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The variational method recently proposed by Harris for calculation of scattering phase
shifts is analyzed in the context of the standard methods of Kohn and Hulthén. The Hulthén
method is shown to give a result identical to the Harris method at the energy eigenvalues
characteristic of the latter. The Kohn method and its analog for the cotangent of the phase
shift, the second Hulthén or Rubinow method, lead to somewhat different limiting values of
the phase shift at a Harris eigenvalue. The Harris method is an application to nonresonant
situations of a formalism appropriate to scattering resonances. A new method is proposed
to deal with stationary states, true resonances, and nonresonant scattering within a com-
mon formalism, which defines effective width and shift functions for all values of the ener-
gy in terms of a Breit-Wigner formula. The proposed resonance formalism is expressed
in forms equivalent to the Rubinow method and to the Hulthén method. A method of smooth-
ing out irregular behavior of computed Hulthén phase shifts, due to branch points at Harris
eigenvalues, is proposed. The Kohn and Rubinow methods are shown to give smooth re-
sults near Harris eigenvalues. Spurious fluctuations encountered in computations by the
Kohn method are shown to be due to poles not present in the Hulthén method. Similar poles
occur in the Rubinow method, but at different energy values. A criterion is suggested for
avoiding the irregular behavior due to these poles by making an appropriate choice of either
the Kohn or the Rubinow formula at a given energy. The formal discussion is illustrated
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by some computed results for S-wave scattering by an attractive exponential potential.

1. INTRODUCTION

A new variational method for calculation of scat-
tering phase shifts has recently been proposed by
Harris' and applied to low-energy electron-hydro-
gen atom scattering by Michels and Harris.? In
this method, applied to potential scattering, a
variational function is constructed in the form

n n
¢“=i§1nici ’ (1)

where the basis functions 7, are quadratically in-
tegrable, and the coefficients c; 4 satisfy the ei-
genvalue equation

Zin, Hin)et=E o, i=1,... . 2)

i

The tangent of the phase shift, £, for a partial wave
expansion, is determined by the condition

(d)ulH—E“IS +tC)=0, (3)

where S and C are, respectively, sine-like and co-
sine-like functions that are asymptotic eigenfunc-
tions of H with energy, in atomic units,

E =}k, @)

For S waves, the Schrddinger equation is equiva-
lent to a one-dimensional equation with
H=-1(@?/dr?)+V(r). (5)
The unnormalizable functions S and C are asymp-
totically
S ~sinkv, (6)
C~ coskr. )

In practice a factor such as(1-e —7%) is includedin
C to make it vanish at » =0 without affecting Eq.
' 134

(7). The functions 7,() vanish at » =0.
In standard variational methods® a function is
constructed of the form

P=¢+S+itC, (8)
"
where ¢= iglnici (9)

The coefficients ¢; are determined by the condition
that (4 - E) ¢ should have no components in the
space of the functions 7;,

M, IH-E1$)=0, i=1,...n, (10)
or

L].(ni IH-Ene; == (n;1H-EIS +C),

i=1,...,n. (11)
It can easily be seen that Eq. (3) is a necessary
condition for the existence of a solution of the in-
homogeneous system of Egqs. (11) at an eigenvalue
E, at which the homogeneous part of Egs. (11)
becomes singular. It follows immediately from this
that the Kohn* and Hulthén® methods and other vari-
ational methods which use Eqs. (11), if they give
a well-defined value of #(E) for E near E p, might
be expected to give identical values of ¢t at E .
This common limit would be the Harris value

t,== (q>“ IH - E, ls)/(¢u IH—E“ 1C), (12)

from Eq. (3). In the present paper it will be shown
how this result comes about in detail for the Hul-
thén method, by extending the Harris method to a
formalism valid for general values of E. Contrary
to expectation, the Kohn method will be shown to
lead to a different limiting value of ¢.

