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This paper presents a consistent 6eld-theoretic perturbative calculation of the Fermi function and the
analytical model dependences of corrections to it. The screening, Rnite nuclear size, and radiative corrections
are considered in a uniaed treatment. We are able to separate out the point-nucleus Fermi function Fo from
the corrections, and thus only treat the corrections in a power-series expansion. The proper way of in-
corporating the radiative correction into Fo is discussed. Detailed analytical results for the model dependence
of the 6nite-nuclear-size and radiative corrections are presented. The most realistic model chosen employs
the nuclear charge distributions as given by Hofstadter and the single-particle harmonic-oscillator model
for the nuclear matrix elements. The model-dependent results are used to calculate the ft values of the
super-allowed decays of 0'4, AP', CP4, Sc4', V46, Mn~, and Co'4. The values of the vector coupling constant
Gy are calculated for the above nuclei using the most realistic model, and the variation of the Gy is discussed
in the light of the predictions of the conserved-vector-current theory of weak interactions.

INTRODUCTIOH

~ 'HK importance of the value of the vector coupling
constant Gy in weak interactions has been dis-

cussed in the literature. ' ' Since the ff values of
OI ~ 0+ nuclear P decays are used to obtain the most
precise values of Gy, ~ ' the determination of the Fermi
functions M F(Z,p) for allowed decays plays a central
role. Precise calculations of Il are also needed to in-

vestigate apparent deviations in the ft values of some
super-allowed 0+ —+ 0 decays. ' "

The purpose of this paper is to present a consistent
field-theoretic perturbative treatment of the Fermi
function for a point nucleus, Po(Z, p), and all the usual
corrections' to it. Since the corrections to F0 are
usually treated in piecemeal fashion in the literature, it
becomes dBBcult to see each correction in perspective.
Our treatment will bring out the relative importance of
the corrections and enable us to examine the corrections
made previously in the literature for consistency with
each other. We will be able to separate out F0 from the
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corrections and thus electively only treat the correc-
tions in a perturbative expansion. In a previous paper,
Chem et u3. 7 gave the results of a calculation for a
simple model where the nuclear structure was ignored
in the Coulomb interaction but was taken into account
in the p decay. We will show how the results in that
paper were obtained and extend the formalism to take
into account the nuclear structure during the Coulomb
interaction. Thus we will obtain analytical model-

dependent results for the 6nite-nuclear-size, screening,
and radiative corrections. We then make use of these
results to calculate the best values of G~ for some ac-
curately measured 0+ —+ 0+ decays using realistic
nuclear models. The field-theoretic method used in this

paper has several advantages. It explicitly displays the
approximations which are implicit in the usual treat-
ment of the Fermi function, and markedly simplifies
the model-dependence calculations. This is so since we

can treat all static nuclear model dependences analyti-

cally in one calculation, whereas each new model de-

pendence necessitates a new calculation for the elec-
tron's entire wave function in the nonperturbative
treatment. In addition, our method considers the sects
of the emitted electron back on the nucleus, i.e., where

the quantum-mechanical aspects of nuclear structure

play a role. In Sec. II we discuss the size of such cor-

rections in comparison to the three mentioned above.
We shall also be able to comment on the eGect of pos-
sible isotopic impurities on the accepted values for the
p-decay matrix elements.

The Fermi function arises naturally in the calculation
of the transition probability per unit time for P decay
from the expansion of the electron 6eld operator in terms

of positive energy Coulomb wave functions rather than

plane waves. Thus Ii modifies the usual statistical dis-

tribution which occurs if the outgoing electron is

regarded as a free particle. We review briefly the various
corrections to F0 and the models which have been im-

plicitly assumed in their calculation.
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In Fermi's original treatment, ' only the p-decay
interaction was treated in perturbation theory and he
used the Coulomb wave functions for an. electron in the
Geld of the daughter nucleus. The nucleus was regarded
as a point charge as far as the Coulomb interaction
was coIlccrncd. Because thc CouloIDb wave functloDS
which are square integxablc at the origin for J=~
possess R %cRk singularity Rt t'=0, hc introduced R

con6guration space cuto6 E in the divergent parts.
Letting r ~ 0 everywhere (except the divergent parts
where 2~nuclear radius), one obtains Fe(Z,p). If one
retains the small terms containing r, one has F~(Z,p),
which in the Htcrature is said to include the 6nite dc
Broglie wavelength effects. ~'0 "One can write"

Fn(Z, P) =Fs(Z,P)
X Li+(terms proportional to powers of r)j.

