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The variational method recently proposed by Harris for calculation of scattering phase
shifts is analyzed in the context of the standard methods of Kohn and Hulthdn. The Hulthdn
method is shown to give a result identical to the Harris method at the energy eigenvalues
characteristic of the latter. The Kohn method and its analog for the cotangent of the phase
shift, the second Hulthdn or Rubinow method, lead to somewhat different limiting values of
the phase shift at a Harris eigenvalue. The Harris method is an application to nonresonant
situations of a formalism appropriate to scattering resonances. A new method is proposed
to deal with stationary states, true resonances, and nonresonant scattering within a com-
mon formalism, which defines effective width and shift functions for all values of the ener-
gy in terms of a Breit-Wigner formula. The proposed resonance formalism is expressed
in forms equivalent to the Rubinow method and to the Hulthdn method. A method of smooth-
ing out irregular behavior of computed Hulthdn phase shifts, due to branch points at Harris
eigenvalues, is proposed. The Kohn and Rubinow methods are shown to give smooth re-
sults near Harris eigenvalues. Spurious fluctuations encountered in computations by the
Kohn method are shown to be due to poles not present in the Hulthdn method. Similar poles
occur in the Rubinow method, but at different energy values. A criterion is suggested for
avoiding the irregular behavior due to these poles by making an appropriate choice of either
the Kohn or the Rubinow formula at a given energy. The formal discussion is illustrated
by some computed results for S-wave scattering by an attractive exponential potential.

I. INTRODUCTION

A new variational method for calculation of scat-
tering phase shifts has recently been proposed by
Harris' and applied to low-energy electron-hydro-
gen atom scattering by Michels and Harris. ' In
this method, applied to potential scattering, a
variational function is constructed in the form

(7). The functions qt(r) vanish at r =0.
In standard variational methods' a function is

constructed of the form

$=Q+S+tC,

n

where
Z Z

The coefficients cz are determined by the condition
that (H —E) g should have no components in the
space of the functions gz,

where the basis functions g z
are quadratically in-

tegrable, and the coefficients cz & satisfy the ei-
genvalue equation or

(g. lH EI()=0, i =-1, . . . ,n,

Z.(q. IH —E lq. )c. = —(q. IH —E IS +tC),
g j j z

(10)

The tangent of the phase shift, t, for a partial wave
expansion, is determined by the condition

(Q IH-E IS +tC)=0,
p. p,

where S and C are, respectively, sine-like and co-
sine-like functions that are asymptotic eigenfunc-
tions of H with energy, in atomic units,

(4)

For S waves, the Schrodinger equation is equiva-
lent to a one-dimensional equation with

H = ——,
' (d'/d~') + V(r) (5)

The unnormalizable functions S and C are asymp-
totically

S - sinks, (6)
C - cosh'. (7)

In practice a factor such as (1 —e —~) is includedin
C to make it vanish at t = 0 without affecting Eq.

134

t =1, . . . , n. (11)

It can easily be seen that Eq. (3) is a necessary
condition for the existence of a solution of the in-
homogeneous system of Eqs. (11)at an eigenvalue
E&, at which the homogeneous part of Eqs. (11)
becomes singular. It follows immediately from this
that the Kohn' and Hulthen' methods and other vari-
ational methods which use Eqs. (11), if they give
a well-defined value of t(E) for E near E&, might
be expected to give identical values of t at E&.
This common limit would be the Harris value

t = —(P IH —E IS)/(p IH —E I C),
p, p, p. p, p,

from Eq. (3). In the present paper it will be shown
how this result comes about in detail for the Hul-
then method, by extending the Harris method to a
formalism valid for general values of E. Contrary
to expectation, the Kohn method will be shown to
lead to a different limiting value of t.

The problem of matching an internal solution P~
of a potential problem to an external solution S +tC
175
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is characteristic of the theory of scattering reso-
nances. A conceptual difficulty arises in the Harris
method because Q&, which is intuitively identified
with the internal part of the true wave function g,
appears to be orthogonal to the function P of Eq. (9)
as a consequence of the choice of t to satisfy Eq.
(3), a necessary condition for the existence of a
solution of Eqs. (11). When Eq. (3) is satisfied,
an arbitrary multiple of P& can be added to Q. It
will be shown here that the coefficient of Q& in g
can be determined by a limiting process as E ap-
proaches Ep, . In the Kohn method, this coefficient
becomes infinite at E~.