The problem of matching an internal solution ¢
of a potential problem to an external solution S +¢C
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is characteristic of the theory of scattering reso-
nances. A conceptual difficulty arises inthe Harris
method because ¢,,, which is intuitively identified
with the internal part of the true wave function o,
appears to be o7thogonal to the function ¢ of Eq. (9)
as a consequence of the choice of ¢ to satisfy Eq.
(3), a necessary condition for the existence of a
solution of Eqs. (11). When Eq. (3) is satisfied,
an arbitrary multiple of ¢, can be added to ¢. It
will be shown here that the coefficient of ¢ in j
can be determined by a limiting process as E ap-
proaches Ey. Inthe Kohn method, this coefficient
becomes infinite at E,.

In order to carry out this analysis, the Harris
method as well as various forms of the standard
variational methods are reformulated here as spe-
cial cases of the theory of resonances.® In the
course of this analysis, a new method is proposed
for treating true resonances and nonresonant scat-
tering within a common formalism. The methods
considered here are intended to provide a formal-
ism for scattering theory that as much as possible
makes use of techniques developed for stationary-
state computations.

II. STANDARD VARIATIONAL METHODS

Following Schwartz, ” it is convenient to express
¥ of Eq. (8) as

D= (Bg+S)+Hp g +C), 13)
where (Tli |H-El¢g)=~(,1H-EIS),

(nilH-EI¢C)=—(‘nilH—EIC), i=1, ...,n. (14)

The functions ¢g; ¢c are expanded in the form of
Eq. (9) with coefficients ¢;°,. ¢;~, which separately
satisfy inhomogeneous equations whose inhomoge-
neous parts are, respectively, — (n;l H— E|1S) and
— (ni|H-EIC). Then Eqs. (11) are satisfied iden-
tically for all values of the parameter ¢.

Define the variational functional

I()=@IH-EIY), . (15)
=4go + (Mm +Mm) t +M11t2, (16)

where M00=(SIH—EI¢>S +5),

M°1=(S’H—EI¢C+C), (17)

Mo =(CIH-El¢g+S),
M,,=(CIH=-El¢,+C).

Equations (14) have been used in deriving Eq. (16).

¥ H is given by Eq. (5) and S and C by Egs. (6)and
(7), it follows from the fact that ¢g and ¢ are
bounded functions that (in atomic units)

My, =M10 *‘é‘k . (18)

For a general value of E in the scattering contin--
uum an exact eigenfunction would satisfy the
Schrodinger equation, implying

(S|H - E ) =My, +My,t =0, condition I, (19)
(CIH-E|yp)=M,,+M,;t=0, conditionII.  (20)

When the basis set 7; is incomplete, these two con-
ditions in general are incompatible. If used to de-
termine ¢, the tangent of the phase shift, they
would give two different values

tI=—M0°/M01, @1

ty= = Mio/My,. (22)

The function I (t) given by Eq. (16)is alinear com-
bination of Eqs. (19) and (20). The Hulthén varia-
tional method® determines ¢ as a root of the qua-
dratic equation

I (t)=M00+ (,M01 +M10)t +M,,#2=0, (23)

From Egs. (16) and (18) and from the fact that
M,,, etc., are independent of the parameter ¢, it
follows that

oI/dt =1k +2(M o +M ,t) (24)

and ol t2) /3 (¢~ ) == Lk + 2(My, +Mpt™1).  (25)

For an exact eigenfunction, or more generally,
from Eq. (20) if ¢ is equal to ¢y of Eq. (22),

oI /ot=k, if t=t. (26)
Similarly, from Egs. (19), (21), and (25),

BUL/at )=~ fk, if =t @7)
1t follows from Eq. (26) that

b=ty = @/R) () (28)

is stationary within the constraints imposed by
choice of a basis set 7;. Equation (28) is used to
determine ¢ in the method of Kohn.% An analogous
result holds for

tpTi=the (2/R) (tI)tI-2 (29)

as a consequence of Eq. (27).3

Some insight into the significance of Eq. (28) can
be gained by recognizingthat itis equivalent to mak
ing a linear extrapolation from #j to the Hulthén
value of £, for which I (f) vanishes. This gives,
from Eq. (26),

0=1 (6)=1 (b)) + 4t~ 2). (30)
Hence, making use of Eq. (20),
tK= tH— (2/R) (tn)
= tH - (2/R) (M, +M°1tII)
.=_ (MIO/MJ.I)_ (Z/an)detM; (31)
where detM = MO(;MLI - MmM]_o . (32)

For comparison, the Hulthén value of ¢ ‘can be ex-
pressed by

E [/ 16 :
- 41\411[(1 32 detM) 2 1}, (33)

from Eqgs. (18) and (23). Obviously Eq. (31) is the
linear term in a power series expansion of Eq.

