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Investigation of Nuclear Three- and Four-Body Systems with
Soft-Core Nucleon-Nucleon Potentials~
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The nuclear three- and four-body systems are investigated with a variational method and various soft-
core nucleon-nucleon potentials. A Monte Carlo method is used to compute the multidimensional integrals
involved. The results show that (i) a soft-core potential and a hard-core potential which give the same
efFective-range parameters and S-wave phase shifts yield very nearly the same values for the binding
energies and rms radii of H' and He, and (ii) as far as the ground-state properties of H' and He4 are con-
cerned, the fitting of the high-energy (&100-MeV) S-wave phase shifts need not be seriously considered in
choosing a nucleon-nucleon potential. Also, it is shown that by paying less attention to the higher-energy
(&50-MeV) nucleon-nucleon scattering data, a soft-core potential can be found which yields nearly. correct
values for the binding energies, rms radii, and form factors up to about 10 F ~ for both H~ and He4. The
soft-core potentials proposed' by Eikemeier and Hackenbroich and by Volkov have also been briefly con-
sidered. Here the results indicate that the mathematical approximations used by Hackenbroich et al. to
investigate the properties of fight nuclei are inaccurate, while the binding energy of He calculated by
Volkov is too small by about 2 MeV.

I. INTRODUCTION

KCENTI.Y, there has been a growing interest in

the use of soft-core potentials for evaluating the
binding energy of nuclear matter, ' and calculations in

light nuclei using shell. -mode12 and resonating-group
method. ' The soft-core potentials used in these calcu-
lations usually fit the nucleon-nucleon phase shifts,
scattering length, and CRective range. One immediately
raises thc question of the equivalence of such potentials
to the hard-core potentials so far used, i.e., given two
potentials, one with a soft-core and the other with a
hard-core, both fitting the nucleon-nucleon data, will

one get the same binding energy for nuclei using these
two potentials'

The aim of the present investigation is, first, to show

the equivalence of hard-core and soft-core potentials in

giving the same binding energies and form factors for
light nuclei such as H' and HC4. The two potentiah used

are chosen to give the same nucleon-nucleon 5-wave

phase shifts, scattering length, and effective range. The
results show that they do yield approximately the same
values for these quantities of interest, However, it is

also found that the use of a soft-core potential has a
great advantage in a variational calculation, since it
gives a lower bound that is much better than the one

obtained with an equivalent hard-core potential.
Second, we will examine, with another soft-core

potential, to see the sensitivity of the binding energies

and rms radii to changes in the high-energy phase shifts

given by these potentials. Third, an attempt will bc
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made to construct a soft-core potential that fits the
low-energy (up to =100-MeV) nucleon-nucleon data,
but also yields nearly the correct binding energies and
rms radii for H' and He4. Such a potential will be useful
for shell-model and resonating-group calculations, since
cspcclRlly ln thc 1Rttcl type of calculations) lt ls im-
portant that one has the correct sizes for the nucleon
clusters. As will be seen, it is indeed possible to find such
a potential which, at the same time, 6ts the form factors
of the three- and four-body systems up to rather large
values of momentum transfer. Finally, we will discuss
a soft-core potential used by other authors4 for reso-
nating-group calculations.

The method used for evaluating the binding energies
of H' and He' is a typical variational one. In Sec. II we
will first discuss the method of evaluating the upper and
lower bounds on the energy and a method of estimating
the eigenvalue. Then, we proceed to a discussion of the
form of the Hamiltonian and trial wave function. In all
our calculations the multidimensional integrals will be
evaluated using a Monte Carlo- method discussed
pl"cvlously. Section III ls dcvotcd to a dcscllptloIi of
the various hard-core and soft-core potentials used in
this investigation. In Sec. IV, the numerical results will
be presented and in Sec. V, a discussion of the results
will be made.

In the Appendix, a soft-core potential proposed by
Volkov' for shell-model calculations on the p-shell
Iluclcl will bc colisldclcd.

II. FORMULATION AND METHOD OF
CALCULATION

A variational method will be used for calculating the
upper and lower bounds on the ground-state energy Eo.

4H. Eikemeier .and H. H. Hackenbroich, Z. Physik 195, 412
(1966).

'R. C. Herndon and Y. C. Tang, Methods CQmput8, tional
Phys, 6, 153 (1966).
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The upper bound EU is evaluated using the Rayleigh-
Ritz method, which gives

where X is the Hamiltonian of the system. The lower
bound EI, is evaluated using a method of Temple, e i.c.,

E.&(X)-((X')-(X)')/(E.-(X&)=E., (2)

where E~ is the energy of the first excited state having
the same symmetry as the ground state, and (X') is an
abbreviation for (X%',X%'). From the expression for
EL, it is obvious that if (X&(&E~,Er, is not very sensitive
to the value of E» which, in some cases, may not be too
well known. In these latter cases, it is then necessary to
use estimated values of E». For example, in the case of
O', Ej is the energy of the deuteron, which can be easily
calculated by numerical integration of a two-body
equation. Qn the other hand, Ior He4, E» is the ground-
state energy of the triton, a value not known exactly.
Here, however, one can simply use either the value of
Ep or the estimated ei.genvalue for H'. Since the condi-
tion of (X&((E~ is quite well satisaed, an estimated
value for E» should su%ce.