In order to carry out this analysis, the Harris
method as well as various forms of the standard
variational methods are reformulated here as spe-
cial cases of the theory of resonances. ' In the
course of this analysis, a new method is proposed
for treating true resonances and nonresonant scat-
tering within a common formalism. The methods
considered here are intended to provide a formal-
ism for scattering theory that as much as possible
makes use of techniques developed for stationary-
state computations.

When the basis set gz is incomplete, these two con-
ditions in general are incompatible. If used to de-
termine t, the tangent of the phase shift, they
would give two different values

(21)

I (t) =M00+ (M0, +M,0)t yM»t0 = 0. (23)

From Eqs. (16) and (18) and from the fact that
Q„etc. , are independent of the parameter t, it
follows that

8I/et = ,' k+ 2—(M,0+M„t) (24)

8(It-0)/s(t-') = —,'k+2(M0, PM00t '). (25)

For an exact eigenfunction, or more generally,
from Eq. (20) if t is equal to tII of Eq. (22),

t = —M /M01,

t = —M,0/M„. (22)

The function I (t) given by Eq. (16)is a linear com-
bination of Eqs. (19) and (20). The Hulthhn varia-
tional method' determines t as a root of the qua-
dratic equation

II. STANDARD VARIATIONAL METHODS

g = (QS+S)+ t((f&C + C),

where (g. IH-E I QS) = —(rl,. IH-E IS),

(13)

Following Schwartz, ' it is convenient to express
g of Eq. (8) as

&I/st= ,'k, if t=—tII.

Similarly, from Eqs. (19), (21), and (25),

8 (I t ')/&(t ') = ——,
' k, if t = tl.

It follows from Eq. (26) that

t~ ——t —(2/k)I (t )

(26)

(2'7)

(28)

I(t) = (g I H —E I g),

=M P (1Vi01+MM) t+M„t',

where M0, = (SIH —E I QS +S),

M, = (SIH —E I PC+C),

(15)

(16)

(g. lH EIP )= —(q. lH EIC), i-=1, . . . , n (14).

The functions pS; pC are expanded in the form of
Eq. (9) with coefficients ct, . ct, which separately
satisfy inhomogeneous equations whose inhomoge-
neous parts are, respectively, —(gtl H- El S ) and
—('OtlH-EIC). Then Eqs. (11) are satisfied iden-
tically for all values of the parameter t.

Define the variational functional

is stationary within the constraints imposed by
choice of a basis set 1};.Equation (28) is used to
determine t in the method of Kohn. 4 An analogous
result holds for

.tH-'—- tl '~(2/k)I (t )t (29)

as a consequence of Eq. (2V). 0

Some insight intothe significance of Eq. (28) can
be gainedby recognizing that itis equivalent to mak
ing a linear extrapolation from tD to the Hulthen
value of t, for which I(t) vanishes. This gives,
from Eq. (26),

0=I (t) =I (tll)+-,'k(t- tII). (30)

Hence, making use of Eq. (20),

M,0 =(C IH —E I PS+ S),

M„= (C IH- E I PC +C).

Equations (14) have been used in deriving Eq. (16).
If H is given by Eq. (5) and S and C by Eqs. (6) and
(V), it follows from the fact that QS and + are
bounded functions that (in atomic units)

t =t —(2/k)I(t )

= t„(2/k)(M„+M-„t„)
= —(M,./M„) —(2/kM„)detM,

where detM = M00M11 M01M10 ~

(31)

(32)

Mpy Myp +' p Q ~ (18)
For comparison, the Hulthen value of t can be ex-
pressed by

For a general value of E in the scattering contin-
uum an exact eigenfunction wouM satisfy the
Schrodinger equation, implying ll ll

(33)

(S IH —E lg) =M00yM t=00, condition I,

(C I H E I g) =M„,+M»t —= 0, condition II.
(19)
(20)

from Eqs. (18) and (23). Obviously Eq. (31) is the
linear term in a power series expansion of Eq.
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(33) in powers of detM. The two equations coin-
cide when detM vanishes, as it does whenever
tl and tg, given, respectively, by Eqs. (21) and (22
(22), are equal.

