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The continuum shell model is applied to the study of the elastic scattering of protons from He' as well
as to the photodisintegration of He4. A semiquantitative Gt is obtained for the scattering phases and the
photoabsorption cross section using a model Hamiltonian consisting of a real, local potential and a finite-
range ef'fective interaction. Two approximations for the total wave function of the system are studied, and
it is found that the photoabsorption cross section is sensitive to the approximation used, while the calculated
scattering phases are fairly independent of the details of the wave function. A method for improving the
convergence of the Born series is proposed and is found to be useful in this calculation.

I. INTRODUCTION

W VER the past several years, a large number of
papers have appeared dealing with the theory of

nuclear reactions. These formulations have in part been
the result of an increased understanding of nuclear
structure accompanying the successful application of
various nuclear models such as the shell model and the
optical model. Of particular importance is the work of
Feshbach, ' who showed how projection operators may
be used to elucidate the resonance structure of the S
matrix. Feshbach's theory combined with the concepts
of the shell model has been applied to the study of
elastic scattering of neutrons from N" by Lemmer and
Shakin' and to the scattering of neutrons from C" by
Lovas. ' The possibility of extending the shell model or
independent-particle model to the treatment of con-
tinuum problems has stimulated many authors, and
several other formal theories have been put forth.

A central problem in these studies has been the
diagonalization of the continuum-continuum interac-
tion for which various approximations have been pro-
posed. Much of this work is described in a forthcoming
monograph of Mahaux and Keidenmiiller. ' Using the
shell model in the continuum a large number of topics
can be studied qualitatively such as analog states, neu-
tron strength functions, (y,p), (y,n) reactions and their
inverse, doorway states, direct processes, (p,n) reactions,
etc. The number of works attempting detailed quanti-
tative comparison of this model with experimental data
has been somewhat limited. This is in part due to the
complexity of the calculations required.

Excitations of the particle-hole type have been
studied fairly extensively in the 0"compound system';
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however, it is rather diKcult to obtain a satisfactory
understanding of both the magnitude of the photo-
absorption cross section and its complex structure ob-
served experimentally.

Also, the number of resonances observed in the elastic
scattering, e.g. , N"(e,n)Nrs, is much greater than the
number obtained from the particle-hole calculation.
Therefore, a detailed description of the various experi-
mental cross sections may necessitate the introduction
of states of more complex structure than those of the
particle-hole type.

It was thought highly desirable to study a simple nu-

clear system whose observed excitations are not so com-

plex as to obscure the comparison between theoretical
and experimental cross sections. Recently, Hiifner and
Lemmer have introduced a formulation for nuclear reac-
tion calculations' which leads to calculational prescrip-
tions of minimum complexity.

In this work, the formalism of Hiifner and Lemmer
(referred to as I) is used for a study of the nuclear reac-
tions He'(p, p)He' and He4(y, p)Hs. For these reactions
there exists sufhcient experimental data so that a de-

tailed comparison between theory and experiment may
be made.

In the case of the nucleon scattering experiments a
fairly complete phase-shift analysis has been made by
Tombrello7 and Haeberli and Morrow. Tombrello has
also extracted resonance parameters using E-matrix
theory. One may note that the resonances found in this
manner are quite broad (of the order of 2—7 MeV) so

that one may have some doubt as to the physical sig-

ni6cance of the parameters extracted.
In Tombrello's analysis several negative-parity reso-

nances were found and these were interpreted by de
Shalit and Walecka as particle-hole excitations of the
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1350



SHELL MODEL I N THE CONTI NUUM

four-nucleon system/ These authors used fairly stan-
dard techniques of the harmonic-oscillator shell model
and studied the spectra obtained with various residual
interactions. Their results are in reasonable agreement
with the experimental spectrum as inferred from the
R-matrix analysis mentioned above. However, the ex-
perimental photoabsorption cross section' for He4 ex-
hibits a single strong peak followed by a long tail while
in the shell model one has two J= 1 states which must
in some way account for the distribution of electric-
dipole transition strength. Most of the theoretical
strength was found in the upper 7=1, J=1 "state"
while the peak in the experimental photoabsorption
cross section is at the position of the lower state. It was
suggested that more complicated residual interactions
might be necessary to remove this difFiculty. Barrett"
studied the excited states of He' using realistic forces
such as those of Tabakin, Brueckner-Gammel-Thaler,
and Hamada, and found that the problem of obtaining
satisfactory E1-transition rates was not resolved. He
found the ratio of the E1 transition rate of the upper
7=1, 7=1 state to the ground state with respect to
the lower J=1, T= 1 state was 1.6 compared with an
experimental ratio ~. An alternate approach to this
problem used by Barrett, %alecka, and Meyerhof" is
based on the observation that there are only four quanti-
ties appearing in the calculations which determine six
energy splittings and the mixing of the two T= 1, J= 1
states. Using experimental data for some of the energy
splittings it is possible to predict two unobserved energy
splittings and the ratio of the E1 transition probabilities.
The predictions of this approach appear to be in agree-
ment with experiments but one may doubt whether a
really satisfactory understanding of the phenomena has
been achieved. In particular, one would like to take
into account the continuum aspects of this problem and
see whether the experimental data may be explained
without resorting to the introduction of a complete
parameterization of the effective interaction matrix ele-
ments as in the work of Barrett, %alecka, and Meyer-
hof. Also, in the continuum approach one is able to cal-
culate the shape of the photoabsorption cross section as
w'ell as the differential scattering cross sections, quan-
tities which are inaccessible in the ordinary shell-model
treatment. As we shall see, the use of continuum wave
functions turns out to be quite important in explaining
the distribution of transition strength.

