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Binding Enexgies of Open-Shell Nuclei

MARIA DwoRzEcKA+ AND CHINDHU S, WARKE

Tata Institute of Fnm4nsenta/ Research, Bonsbay, India

(Received 3 June 1968)

The binding energies of open-shell nuclei {2s-1d) are calculated from the approximate Hartree-Fock solu-
tion along with the use of the projection technique, both for the Yale potential and for a nonlocal separable
potential. It is observed that though the Vale potential gives better binding than the nonlocal potential does,
it still gives lower values than the experimental numbers, as was the case for the 0"nucleus.

I. INTRODUCTION

''T is well known that because of the very strong
~ ~ repulsive nature of the short-range internucleon
forces, the simple perturbation methods and the varia-
tional methods are not directly applicable. However,
various different approaches have been suggested in
the literature to cope with this difhculty. ' Following
Villars' approach, Shakin and Waghmare' obtained the
effective Hamiltonian by making a unitary transforma-
tion on the unperturbed wave functions. Using a rather
different approach, Kuo and Brown4 have also utilized
an effective interaction of a pair of nucleons inside a
nucleus. These approaches thus provide a way to carry
out Hartree-Fock (HF) calculations for nuclei even
though the nucleon-nucleon interaction is singular.

In this paper we will use the Yale potential, ' since its
effective-interaction matrix elements are available. '
Because of a difhculty in the construction of good
antisymmetric angular momentum states for open-shell
nuclei, the authors of Refs. 4 and 6 restrict their
calculations to doubly-closed-shell nuclei. The second

difhculty that one encounters with open-shell nuclei is
that of renormalization of the effective interaction for
the outer nucleons due to core polarization. This latter

difhculty has been investigated in Ref. 4 in the case of
the 0"nucleus. Our aim here is to determine the bindiog
energies of 2s—1d-shell nuclei using the Yale potential.
We avoid the 6rst diS.culty by using the projection
technique, 7 and the second by using a perturbation
method based on the HF solution for the 0"nucleus.

A necessary theoretical formulation is carried out in
Sec. II. Results of the calculations are presented in
Sec. III. Section IV summarizes the results.
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II. THEORETICAL FORMULATION

The Hamiltonian of a system of nucleons interacting
via a free nucleon-nucleon interaction can be trans-
formed by a unitary transformation into an effective
Hamiltonian II.2 Its approximate form as given in
Ref. 5 is

II=+ (rt) p'/2nt(tn)a„ttt„

+-', P (ntnlu, rtllp)u ' ata, a , t(1)

where the necessary matrix elements of 'U, ff are also
given. Since we make use of the projection technique to
calculate the binding energies of the open-shell nuclei,
we should have to carry out deformed HF calculations
based on the Hamiltonian in Eq. (1).Any such calcula-
tions certainly would be very involved. In the follow-

ing, we use an approximate scheme to reduce the calcu-
lations to manageable size.

A. Approximate Hartree-Pock Solution

One expects the single-particle orbitals of the total
HF solution of open-shell nuclei to be deformed.

However, the core orbitals should have essentially
spherical symmetry. Let us consider a nucleus of A

core particles and S outer nucleons. We now look for
an approximation to the total HF problem that will

reduce it to two separate HF calculations. One is the
HF solution for the core nucleons, the results of which

are available. ' Another is the deformed HF calculation
for outer nucleons. In the following, we investigate the
single-particle energies and the two-body interaction
that should be used in the latter HF calculations. We
then 6nd the binding energies of 2s-id-shell nuclei from
this approximate solution, using the projection
technique.