M
t,=—r10 4
Mll
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(33) in powers of detM. The two equations coin-
cide when detM vanishes, as it does whenever
t1 and #11, given, respectively, by Egs. (21) and (22
(22), are equal.

Equation (29) can also be shown to be a linear
approximation to the Hulthén value of ¢, starting
from t;. From Eq. (19),

tp =t 4 (2/R) (M yoty T 4 M)

== (Mo, /M o) +(2/kM y)detM . (34)

The Hulthén value can be expressed in the form

M k 16 ‘).1,/2
f"l= - A1 =32detM) -1]. (35
H My, 41‘400 [( k* € / ] ( )

Equation (34) is a linear approximation to the ex-
pansion of Eq. (35) in powers of detM.

It can easily be shown that an attempt to use both
¢y and #y1 in a linear extrapolation formula leads
again to the Kohn formula, Eq. (31) or to Eq. (34).
Since

I(t)) = (Moo/Mo,2)det M,
and I(t;)=My,"'detM, (36)

the linear extrapolation formula gives, from Eqgs.
(21), (22), and (36),

t=lT g -1 /H ) =T =ty gy
or

-27 -1_ -2z -1
_1=I Pty 2ty =1 pty2ty

I 2-1G ) ~°
11 I

:tK'l. (38)

III. THE HARRIS METHOD

The eigenvectors of Eq. (2) lead to orthonormal
functions

n . a
bo= 2 MEC; s A=len . (39)
i=1
The ¢, are eigenfunctions of H within the Hilbert
space spanned by the basis functions 7;. In particu-

lar, the functions ¢¢ and ¢ of Eq. (14) can be ex-
panded in terms of 316 ¢ and the eigenvalues Ea’

n
¢S =2 ¢a(E - Ea)—lMaS’
a=1
n

bc= 2L 0aE~E )My, (40)
a=1

where MaS = (¢a IH-EIS),

M= (9, |H-EIC). (41)

The matrix elements defined by Eq. (17) can be
expressed as

— - -1
Mo=Mgg+Z M (E~E )M

SS as’

= -1
Moy =Mgo+Z Mg (B~ E )M,

sc ok
(42)
My=M o +Z M

-1
Ca(E - Ea) Ma

CS S’

- -1
My =Moo+ Z Mo (E~E )M

cct aC’

where Moo= (SIH-EIS), etc. (43)
As E approaches E, an eigenvalue of Eq. (2),

(E-E Meu-Mg M,

(E-E My -M_, M
" Spu pcC’
g (44)

_E M~
(E Eu) 10 MC“MHS,

(E-E M, ~Mg M .

The matrix of M is Hermitian whenever one in-
dex refers to a normalizable function such as ¢,.

It follows from this that Egs. (21) and (22) becogle
identical in the limit indicated by Eq. (44):

tI(Eu)=tH(E“)=—MuS/M“c, (45)

for matrix elements evaluated at Ey. This limit is
equal to tu as determined by Eq. (3), equivalent to

M“s(Eu)JrMuC(Eu)tu:O. (46)

The Hulthén condition, Eq. (23), becomes

2 242
M G2 e2M | M oM
_ 2 _
= (Mus +M“ct) =0, (47)
equivalent to Eq. (46).
From Eqs. (40) and (44) it follows that the limit

of the function ¢, in Eq. (8), as E approaches EH-
and ¢ approaches ¢y, is

o - §“¢a(§u_ E )-{M,J(E )+M, (B u)tu]

+ ¢u(8/8E)[ MMS(E) +MuC(E) t(E)] IEH. (48)