So far the continuum structure of the A=4 system
has been treated" by the resonating-group method,

' A. de Shalit and J. D. %alecka, Phys. Rev. 147, 763 (1966).
J.E. Perry and S.J.Barne, Phys. Rev. 99 1368 (1955);D. S.
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Letters 22, 450 (1966)."B.H. Bransden, A. C. Douglas, and H. H. Robertson, Phil.
Mag. 2, 1211 (1957);B.H. Bransden and H. H. Robertson, Proc.
Phys. Soc. (London) 72, 770 (1958); P. Szydlik and C. Werntz,
Phys. Rev. 138, B866 (1965); 140, AB4 (1965).

which requires the solution of (coupled) integro-
differential equations. The results in Ref. 13 are in fair
agreement with experiment. %hile the essentially
algebraic methods of the continuum shell model are
probably more appropriate to larger systems, we have
been motivated to carry through the calculations re-
ported here to test our theory for a comparatively
simple system, where much experimental information
has become available.

II. THEORETICAL CONSIDERATIONS

It is worth pointing out the difference between the
ordinary shell theory and the shell model in the con-
tinuum. Both theories have in common the independent-
particle model of the nucleus supplemented by residual
interactions. The nucleons are considered to be moving
in some effective Geld, possibly that derived from the
Hartree-Fock theory. In the usual application of the
shell theory the particles are constrained to move in an
infinitely deep potential and the diagonalization of the
effective interaction yields a discrete set of bound states.
Thus one is able to calculate energy levels, transition
properties, moments, etc. On the other hand, in the con-
tinuum shell theory, one describes the effective Geld by
a potential well of finite depth. The bound and scatter-
ing states of this well provide a basis for the solution of
the problem although one is usually limited to basis
functions which contain no more than one particle in
a continuum orbit.

Some comments concerning the separation of the
Hamiltonian into an independent-particle part Bo and
a residual interaction V may be in order. One may as-
sume that the nucleon-nucleon interaction in the nucleus
is nonsingular such that Hartree-Fock methods are
applicable. In this case, Ho will contain the kinetic en-

ergy of all the particles plus the Hartree-Fock potential.
The residual interaction is then the actual nucleon-
nucleon interaction minus the Hartree-Fock potential.
One may then introduce an effective interaction by the
following observation. The Hilbert space H of the prob-
lem may be separated into two parts, one part consisting
of those states which are used to form a limited basis for
the solution of the problem at hand, 1I~, and a second

part consisting of the remaining states, llo. A simple
application of projection operator techniques allows the
construction of an effective interaction in the space'Q~,
this effective interaction will be energy-dependent and
will depend on the choice of lI~ and Qo. For example, it
is now well known that core-polarization effects are
particularly important in any attempt to construct an
effective interaction starting from realistic residual
interactions. '

In the case that the nucleon-nucleon interaction con-
tains a hard core or is so strong that Hartree-Pock
methods are not applicable, a more elaborate formula-

r' T. T. S. Kuo and G. E. Brown, Nuci. Phys. SS, 40 (1966).
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tion is necessary. %ith an appropriate summation of
diagrams it is possible to introduce G-matrix elements
which play the role of a residual interaction. The con-
cept of an CGective interaction may again be introduced
via the separation of the Hilbert space into two parts.

In this work we will not attempt to utilize the Hartree-
Fock approach or to use the reaction matrix approach
but wiQ treat Bo and the CGective interaction phe-
nomenologically. As usual in calculations of this type
the average potential is determined from experimental
data for the single-particle energies and nuclear radius.
The residual interaction used has been determined in
shell-model calculations for p-shell nuclei. Given this
phenomenological viewpoint there is therefore no simple
relation between LEO a,nd the effective interaction used
in the calculations.