A knowledge of Ep and EJ. allows us to estimate the
eigenvalue for the ground state of the system. From
calculations on the ground state of the helium atom, ~

and from problems where one can evaluate the eigen-
value (e.g., deuteron), ' it was found that the eigenvalue
is much closer to Ep than to EI.. In particular, jf one
introduces a quantity g defined as

then one 6nds that in these particular cases g is of the
order of 50. The value of zero for q is certainly allowed;
however, as has been indicated previously, this possi-
bility is very unlikely to occur. To have a good estimate
of Eo, it is therefore necessary to have a good estimate
for g. This can be done' by examining the behavior of
the wave function in the configuration space. In the
cases that we are mainly concerned with, i.e., the calcu-
lation of the binding energies of H' and He4 with soft-
core potentials, this rather tedious procedure of esti-
mating g is, however, not necessary since it will be
shown that thc upper and lower bounds are so close to
each other that. even an order-of-magnitude estimate
for g will yield an estimate for the eigenvalue to within
O.i MCV.

Using t.hc vat.ucs of Eg and EI., we can also estimate
how good the trial wave function is by calculating the
overlap (40I%&, where Co is the ground-state eigen-

~ G. Temple, Proc. Roy. Soc. (London) A119, 276 (1928}.
~ T. Kinoshita, Phys. Rev. 105, 1490 (1957); 118, 366 (1959).
8 E. Vf. Schmid, Y. C. Tang, arid R. C. Herndon, Nucl. Phys.

42, 95 (1963}.
9 Y. C, Tang, E. %. Schmid, and R. C. Herndon, Nucl. Phys.

65, 203 (1965).

function. For this purpose lct us write

Ev =ED+ 2 I ~.I'(E.—E~)
0~1

(c.l~&=D- Z I'I'j'/. (6)

Usmg Eqs. (5) and (6) it is easyto show the, t

E~
—Ev) &/2 E) Ev) 1/2

Eg—E0/ E,—El,j
Thus, given E~, Eg, and EI, a lower bound on thc
overlap can be evaluated. %C can go even further in
studying thc wave function to scc in what I'cgion of thc
con6guration space the wave function is poor. This is
done by studying X%'/4 as a function of the sum of the
interparticle distances. If 'k were the eigcnfunction, then
X%/4' would take on a constant value, equal to the
eigenvalue everywhere in this space. Thus by studying
the deviation of X+/4' from the eigenvalue, information
about delciencies in the trial function 4' in diferent
parts of this space can be obtained.

Having discussed the variational method for evalu-
ating the upper and lower bounds which are given in
terms of (X) and (X'&, we turn our attention to the
evaluation of these matrix elements. The Hamiltonian
for a system of X interacting nucleons is written as

jP N N

Z&;2+ Z v-+ p v(r ), (g)
2tS s=» s&f=» s&j=»

whcI'c V; is thc nucleon-nucleon potential and js taken
to have the form

v';=-:(l+&';.)«(;;)+-,'(l-~;,')v.(.,&.

Here I'@~ is the spin exchange operator, and V, (r) and
V, (r) are the triplet and singlet nucleon-nucleon
potentials in the even states, '0 respectively. The last
term in the Hamiltonian is the Coulomb interaction,
with e;; equal to one if i and j label protons, and zero
otherwise.

The trial wave function will be chosen to have the
form

O'= XP, (10)
where X is the spin-isospin part of the wave function and
f is the space part of the wave function. For the sake of

'o The potential in the odd states need not be speciled since a
fully space symmetric trial function @rill be used in our calculation.

a=I l.—P I~ I2y~,+P ~ c
n~» e~»

where C„'s are the eigenfunctions of the Hamiltonian.
From this equation we obtain
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simplicity we are going to choose the space part to be
totally symmetric and of the form

4= II f(r';).

It is quite clear that this is not the most general trial
function, since the presence of spin dependence in the
two-body potential requires that the eigenfunction has
less symmetric parts. %hat we shall do below is to
replace the actual Hamiltonian X of Eq. (8) by an
effective Hamiltonian B, which contains an effective
nucleon-nucleon potential of the form

I'.=-'Ll' (r)+ ~.(r)3, (12)

which has no spin dependence. Kith this latter simpli-
fication, the choice of f in Eq. (11)would then be quite
appropriate. Of course, the quantity of most interest is
the eigenvalue of the Hamiltonian X. But, as has been
indicated by a number of calculations for the three-body
system, " the difference in the eigenvalues of 3C and II
is only about a few tenths of a MeV."Thus, for the pur-
poses of this investigation, a detailed examination of
this simpler problem should be quite sufhcient.

Having simplified the problem to one with an effec-
tive interaction that is spin-independent, let us turn our
attention to the choice of f(r). In choosing f(r) we have
to keep in mind two important factors. First, the func-
tion f should have the right asymptotic behavior when
one of the particles is far away from the rest. Second,
when two nucleons are very close to each other, the
function f(r) should depend primarily on the inter-
action between these two nucleons, and comparatively
little on the presence of other nucleons in the system.
Such a wave function has in fact been proposed, '"and
is of the form

where E is the distance of the Sth nucleon from the
center of mass of the other (N—1) nucleons. The
parameter n is therefore related to the separation energy
of the Eth nucleon. This enables us to make an in-
telligent guess for the starting value of o, in the vari-
ational procedure.