IV. RESONANCE FORMALISM

Several of the expressions for the tangent of the
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phase shift considered here can be put into the
form

t={-ér“(E)/[E—Eu—AM(E)]}, (49)

where, in general, the functions I'", and Ay have
nonzero values at E=E . If A, (Ey) is small, ¢
has a pole near E, and Eq. (49) is a form of
Breit-Wigner formula. This formula describes a
scattering resonance unless I',, vanishes at the
pole. ® The width of the resonance is given by I"

(E “) if Ay is small. The usual potential-scattering
contribution to the resonance formula for ¢ occurs
in Eq. (49) through the energy dependence of the
functions T';(E) and Au(E). The Feshbach theory
of resonant scattering® can be adapted to the pre-
sent analysis if the interior space @ is identified
with the finite dimensional space spanned by the
basis functions 7;. The external space P contains
only the functions S and C, orthogonalized to the
M, or equivalently, to the eigenfunctions ¢ . At

a given energy E, the Green’s function used in the
Feshbach theory must be replaced by some approx-
imate solution of the two Eqs. (19) and (20), which
are in general incompatible. This brings the theory
back to the standard dilemma of all finite varia-
tional methods, and an arbitrary choice of methods
must be made.

It will be shown in the following section that the
Hulthen value of the tangent of the phase shift does
not vary smoothly in the immediate neighborhood
of an eigenvalue E,, of Eq. (2). This is due to a
pole in detM, which leads to two closely spaced
branch points in /. In contrast, the Kohn* or
Rubinow® formulas, Egs. (28) or (29), respectively,
do not have singularities at E,,. Either the Hulthén
or Rubinow methods, introduced at this point in the
Feshbach formalism, lead to an expression for ¢
equivalent to Eq. (49), where E is an eigenvalue
of Egqs. (2).

By use of Eq. (18), Eq. (34) can be written in the
form

t

== Moo/ (Mo, — 2k detM)

= 2k"YE - E )M,
x[E - E, +2k"YE - E, )M, - 2k detM)]-l
=—4T (B)/[E-E -4 (B]], (50)

where PN(E) =4k-Y(E _EU-)M°° (51)

and Au(E)z—zk'l(E—Eu)(Mm—Zk‘ldetM). (52)

Both of these functions have nonzero limits as E
approaches Ey. It will be shown in the following
section that detM has a simple pole at Ey, of the
form Dy, “(E - Ey)-'. Then, by Egs. (42), as E
approaches E .5

Ty (E)~4k™'M (53)

S

uMuS’

- 2p-1 - 926-1D (1)
AM(E) 2k [MC“M 2k~1D ]. (54)

uS

The limiting value of I' ,(E) is non-negative, as it
must be for '), to be identified with the width of a
resonant energy level, The limiting value of { is

tp=4T, (E,)/,(E,)

- —_9p-1p (1) .
= Ms“/[MC“ 2k Du /Mus] (55)

This differs from the Harris value f; unless D/
vanishes.

The Hulthen formula, Eq. (35), can also be ex-
pressed in the Breit-Wigner form, Eq. (50), with

r (E)=4k~\(E -E u)Moo (56)
and A_“(E)= -2k~ YE - Ep){M10

+;1—k[(1-16k'2detM)m— 1} . (67)

As E approaches E

[

$E) ~45-2
r“(E) 4% MSuMus, (58)

-1
AH(E)-’—Zk MCHM“S, (59)
and tH-——MS“/MCu, (60)

equal to the Harris value £,.

Equations (50) - (52) or (g'7 ) provide a common
formalism for computations of resonant and
nonresonant scattering. The Harris method is
characterized by the introduction of a pseudoreso-
nance, at the energy E,,, which in general is a
pure artifact of the computation, depending on an
arbitrary choice of the basis function set 7;. Such
a pseudoresonance will have values of ', and A
with a finite ratio, 7y, the tangent of the' phase °
shift. The eigenvalue E ,, which has no physical
significance, will not approach a definite limit,

In contrast, at a physical resonance, the eigen-
value E,, can be expected to approach a definite
limit as the set n; approaches completeness, as in
calculations by Taylor and Williams® and by Miller,®
equivalent to the solution of Eq. (2). This charac-
teristic behavior could be used in practical com-
putations to distinguish between physical reso-
nances and pseudoresonances.