The application of the continuum shill model to
scattering from the three-nucleon system is made with
some reservations as it is not clear that the model is
useful for a system of only a few particles. (We consider
the relative success of the calculations reported in this
paper as an 8 p0$terzoro partial lustlficatlon of the
modeL)

In describing the interaction of the incident particle
with the target we choose a potential of the Woods-
Saxon form, as has become conventional in problems of
this type. The potential chosen has a bound 8 state and
there are two single-particle resonances in the I'3/2 Rnd

I'j~q scattering states. The latter resonance is quite
broad and rather ill-de6ned. One notes that since there
are no bound states other than the 8 state, the expan-
sion of the total wave function of the system will contain
only scattering states. In contrast, the usua1. shell-model
procedure replaces the I'3~2 and E'~~2 single-particle reso-
nances by the bound states of a harmonic oscillator. '
The latter approximation greatly simpli6es the calcu-
lations but leads to various di6icultics, as mentioned in
the previous section.

In order to clearly de6ne the nature of the approxi-
mations used in this work, it is useful to review the re-
sults of I. The Hamiltonian is written as

i'
with V as the residual interaction. The following func-
tions are useful in the discussion:

I i)= eLy'(A) c;-(12 ~ ~ (3—1))]
(2.2)

14's~"')= 8[o '"(~)C' -0,",(~—&))].

Here C i" and C),"are eigenfunctions of B, in the sub-
space spanned by bound shell-model states and y, (A)
and &ps~. &o&(A) are bound and continuum eigenstates of
T(A)+ U(A). If the binding energy of the target state,
4), is set equal to zero, the energy of the scattering
state, E, is the total energy of the system under con-
sideration. The operator 8 serves to antisymmetrize

the basis sets whose normalization is chosen to be

(2.3)

Finally, the asymptotic behavior of the scattering states
is, in the absence of the Coulomb potential,

q g),"«&(r) -+
I

—
I

sin(kr+by- —-', sl) trt;"(8). (2.4)4 dE&

It is Rlso useful to introduce stRtcs

(ps~(+) (r) = e+~&) &p@~(o)(r)

Rnd thc'corlcspon(4ng many-particle states

Iltzz(+)) e+~oqlgzz(o)) (2 6)

The 8-matrix elements are related to those of the T
matrix by

the 6rst term representing the potential scattering and
the second the effects of the residual interaction. Thus

~) ~ =&'""&)),—2~&Tu, '" (2.8)

The essential approximation of I is based on the ob-

servation that in the evaluation of T),), ('& the total wave

function of the system, I eg), &+&), need only be known in

the "interior" of the nucleus.
Since it is desirable to avoid the solution of integral

equations, the expansion of I@~qH&) is made over a
discrete set of functions

I xo). H the {I xo)) form a com-

plete sct, at least in the interior, the solution for the

problem is exact.
The interior may be de6ned by choosing a radius

which is somewhat larger than the nuclear radius plus

the range of the effective interaction. A complete set of
functions in this region of con6guration space can either

be generated by specifying a boundary condition at this

radius (in analogy to R-matrix concepts), or in a more

natural way by using %einberg functions. Harmonic-

oscillator functions provide an alternate choice. If one

uses only a limited number of these functions, the choice

of these expansion functions matters and one should be
careful in selecting functions

I xo) which can approxi-

mate the 6nal solution as well as possible. Here one has

to be guided by more or less intuitive ideas concerning

the reaction mechanism.
It is not necessary to introduce a variational prin-

ciple for the X matrix (or T matrix) as in I, but one may

proceed directly from the Lippman-Schwinger equation

for VI%'sq&+&), which is the quantity required for the

calculation of the T matrix. U the state VI%'s), '+&) is

expanded 3,S

vl+z.~'+')=—2 c ""vlxa),
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the equation for the C~(~") is readily found:

Q (;i V VG—o'+'(E)Vix &C ' "

with
=&x;lVl~..(+&&, (210)

Go(+&(E)= (E—Ho+ie)-'. (2.11)

C~"")=P&') '(x~i Vigz), (+)) (2.12)

where
A g ——(x i V—VG0(+&Vixen) (2.13)

Further,

2'), ~("=Z Qzv' 'i Vlx;&~;. '&x~i Vlf~), (+)&

Because of the finite number of expansion functions,
we need only deal with the algebraic problem of Eq.
(2.10). One finds

the Born series in the second expression of Eq. (2.17),
Many authors have therefore proposed using perturba-
tion methods for evaluating the second expression.
These methods depend critically on whether the opera-
tor Gp(+) V is "small. " Fortunately, it has been found
that the eGective interaction to be used in the shell
Inodel is such that Gp(+)V is indeed small, provided
there are no narrow single-particle resonances in
Go(+&(E). The main e6ort in improving the convergence
of the Born series has been concentrated upon the
problem of removing the single-particle resonances from
Go(+&(E). We are not aware of any attempt to make
Gp(+) V small by taking out the most important parts
of V and introducing them into the operator Hp. Indeed,
there exists some arbitrariness in splitting H into two
parts. One may write