Equation (29) can also be shown to be a linear
approximation to the Hulthen value of t, starting
from tl. From Eq. (19),

t ' = t '+ (2/k)(M, ot '+M„)

The matrix elements defined by Eq. (17) can be
expressed as

+z M (z-z )-iM

+z M (z z )-iM

(42)

= —(Mo, /Mo, ) +(2/kM00)detM . (34)
+Z M (Z Z )-&MI C (v af mS'

The Hultheri value can be expressed in the form

tH '-- ——-~'- —~, 1 —
~~ detM —1 . (35)16

H ~oo 4Moo

Equation (34) is a linear approximation to the ex-
pansion of Eq. (35) in powers of detM.

It can easily be shown that an attempt to use both

tI and tII in a linear extrapolation formula leads
again to the Kohn formula, Eq. (31) or to Eq. (34).
Since

I (tl) = (MOO/Mo, ')detM,

and I(t 1) =M„-'detM,

M„=MCC+5 MC (E —E ) 'M

where MSS= (SIH —E IS), etc.

As E approaches E&, an eigenvalue of Eq. (2),

(z z )M„-M
p, 'o Sp. p,S'

(E —E )Mo, -M M
Sp. p.C'

(z z )M„-M
Cp pS'

(E —E )M„-MC M
Cp, p. C

(43)

(44)

or

t =[I (tl) tll
—I (tll) tl]/[I (tl) —I (tll)j = tIt

the linear extrapolation formula gives, from Eqs.
(21), (22), and (36), The matrix of M is Hermitian whenever one in-

dex refers to a!normalizable function such as Q&.
It follows from this that Eqs. (21) and (22) become
identical in the limit indicated by Eq. (44):

(38)
t,(z )=t,(z )=-M /MI p, II p, pS pC' (45)

III. THE HARRIS METHOD

for matrix elements evaluated at Ep; This limit is
equal to t& as determined by Eq. (3), equivalent to

The eigenvectors of Eq. (2) lead to orthonormal
functions

(39)

M (E )+M C(E )t =0.
pS p, gC p, p,

The Hulthen condition, Eq. (23), becomes

M ' y2M Q Ct+M 't'
p,S p, p. C p.C

(46)

The Q~ are eigenfunctions of H within the Hilbert
space spanned by the basis functions pz. In particu-
lar, the functions Q and pC of Eq. (14) can be ex-
panded in terms of Ke P 'and the eigenvalues E,

y = + y (z-z )-'M s,
a=1

= (M S+M Ct)2 = 0, (47)pS pC

equivalent to Eq. (46).
From Eqs. (40) and (44) it follows that the limit

of the function Q, in Eq. (8), as E approaches E
and t approaches t&, is

+ Q (E —E )-'[M S(E )+M (E )t ]Q p, n QS p. NC p p

pc= Qy (z-z )-M
=1

where M = (P IH —E IS),eS a
M C

= (P IH —E I C).

(40) (&/&E)[M (E)+M C(E) t(EI)] iz . (48)
p, pS pC

IV. RESONANCE FORMALISM

Several of the expressions for the tangent of the
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phase shift considered here can be put into the
form

a (E)--2k '[M M —2k-'D "'] .
Cg p$

(54)

t =( —' r (z)/[ z —z —~ (E)]}, (49)
The limiting value of I'~(E) is non-negative, as it
must be for I & to be identified with the width of a
resonant energy level. The limiting value of t is

= —M „/(M„- 2k-'detM)