V. BEHAVIOR NEAR A PSEUDORESONANCE

Illustrative calculations of the S-wave phase
shift 6, were carried out for the potential function

Vir)=—e~" (61)
with basis functions of the form
='r1'e-2‘57, i=1,...,n. (62)

i
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TABLE I. Tangent of the phase shift for 2 near k# .

‘n=4 ku =0.492 078 Eu=0.121 070
k 0.482078 0.487 078 0.492 078 0.497 078 0.502 078
tI a 2.744 32 2.685 26 2.57561 2.524 65
tIIb 2.73613 2.68151 2.57880 2.53055
th 2.847 03 2.783 96 2.667 06 2.61279
tHd 2.845 178 2.732468 2.633 63 2.59115
tRe 2.85136 2.78787 2.72760 2.67031 2.61576
tHf 2.849498 2.735338 2.62909 2.63363 2.59115
n==6 k#= 0.263 984 EH= 0.0348437
k 0.253 984 0. 258 984 0.263 984 0.268984 0,273 984
tIa -7.91918 -8.973 69 -12.0816 -14.512.9
tnb -7.88643 -8.947 90 -12.1671 -14, 9348
th -7.73154 -8.73371 -11.6461 -13.8725
tHd -7.70855 -8.625 94 -11.7271 -13.9676
tRe -7.73514 -8.73930 -10. 0084 -11.6641 -13.9162
tHf -7.708 56 -8.625 94 -10.3152 -11.7271 -13.9676
n=8 k,=0.759688 Ey=0.288563
k 0.749688 0.754 688 0.759688 0.764 688 0.769688
t‘Ia 1.39619 1.384 94 1.36315 1.35269
tnb 1.39717 1.38544 1.36263 1.35160
th 1.38951 1.37774 1.35489 1.34379
tHd 1.38978 1.37827 1.354 04 1.34338
tRe 1.38955 1.37778 1.36625 1.35493 1.343 84
tHf 1.38978 1.37827 1.373 93 1.354 04 1.34338
a e
b See Eq. (21). See Eq. (33).
c See Eq. (22). . See Eq. (34) or (55).
See Eq. (31). Root of Eq. (23) is complex.
See Eq. (33). Value in table is real part of root.

Results for values of % near & w corresponding to
a pseudoresonance eigenvalue E ), were calculated
for n=4, 6, and 8. In each case only one value of
ky, lies in the range 0.1<%k  <1.0. The tangent of
the phase shift computed by several different
methods is given in Table I.

The values of the tangent of the Hulthén phase
shift in Table I do not vary smoothly about £ ,.
This is due to the analytic behavior of detM, which
is singular at E;;. From Egs. (42), each of the
coefficients M,,, etc., has a simple pole at E;. In
detM, the quadratic term has the coefficient

) _ - =
Du MS;LMus'MCuMuC MSuMuCMCuMp.S 0,
(63)
so detM also has a simple pole at E w
M=D WE-E )t 0 4...,
det Al “) +Du~ + (64)

It follows from this that the argument of the square
root in Eq. (33) or (35) vanishes at some point

E“' , near E”, where
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TABLE II. Values Of,k#’ E”, and ku,’ Eu’ in range tH(E): tu{ +t““/2’ ’(Eu' —~ E)2
0< k< 1.0,
+t WNE '—E)4---, (67)
n B, E, R E/ * H
_ for E < E, ’. Because of the branch points at E m
4 0.49208 0.12107 0.47125 0.11104 and E,,’, ¢, is not a smooth function of E or %
6 0.263 98 0.03484  0.25953 0.033 68 in this region, despite the fact that a well-defined
8 0.75969 0.28856 0.76140 0.28987 limit, ¢,,, exists at. Ey.
The coefficient D,,(1) in Eq. (64) can be written
down from substitu#ion of Eqs. (42) into Eq. (32).
It does not vanish in general, but it consists of
, L terms of the form of finite quantities multiplied by
detM (E Rk L (65) quadratic products of the integrals M, g or M ¢,

The argument of the square root is negative be-
tween Ey’ and E ;, and {f is complex in this in-
terval. Values of E,, and E,,’, and the corre-
sponding values of }:, are given in Table II. For
n=4, two of the values of 2 considered in Table I
‘fall within this interval. The real part of ¢z is tab-
ulated.