It is appropriate to mention that the type of trial
wave function adopted here is capable of yielding upper
bounds very close to the eigenvalues. For a three-body
problem, the results of a large number of calculations, '4

all using the same two-body potential, indicate that the
upper bound obtained with our trial function is only a
few tenths of a percent away from the eigenvalue. In the
case of a four-body problem, "similar calculations have
not been made. However, the results for E~ and EJ„
obtained with a purely attractive potential also show
that our trial function is certainly a very adequate one.
Also, it should be mentioned that our trial function is
quite suitable from the viewpoint of numerical compu-
tation. Because of the physical signi6cance which some
of the parameters possess, it is usually only necessary to
vary the parameters once to obtain their optimum
values. Thus, the amount of computer time needed is
not at all large. For example, in the case of a three-body
problem, it takes only about 8 min on the CDC 6600
computer to obtain the optimum value of the upper
bound. '6

Using the optimum wave functions, we can calculate
the body form factors F& of the three- and four-body
systems. In the first Born approximation, Fq is given by

&i, (q') = e'&'p(r)dr,

with p(r) being the nucleon density function, which is
normalized according to the condition

f(r) =N(r)/r, r&r&

=gr»&N '&Lexp( —nr)+Bexp( —pr)j, r&re (13) p(r)dr=1. (17)

where u(r) is a solution to the equation

(@f~)d Nfd" +~~'(")
In Eq. (13),the constants A and 8 are chosen such that
f(r) and its first derivative are continuous at re The.
quantities u, p, e, and re are variational parameters. The
factor r-'I &~ '& is chosen such that f(r) and thus iP has
the right asymptotic behavior. For example, if we take
a(p, we have for the case when the Xth particle is far
away from the rest,

(15)

'~ Y. C. Tang, R. C. Herndon, and E. W. Schmid, Phys. Rev.
134, B743 (1964); S. Rosati and M. Barbi, ibid. 147, 730 (1966).

» Qne can also obtain some idea about the difference in the
eigenvalues for these two Hamiltonians by computing the respec-
tive lower bounds. For example, see Ref. 9.

» N. Austern and P. Iano, Nucl. Phys. 18, 672 (1960).

The density function is related to the function f by the
expression

where r; is the distance of the ith nucleon from the
center of mass of the system. Since the trial wave func-
tion used in this investigation is totally space sym-

~4 G. A. Baker, Jr., J. L. Gammel, B.J. Hill, and J. G. Wills,
Phys. Rev. 125, 1754 {1962);M. H. Kalos, ibid. 128, 1791 (1962);
S. AranoG and J. K. Percus, ibid. 162, 878 (1967); Y. C. Tang,
R. C. Herndon, and E. W'. Schmid, ibid. 134, B743 (1964); Y. C.
Tang and R. C. Herndon, ibid. 138, B637 (1965); R. T. Folk,
Nucl. Phys. SS, 449 (1966); S. Rosati and M. Barbi, Phys. Rev.
147, 730 (1966); M. Banville and P. D. Kunz (to be published);
R. Van Kageningen and L. P. Kok, Nucl. Phys. A98, 365 (1967).

1~ Y. C. Tang and R. C. Herndon, Nucl. Phys. A93, 692 (1967).'6 For He', the computing time needed is about 40% longer.
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TAsLz I. Parameters of soft-core potentials.

Potential

Si
S2
S3
S4

T/ t1

(MeV)

1000.0
1100.0
1000,0
600.0

ptl
(F-')

5.4
4.8
3.0
5.5

~t2 pt2

(MeV) (F-2)

—143.4 0.82—162.6 0.82—326.7 - 1.05—70.0 0.50

~t3
(MeV)

—43.0
43.0—43.'0—27.6

Pt3 ~a~

(F ') {MeV)
P.1 ~.S

( '} (MeV)

0.60 880.0 5.2 —67.1
0.60 880.0 5.2 —67.1
0.60 1000.0 3.0 —166.0
0.38 880.0 5.4 —70.0

PaQ ~e3 Pa3
{F-3) {MeV) {F-~}

0.62 —21.0 0.38
0.62 —21.0 0.38
0.80 —23.0 0.40
0.64 —21.0 0.48

metric, p(r) can be writte~ as

p(r) = P—P 8(r r;)g—dr
4xr' E '-&

(19)

2F.h (He')+F, h (H')

3LF""(q')+F""(q')j (20)

The body form factor calculated using Kqs. (16) and

(19) can be compared with that determined experi-
mentally. This latter quantity is obtained from the
charge form factor which has been experimentally
measured. In the case of the three-body system, the
body form factor is expressed, " under reasonable
assumptions, in terms of the charge form factor for
H'[F,h(H')] and the charge form factor for He'

[F,h(He') j as

Most of the formulas presented above involve
integrals that are multidimensional. To evaluate these

. integrals, we shaH make use of a Monte Carlo method.
Since this method has been discussed in detail recently, '-
we shall not further describe it here, except to say that
this method has been well tested in many cases and.
shown to yield accurate results even with a moderate
number of estimates which take rather short computing
periods on modern high-speed computers.