H ={P[T(i)+U(i)+AU(i)]}

—ei(4+4~& P Qz&, (o)
l Vix, )g,&-& +{lZ ' —Z~U(')} (21g)

&«"lvl~-'& =Ho+ V,

As in I the 5 matrix ls given by

()& v+2~i

where &U(i) may be chosen at one's convenience. In
complete formal analogy, T),) can be expressed in
terms of the quantities referring to the separation [Kq.
(2.18)]

( 0'
, Q.~"'I VIx~)

)&detl ——————-', —————— det(A;p)
«x, IVI' „,'0')

(2.15)

%e stress that the expression for the 5 matrix is invari-
ant to changing the normalization of any of the ex-
pansion functions

l x~).
The specific choice of the

l x&,) and the Green's func-
tion Go(+'(E) will be discussed later. However, it is
worth pointing out that the construction of the Green's
function is independent of the choice of the set {l xq)}
and is only dependent on the speci6cation of Hp.

In concluding this chapter, we describe a method
which we found useful for improving the rate of con-
vergence of the Born series. In the framework of the
shell model in the continuum, the Hamiltonian

is diagonalized in a subspace of the eigenfunctions of
Hp. Or, in another language, the T matrix is calculated
by the "two-potential formula"

2'&, v=(4~lUl4~&, '+'&+(4m'-'i V+VGO+ V

+VG (+)VG (+)V+. .. if „,(+)) (2 17)

Only by using very comphcated methods (coupled
integro-differential equations) is it possible to sum up

7&,& =(4) lU+~Uig&(, & (+))X(pz), ( 'l I+VGO(+) V

+ /GAL(+) AGO(+) py. . .
l g@y, (+)) (2 19)

In certain cases, the introduction of the additional
diagonal potential hU improves the convergence con-
siderably. [After having introduced hU one might still
remove dangerous single-particle resonances from
Gp(+)(E).]The additional potential hU may depend on
the total spin or the total isospin of the system. %hen
diagonalizing H exactly, the solution should not depend
on AU, but any method based on perturbation theory
will. The proposed method is not generally applicable,
but is limited to those cases where the main strength of
the residual interaction is concentrated in the diagonal
matrix elements and where the diagonal matrix elements
all have about the same magnitude and sign. For ex-
ample, this holds for all matrix elements between T= 1
states where the residual interaction is always strongly
repulsive.

Ke are only aware of the work of MacDonaM, 5 who
used the freedom of introducing a term AU in order to
remove dangerous single-particle resonances from Gp(+~

and to make them bound states. He did not introduce
hU in order to increase the rate of convergence of the
Horn series. On the contrary, in the application to
O(6(y P)N" the hU, which was chosen to convert the
d3/2 single-particle resonance into a bound state, ie-
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creased the diagonal matrix elements, thus making the
Born series converge more slowly.

III. APPLICATION TO THE FOUR-
NUCLEON SYSTEM

In the application of this formalism" to the reactions
He'(p, p)He' or He'(y, p)Ho the question arises as to the
appropriate treatment of the I'q/2 or P3/2 "single-
particle resonances. " In particular, the I'~/2 resonance
is too broad and ill-de6ned to apply the prescriptions of
I for the treatment of sharp single-particle resonances.
It is felt, however, that these resonances play some role
in the reaction process and their presence should be
taken into account. As the resonances are too broad to
make a pole approximation for the Green's function,
this function is treated exactly. For the

~
Xz), however,

two approximations are considered which correspond to
two extreme points of view concerning the reaction
mechanism. In the 6rst case, it is assumed that the I'3/2

and E&/2 waves exhibit suKciently sharp resonances such

that these resonances are important in the formation of
a compound nucleus resonance during the scattering

process. Thus, the I'3/2 and I'~/2 waves at their resorlmt

erlergies, Eo and Ej play an important role, and it is

these wave functions which are used in the expansion of

Vl~-" ) LEq. (2.9)],
V

I
+»'+'&=~VI ~~o.~».«),S»,-)&

+PV)oz, .),),«),S»o ') (31)
(resonance approximation).