If E,’ is less than Ey, Eq. (33) shows that #(E)
is of the form

t.(E)=t +t UPYE_E Y2, W(E_-E ... (66
H()M+M ( U»)+M( H)+ (66)

E>E
for W or

given by Eq. (41). As the basis set of normalizable
functions used in the calculations goes to complete-
ness, these integrals should vanish, because the
function ¢ m must become an increasingly good ap-
proximation to an eigenfunction of H — E. In this
sense, the pole of detM is an artifact of the com-
putation, due to incompleteness of the basis set.
Some evidence of this can be seen from the values
of E,, and E ' listed in Table II. The interval be-
tween the two, a measure of the strength of the
pole of detM at E w decreases rapidly as # is in-
creased.

While the effect of the pole at E; is most strik-
ing in the interval between E,’ and E;, where /g
becomes complex, there is also a distortion for

TABLE III. Tangent of the phase shift for & near &, with smoothing constants C=1.0, 0.5, and 0.1.

» n=4  ky=0.492078 E =0.121070
k 2.482078 0.487078 0.492078 0.497078 0.502078
b 2.84949° 2.73533° 2.62909 2.633 63 2.59115
¢P 2.84949° 2.73533° 2.62909 2.59503° 2.56278°
€ 2.77431° 2.69973° 2.62909 2.58611° 2.545 20°
£ 2.74953° 2.68778° 2.62909 2.57789° 2.52908°
n=6  k,=0.263984 F =0.0348437
k 0. 253 984 0.258 934 0.263 984 0.268 984 0.273 984
£ -7.70855 -8.625 94 -10.3152 -11.7271 -13.9676
£ -7.70855 -8.62594 -10.3152 -11.7271 -13.9676
£ -7.70855 -8.818 16° -10.3152 -11.8628° -13.9676
£ -7.87645° -8.946 05° -10.3152 -12.0334° -14.3736°
n=8 b =0.759688 E =0.288563
A 0.749688 0.754 688 0.759688 0.764 688 0.769 688
£ 1.38978 1.378 27 1.37393 1.35404 1.34339
£ 1.38978 1.378 27 1.37393 1.354 04 1.34339
£ 1.38978 1.378 27 1.37393 1.354 04 1.34339
¢ 1.39183° 1.38273° 1.373 93 1.36077° 1.34785°

aEquation (35), real part only.

cEqua’cions (35), (68), C=1.0.
Equations (35), (68), C=0.5.

quuations (35), (68), C=0.1.

Smoothed value.
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TABLE IV. Width parameter I‘M (k) and shift parameter Au(k) for £ near kﬂ,
n=6 only.
k 0.253 984 0.258 984 0.263 984 0.268 984 0.273 984
Fua 0.193 983 0,194 834 0.195551 0.196132 0.196576
Aﬂb -0.015129 -0.012455 -0.009769 -0.007 075 -0.004373
Auc -0.015172 -0.012601 -0.009479 -0.007030 -0.004 347
A”d -0.015172 -0,012601 -0.009479 -0.007030 -0.004 347
Aﬂe -0.015172 -0.012 355g -=0.009479 -0.006 934g -0.004 347
f
A, -0.014 9045 -0.012197% -0.009479 -0.006817% -0.004 148%
;‘See Eq. (51). °See Egs. (57), (68), C=0.5.
See Eq. (52). See Egs. (57), (68), C=0.1.
SSee Eq. (57), real part only. Smoothed value.
See Egs. (57), (68), C=1.0.
E >E ’ <E,, indicated by the square-root methods in the neighborhood of such zeroes are

term 1n Eq (66 erely replacing fz by its real
part is not a consistent procedure, because it
amounts to truncating the pole term in detM on
one side of £, while retaining it on the other. This
suggests the use of a smoothing formula, replac-

