

~ =F0(Z,E) expl —(2a/~)(v+ln(PR))1
=F0(Z,E)(pR) ' ' exp) —27a/mg. (4.4)

This expression has the advantage that it explicitly dis-
plays the relationship between the divergence in the
Fermi function and that in the static p-vertex correction.
It might appear that the same eGect could be accom-
pbshed by the introduction of an e6ective charge Z' in
place of Z in the Fermi function. This cannot be done
however because 50 is an even function of 0,, while the
correction term is odd. This ls inherent ln Kq. (4.2) since
it implies directly that the static p-vertex correction is
independent of the total charge of the nucleus. We
therefore re-emphasize the importance of isolating the
divergence of the radiative correction in a form analog-
ous to Kq. (4.4).

so that,
8(R.C.) = (2—a/m) bR/R. (A2)

Then a 10% change in the cutoff R would give a change
in the static P-vertex correction of b(R.C.),~ 4.7—
&&10 '. The static p-vertex correction itself is on the
order of 2&(10 ' so that such a change in I/. gives an
entirely negligible change in the 6rst-order static
p-vertex correction.

However, the Fermi function itself is much more sen-
sitive to variations in R. We can write Fo{Z,E) as

Fo(Z,E)=C(Z,E)(2pR)'&so-»,

where C(Z,E) is independent of R. Then

(AB)

dFO/dR= C(Z,E)2(SO—1)(2p)(2pR) ~'&so—»-u, (A4)

Now,

bF',/F, = 2(S,—1)bR/R.

So= (1—Z'a') '"= 1—-,'Z'a'+ ~ ~ ~ .

(As)

(A6)

This is a good expansion even for relatively large values
Z since only even powers of Zo, appear. Thus we have

bFO/Fo= —Z'a'bR/R. (A7)

Again using Co" as an example, Z'a'~4)& j.0 2 so that
a 10%%uo change in R gives UFO/Fp 0 4% —Th.is is. a
change on the order of the electron screening correction,
and is in fact larger than the screening for this particular
decay. The e6ect is of course much smaller for smaD
values of Z, the 6gure for 0"being 8F0/Fo~ 0.025%. —
The choice of the cuto6 E depends upon the choice of
a nuclear model used in determining the Fermi function.
T'hat is, it represents the radius outside which the po-
tential can be considered as pure Coulomb, again em-
phasizing the need for using the most realistic nuclear
model available. The strong Z dependence of the uncer-
tainty in Fo(Z,E) serves as another reason to restrict
the calculation of G, to nudei with low Z.