The total HF energy from Eq. (1) is

(lt)=E (~)+& (&)+ 2 8 I ~I@) (2)

where tP;(s=1, , A+Ã) are the orthonormal set of

single-particle orbitals to be found from the minimiza-

tion of Eq. (2). The other symbols in Eq. (2) are as
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follows:

E .(A)=Z8;l~'/2 l~'}

+k Z O'Al'U. «(1 I''—)144 )

and a similar expression for EIII ($), and

8;II I~')= 2 9'&;l~. (I-~';)l~'~;),

I';; being the particle exchange operator.
Considering the fact that the core orbitals will re-

main mostly spherical if the last term is a small per-
turbation, the zeroth-order approximation for the core
orbitals f;(') (i= 1, , A) can be obtained from the
spherical HF solution of E«F(A). From this known
solution one then calculates the excited orbitals and
their energies. Let us denote this HP Hamiltonian by
ho, with eigenfunctions and eigenvalues ))(;(0) and e;
respectively. If one minimizes EHp for the variations of
f;(0)(i= 1, A), taking into account the last term in
Eq. (2), one obtains the following equation for f;:

amplitude A„ for the 0,th orbital to be empty as

A =Pi —Q p p'11(2. (6)

From Eqs. (4) and (6) we have

A;
(7)'» (~f—~')

Substituting Eq. P) into Eq. (5) and rearranging
terms we obtain

EIIF(iP;)=EHP(APP;(0))+E«P" (X) (8)

where the renormalized HF energy Effs'(Ã) of the
outer E nucleons is

E»"(&)= Z &0 I&14')

A+M

+l Z &~;~,I~I~;~;~,S;). (9)

The modified one-body potential t and the renormalized
two-body interaction 'U have the following form:

t(i)=P j2fN+ Q (a~'U, ff(i1)(1 8'I) ~cK)

(I.+I)~;=~,~; ('=1, ",A) (3) and

Using 6rst-order perturbation theory, one obtains
from Eq. (3)

lf, .(I)=f.(0)+(g—h )-IPP.(0)=g.(0)+g.
for i= 1, , A. (4)

Since the HF orbitals form an orthonormal set, 8f;
in Eq. (4) is orthogonal to f;(') (i=i, , A) as well
as to P; (i=A+1, ~,A+X). In our problem we treat
it in a certain approximate manner. As our f;(') are the
HF solutions of E»(A), the change in it due to the
change of f;=f;(0)+big; (i= 1, , A) is at least of
second order in bP;. Keeping up to linear terms in
l)P;, we obtain from Eq. (3)

E .(~)=E-(A,~; )+E .(~)+2 «; )II l~;"')

'U(i j)=U.«(i,j)+2 Z 2
a~1 Ns)A.

X (~l'U.«(i, i) (1—~'I) I «) («I'U.ff(j,i)
X(1—ZI) im). (10)

The bracketed matrix element in Eq. (10) denotes

(~l'U. «(f, i)(1—&;I)I«) = 0-*(0)&1)U.ff(i, i)

X (1—II';I)P.(0) (1)dPI.

%e can now obtain the deformed HF orbitals for the
outer E nucleons by minimizing EHp(E) in Eq. (9).
To start with we may substitute some values for 2;

+2K&v;ill~; }. (3)

The condition that g; be orthogonal to f;")(i=i,
~ ~ A) can easily be accounted for by simply excluding
these orbitals in the expansion of bf; in Eq (4). How. -
cvcl', lt ls dlfllcult to cllfol'cc thc condltlon tllat 8f
should be orthogonal to ))(;(i=A+1, ~, A+Ã),
simply because we have not yet obtained these orbitals.
At this stage we introduce an approximation that
maintains this orthogonality on the average. Let p p
be the one-particle density matrix for the outer nucleons.
Then Zpp p~ is the probability that the o.th state is
occupied by these outer E nucleons. Ke de6ne the I 10. 1. Diagrams contributing to last term in Eq. (10).
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and then obtain the deformed HF solution for outer
nucleons. From this solution we can reconstruct A;
and iterate the process until we get a self-consistent
solution. The last term in Eq. (10) is essentially the
contribution of the diagrams shown in Fig. 1. The
renormalized interaction in Eq. (10) is similar to Kuo
and Brown's4 core-polarization correction to obtain a
model interaction.