Thus Ii~ diBers from F0 in containing some 6nite-
Duclcar"Size corrcctloDs T4c %ox'k 1D the lltclatulc oQ
obtaining Rccux'Rtc values of thc Fcrnll function cRQ bc
interpreted in terms of obtaining corrections to I"0. The
usual corrections considexed in the literature are due to
Gnitc-nuclear-size, scrccnlng of ac Coluomb
potential seen by the outgoing electron due to the
presence of atomic electrons, '~—"and the radiative
corrections. '~"

Rose'~ was the 6rst to consider the cGects of screening
on Ii 0. He used a modi6ed %KB approximation to solve
thc D11RC cquatlon RDd gave a prescription fox' modify-
ing Fp. The method is lucidly discussed by Durand. '8

For our purposes we need only note here that the model
used is that of R screened Coulomb potential for R point
DuclcUs. Durandq uslDg particular folms of a scx'ccncd
point charge Coulomb potential (Hulthdn potential),
obtained exact solutions to the Schrodinger and Klein-
Gordon equations. %C will compare our results with his
Rnd Rose's in Sec. III. If the Coulomb potential is
modi6ed to take the Gnite nuclear size into account,
in general we cannot solve the Dirac equation analyti-
cally. The models that have been assumed for the static
nuclear charge density are those of a uniformly charged
spherical sheH'~ (UCS), and a uniformly charged
spherical ball (UCB).'~" Some authors also consider
the screening s ~6 whereas others x eglect it.~4» In order
to usc the wave functions obtained from these models
to calculate the transition probability per unit time for
p decay, one must perform the integration of the elec-
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tron wave functions over the nuclear matrix elements.
Some authors evaluate the numerical solutions for the

, electron wave functions at the nuclear surface, '9 '4"
while others average them over the nuclear matrix
elements. ' Thc Qrst ls cqulvRlcQt to assuming R Inodcl
in which the transforming nucleons are restricted to a
spherical shell as far as the p-decay integrations are con-
cerned, while the second depends on the choice of
nuclear wave function. It should be pointed out here
that the point charge nucleus Coulomb wave functions
must also be evaluated at the nuclear surface or
averaged. Thus there exist many possible combinations
of model dcpendences which gave rise to "Gnite-nuclear-
slze corrections. HURakcr and Laird, i~ fol thc mOdcl Gf

a UCB, have succeeded in approximating the electron
radial functions analyticaHy and, thus provide a basis
for comparison with our results.

The radiative corrections to p decay have been cal-
culated treating the p interaction and electromagnetic
interaction in perturbation theory. ID the resultsmost
quoted in the literature" "the model consists of treat-
ing the nucleus as a point charge in both the p decay
and. the Coulomb interaction. " The results for thc
rRdiRtlvc COIYcctlon %'cl"c 81IIlply Rddcd to thc FcI'IQl
function Rs RQothcr colrcctloD. However» thc radia-
tive corrcctlons lnvolvc RD ultraviolet cutoff ln Ino-
mentum space contrasting with the con6guration space
cutoff in Ii 0. Chem e$ el.~ have discussed thc incorpora-
tion of the results for the radiative correction into the
f1 values for nuclear p decays. In Sec. I we return to
this point in more detail.

This papcl' ls dlvldcd into four ma)or scctloDS. Scctlon
I treats thc FcrlQi fuDctlon fol the model of R point
nucleus. Section II considers the nuclear structure
(model dependences) in both the p and Coulomb inter-
actions. Section III applies the model-dependent results
to 0+-+0+ decays and calculates the fit values. The
results and their discussion are considered in Sec. IV.