In the second approximation it is assumed that these
resonances are rather ill-de6ned and no signi6cant de-

velopment of a compound state takes place. Therefore,
we have essentially a direct interaction approximation
(or distorted-wave Born approximation (DWBA)], in

which case the scattered particle may be said to spend

only a short time in the vicinity of the target. In this
case it becomes more natural to expand V

~
@)o),(+)) using

the P3/o and P»o scattering states ut the energy of the

sc(sttering process, K
V

I
+»"'&=«I o s ~„,"',S'»o

+PV I v ~,~,&,
"',S»o ') (3 2)

(direct-interaction approximation).
It is diKcult to estimate the accuracy of the first

approximation LEq. (3.1)].However, the study of the
convergence of the Born series gives a reliable estimate
for the accuracy of the approximation (Eq. (3.2)]. in-
serting this approximation for V~ @s),(+)) into the gen-

eral expression for the S matrix fEq. (2.15)]we find for
the T matrix (for simplicity we restrict the argument to
one channel only)

(48~' '
~

V ~ye), '")(4»'"
~

V N E),'+'&

(/EX (
V

( 0E) '+' &+ ()p» ' '
(
VGo'+' V

I
4»'+'&

(Ps),"'( V—VGo'+'V I4»"'&

()P „(-)
[ VG (+)V[)P „(0)&()P „(0)

(
VG (+)V[)P „(+))

+ (3 3)
&4E),«'

I
V ~4»"'&

Comparing to the exact expression for the Born series

LEq. (2.17)], one observes that the expression (3.3) is
exact up to 6rst order in Go&+) V while the term of second
order in Go&+)V differs. However, provided that the
approximation

VI o»")&=f(~,~) V14so. ) ")& (3 4)

with f(E,X) being a scalar function, is a good one, the
above expression (3.3) for T(') coincides in all orders
with the exact one. (The approximation defined by Eq.
(3.4) is not used in this paper. )

The Green's function Go(+)(E) is treated exactly,

Go(+) —P (tg)P*@,~(o)(r))P@,~(o)(r')/(P g+io) —(3 5)

except that the integral over the continuum states is cut
off at the energy 8=30 MeV. This cutoff is in keeping
with the solution of the problem in a restricted basis and

is in analogy with the neglect of 283/2 and 2E&/& states,

"We are completely neglecting the presence of the breakup
channels, He'(p, d)2p (Q= —5.5 MeV) and He'(p, e)3P (Q= —7.7
MeV).

for example, in a corresponding bound-state shell-model

treatment. The cutoff also provides a method for
eliminating particle-hole —like components of high-lying
T= 1 spurious states. The numerical results are found

to be quite insensitive te an increase of the cutoff

energy.
In the calculations reported here a j-j coupling

scheme has been used with the coupling order (st)j.
Since the S matrix is given in the literature~ in the
L-S scheme, it is necessary to discuss the relation of

these matrices for J= 1, where the S matrix is of di-

mension 2. The parameterization of the experiment is
done in terms of the eigenvalues of the S matrix and the
mixing parameter e. The eigenvalues are denoted by
exp(2i8, )') and exp(2it)) )'), which correspond to the

singlet and triplet phase shifts b~, L, in the limit e —& 0.
The elements of the S matrix, SL,&,1, 8, are given by

Sxo;)o'=cos'o e xp(2i8 ,o)) +sin' oexp(2it)( q'),
(3.6)

S))., )q'=sin'o exp(2i5o, ~')+cos'o exp(2ih), ~'),

and

Sxo;n' ——Sn., ro'= o sin2oLexp(2il)o, ~') —exp(2ibq, q')].
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The elements SL,&,.L, &
~ may be obtained from the S

matrix in j-j coupling, S&;&;. , using the following
relations:

Slo; 10 /Sled; 1$ +3S1$;1$ +52v2S1$; lf

$10,.11'———-'8V2S1),.1)'+-'3V2S1@11'—)Sr@21') (3.7)

S11., 11'=—8'Srh1)'+ 8Sq, 1)'—s2&S1h g'.

SCheme iS U(—so), i.e.,

Thus,

with 5= E—6p.

IV. RESULTS

S(/, ;)= U (—eo)S(&,z U(—eo) .

S~s ri = U'(&)S'U(&),

(3.14)

(3.15)

Since L= 1 and /= 1 in the above formulas, we may use
the notation Sgq. and S;,; for the following discussion.