In our formulation the core wave function has a
form similar to that of a spherical doubly-closed-shell
nucleus. In this case the geometrical sums involved in

Eq. (10) can be carried out if one assumes that A

does not depend on the projection of the angular
momentum. After performing some straightforward
angular momentum algebra, one obtains the following
expression for the matrix element of s(i,j):

(nl/1 Jlnslsgsi J2
I
U

I
nl ll $1 n2 4 J2 j JT& (nlilgln24$2) JTI Ueff In'1 ll Jl ns ls $2 )

$1 J tn J1 g g Tl

+2 Q (Phase)(2T1+1)(2T2+1)(2J1+1)(2J2+1) j, J2 j —', T2 -,'A(n, l )
rx &A,972 &A
J1T1J2T2 J2 Jl ~ 2

X(nlllgln~l~g~, JF'2l'Ueff
I
ni 4 gin. l y; J2T2&(nslsysn 1 g. , J22 I2'U. ffln2 4'g2'n~4ym, J22'2&

X (2 —2.) '. (11)

The superscript a on U and U,ff in Eq. (11) denotes the
antisymmetrized matrix elements, and

(Phase) = (—1)~2+~2'+1+~+»'+»'+2'+»+».

We will not quote the usual complicated expressions5
for the matrix elements occurring in Kq. (11).

B. Corr8ctioQ to th8 TroncRt8d. HF SohitiQrl

In doing the HF calculations, one usually conies
oneself to a set of harmonic-oscillator orbitals, and
thereby neglects the higher configurations. In this sub-
section we study the effect of this approximation on the
HF solution. We follow the projection-operator tech-
nique of Feshbach. ' One knows that a minimization of
the total energy of a system of nucleons with respect
to a determinantal wave function, formed from the
one-particle wave functions P, , leads to the HF equation
hp= 21t. The wave functions p, are the eigenfunctions of
h with eigenvalues &;. The one-body HF Hamiltonian h

ls given by

h(2) =&(2)+2 (19-l&(2,~) (1—J''-) l0-)

=&(')+2 (0-I U l4-), (12)

where t and 'U are the one-body and the two-body
potential. Let I' be the operator that projects out the
set of orbitals used in a truncated HF solution. Let us
also define an orthogonal operator Q=1 I', so that—
EQ=O. Since P and Q project out a certain set of
functions, we have Es=» and. Q'= Q. Writing
/=I'iP+Qf, it is not difficult to observe from the HF
equation that

I Q4) =11(s h99)ho~ I
J'4&—

~..l~~&+~"I( h-»"I~~&= l~~-&. (13)

' H. Feshbsch, Allfl. Phys. (N. Y.) 19, 287 (1962).

where we have used the notation hi 9=I'lfQ, etc.
Similarly, V in Eq. (12) can also be rewritten as

I'=1 (»J')+ i (J' Q)+~(Q»)+ l'(Q Q) " (14)

~(»Q) =Z-(J'4. l'U'IQ4-), «c.

From Kqs. (13) and (14) one finally obtains

(ho+ ~»(Q J')+ ~»(Q ~)+~»(Q Q)

+ h po I (2—h99)ho~} I zp&

=&7o+~'()}I~~&= l~~& (»)
In the truncated HF problem one solves the eigenvalue

problem

I oI J'4'&=9+~ (»J') jl J'4'&=n'lI'f~& (16)

From Kqs. (15) and (16) one can determine corrections
to the truncated HF solution using standard perturba-
tion theory. In this paper we have not carried out any
corrections to our HF solution.