In this section wc consider a perturbation treatment
of the Coulomb correction to p decay which will give
us to order Zo. the Fermi function and field-theoretic
corrections to it. The model considered in this section
is the one used in Chem et aL.~ It ignores the nuclear
structure in the Coulomb interaction (the Coulomb
potential is assumed to be that due to a point nucleus),
but takes the nuclear structure into account in the p
interaction. As discussed in the Introduction, such a
model will give rise to a Fermi function including the
screening and 6nite de Broglie wavelength CBects. Due
to the simplicity of this model it will become clear how
to connect up the perturbation treatment with the
usual treatments in the literature and how to incorporate
the screening, 6nite-nuclear-size, and the radiative cor-
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rection into the Fermi function. This clari6es the pro-
cedure to be used in Sec. II when the more complicated
models are considered.

Since we treat both the P and Coulomb interactions
in perturbation theory, the interaction Hamiltonian is
II~+II„where for positron emission""

l&f=&'»t (*)v.(.Gv G~v—)k.(*)

X4.(x)7.(1+7 )f.(x) (1 1)

and the Coulomb interaction between the positron
and the nucleus of charge Z is given by" (units are
A= c=m, = 1) f.(*)W"(x)

II,= Zn—d'x — — exp( —6
I
x I). (1.2)

We have modi6ed the usual Coulomb potential to take
into account the screening due to the atomic electrons,
and 5 is a parameter which will eventually be deter-
mined by a comparison of the value of the atomic
electron potential of the parent atom" at the origin
with that given by a Hartree-Fock calculation. Note
that in H, the nucleon 6eld operators do not appear.

The complete matrix element to lowest order in the
Coulomb and p interactions is described by the dia-
grams"" shown in Fig. j.. The electron-positron mo-
menturn and energy in the intermediate (6nal) state
are denoted by k and eq (p,e~), respectively, and refer-

ence to spins is suppressed. Here the initial state de-

scribes a parent nucleus having Z+1 protons and
A —(Z+1) neutrons and, no leptons present. The 6nal
state describes a daughter nucleus having Z protons
and A —Z neutrons and a neutrino and positron each
described by its appropriate free-particle quantum
numbers. The combined matrix element M~; for
diagrams a+b+c can be obtained by the use of ordinary
perturbation theory, and ignoring the nuclear recoil
energies (the nucleons are regarded as the source of the
external Coulomb 6eld) one obtains"

llIIg; ——-',K2 d'"x g 4'g~[Py„(Gv —Ggyg) r j„@;—
Xexp( iC'x )1+ (Q)P7~(1+7~) exp( ip x )

4s. d'k(e, +n k —P) exp( —ik x,)
+ZQ

(2 )' Llu —kI'+~'jI s.'—e"+i~j

kr X+(—k) exp( —ik x,)
+u d'k fI (-p),

(2~)' (Iu —
k I'+~')(~.+~~—i~)-

(1 3)
"%e have here ignored the fact that the Coulomb potential due

to the daughter nucleus after the p decay is not fully screened.
Actually axe ~"/x' should be replaced by (2+1)o,e ~*'/x' —a/x'.
This causes a change in the screening by 1/Z and is unimportant
for the decays considered here. This is discussed further in Sec.III.

~'%. Heitler, QNuntlm Theory of Radiution (Oxford University
Press, London, 1954), 3rd. ed.

where +; and +~ are the initial and 6nal nuclear wave
functions, X+(k)=(28') (8p+a'k+p) and Vy(g) and

U~(y) are the free-particle spinors for the neutrino and
electron, respectively, of energy and momentum &q,
q and +a~,y. One notes that the 6rst two terms in the
square brackets are the expansion of the wave function
for an electron in an external Coulomb 6eld due to the
daughter nucleus" in plane eaves to order Zo, . As erst
pointed out by Serman, "the last term arises from the
fact that the nuclear charge is changed by the p decay
and thus is not obtainable in the usual treatment of the
Fermi function. H we neglect screening (6~ 0) and
6nite nuclear size even in the p decay (x, -+ 0), Mr;
reduces to that discussed by Berman. It is the third term
in the brackets of (1.3) which is charge-independent and
gives rise to the radiative correction" to order Zo.. In
the limit x„-+0 this last term is logarithmically
divergent, but in our treatment it has a con6guration-
space cutoQ which corresponds to that used in the
point-nucleus Fermi function.