2k- '(E —E~)MOO

x [Z —E- +2k '(E —E&)(M» —2k 'detM)]
p,

;r (E)/[E-E —~ (E)], (so)

where I' (E) =4k-'(E-E )M« (51)

and 6 (E) = —2k '(E —E )(M„—2k 'detM). (52)
p,

where, in general, the functions I
&

and b& have
nonzero values at E =E&. If &&(E&) is small
has a pole near E~, and Eq. (49) is a form of
Breit-%igner formula. This formula describes a
scattering resonance unless I'& vanishes at the
pole. ' The width of the resonance is given by I'&
(E&) if &~ is small. The usual potential-scattering
contribution to the resonance formula for t occurs
in Eq. (49) through the energy dependence of the
functions r&(E) and &g(E). The Feshbach theory
of resonant scattering~ can be adapted to the pre-
sent analysis if the interior space Q is identified
with the finite dimensional space spanned by the
basis functions gz . The external space P contains
only the functions S and C, orthogonalized to the
gf, or equivalently, to the eigenfunctions Q~. At
a given energy E, the Green's function used in the
Feshbach theory must be replaced by some approx-
imate solution of the two Eqs. (19) and (20), which
are in general incompatible. This brings the theory
back to the standard dilemma of all finite varia-
tional methods, and an arbitrary choice of methods
must be made.

It will be shown in the following section that the
Hulthen value of the tangent of the phase shift does
not vary smoothly in the immediate neighborhood
of an eigenvalue E& of Eq. (2). This is due to a
pole in detM, which leads to two closely spaced
branch points in tII, In contrast, the Kohn4 or
Rubinow' formulas, Eqs. (28) or (29), respectively,
do not have singularities at E&. Either the Hulthen
or Rubinow methods, introduced at this point in the
Feshbach formaljsm, lead to an expression for t
equivalent to Eq. (49), where E~ is an eigenvalue
of Eqs. (2).

By use of Eq. (18), Eq. (34) can be written in the
form

t --'I (E )/~ (E )R 2 p p p, p,

M /[M —2k-'D &'&/M ~]. (SS)

This differs from the Harris value t& unless D&"&
vanishes.

The Hulthen formula, Eq. (35), can also be ex-
pressed in the Breit-Wigner form, Eq. (50), with

I" (E) =4k '(E E)M-OO

and ~ (Z)=-2k-'(E-E )(M»
p, p.

(56)

g/2

+4k[(l —16k 'detM) —1]} . (57)

As-E a,pproaches E&,

I' gz) 4k-2M~ M
p. Sp. pS '

~ (E)--2k 'M~ M
Cp, pS '

(s8)

(s9)

a,nd t~--Ms /M~II Sp, Cp. ' (6o)

V. BEHAVIOR NEAR A PSEUDORESONANCE

equal to the Harris value t
Equations (50) —(52) or (k7) provide a common

formalism for computations of resonant and
nonresonant scattering. The Harris method is
characterized by the introduction of a pseudoreso-
nance, at the energy E&, which in general is a
pure artifact of the computation, depending on an
arbitrary choice of the basis function set g~. Such
a pseudoresonance will have values of I' and b&
with a. finite ratio, tp, the tangent of the phase
shift. The eigenvalue E, which has no physical
significance, will not approach a definite limit.

In contrast, at a physical resonance, the eigen-
value E& can be expected to approach a definite
limit as the set gz approaches completeness, as in
calculations by Taylor and Williams' and by Miller,
equivalent to the solution of Eq. (2). This charac-
teristic behavior could be used in practical com-
putations to distinguish between physical reso-
nances and pseudoresonances.

Both of these functions have nonzero limits as E
approaches E~. It will be shown in the following
section that detM has a simple pole at Ep, of the
form D&"'(E—Ep)-'. Then, by Eqs. (42), as E
approaches E,&'

(61)

Illustrative calculations of the S-wave phase
sh&t 5p were carried out for the potential function

V(~) =- e
with basis functions of the form

r„(z)-4k- M
Sp, pS' (53)

- 2.5x'g. =f' e ~
z= 1~. . . y8.