III. TWO-80DY PQTENTlALS

The soft-core potentials used in this investigation
have the form of Kq. (9) with

V((r) =Q V(, exp( p( r')—

where F,z( (q') and F,(,"(q') are the proton and neutron

charge form factors, respectively. For He4, an analogous
expression can be derived; this is

V, (r)= Q V„exp(—p„r'). (24)

F,h(He')
F~(q') =

F.~"(q')+F.h" (q')

In both Kqs. (19) and (20) a l~nowledge of

[F."(q')+F""(q')3
is required; in this work, we use

Four diferent potentials will be considered, each for a
(21) different purpose. These potentials will be denoted as

potentials Sl, S2, S3, and S4, with the values of the
parameters presented in Table I.

The potential S1 is chosen to show the equivalence of
hard-core and soft-core potentials. For the hard-core
potential, we use potential A of a previous calculation, '
which has the form

F'"(q')+F h" (q') = — +o 1 (22)
1+q'/15. 7 1+q'/26. 7

which was obtained by Janssens et al.(8

Tmx, E II. Fit to nucleon-nucleon effective-range parameters.

Potential

A
S1
S2
S3
S4

Expel J.vent

I-p triplet
Scat- Effec-
tering tive
length range

(F) (F)

5.38 1.70
5.38 1.70
5.40 2.74
5.39 1.74
5,60 1.94
5.39 1.704

g-p singlet
Scat- Eftec-
tering tive
length range

(F)
—16.69 2.73
—26.78 2.67—16.78 2.67—16.32 2.76—7.94 2.67—23.74 2.67

p-p singlet
Scat- Effec-
tering tive
length range

(F) (F)
—7.70 2.61—7.66 2.53—7.66 2.53—7.69 2.60
-5.14 2.53—7.68 2.65

» L. I. Schiff, Phys. Rev. 133, 8802 (1964).
'3 T. Janssens, R. Hofstadter, K. 8.Hughes, and M. R. Yearian,

Phys. Rev. Letters. 16, 1N (1965},

V((») = —V«exp[ —p((»—«.)j,=+ CO r&r,

Tmxx IG. Comparison of calculated 5-vrave
phase shifts with experimental values.

e-P 351 phase
~LAB

(MeV) A Si

20 1.515 1.512
60 1.024 1.010

100 0.774 0.756
140 0.600 0.582
180 0.464 0.452
220 0.351 0.349
260 0.254 0.264
300 0.1N 0.192
340 0.092 0.131

shifts (rad)
YLAN

S2 3M'81'

1.497 1,400
0.983 0,945
0.718 0.680
0.537 0.520
0.400 0.400
0.290 0.290
0.199 0.200
0.122 0.110
0.056 0.020

0.871.
0.581
0.394
0.255
0.143
0.048—0.035—0.108—0.175

phase shifts (rad)
YLAM

Si or S2 Eo

0.874
0.569
0.376
0.238
0.132
0.047—0.023—0.083—0.134

0.865
0.580
0.387
0.242
0.137
0.047—0.037—0.122—0.190

V.(r) = —V„exp[—p, (»—«,)g, r~», (26)
=+~, r(r,
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TAsLz IV. Variational results for potentials A and S1.

Nucleus Potential

H' A
S1
A
S1

(F-')

0.275
0.303
0.245
0.336

3.0
1.85
2.8
2.15

1.2
1.3
1.3
1.16

—6.0
0.5

—3.3

—7.63+0.05—7.74&0.05—7.36~0.05—7.70+0.03

—17.24+1.72—12.38m 0.15—14.52~1.20—8.88+0.06

rms Variation performed
radius for optimum
(F) values of

1.62
1.59
1.77
1.49

He4 A 0.310
S1 0.345
A 0.285
S1 0.340

3.2
2.4
2.6
2.45

1.2
1.2
1.1
1.16

—16.0—83—14.0—8.8

—30.28+0.16—31.09+0.16—29.73+0.18—31.08+0.15

—54.20~1.79—32.43&0.34—46.62~1.70—32.38+0.15

1.39
1.34
1.47
1.35

where r, =0.35 F, Vo(=434.0 MeV, P(=2.4 F ',
Vo, ——216.0 MeV, and P,=1.97 F '. The parameters of
the soft-core potential S1 are then adjusted to yieM the
same scattering length, effective range, and 5-wave
phase shifts as those obtained from potential A.

The values of the low-energy e6'ective-range param-
eters for potential A and the various soft-core potentials
are given in Table II.As is seen, the requirement stated
above for potential S1 is very well satis6ed. The 5-wave
phase shifts for potentials A and S1 are listed in Table
III. Here again vre see that both potentials give nearly
the same values for the 5-wave phase shifts in both
triplet and singlet states. In fact, even for the D-wave
phase shifts in the energy range up to 340 MeV, the
difference is less than one degree.