The way the screening and 6nite nuclear size (here
the 6nite de Broglie wavelength) enter the perturbation
calculation is explicitly displayed. We note that in
addition to the usual 6nite-nuclear-size eGects quoted
in the literature, which arise from the eGect on the
electron's wave function, the charge-independent term
also gives small finite-size corrections. In this section
we let x„~0 in this term except in the part which would
otherwise be logarithmically divergent. Using some
manipulation, we can rewrite the square brackets of
Eq. (1.3) as

I "3=exp(—iu «.)+I 4~/(2~)'3

XLZnI(x„p)+nG(x„, p)j,
(e,+a k—p) exp( —ik x„)

I(x„,p) = d'k
(I y —kI'+6')(e ' eg'+i&)—

sg exp( ik—x),
G(x;p) =kI(x.,p)—

(ly —l I'+ ~2)(e 2—e,2+i,)
d'k(n k+p) exp( —ik x„)

(1.3')
(Ip—kI 2+~')(.,2—s.2+i.)

I and 6 are given in Appendix A. The results for I are
expressed in terms of a power-series expansion in px,
and y x„. The three different expansion parameters
which occur in. the Fermi function are Za, pz, and 2/p,
In a perturbation treatment of the Fermi function to
order Zo., since we will keep only terms in the transition
probability per unit time which are at most proportional
to the square of the expansion parameters and Zo.

multiplies I, consistency dictates we only retain terms
in I at most lin.ear in px and h. The dominant contribu-

"J.D. Bjorken and S.D. Drell, Eelutivistk Qumstlm kIechurIics
(Mcoraw-Hill Book Co., New York, 1964)."This gives the static vertex part of the radiative correction.



CORRECTIONS TO FERM I FUNCTION OF SOME P DECA YS

tion to G comes from the 6rst two terms in Eq. (1.3').
It is the second term in G which in the limit x„—+ 0 is
logarithmically divergent and is opposite in sign to 2I.

At this point we restrict ourselves to 0+~ 0+ super-
allowed decays. Thus there is no contribution from the
axial-vector interaction in the P-decay matrix elements.
Only those terms survive in the vector interaction which
combine to form scalars. One then proceeds to expand
the lepton wave function in a power series in x keeping
terms at most to order (pz) ' in Ãr;. Forming the transi-
tion probability per unit time for the emission of a posi-
tron with momentum between p and p+dp in the usual
way and performing the spin sums and angular integra-
tion for the leptons in the Gnal state gives

P(p) dp =Pp(p) dp[1 zZu(e~/p—)+Zuh(2e, ' 1)/poe„—
+Z ((5/3) .+1/3z.+le)Ro l (P'(1—+ll/ .)+9')R '
+( /2 )(—'( /p)+1o —4G—4h (PR ))3, (1 4)

where q=e —e„and C=0.5772 ~ ~ is Euler's constant.
Here the position-dependent terms have been evaluated
at the nuclear surface as is done in the usual treatment
of Fp and

Pp(p)=(1/2z ) [Gr~ (Mp~'p'(z —z )'.
Here ~M~~ designates the Fermi matrix element.

All terms in the square brackets of Eq. (1A) which
are proportional to (Zu)' and Zu should be the usual
Fermi function for a point nucleus to order Zn and the
screening and finite-nuclear-size corrections to it. Since
6 and Rp identify the various corrections, it is easy to
see the origins of the various terms. Thus ignoring terms
proportional to u in Eq. (1.4) one sees that the erst two
terms in the square brackets are the expansion of
F,(Z,p) to Zu for a positron decay. The third term in
Eq. (1.4) embodies the screening correction to Fp and
the other terms represent the Gnite-nuclear-size cor-
rections. Note that in the limit 6~0 Rp~0 only Fp
to order Zn thus survives.