It is easy to solve for the eigenvalues of the S matrix
and the mixing parameter:

exp(2ibo, r') =2|.So.0+Sr,1+2S1,0/sin28$,

exp(2i811') = 2(S0 p+S1,1—2S1,p/sin2ej,

&=2 L&(')+U(')3+-' 2 ('i) (4.1)

has been set up. The potential U has a Woods-Saxon
form plus a Coulomb potential,

In the spirit of what has been said in Sec. III, a semi-
phenomenological shell-model Hamiltonian

2Si,p

tan(28) =
Sp, o

—Si,x

(3.8) U(r)= —Uof(r) —U,.(m )-'1 s—V(r)+V '"'(r) (4.2)
dr

with

~

~

SI/2, 1/2+ S3/2, 8/2 S1/2, 8/2/v2=242
S1/2, 1/2+ S3/2, 8/2+ 4v2S1/2, 3/2

2S1/2, 3/2/(S1/2, 1/2 So/2, 8/2) . (3 10)

Since the sign of S&f2 3~2 may be changed without chang-
ing any observables there are two possible solutions for
e other than the —,'m ambiguity,

tan(28') = tan2(so+8) . (3.11)

Also it is easy to see that the change in sign of SJ/2 3/2

does not change the eigenvalues of the S matrix nor
their order. However, this modification changes the sign
of 8. Similarly, $&,p may be replaced by its negative
with a corresponding sign change of e. These changes in
Sy, p and S&~2,3~2 may not be made independently because
of the linear relationship PEq. (3.7)] between the S-
matrix elements in the two representations. The rotation
parameters e, 8, and ep have a simple interpretation. If
one defines the matrix

~

~

cos8 sin8
U(8) =

—sin& cos8
(3.12)

then the S matrix in diagonal form, S~, is taken to the
S matrix in L-S coupIing by

S(.,.i=U'()S U(). (3.13)

The matrix taking one from the L-S scheme to the j-j

Note that this solution is invariant to the replacement
of e by e'=a~-,'x accompanied by the interchange of
Sp y and 8& &'. Further, if there is no mixing in the j-j
coupling scheme (i.e., S1/2 8/2 ——0) the mixing parameter
ep is given by tan(280) =2v2. One may write

tan(28) = tan2(op+8), (3 9)
where

f(r) =$1+exp((r—R)/a)$ ',
E.= 1.74 fm, e= 0.4 fm,

Up=71.4 MeV, U„=4.5 MeV.

(43)

After choosing the listed values for R and u, the
depth of the central part is fixed to provide a bound pro-
ton S state at 19.8 MeV corresponding to the photo-
disintegration threshold of the reaction He'(y, p)Heo.
Then, the neutron S state in this potential is found at
20.7 MeV [compared to an energy of 20.6 MeV for the
threshold of He'(y, 28)Heo]. The root-mean-square radius
of the proton orbit is 1.75 fm (experimental value for
He is 1.63+0.04 fm). The spin-orbit splitting is essen-
tially a free parameter chosen to be of the order of mag-
nitude appropriate to nucleon scattering from He4. For
the calculation of the scattering phase shifts a Coulomb
potential with Z=2 was used, while in the calculation
of the photodisintegration the continuum waves were
constructed with Z=1. The Kurath force" is used for
the residual interaction. This force is an effective inter-
action which is determined by fitting the low-energy
properties of the nuclei of the p shell. The force is given
by

V(r) = —Vo/I'or+xsP. j(e "// r), -
Vp=36 MeV, @=0.714 fm—', (44)

"D.Kurath, Phys. Rev. 101, 216 (1956).

and P~ and P are the space and spin-exchange opera-
tors. The diagonal matrix elements of this force in the
X= 1 states, to which we restrict ourselves in this cal-
culation, are rather large. They are positive and all of
the same order of magnitude (about a factor 2 to 3
larger than the nondiagonal matrix elements. ) There-
fore, the proposed method for improving the conver-
gence of the 'Born series can be applied. And additional
central potential AU is chosen with a strength of 8.5
MeV. With this modification, diagonal elements of



1356 J. HOFNER AND C. M. SHAKIN 175

V=—V—4U become of the same order of magnitude as
the (unchanged) nondiagonal ones of V. Moreover, the
introduction of AU shifts the single-particle resonances,
which occur in Go'+) even further o6 the real axis. This
combined effect of AU causes the ratio

((4x I
I'Go&+& I71it»)&

z=l
(4» I

I'lk x)
(45)

~total ~

6—

l9.8 30
E&f MeV]

40

Fro. 1. The calculated (y,p) cross section under various ap-
proximations. Curve I: direct-interaction calculation C,