From Table III, it is seen that the p-p!80 phases of
potential Sj. agree quite vrell with the values of the
YI.AM set of Breit et al."On the other hand, then e-p
'S~ phases seem to lie above the VLAN3M values of
Hull et ul.20 at energies greater than about 100 MeV. To
see the sensitivity of our results for the four-body
system to the high-energy phase shifts, vre shall also
calculate with a potential (S2) which yields the same
effective-range parameters (see Table II), but gives
better Gt to the I-p 'S~ phases at high energies (Table
III). As will be seen below, the binding energy and rms
radius obtained with S2 are very nearly the same as
those obta, ined vrith Si. This gives a strong indication
that, as far as the low-energy properties of light nuclear
systems are concerned, the 6tting of the 8-@rave phases
above 100 MeV is not an essential condition.

In nuclear-physics calculations, such as the resonat-
ing-group calculation, it is important that the nucleon-
nucleon potential used gives about the right sizes and
binding energies for the nucleon clusters. For this
reason, vre shall see if it is possible to And a potential
vrhich 6ts the lovr-energy nucleon-nucleon scattering
data and at the same time, yields nearly correct, values
for the binding energies and rms radii of H3 and He4.
The results shovr that this potential can indeed be found
a,nd vrill be called potential S3 in this investigation.

~ G. Breit, M. H. Hull, Jr., K. E. Lassila, K. D. Pyatt, Jr., and
H. M. Ruppel, Phys. Rev. 128, 826 (1962).

~ M. H. Hull, Jr., K. K. Lassila, H. M. Ruppel, F.A. McDonald,
and G. Breit, Phys. Rev. 128, 830 (1962).

Finally, vre have also computed with a potential
(S4) proposed by Eikemeier and Hackenbroich. ' Even
though this potential does not 6t the low-energy experi-
mental data (Table II), it has been employed by
Ha, ckenbroich et ul."to compute the binding energies
of H', He', I.ie, and I.i', and the scattering phases of
He' by He' and He'. To avoid the use of a Monte Carlo
technique as has been done previously, "mathematical
approximations were introduced in their calculations.
As these approximations seem quite drastic to us, vre
feel that it is important to check their results on H' and
He4 with our variational method. The results of our
investigation show that the use of such approximations
does introduce rather serious errors and should, there-
fore, be avoided if accurate results are desired.

IV. RESULTS GF CALCULATIONS

A. Potential Sl
In the previous section vre presented the hard-core

potential A and the soft-core potential S1 vrhich give
nearly the same S-wave phase shifts in both singlet and
triplet states. The question is, vrill these two potentials
give the same binding energies, rms radii, and form
factors for H' and He4. The reasons for choosing these
tvro nuclei are as follows. First, it is relatively easy to
perform variational calculations on the upper and lower
bounds of the energies and calculate the rms radii and
form factors vrithout any approximations. This elimi-
nates the question of inaccuracy with which one has to
deal if mathematical approximations are employed, or
the question of convergence in those cases when only
the erst few terms of an expansion are taken into
consideration. Second, the calculations for both H' and
He' have already been performed for potential A' and
an equivalent velocity-dependent potential, "so that a
comparison vrith the soft-core-potential result can
readily be made.

In Table IV the results of the variation on the upper

~'H. H. Hackenbroich, K. Kildermuth, and H. W. %ittern,
J. Phys. Soc. Japan Suppl. 24, 627 (1968); H. H. Hackenbroich,
Habilitationsschrif t, University of Tubingen, 1967 (unpublished).~E. W. Schmid. , Y. C. Tang, and K. Wildermuth, Phys.
Letters 7', 263 (1963).

+ R. C. Herndon, K. %. Schmid, and Y. C. Tang, Nucl. Phys.
42, 113 it9631.
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and lower bounds of the energies using potentials A and.

Sj. are presented for both H' and He4. Here, we notice
that not only the optimum values of the upper bounds
on the energies for both nuclei are very close, but also
the rms radii are about the same. This indicates strongly
that the binding energy and rms radius of a few-nucleon

system are not sensitive to the form of the potential
used. In fact, it has been shown by Herndon ef u3.~ that
even with an equivalent velocity-dependent potential
(an equivalent velocity-dependent potential is one
which gives the same 5-wave scattering phases as
potential A or S1) very similar values for the upper
bounds and rms radii were obtained.

If we compare the lower bounds on the energies using
the hard-core potential and the equivalent soft-core
potential in the cases of H3 and HC4, we find that the
lower bounds obtained using potential S1 (Table IV)
are much closer to the upper bounds than in the case of
potential A. As a matter of fact, the upper and lower

bounds on the energy using Si are close enough so that
the eigenvalue for the potential can be estimated fairly
accurately without any reliance on how well one can
estimate g. This is one of the advantages in using a soft-
core potential, since a common argument against a
variational calculation is that it is dificult to know how

close the upper bound is to the eigenvalue. Since our
experience' with the hard-core-potential calculations
showed that the quantity g is unlikely to have a value

less than j.0, the closeness of the bounds in the case of
potential Si allows us to predict with con6dence that
the eigenvalue is within 0.1 McV of the upper bound.