Z
(62)
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TABLE I. Tangent of the phase shift for k near k
p

t a
I

t b
II

E

0.482 078

2.744 32

2.736 13

2.847 03

2.845 17g

2.851 36

2.849 49g

g=4 k =0.492078 E =0.121070
p . p

0.492 078
I

0.487 078

2.685 26

2.681 51

2.783 96

2.732 46g

2.787 87

2.735 33g

2.727 60

2.629 09

0.497 078

2.575 61

2.578 80 .

2.667 06

2.633 63

. 2.67031

2.633 63

0.502 078

2.524 65

2.530 55

2.612 79

2.591 15

2.615 76

2.591 15

0. 253 984 0. 258 984
k~= 0.263 984 E = 0-034 843 7

p
0.263984 0.268 984 0.273 984

b
II

e
X

d
H

e
tR

f
H

-7. 91918

-7.88643

-7.731 54

-7.708 55

-7.735 14

-7.708 56

-8. 97,3 69

-8. 947 90

-8.733 71

-8.625 94

-8.73930

-8. 625 94

-10.0084

-10.3152

-12.0816

-12.1671

-11.6461

11 ~ 7271

-11.6641

-11.7271

-14.5129

-14.9348

-13.8725

-13.9676

-13.9162

-13.9676

0.749 688

n=8

0. 754 688

k =0.759688 &p= 0.288 563
p,

0.759 688 0.764 688 0.769 688

b
II

C

'z
d

H
e

tR

f
'H

1.396 19

l.397 17

l.38951

l.38978

l. 389 55

1.389 78

1.384 94

1.385 44

1.377 74

l. 378 27

1.377 78

1.378 27

1.36625

1.373 93

1.363 15

l.362 63

1.354 89

1.354 04

l.354 93

l.354 04

1.352 69

l.35160

1.343 79

1.343 38

1.343 84

1.343 38

b
S Eq. ( ).
See Eq. (22).

d See Eq. (31).
See Eq. (33).

See Eq. (33).
See Eq. (34) or (55).
Root of Eq. (23) is complex.

Value in table is real part of root.

Results for values of k near k&, corresponding to
a pseudoresonance eigenvalue E&, were calculated
for n =4, 6, and 8. In each case only one value of
k@ lies in the range 0. 1 ~k& ~ 1.0. The tangent of
the phase shift computed by several different
methods is given in Table I.

The values of the tangent of the Hulthen phase
shift in Table I do not vary smoothly about t
This is due to the analytic behavior of detM, which
is singular at E&. From Eqs. (43), each of the
coefficients M«, etc. , has a simple pole at E&. In
detM, the quadratic term has the coefficient

detM=D (x&(E —E ) x+D (o& +
IIL P.

(64)

It follows from this that the argument of the square
root in Eg. (33) or (35) vanishes at some point
E ', near E, where

MSM MC M
C MSM CMC M S

(63)

so detM also has a simple pole at E



HARRIS VARIATIONAL METHOD IN SCATTERING THEORY

TABLE II. Values of k, E, and k ', E ' in rangep' p p p
0( k g 1.0.

(E) f P f (1/ 2) l(E I E)1/28 p, jtt. ILI,

+t ""(E ' —E)+. ~ .

0.492 08
0.263 98
0.75969

0.12107 0.471 25
0.034 84 0.259 53
0.288 56 0.76140

0.11104
0. 033 68
0.28987

detM (E '
) =~02.

The argument of the square root is negative be-
tween Ei/,

' and E, and tff is complex in this in-
terval Val.ues o E and E&', and the corre-
sponding values of 0, are given in Table II. For
n = 4, two of the values of k considered in Table I
fall within this interval. The real part of tII is tab-
ulated.

If E&' is less than E&, Eq. (33) shows that t(E)
is of the form

f (E) f +f (&+)(E E )1/2+f (1)(E E ) ~ (66)H p, p, p, p, p,

fear E&E, or

for E &E& '. Because of the branch points at E&
and E&', t& is not a smooth function of E or k
in this region, despite the fact that a well-defined
limit, t&, exists at. Eg.