III. RESULTS

We use two sets of potentials in applying the formula-
tion developed in Sec. II.One is the Yale potentia15 and
the other a separable nonlocal s-state potential used in
Ref. 9. The necessary HF solution for the core nuc1.cons
and the matrix elements of 'U, gg with respect to this
basis set are taken from Refs. 6 and 9. Both these
potentials fail to reproduce the experimental spectra of
0'~. At this stage it is necessary to mention that
we take a single oscillator radial orbit as the HF
solution of the core. As can be seen from Refs. 6
and. 9, this is not a bad approximation. We use
f1= (5/nu0)'f2= 1.76 F as the oscillator strength param-
eter in our calculations. Using these core wave func-

9R. Muthukrishnan and M. Baranger, Phys. Letters jl.s, 160
(1965).
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Nucleus

180
l&F
20P~¹
"Ne
"Na22¹
"Na
"Mg

Calculated binding energies
in MeV

Nonlocal
separable
potential

7.96
11.37
16.22
19.45
24.69
28.56
33.42
38.86
50.12

Yale
potential

6.67
15.81
18.71
29.10
33.48
38.13
40.79
51.89
67.99

Experimental
binding energies

in MeV

12.2
20.2
26.78
33.27
40.02
46.77
50.39
59.18
70.88

a Reference S.
b Reference 9.
e L. A. Konig, J. H. E. Mattauch, and A. H. Wapstra, Noel. Phys. 31,

18 (j.9u2').

TABLE I. Calculated binding energies of 2s—id-shell nuclei for
the Yale and the nonlocal separableb potential are tabulated in
the second column. The corresponding experimental values' are
given in the third column. All the binding energies are relative to
the 0" binding energy. The calculated binding energies are
corrected for the column and the center-of-mass energies.

binding energies of the open-shell nuclei if the core HF
solution does so for the core nucleus. Thus by presenting
the results relative to the O" nucleus we shall be ex-
cluding the deviations arising from the core HF solu-
tion that we used. Binding energies calculated in this
way are presented in Table I. Most of the HF solutions
were found to be spherical. One observes from Table I
that both potentials fail to provide enough binding,
as was the case for 0"HF calculations "Secondly the
nonlocal separable potential (6tted to reproduce
nuclear-matter parameters) gives much less binding
than the Yale potential. This shows that even though
a potential reproduces the correct nuclear-matter
saturation density and the binding, it is not necessary
that it should reproduce the binding energies of Gnite
nuclei. One interesting feature of the results presented
in Table I is that, all the calculated binding energies
(from the Yale potential) differ bf about 6 MeV from
their respective experimental values.

tions and the calculated single-particle energies of O'~,

the matrix elements of the renormalized interaction in
Eq. (11) are calculated for each individual nucleus
under investigation. To a 6rst approximation we assume
that the outer nucleon orbitals are 6lled in the order of
the harmonic-oscillator orbitals. Thereby the prob-
ability of occupation of any shell can be approximated
by the ratio of the number of particles in that shell to
its total degeneracy. Values thus calculated are used
for A(l, t) in Eq. (11).Using the normal procedures, we
then carry out the axially deformed HF solution for
outer nucleons from Eqs. (9), (10), and. (11). The
binding energy of a nucleus relative to that of a core
nucleus is the projected energy for a total angular
momentum I=E, obtained from the above HF solution.
Since we do not yet know any HF solution for the O"
that reprodnces its binding energy correctly, it is
advisable to present our results relative to that for the
O" nucleus. This is necessary in order to 6nd out
whether the above approach will reproduce the correct

IV. CONCLUSION

The HF problem for open-shell nuclei is approxi-
mated by two separate HF calculations. One is the
spherical HF one for the core nucleons, and the other
the deformed HF one for the outer nucleons. In this
formulation the eGect of core polarization naturally
comes in through the renormalization of the one-body
and two-body potentials of the outer nucleons. This
formulation has been applied to calculate the binding
energies of 2s-id-shell nuclei. The calculations are
carried out for two sets of potentials, one the Yale
potential' and the other a nonlocal separable potential. '
It turns out that the Yale potential gives better binding
energies than the nonlocal potential. It is also observed
that the calculated Yale potential binding energies
diGer from their experimental values by an approxi-
mately constant value of 6 MeV. We conjecture that the
above approach will reproduce the correct binding
energies of the open shell nuclei, if the core HF solution
used does so for the core nucleus.