Let us now turn our attention to the optimum wave

functions obtained using 'potentials A and Sj.. In Fig. i
we have plotted f(r), normalized to unity at the peaks,
for both H and Hc .In this Ggulc th.c dots rcplcscnt thc
values of f(r) obtained with potential A, while the solid

line is that obtained with potential Si. Here, one

immediately notices that the two wave functions agree

very weO for t &0.8 F.This is the reason why the values

of the upper bounds and the rms radii for the two

l.2- He4
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I
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2
r (F) r (F)

pro.p. The functions f(r) for potentiate St sn& A The so»~
line is for potential Si, while the dots represent the values for
potential A. The peaks are normalized to unity.

potentials agree, since both of these quantities depend
to a large extent on the tail of the wave function and the
posltlon of thc peak, rather thRn on thc sholt-range paI
of the wave function.

From Fig. 1, one sees that one way to define the
degree of softness of a potential is by using the value of
f(I ) at r =0. For potential S1, this value is about equal
to 0.5, which is half of the value at the peak.

Using the optimum wave function, the overlapping
integrals of Kq. (7) can also be calculated. With the
parameters of the lower bounds, we obtain

HO4

O.S -)

t~
~~

2 4 6 8
q2 (F 2)

I t

4 6
q'(F 2)

~~
I

8

FIG. 2. Comparison of body form factors obtained with poten-
tials Sj, and A. The solid line is for potential 81, while the dots
represent the values for potential A.

In Fig. 2 we show the body form factor E& for both
H' and He4, where again, the dots represent the form
factor' for potential A, and the solid line is that for
potential Si. Here also, we 6nd that the agreement is
good, a reQection of the fact that the long-range parts
of the optimum wave functions for these potentials are
almost indistinguishable.

The above results indicate strongly that it is not
possible to distinguish between a hard-core and a soft-
core potential, or even a velocity-dependent potential,
on the basis of a calculation of the binding energy, rms
radius, or form factor of a light nuclear system, pro-
vided these potentials give the same scattering length,
effective range, and 8-wave phase shifts. However, it is
important to keep in mind the advantage of the soft-
core potential in giving a much better lower bound on
the energy. This is a very useful feature in a variational
calculation, since a good. lower bound can clearly enable
us to make a reliable estimate of the eigenvalue.

To see why we get a better lower bound on the energy

(c,~e)&o.94 for Hs

(co~@)&~0.98 for He

with potential S1. Since it is clear from Eq. ("I) that
these are very conservative lower limits, the fact that
they have such large values indicates that our optimum
wave function represents the eigenfunction quite
closely.
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the lower bound must be a very good representation of
the eigenfunetion.

B. Potential S2

Next, we turn to potential S2 which gives a better fit
to the high-energy triplet S-wave phase shifts than does
potential Si.The purpose of this calculation is to see the
sensitivity of the binding energy and rms radius on the
nucleon-nucleon phase shifts at high energies. The
results for the variation on the upper bound for He4 are

I I I I I I I

2 4 6 8 10 l2 I4 l6

rI2+ ri&+r2& (F)

I I I I I I I I

2 4 6 8 IO l2 14 I6

ri2+ris+r23 '"'

Pro. 3. Hip/f as a function of r»+r»+rls
obtained with potential S1.

using potential Si, and in what region of the configura-
tion space the optimum wave function is poor as com-

pared to the eigenfunction, we will study the behavior
of the quantity II//f. In Fig. 3 we have plotted Hf/f
against (r»+r»+rss) for H', using potential S1. The
plots are made with the parameters corresponding to
the optimum values of the upper and lower bounds. In
this figure, the rectangles include 95% of the points,
while the dots represent the weighted average of all the
points in the rectangle. The dashed line is the upper
bound, which in this case is almost equal to the eigen-
value. Now, if we compare the results of Hf/f for S1
with that for potential A,' we find that in the case of
potential A, the points for ris+r»+r»(4F are so
widely distributed that they were not even included in
the plot, while this is not the case for potential Si.This
indicates that when three particles are close to each
other the wave function for potential Si is closer to the
eigenfunction than that for potential A. Clearly, then,
the reason for a better lower bound with potential Si
is that the quantity (H') is very sensitive to the be-

havior of the trial function in this region of the con-

figuration space.
The plots of Hf/f in Fig. 3 also show that the param-

eters of the lower bound try to adjust themselves such

that the trial wave function resembles the eigenfunction
closely in the region of the configuration space where

r»+ris+r» is small. By so doing, however, the fit to
the eigenfunction in the asymptotic region is somewhat
sacrificed. These are demonstrated by the fact that the
dots are close to the dashed line when r»+r»+rss is
less than about SF, but begin to deviate from the
dashed line quite severely for r»+r»+r» greater than
8 F. For the upper bound, on the other hand, the trial
function seems to aim for a good over-all representation
of the eigenfunction; thus, the dots oscillate about, the
dashed line, but without large deviations.