The coefficient D &» in Eq. (64) can be written
down from substitu(ion of Eqs. (42) into Eq. (32).
It does not vanish in general, but it consists of
terms of the form of finite quantities multiplied by
quadratic products of the integrals M&& or M p,c,
given by Eq. (4l). As the basis set of normalizable
functions used in the calculations goes to complete-
ness, these integrals should vanish, because the
function Q& must become an increasingly good ap-
proximation to an eigenfunction of H —E. In this
sense, the pole of detM is an artifact of the com-
putation, due to incompleteness of the basis set.
Some evidence of this can be seen from the values
of E& and E&' listed in Table II. The interval be-
tween the two, a measure of the strength of the
pole of detM at E, decreases rapidly as m is in-
creased.

While the effect of the pole at E& is most strik-
ing in the interval bet een Ep.

' and EI, where ta
becomes complex, there is also a distortion for

TABLE III. Tangent of the phase shift for k near k+, with smoothing constants C= l. 0, 0.5, and 0.1.

, a
t

b

td

3.482 078

2.84949

2. 84949

2. 77431

2. 74953

0.487 078

2. 735 33

2. 735 33

2. 69973

2. 687 78

0.497 078

2. 62909

2. 629 09

2. 629 09

2. 62909

2.633 63

2.595 03

2.586 11

2.577 89

kp= 0.492 078 E = 0. 121 070
p

0.492 078 0.502 078

2. 591 15

2.562 78

2. 545 20

2.529 08

0.253 984 0.258 984 0. 268 984

k = 0.263 984 E = 0. 034 843 7
p p,

0. 263 984 0.273 984

b
-7.708 55

-7.708 55

-7.708 55

-7.876 45

-8.625 94

-8.625 94

-8.818 16

-8.946 05

-10.3152

-10.3152

-10.315 2

-10.315 2

-11.727 1

-11.727 1

-11.862 8

-12.033 4

-13.967 6

-13.967 6

-13.967 6

-14.373 6

k = 0.759 688 E = 0. 288 563
p

0.749688 0.754 688 0.759 688 0.764 688 0.769 688

1.38978

l.38978

1.38978

l.39183

1.378 27

1.378 27

1.378 27

1.382 73

1.373 93

1.373 93

1.373 93

l.373 93

1.354 04

1.354 04

1.354 04

1.36077

l.343 39

l.343 39

l.343 39

l.347 85

Equation (35), real part only.
a

Equations (35), (68), C=1.0.
Equations (35), (68), C=0.5.

d
Equations (35), {68), C= 0.1.

e
Smoothed value.
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TABLE IV. Width parameter I' (k) and shift parameter & (k) for k near k,
p IJ p

n = 6 only.

0. 253 984 0, 258 984 0 .263 984 0 .268 984 0 .273 984

r
p
b

p
C

p
d

p
e

p
f

p

0. I93 983

-0.015 129

-0.015 172

-0.015 172

-0.015 172

-0.014 904

0. 194 834

-0, 012 455

-0. 012 601

-0. 012 601

-0.012 355

-0.012 197

0. 195 551

-0.009 769

-0.009 479

-0.009 479

:-0.009 479

-0.009479

0. 196 132

-0 .007 075

-0.007 030

-0.007 030

-0 .006 934

-0.006 8 17

0. 196576

-0.004 373

-0 ~ 004 347

-0.004 347

-0 ~ 004 347

-0 .004 148

See Eq. (51) .
See Eq. (52) .

C
See Eq. (57), real part only.
See Eqs. (57), (68), C = 1.0.

f See Eqs. (57), (68), C = 0.5.
See Eqs. (57), (68), C = 0.1.
Smoothed value.

E)E, if EI '(E, indicated by the square-root
term in Eq. (66). erely. replacing t~ by its real
part is not a consistent procedure, because it
amounts to truncating the pole term in detM on
one side of E

&
while retaining it on the other. This

suggests the use of a smoothing formula, r eplac-
ing the argument of the square root in Eq. (33) or
(35) by a function

f (&) = 1 —16k-'detM(E), IdetM I
& 'O'C,

= 1 —Csgn(detM ), I detM I ),', ,".'C, (68)

where the smoothing parameter C lies in the range
0 & C - 1. The replacement of tII by its real part
is equivalent to using C = 1 when detM is positive,
but allowing C to be infinite when det M is negative.