ing the argument of the square root in Eq. (33) or
(35) by a function
f(E)=1-16k-2detM(E), |detM |<Lk2C,
=1-Csgn(detM ), [detM|>;1k2C, (68)

where the smoothing parameter C lies in the range
0 <C <1. The replacement of {g by its real part
is equivalent to using C =1 when detM is positive,
but allowing C to be infinite when detM is negative.
Results of calculations with values of C=1.0,
0.5, and 0.1 are given in Table III. As the dimen-
sion n of the basis set is increased, the effect of
smoothing becomes less important. Values of the
width and shift parameters, computed from Eqgs.
(51), (52), (57), and (68), are given in Table IV.
The effect of smoothing and of the D u(” term in
Eq. (54) can be seen in A,,.
Equations (44) and (64) can be used to derive
the limiting value of #x, Eq. (31), as E approaches
E,. This is

to~=[M,_ M

X cuM s +267D “>] /M

Cu es (69).

This limit is different from Eq. (55) or Eq. (60).

The three become identical only when D, vanishes.

VI. BEHAVIOR NEAR ZEROES OF M, OR M,,

In addition to the irregular behavior of #(E) near
Eyu, Egs. (31) and (34) indicate that ¢ and ¢p~!
have poles at the zeroes, respectively, of M,, and
M,,. Values of ¢ computed by several different

given in Table V. The computed value of {x shows
wild fluctuations near a zero of M,,, while, some-
what surprisingly, ¢p appears to remain smooth
near a zero of M,,. The fact that Eqs. (33) and (35)
for ¢,; are formally identical shows that the apparent
pole at a zero of M,, or M,,, respectively, is not
real, and the Hulthén phase shifts remain smooth
functions near such points.

Because the apparent pole in Eq. (33) or (35) is
nullified by an exact cancellation between the two
terms in either formula, in general one of these
formulas should be used in preference to the other
for numerical accuracy. A reasonable criterion
would be to use Eq. (33) when [M,/M,; <1 and Eq.
(35) when 1M y;/M,, 1 >1.

The present work indicates that the fluctuations
in ¢tk studied by Schwartz” are dueto the occurrence
of zeroes of M, rather than to singularities of Egs.
(11) at eigenvalues E,,. Fluctuations due to zeroes
of M,; can probably be avoided by judicious use of
the Rubinow or Hulthén formulas.

VII. CONCLUSIONS

Recent calculations by Morawitz!® indicate thatfor
small basis sets, the Kohn phase shift computed at
a pseudoresonance F,, is in somewhat better
agreement with the exact value (computed for an
exponential or Yukawa potential) than is the Hulthen
phase shift. The Kohn or Rubinow phase shifts, from
the results given in Table I, are in good agreement
with each other near a pseudoresonance E, where
they approach limits differing significantly from
the Harris phase shift. It can be concluded that g
or {p should be computed in preference to {fy near
a pseudoresonance.

In contrast to this, the Hulthén formula has the
advantage of nonsingular behavior near zeroes of
M, and M,, where the formulas for /p and ix
have vanishing denominators. For numerical accu-
racy, tg, Eq. (31), or tH, Eq. (33) should be used
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Table V. Tangent of the phase shift near zeroes of My, or M.
Calculations for n=6 only.

& 0.28100 0.28101 0.28102 0.28103
My 14.592x 1078 5.212 x 10~° —3.424 %107 —11.805x 1076
tIa —~20.0225 —20.0338 —20.0445 —20.0548
tHb —585.685 —1606.15 2395.84 680.891
th 14.3845 74.4587 ~161.069 —60.1516
tHd —18.9756 —18.9932 —18.9622 ~18.9924
tRe —18.9115 —18.9206 —18.9302 —18.9395
tHf ~18.9700 —18.9792 —~18.9889 —18.9981

k 0.56917 0.56918 0.56919 0.569 20
My, 20.802 % 10~6 6.676 x 10~¢ —6.974 x 10-8 ~19.133x 10-°
53 2.81452 —37.3333 0.966 942 1.47926
t”b 2.073 90 2.073 85 2.07379 2.07373
th 2.073 88 2.073 82 2.07377 2.07370
tHd 2.07388 2.073 82 2.073 77 2.073 70
tRe 2.07389 2.07385 2.073173 2.073 69
tHf 2.07250 2.07176 2.07458 2.07535