It should also be noted that in the case of He4 the
optimum parameters for the upper and lower bounds
are almost the same. This is another indication that the
optimum wave functions for either the upper bound or

n=0.342 F i P=2.6 F-i rs —1 1g F
s= —11.0 MeV, (29)

Eg 30 25+0 i5 MeV, E 32 23+0 35 MeV

rms radius= 1.35 F.
A variation to obtain the optimum value of the lower
bound has not been performed, since the lower bound
obtained with the optimum parameters of the upper
bound )see Eq. (29)j is already very close to the upper
bound. If we compare the above results for potential
S2 with those of potential Si, we notice that there is
little change in the optimum parameters of the trial
function and in the values of the rms radius and the
upper and lower bounds on the energy. This indicates
that a fit to nucleon-nucleon phase shifts up to E~ b
~i00 MeV is sufhcient for the evaluation of the binding
energy and rms radius. We realize, of course, that this
conclusion is reached only on the basis of a four-body
calculation. However, we feel that, since the average
nucleon-nucleon distance in heavier nuclei is about the
same as that in an n particle, it is very likely that this
conclusion is also valid when there are more than four
nucleons in a system.

C. Potential Ss
As was mentioned in Sec. III, it is important in low-

energy nuclear physics to use a nucleon-nucleon
potential that gives the correct sizes for the nucleon
clusters. For example, in the calculation on Hes+Hes
elastic scattering by resonating-group method, "it was
found that agreement with experimental data can be
achieved only when the rms radius of the He' cluster is
chosen to have a value close to that determined experi-
mentally. Since in many resonating-group calculations
the clusters involved are deuteron, He', and He4 clus-
ters, we shall try to find a soft-core potential which will
yield nearly the right sizes and binding energies for
these clusters, and, at the same time, fit the low-energy
nucleon-nucleon scattering data.

In Table V, the results of the variational calculation
for H' and He4 using potential S3 are presented. From
this table, it is observed that the rms radii obtained for
H' and He4 are in good agreement with experimental
values of 1.70&0.10 F and 1.44+0.07 F. Also, we note
that, here again, the lower bounds on the energies are
close enough to the upper bounds so that the eigen-

~ D. R. Thompson and Y. C. Tang, Phys. Rev. 159, 806 (1967}.
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TABLE V. Variational results for potential S3.

Nucleus

H'

He4

(F-)
0.285
0.348

0.317
0.324

(F-')

2.2
2.29

3.08
2.68

rd
(F)

1.18
1.22

1.10
1.22

(MeV)

3.5—5.7
—18.0—11.0

AU
(MeV)

—6.56+0.05—6.32+0.03

—26.47&0.13—26.46+0.11

+L
(MeV)

—16.59&0,23
9.79+0.09

—35.81+0.37—29.34+0.29

rms
radius
(F)

1.69
1.51

1.44
1.45

Variation per-
formed for
optimum

values of

~U
~L

I.O He

0.8

0.4-

0.2 "

2 4 6 8 2 4 6 8
q (F-2) F-2)

FIG. 4. Comparison of body form factors obtained for Hg and
He4 with experiment. The potential used is potential S3.

'~ H. Collard, R. Hofstadter, E. B.Hughes, A. Johanson, M. R.
Yearian, R. B. Day, and R. T. Wagner, Phys. Rev. 138, B57
(1965); R. F. Frosh, J. S. McCarthy, R. E. Rand, and M. R.
Yearian, Bull. Am. Phys. Soc. 12, 16 (1967);Phys. Rev. 160, 874
(1967).

values for H' and He' can be fairly well estimated; these
turn out to be around —6.7 and —26.7 MeV, respec-
tively, which are in fair agreement with the values found
experimentally.

With the peak of f(r) normalized to unity, the values
of f(0) are equal to 0.40 and 0.37 for H' and He', re-
spectively; these values are smaller than the correspond-
ing values of 0.50 and 0.48 obtained with potential Si,
indicating that potential S3 has a stronger repulsive
component. This means that, to obtain an agreement
with the experimental values of the rms radii, it is
necessary to use a core which is more repulsive than
that obtained by fitting the nucleon-nucleon scattering
data at high energies. The reason for this is that we have
used a purely central force with no tensor component in
our calculation, and it is well known that a tensor force
is not as effective in binding three- and four-body
systems as in binding a two-body system.

There have been extensive measurements on the
charge form factors for both H' and He4. In Fig. 4 we
have compared the calculated body form factors for H'
and He' with experimental values. '5 As was explained,
the experimental body form factors are obtained from
the measured charge form factors by using Eqs. (20)—
(22). From this figure, it is seen that the agreement
between the experimental and calculated form factors
is quite good even at relatively large values of momen-
tum transfer. This indicates that potential S3 does

satisfy our purposes stated above and can be used as an
effective potential in resonating-group and shell-model
calculations.

D. Potential S4

A soft-core potential of the same form as we have
used has been reported by Eikemeier et al.4 The param-
eters of this potential (potential S4) are given in Table
I. With this potential we have also performed vari-
ational calculations on H' and He'. The results are
presented in Table VI, where the results obtained by
Hackenbroich eI, ut."have also been included. Here we
notice that the value of E& of He4 given by Hacken-
broich et al. is even lower than the lower bound (—28.74
~0.22 MeV) of our calculation. This indicates clearly
that the results of Hackenbroich et ul. are inaccurate.
The reason for this is probably because they have used
some mathematical approximations to simplify their
numerical computation, which are too drastic.