In the usual nonperturbation calculations of the
Fermi function the screening and Gnite-nuclear-size
effects are obtained as corrections to the electromagnetic
effects (point Coulomb interaction) which is itself a cor-
rection to the P decay. The screening and finite nuclear
size only affect the electron wave function inside a
sphere of essentially nuclear dimension, while the elec-
tron's wave function outside this sphere is that due to a
point charge Coulomb interaction. Thus one can write
the Fermi function as Fp times a power series in Rp and
~. Since Rp and 6 are independent parameters, in the
limiting case Rp ~ 0 and 6 —+ 0 we must obtain Fp. For
simplicity consider only the finite de Broglie wavelength
correction; one can then write"

F(Z,p) =Fo(Z,p)51+f(Zu)Ro+g(Zu)Roo+ ' ' 'g (15)
where f and g are, respectively, odd and even functions

28 M. E. Rose, Relativistic ElectrorI, Theory John Wiley R Sons,
Inc., New York, 1961).

o, q

(a)

Z+I

(b)

Z+I

(c)

Pro. 1. Diagrams for positron decay with lowest-order Coulomb
corrections. The nuclear structure is taken into account in the
P decay but ignored in the Coulomb interaction.

of Zu. Since the 6nite nuclear size (and also screening)
are small corrections to the Coulomb interaction, such
a representation is useful. To connect this with the
perturbation calculation of F we note that if for the
decays of interest we consider Zn as an expansion
parameter in the correction terms to Fp, then keeping
terms at most quadratic in the expansion parameter
Eq. (1.5) becomes""

F(Z,p) =Fp(Z, p) (1+ZuARp+BR p'),
A = (5/3) e~+ 1/3e~+ —',q,

l Lp'(1+—le/o. )+V'3.
(1.6)

Here the next contributions from f and g contribute
to third and second order in Zn, respectively, thus com-
ing in over all to fourth order. This corresponds to ap-
proximating the electron's wave function inside the
nucleus by a power-series expansion in Zu and pRp
(also 6 when screening is considered). It can be done
even for more complicated nuclear models. "Here we
have not expanded Fp in Za since we wish to treat in
this way only the corrections to Fp which are small;
i.e., the electron's wave function outside the sphere of
radius Rp is not to be expanded in Ze. However, the
perturbation treatment of the electron's wave function
gives a consistent expansion in Zo, everywhere. There-
fore, to compare with the perturbation calculation we
should replace Fp in Eq. (1.6) by (Fp)z =1—orZue/p
and keep in (1.6) only terms to Zu. This gives exactly
Eq. (1.5). Thus we see that to extract the results in the
literature from the perturbative calculation to order
Zu we need only factor out (Fo)za from the perturba-
tive results and replace it by Fp. It must be emphasized
that the power-series expansion of the screening and
finite-nuclear-size corrections to Fp is a convenient ap-
proximation because we know that their eGects on the
electron's wave function are small. From a theoretical
point of view the expansion is meaningful because we
can think of pz and 6 going to zero and still obtain Fp.

Ke have neglected the radiative correction in the
discussion above since, as previously noted, it is not
obtainable from the solution of a Dirac equation with a
static potential. Equation (1.4) is to be written as

P(p)dp= Pp(p)dp

X(Fp(Z,p)(1+f.n.s.+s.)+(R.C.),j, (1.7)
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(a)

I+l,Ei

(b)

j."ro. 2. Positron decay vnth low&est-order Coulomb corrections.
y and q are the rnomenta of the outgoing positron and neutrino,
respectively, h is the momentum of the lepton in the intermediate
state, and E~~ and E N are the energies of the intermediate
nuclear states in (b) and (c), respectively.

where f.n.s.+s. stand for the finite-nuclear-size and
screening terms in the square bracket of Eq. (1.4), and
(R.C.) is the radiative correction obtained. from the
perturbative calculation to order u. To incorporate the
radiative correction into the Fermi function we rewrite
Eq. (1.7) as

&(p)dp=Fe(p)dpFs(Z p)
Xt 1+f.n.s.+s.+(R.C.) /Fsj. (1.8)

Suppose we had performed the perturbation cal-
culation to Z'0, ', what then would be the changes in

Eq. (1.4)P First we would develop Fs to Zsct brut in
addition we would obtain the finite-nuclear-size and
screening corrections to higher orders. If we keep only.
terms quadratic in the expansion parametes and at most
6rst order in Za., then the screening and f.n.s. correc-
tions are identical to what was obtained in the perturba-
tion calculation to Zo., and these are identical to the
results in the literature. However, we would also gener-
ate thc radiative correction to n, 0,~, and Zu'. In general
the radiative correction to any order in Zn (8,~ 0 and
x —&0) is defined as Fs„t—Fs to that order. Thus in
effect wc again. can write