Results of cal cul ations with values of C = 1 .0,
0. 5, and 0. 1 are given in Table III. As the dimen-
sion n of the basis set is increased, the effect of
smoothing becomes less important. Values of the
width and shift parameters, computed from Eq s .
(51), (52), (57), and (68), are given in Table IV.
The effect of smoothing and of the D " term in
Eq. (54) can be seen in A&.

Equations (44) and (64) can be used to derive
the limiting value of t~, Eq. (31), as ~ approaches
Ep . This 1s

™CM
~ + 2k-'D "'j /MC M . (69).Cp, p~ p, Cp, pC

This limit is different from Eq. (55) or Eq, (60).
The three become identical only when D &

"' vanishes .

VI. BEHAVIOR NEAR ZEROES OF Npp 0+ Mxz

In addition to the irregular behavior of t(E) near
Ep, , Eqs. (31) and (34) indicate that fg and t~-'
have poles at the ze roe s, respectively, of M» and
Mpp Values of t computed by sever al diff er ent

methods in the neighborhood of such zeroes are
given in Table V. The computed value of t~ shows
wild fluctuations near a zero of M», while, some-
what surprisingly, t ~ appears to remain smooth
near a zero of M«. The fact that Eqs. (33) and (35)
for t& are formally identical shows that the apparent
pole at a zero of M ] y or Mop respectively, is not
real, and the Hulthen phase shif ts remain smooth
functions near such points .

Because the apparent pole in Eq. (33) or (35) is
nullified by an exact cancellation between the two
terms in either formula, in general one of these
formulas should be used in preference to the other
for numerical accuracy. A reasonable criterion
would be to use Eq. (33) when IM«™»l(1 and Eq.
(35) when IM„/M» I )1.

The present work indicates that the fluctuations
in t~ studied by Schwartz' are due to the occurrence
of zeroes of M» rather than to singularities of Eqs .
(11) at eigenvalues E~. Fluctuations due to zeroes
of M yy can probably be avoided by judicious use of
the Rubinow or Hulthen formulas.

VII. CONCLUSIONS

Recent calculations by Morawitz" indicate that for
small basis sets, the Kohn phase shift computed at
a pseudo re sonance E t„ is in somewhat better
agreement with the exact value (computed for an
exponential or Yukawa potential) than is the Hulthen
phase shift. The Kohn or Rubinow phase shifts, from
the results given in Table I, are in good agreement
with each other near a ps eudor esonance E&, where
they approach limits differing significantly from
the Harris phase shift. It can be concluded that t~
or t g should be computed in preference to tH near
a pseudore

sonance�.

In contrast to this, the Hulthen formula has the
advantage of nonsingular behavior near zeroes of
M pp aIld ~ yy where the formulas for tg and t~
have vanishing denominators . For nume rical accu-
racy, t~, Eq. (31), or tZ, Eq. (33) should be used
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Table V. Tangent of the phase shift near zeroes of Mpp ol M(f.
Calculations for n= 6 only.