'residual
interaction V =0). Curve II: resonance approximation for
~%'E&&&+&) [Eq. (3.1)j.Curve III:direct-interaction approximation
for ~%'zq&+&) [Eq. (3.2)j. Potential parameters of [Eq. (4.3)j
(non-/-dependent potential. )

to be smaller than 3 at the energy of the Pa~2 resonance
(E„, 6 MeV), while it is of the order of tro for the other
energies. This is to be contrasted to the case d U=O,
where the ratio R takes values as large as 2, indicating
the divergence of the Born series. Therefore, we con-
clude that after having introduced dU of the given
strength, the direct-interaction approximation for our
wave function 0'g), (+) provides a T matrix which is ac-
curate to at least 10%.We cannot estimate the accuracy
of the resonance approximation for 0'~q(+&. However, we
Gnd that the calculated scattering phase shifts are very
insensitive as to which approximation is used (diGer-
ences of at most one degree occur in the phase shifts
even at 20 MeV, i.e., far from the resonances). The
reason for this lies in the fact that the matrix elements
of the S matrix for elastic scattering test the wave func-
tion 0'g), (+& only in the interior region. Indeed, we 6nd
that 85% of the value of the matrix elements of V
originate from regions of space with r(2.5 fm and we
infer that the approximation

I'I+»)=f(E,))I'I+ o ) (46)

is a good one for the calculation of the S matrix. Recall
that the solution with the approximation l Kq. (3.1)] is
even exact to the degree relation (4.6) holds. Therefore,
in the present calculation of the elastic scattering the
accuracy might be much better than the value of 10%
given above.

l9.8 30
E& f MeV]

35 40

FIG. 2. The calculated h', p) cross section compared to various
experimental data (Ref. 10) (points, vertical bars, and solid
circles). Direct-interaction approximation for

~
q'&», &+&) [Eq. (3.2) g.

Curve I:/-independent potential. Curve II:/-dependent potential
[Eq (47)3

8=1.74 fm, a=0.4 fm, U„=4.5 MeV,

Up ——75.4 MeV (f= 1)
=71.4 MeV (1=0),

(4 7)

in order to investigate the sensitivity of the results to
the shell-model potential. The results of the calculation
with the two choices for the potential parameters,
Eqs. (4.3) and (4.7), are given in Figs. 2—5.

A word concerning the experimental phase shifts in
the 1 channel may be appropriate. Here, the two solu-
tions of Refs. 7 and 8 which fit the data seem to di6er
rather drastically. However, by using the freedom which
consists in adding +—,x to the value of t., associated with
an interchange of the eigenphases, one can make them
fall on top of each other. %e subtracted —,'x from the 6 of
solution' and used the reQection invariance around
e&&= —55 l Eq. (3.10)] to bring the two derived values
of e as close as possible.

The two choices for the shell potential, Kqs. (4.3) and
(4.7), yield similar results. The threshold behavior. is
well reproduced; however, both choices give a cross sec-

These estimates do not hold for the calculation of the
(y,p) cross section. Here, we have found that only 50%
of the value of the matrix element originates from re-
gions with r&2.5 fm. The shape and magnitude of the
(y,p) cross section is more sensitive to the details of the
wave function. Figure 1 supports this idea. The (y,p)
total cross section is shown for the two approximations
for l%&rx) l Eqs. (3.1) and (3.2)]. The difference is re-
markable and experiment clearly favors the second
choice. On the basis of arguinents concerning the con-
vergence of the Born series we estimate the accuracy of
the (y,p) calculation to be about 30% around E„=26
MeV and about 10% elsewhere.

Calculations were performed using the potential
parameters of Eq. (4.3). In addition, an /-dependent
potential was used with the parameters
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tion which is about 50% too large at their maxima. This
discrepancy does not seem to arise from the approxima-
tions which are made in solving the model problem but
probably represents a de6ciency in the model itself.
Similar discrepancies have also arisen in other calcula-
tions of photonuclear reactions. The source of the dis-
crepancy in this calculation may be due to the use of
a local and energy-independent shell-model potential,
This suggestion is supported by the observation that at
the proton energies Z„5 MeV (Ev 25 MeV), where
the (y,p) cross section becomes too large, the phase shifts
in the 2 and in one 1 channel are found to exceed the
experimental ones (Figs. 4 and 5). Recall that the po-
tential U is chosen to give a bound 8 state about
—20 Mev. %e essentially have no information about
the energy dependence of this potential or its strength
in the I' states.

V. COCCI USIOÃS

The following conclusions may be drawn:

1. In this application. of the shell model in the con-
tinuum, a detailed comparison between experiment and
theory has been made. An over-all qualitative agreement
is obtained with essentially no free parameters. The re-
sults tend to support the basic ideas of the model. The
eIIfort involved was not appreciably greater than in an
ordinary shell-model calculation, A calculational ac-
curacy of a few percent seems to be more than sufficient
for a calculation of this type because the shell-modeL ap-
proach itself as a way to solve the many-body problem
does not seem to give a more accurate description of

l0

8, , [degreesl

X X

X

X .. ~

Oo
0

=0

I

lo
Ec ~[MeV]

lOOO

50'

~'
3, f degrees]

50O—

0'
0 5 IO

Ec,l.[Me&l

FiG. 4. The I'-wave. phase shifts b8, 1, for J =0 (bl, g') andJ =2 (b~, l2). The solid circles (Ref. 7) and the crosses (Ref. 8)
were derived from analyzing experimental data. A direct-interac-
tion approximation (3.2) is used for ~%xx&+&). Curve I: /-inde-
pendent potential i'Eq. (4.3)]. Curve II: l-dependent potential
LEq (47)1

reality. This is true at least for the system considered
here, where the relative success of the model is rather
surprising.