$1—Z „/p+(Z )'( ~ ~ ~ )jp1+f. .s.+s.|+(R.C.) '.
Now we see that we are generating Iio always with the
same finite-nuclear-size and screening corrections (to
second order) but with higher-order radiative correc-
tions. This can be written as

F,(Z,P)$1+ f.n.s.Ps.+(R.C.).s/Fsj. (1.9)

If we were to generate the perturbation expansion to aQ

orders in Zn, the only change in Eq. (1.9) would be
that the radiative correction would bc generated to all
orders. %e emphasize that this is the correct way to
incorporate the radiative correction into the Fermi
function.

Rigorously, then, one should use the radiative cor-
rection to all orders in 0. when one incorporates it into
the Fermi function, since as one generates Iio we
generate the radiative correction to the same order in
u. We cannot use the argument that a is to be
considered an independent parameter like pz and b,

and which, when allowed to go to zero, I' —+ Fo. The
radiative correction to all orders contains an infinite

number of terms which are logarithmically divergent
as x —+ 0. %e do not kloof that this sum is small com-
pared to J'0. Since the radiative correction is only known
to order e, we have replcced R.C. by its value to order
ts to obtain corrections to the fi values. We are now
investigating a Geld-theoretic perturbative treatment of
the Fermi function to Z'o. ' and the radiative correction
to this order. The results of the calculation and their
effect on the accepted value of the lowest-order radiative
correction will be communicated as soon as completed.

II. NUCLEAR STRUCTURE IN BOTH THE g
AND COULOMB INTERACTIONS

The preceding section on the simple model of a point
charged nucleus has shown how the corrections to the
point-nucleus Fermi function may be extracted from a
perturbation treatment of the Coulomb corrections to
P decay. These ideas will now be extended to the more
general case in which the nuclear structure plays a role
in the Coulomb interaction as well as in the P decay.
This will involve specific nuclear models for the P and
Coulomb interactions. The corrections to the Fermi
function may be expressed in terms of these models,
thus allowing a study to bc made of their model
dependence.

The effect of the nuclear structure is taken into
account by quantizing the nucleon fields in the P
decay and in the Coulomb interaction between the
nllcleal' plotoils and tile eiilltted electl'oil (positron). As
in Sec. I, the V—A theory of weak interactions is as-
sumed; thus the P-decay Hamiltonian is given by Eq.
(1.1). The Coulomb interaction between the nuclear
protons and the emitted electron (positron) is repre-
sented by the "screened" Coulomb Hamiltonian

4' (x )N (x )4' (x)Pit' (x)
+c=

(
x—x'/

)&exp(—6[x—x'i) . (2.1)

As in the P-decay Hamiltonian& we need not know the

specie form of the nucleon spinors here, since they
will bc absorbed in the speci6cation of the nuclear wave
functions. The factor exp( —6~x—x'~) has been in-

serted in (2.1) to account for the screening of the nuclear
charge by the atomic electrons. The parameter 6 may
be related to the atomic electron potential at the nucleus

as mentioned in Sec. I. For the decays of interest in this

paper, the screening correction to the ft value is very
insensitive to the detailed form of the screening factor.

In the rest of this section, the transition amplitude
for nuclear P decay with lowest-order Coulomb cor-
rections will be presented. Various approximations
which may be made to the amplitude are discussed. Of

particular interest will be the one which leads to the
formalism ordinarily employed in the study of P decay.
Since we will eventually be interested in calculations to
the vector coupling constant G~, only the details for
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It should be noted that the matrix elements between the initial and 6nal nuclear states in the second and third
terms of (2.8) are not just that of the p-decay interaction, but include the Coulomb interaction with the positron
as well. This is to bc compared with the opposite approximation in which the assumption is made that the energies
of the contributing excited nuclear states are much larger than the lepton energies. In this case it is assumed that
the nucleus is not excited in the intermediate state and only the terms in SI'& and 5&'& for which /= f and m=i,
respectively, are retained. The "no-excitation" (NE) approximation thus yields"

4m'
l ll (—k) exp[—i(x,—x,').kj

X exp( —iy. x„)+a d'~x' g @y*PPy exp( —iy x,') IE'k
(2s)' (In—k I'+&')(~.—~.+~.)