V. CONCLUSION

The results of our calculation indicate that, on the
basis of the binding energy, the rms radius, and the
form factor up to g' of about 10 F ', it is not possible
to diHerentiate between a, soft-core potential and a
hard-core potential, which yield the same eGective-
range parameters and high-energy S-wave phase shifts.
We realize, of course, that this conclusion is reached
only from a calculation on the light systems H3 and He4,
but we do expect it to be also valid for heavier nuclei.
The reason for this is that the average separation dis-
tance in a heavy nucleus is nearly the same as that in
He4. Thus, it seems reasonable to assume that the
binding energy of a heavier nucleus will not be sensitive
to the shape of the repulsive core just as in the case of
He'. ln fact, the close resemblance of the functions f(r),
as exhibited in Fig. 1, leads us to speculate that even
the properties of low-lying states in nuclei may not be
too sensitive to the form of the repulsive part of the
nucleon-nucleon potential. It seems that, in order to
determine the characteristics of the repulsive part, one
may have to study high-energy phenomena, such as
high-energy nucleon-nucleus scattering.

Although the hard-core and equivalent soft-core
potentials give the same results for the binding energies
and rms radii of Hs and He', it is found that a soft-core
potential is more suitable for a variational calculation.
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TAM.z VI. Comparison of Hackenbroich's and our results.

rms radius

He4

—7.30—7.00+0.03—6.97+0.05

—31.91—27.74+0.11—27.61+0.09

—8.04+0.05—7.57+0.10

—33.80+0.31—28.74&0.22

1.72
1.71
1.60

1.45
1.44
1.52

Hackenbroich et al.'
Present calculations, EU varied
Present calculations, El, varied

Hackenbroich et A.'
. Present calculations, Eg varied
Present calculations, El, varied

a Reference 21.

The reason is that a soft-core potential gives a much
better lower bound than an equivalent hard-core
potential. This is an important factor in favor of a soft-
core potential, since a good lower bound enables one to
estimate the eigenvalues of H' and HC4 quite well, even
without an accurate estimate of the quantity q, which
requires a detailed study of the behavior of the function
Pf/f in the configuration space. This is unfortunately
not the case when a hard-core potential is used. Thus,
in the case of H' with the Hamada-Johnston potential,
Davies" has obtained upper and lower bounds of
—5.735 and —135.8 MeV, respectively, which are very
much separated. It is our belief that, with an equivalent
soft-core potential, the lowe~ bound may be greatly
improved.

Also, it is found that the binding energy and rms
radius are not sensitive to the nucleon-nucleon phase
shifts at high energies. Our calculations mith tmo
potentials which difFer only in their fits to the high-
energy (&100-MeV) phase shifts show that the binding
energies of He' are different by only about 0.8 MeV.

Our investigation further shows that it is possible to
construct a soft-core efFective nucleon-nucleon potential
which yieMs values for the energies, radii, and form
factors for H' and HC4 that are in good agreement with
the corresponding experimental values. Such a potential
will be very useful for resonating-group calculations in
light nuclei, where one mould like to use a potential that
has these properties.

Finally, a brief study of the soft-core potential
proposed by Eikemeier and Hackenbroich has also been
undertaken. Here, we And that the approximations used
by Hackenbroich et al. to study the properties of light
nuclei lead to rather poor results. This is rather un-
fortunate, since it means that for a careful investigation
of the light nuclear system with a realistic potential, one
may have to adopt a Monte Carlo technique such as the
one being used here.
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APPENDIX: He' MNDING ENERGY WITH
VOLKOV POTENTIAL

In this Appendix, we use Volkov's potentiaP to
calculate the rms radius and the upper and lower
bounds on the energy of He4. The reason for this calcu-
lation is to compare our results for He4 with those
obta1ncd by Volkov, mhclc R slIIlplcr tl'1al funct1on of
a product of Is harmonic-oscillator wave functions was
used.

The potential used by Volkov is

V(r) = —83 34 e ~'&"F"'+144 86 e-&"«'"~&t' MeV

(A1)

in the even states and has no Coulomb component. With
this potential, the results of our calculation on the upper
and lower bounds are

Eg ———29.95~0.13 MeV, El,= —33.86&0.31 MeV,
rms radius= 1.55 F. (A2)

The rms radius reported above is that calculated with
the optimum parameters of the upper bound, since, as
has been mentioned, the upper bound is almost always
much closer to the eigenvalue than the lower bound is.
These results should be compared with those obtained
by Volkov, which are

E~= —28.01 MeV, rms radius=1. 6/ F. (A3)

A comparison of these results with those in Eq. (A2)
shows that thc uppcl bouIld wc obtR1Il 1s about 2 McV
lower than that in Eq. (A3). For the rms radius, both
our value and his value are larger than the experi-
mental value. The reason for this is that the Volkov
potential has a tail that is too long-ranged.

The Volkov potential is a rather soft potential; this is
reflected in the value of f(0), which is equal to 86% of
the value at the peak of f(r).

Even though the Volkov potential does not 6t the
low-energy nucleon-nucleon scattering data too well,
this investigation does indicate that it is possible to
obtain another potential, which gives a better agree-
ment with the nucleon-nucleon scattering data and, at
the same time, yields the ground-state properties of H'
and He4. Such a potential, being soft enough, may be
very useful for Hartree-Fock calculations in nuclei
heavier than He'.