2. It has been found that the calculation of the photo-
absorption cross section provides a more sensitive test
of the approximations made for the wave function than

-50

-l00 - 3', z [degrees l

Ec.a[MeVl

-50O—
J =0

0
Oo e~y ~ s

5 IO

Ec.ii4. [MeVl Q
11 r' I

11 ~
( ) ~

o

=2

0
-lOO' —80 0 [degrees]

FIG. 3.The S-wave phase shifts b8, 1,~ for singlet (b0, 00)and triplet
(bl, o') channel spin. The solid circles (Ref. 7) and the crosses
(Ref. 8) were derived from analyzing experimental data. A direct-
interaction approximation analogous to Eq. (3,2) is used for

-50'„-E [degrees]

Fro. 5. The 5 matrix in the 1 channel. The two eigenphases b~
and b2 are given together with the mixing parameter e (in I;8
representation) LEqs. (3.5) to (3.14}j.The experimental data of
Refs. 7 and 8 have been made to coincide as well as possible by a

rocedure described in the text. Curve I: /-independent potential
Eq. (4,3}j. Curve II: f-dependent potential LEq. (4.7)g.
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the calculation of the scattering phase shifts. This ob-
servation parallels the well-known fact in bound-state
shell-model calculations that energy levels are less sen-
sitive to the model wave functions than transition rates.
A fairly good description of the scattering process is
probably obtained even with rather crude approxima-
tions. The energy dependence of the total wave function
of the system appears to be quite important in explain-
ing the shape of the photoabsorption cross section.

3. Not too much can be said concerning the energy
dependence (or nonlocality) of the shell-model potential.
However, we feel that at least part of the discrepancy

may be removed by a more reined choice of the shell-

model potential or the effective interaction.
Note added in proof. Recently another calculation of

the photodisintegration cross section of He' has ap-
peared LF. Beck and A. Miiller Aruke, Phys. Letters
27$, 343 (1968)j.
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A beam of (140+0.5)-MeV e was produced at the Berkely 184-in. cyclotron and used to study the Gnal-

state interactions of three and four neutrons, and to look for excited levels of the e particle through the
reactions

m +4He-+ m +4He~,
~ p+Bn~ fg+2Ny~ x++4n.

Only one such level is found, with an excitation energy of 32 MeV and an intrinsic width smaller than our
1-MeV resolution. Ke Gnd that our data on the four-neutron anal state, although not inconsistent with

phase space, agree more closely with the assumption that there is a 'So 6nal-state interaction between two

of the neutrons, the other two not interacting. Ke 6nd, too, that deuteron production is down by a factor
of =10' from proton production, and that the proton spectrum indicates a stronger-than-expected inter-

action between the three neutrons in the 6nal state. Lower limits for the production of a tri- or tetraneutron

are set.

I. INTRODUCTIGÃ

HK 8-8 interaction at low energies has been ex-

tensively studied through reactions such as

D(n, p)2n, ' 'H(l, d)2N, ' and T(d, 'He)2n, ' and through

a diferent approach by the reaction m D ~2',4 where

in the final state only the two neutrons are strongly
interacting. The theory for the analysis of the data ob-
tained in these experiments is well enough known3 ' ~

that it is not discussed here.
On the other hand, data on the three- and four-

neutron systems are scarce and inadequate, and theo-

retical predictions are contradicting and inconclusive.
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A. Three-Neutron System

The 'e has been searched for through the reaction
sH(n, P)3n. In 1965 Ajdacic et a/. reported observing a
proton distribution of energy that led to a 'n bound. by
about 1 MeV. S This experiment was repeated later at
Oak Ridge National Laboratory, ' and no evidence for
the existence of the 'e system was observed.

A paper by Mitra and Bhasin" predicts the existence
of the 'I, They argue that only a moderate 'E attractive
force is needed between all neutron pairs to yield a
bound 'n system, and they Predict an (LSJ)= (1, ss, s)
state s,s the most likely, with (1, s, ss) a second best.
Mitra and Bhasin comment that the existence of the 3N

is independent of the 4e, for in the latter the 'So re-
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