.Mgg

I
b

II

d
B

e

0.28100

14.592 x10 6

—20.0225

14.3845

-18.9756

—18.9115

0.28101

5.212 x10 ~

—20.0338

—1606.15

74.4587

—18.9932

—18.9206

0.28102

-3.424 x 10"6

—20.0445

2395.84

-161.069

—18.9622

—18.9302

0.28103

—11.805 x10 6

—20.0548

680.891

—60.1516

—18.9924

—18.9395

—18.9700 -18.9792 -18.9889 —18.9981

Mpp

0.56917

20.802x10 6

0.569 18

6.676 x 1Q-6

0.56919

—6.974 x 10-

0.56920

—19.133x 10-

b
II

c
tz

d
H

e

2.81452

2.073 90

2.073 88

2.073 88

2.07389

2.07250

2.073 85

2.073 82

2.073 82

2.073 85

2.07176

0.966 942

2.073 79

2.07377

2.07377

2.073 73

2.07458

1.47926

2.07373

2.07370

2.073 70

2.073 69

2.07535

0.87464

27.Q01 x10 6

0.87465

1.240 x10 '
0.87466

—1.216 xl0 6

0.87467

—26.524 x10"6

1.146 96 1.146 96 1.146 94 1.146 93

55.521 119.317 —119.343 —53.9528

1.33336

1.15091

1.15083

1.15084

1.54672

1.15129

1.15081

1.15082

0.74707

1.15088

1.15079

1.15081

0.96660

1.15039

1.15078

1.15079

See Eq. (21).
See Eq. (22).
See Eq. (31).

See Eq. (33).
See Eq. (34).
See Eq. (35).

when M o/M» is small, and t~, Eq. (34) or t~,
Eq. (35) should be used when M«/M» is large.
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Polarization of Light from Collision of a
Proton Beam with Helium Atoms~

Daniel Krause, Jr. , and Edward A. Soltysik
University of Massachusetts, Amherst, Massachusetts

(Received 9 May 1968}

We have measured the relative cross-sections and the polarization of the light resulting
from the excitation of helium by a proton beam for the following transitions:

3 D 2 ~P (A, =6678 A), 3 S ~ 2 P (A. =7281 A),
3 D 2 P (A, =5876 A), 3 S» 2 P (A, =7065 A).

Our analysis indicates that there is a small violation of the &S=0 spin rule for the excitation
of the 3 D and 3 S states of helium by protons.

INTRODUCTION

When a beam of particles passes through a vol-
ume of space containing ground-state helium atoms,
some of the beam particles undergo inelastic col-
lisions with the target-gas atoms, resulting in the
excitation of the atoms. Subsequent to excitation
by the beam, the helium atom may de-excite to a
lower state, with the emission of a photon. This
photon is characterized by its wavelength and the
direction of its electric field with respect to the
beam direction. If, as a result of collisions be-
tween beam particles and target-gas atoms, there
is an unequal population of the rotationally degen-
erate substates associated with a given energy of
the excited atoms, then there is a net orientation
imparted to the excited atoms. This is mani-
fested by the emission of polarized light when the
atoms de-excite. The degree of polarization' is
determined by the collision cross sections for
transitions to the various rotationally degenerate
substates associated with a given energy configu-
ration.

A number of experimenters' ' have in recent
years measured the relative excitation cross sec-
tion and the polarization of light resulting from the
excitation of helium by an electron beam. Special
emphasis has been given to the electron energy-
threshold region for the excitation of some states
in helium, where simple consideration of conser-
vation of angular momentum leads to a unique pre-
diction of the value of the polarization. Careful
experimental work in the region of the electron-
energy threshold has shown that, in general, very

close to threshold, the measured polarization is
in reasonable agreement with theoretical predic-
tions.

The relative excitation cross sections for pro-
tons, deuterons, and neutral hydrogen atoms on
helium have been measured by a number of investi-
gators' ' for a number of states of helium at vari-
ous energies. Van Eck, de Beer, and Kistemaker'
At Amsterdam have measured both the excitation
cross section and polarization for a number of heli-
um states excited by protons and neutral hydrogen
atoms in the energy range 5 keV (E( 150 keV.
In addition, for a rather complete discussion and
list of references on the excitation of some helium
states by protons and the polarization of the emit-
ted light, the reader is referred to the doctoral
thesis of Van Den Bos.7 Much of the work of the
Amsterdam group is given in this thesis.

It was the purpose of the work reported here to
measure the relative cross section and the polar-
ization of the radiation resulting from the exci .l,
tation of the n =3 states of helium by proton im-
pact in the low-beam-energy region. In particular,
we concentrated our efforts on the l = 0 and l = 2
states for the following two reasons: 1. The line
radiation from these states is widely separated '
from any other lines; thus we could be absolutely
sure that our narrow band-pass filters would
properly exclude radiation from other states. This
is particularly important at low beam energies
where the light intensity is very weak. 2. There
is a lack of data on the polarization of light for
these states in the low-beam-energy region.

In this work, we measured the intensity and