2 0.874 64 0.874 65 0.874 66 0.87467
M, 27.001x1078 1.240 %1078 -1.216x107° —26.524x107¢
tza 1.146 96 1.146 96 1.146 94 1.146 93
tHb 55,521 119.317 ~119.343 —53.9528
th 1.33336 1.54672 0.747 07 0.966 60
tHd 1.15091 1.15129 1.15088 1.15039
tRe 1.15083 1.15081 1.15079 1.15078
tHf 1.15084 1.15082 1.15081 1.15079

a d

bSee Eq. (21). eSee Eq. (33).

cSee Eq. (22). See Eq. (34).
See Eq. (31). See Eq. (35).

when My,/M,, is small, and {5, Eq. (34) or {,,
Eq. (35) should be used when My, /M, is large.
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Polarization of Light from Collision of a
Proton Beam with Helium Atoms*

Daniel Krause, Jr., and Edward A. Soltysik
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(Received 9 May 1968)

We have measured the relative cross-sections and the polarization of the light resulting
from the excitation of helium by a proton beam for the following transitions:
3Ip-21p(=66784), 315 ~21p (A=72814),
3°D ~2°P (\=5876 &), 335 - 2°P (\=7065 A).
Our analysis indicates that there is a small violation of the AS=0 spin rule for the excitation

of the 3 °D and 3 °S states of helium by protons.

INTRODUCTION

When a beam of particles passes through a vol-
ume of space containing ground-state helium atoms,
some of the beam particles undergo inelastic col-
lisions with the target-gas atoms, resulting in the
excitation of the atoms. Subsequent to excitation
by the beam, the helium atom may de-excite to a
lower state, with the emission of a photon. This
photon is characterized by its wavelength and the
direction of its electric field with respect to the
beam direction. If, as a result of collisions be-
tween beam particles and target-gas atoms, there
is an unequal population of the rotationally degen-
erate substates associated with a given energy of
the excited atoms, then there is a net orientation
imparted to the excited atoms. This is mani-
fested by the emission of polarized light when the
atoms de-excite. The degree of polarization! is
determined by the collision cross sections for
transitions to the various rotationally degenerate
substates associated with a given energy configu-
ration.

A number of experimenters2~* have in recent
years measured the relative excitation cross sec-
tion and the polarization of light resulting from the
excitation of helium by an electron beam. Special
emphasis has been given to the electron energy-
threshold region for the excitation of some states
in helium, where simple consideration of conser-
vation of angular momentum leads to a unique pre-
diction of the value of the polarization. Careful
experimental work in the region of the electron-
energy threshold has shown that, in general, very

close to threshold, the measured polarization is
in reasonable agreement with theoretical predic-
tions.

The relative excitation cross sections for pro-
tons, deuterons, and neutral hydrogen atoms on
helium have been measured by a number of investi-
gators®™8 for a number of states of helium at vari-
ous energies. Van Eck, de Heer, and Kistemaker®
At Amsterdam have measured both the excitation
cross section and polarization for a number of heli-
um states excited by protons and neutral hydrogen

atoms in the energy range 5 keV <E < 150 keV.
In addition, for a rather complete discussion and

list of references on the excitation of some helium
states by protons and the polarization of the emit-
ted light, the reader is referred to the doctoral
thesis of Van Den Bos.?” Much of the work of the
Amsterdam group is given in this thesis.

It was the purpose of the work reported here to
measure the relative cross section and the polar-
ization of the radiation resulting from the exci«
tation of the n =3 states of helium by proton im-
pact in the low-beam-energy region. In particular,
we concentrated our efforts on the 7=0and [=2
states for the following two reasons: 1. The line
radiation from these states is widely separated
from any other lines; thus we could be absolutely
sure that our narrow band-pass filters would
properly exclude radiation from other states.
is particularly important at low beam energies
where the light intensity is very weak. 2. There
is a lack of data on the polarization of light for
these states in the low-beam-energy region.

In this work, we measured the intensity and

This