l1+(—k} expI —s(x —x ') kj-
+ d~~x' P O'*P 4 exP( iy —x'} IEak ~-(-I) (2 9)

8~1 (III—kI'+&')(~.+s —~ )

It should be noted that in this case it has been possible
to factor out the p interaction from the Coulomb inter
action. In efTect, this approximation "decouples" the
two from each other. The positron wave function in

(Mr;)NE depends only upon. the Coulomb interaction of
thc positron with thc QUclcRI' pI'otons, but, docs not
depend llpon 'tllc pR1'tlclllRI' details of thc P-dccRy llltcl'-

action. This feature is true only for the NK approxima-
tion. The inclusion of excitated intermediate nuclear
states will speci6cally introduce the particular nuclear
states playing a role in the P decay into the calcula-
tion of the positron wave function. It may be re-
called 'tllRt 111 tile usllal studies of P decay ollc tacitly
assumes that the positron wave function has been
separately calculated for an assumed nuclear charge dis-
tribution and is then inserted into the p-decay matrix
element. From inspection of (Mq;)Na, it can be seen
that the approximation of no nuclear excitation is
precisely what is assumed in the usual treatments of p
dccRy. Thc cxcltcd intermediate QuclcRl stRtcs, which
occur as the result of the emitted positron (or electron)
acting back on the nucleus" via a "virtual Coulomb ex-
citation process, "are thus neglected in these treatments.

Thc no-nuclear-cxcltRtlon RpproxlIQRtlon ls pI'Obably
the more realistic of the two discussed above. This may
be inferred from a close look. at the general amplitude
111 Eq. (2.5). If, Rs fal Rs 'tlM Coulomb lntclRctloll ls
concerned, the nucleus was strictly R point charge, then
thc Coulonlb IDRtllx elements Rppcarlng ln 3ffs RIll
Mg would vanish for all excited nuclear states. This is
due to the orthogonality of these states with the
initial or 6nal nuclear states. Only the NE terms would
contribute in the point charge'nucleus limit. %hen the
nuclear electromagnetic size is considered„ the excited.
stRtcs Rrc bl'ought ln Rs f.D.s. Colrcctlons Rlong with thc
electromagnetic size corrections arising in the NE terms.
The latter corrections would bc expected to be more
important, since they would be calculated wl'th the
nuclear charge density p(x'), with J'd'x'p, (x')=1. In

'0 In addition to the effects of the nuclear recoil.

contrast, the f.n.s. corrections from the excited states
would be calculated from R "transition charge density"
p, '(x'), with J'd'g'p, '(x')=0. Furthermore, the values
of k which contribute most to the integration over the
intermediate lepton momentum wou1d be expected to
be near the value of y, the observed positron momen-
tum. Now in allowed decays the observed lepton
energies are generally comparable to typical nuclear
excitation energies, while in forbidden decays the
lattcl IQRy bc cxpcctcd to doIIllnRtc. 81Qcc thc cxcltcd
nuclear states can contribute to 5&'& and 5('& only
as smRH f.n.s. CGects, the no-nuclear-excitation ap-
proximation would be Inore appropriate. The charac-
teristic feature of the closure approximation is that it
overemphasizes the high values of momentum k of thc
lepton in the intermediate state. " This becomes im-
portant in the part of Mf; which is usually referred to
as the radiative correction, " namely, that part in
which the same nucleon participates in both the p and
Coulomb interactions. Because of this overemphasis of
high values of k, the closure approximation leads to a
radiative correction that is logarithmically divergent
as k~~ even in the presence of an extended nuclear
chRrgc dlstI'lbUtlon.

Since our main purpose in this paper is to study the
model dependence of the usual f.n.s. and radiative cor-
rections to p decay, and, as will be shown, these cor-
rections are in exact agreement with the results ob-
tained by thc use of the no-nuclear-excltatlon approxi-
mation, the remainder of this paper mill be restricted
to Usc of this Rpproxlmatlon to tIcRt thc sum ovcI
intermediate nuclear states. %ork is presently in
progress on determining the contributions of the excited
nuclear states to these corrections, Rnd the results will

be communicated at a future date.
Before applying (Afar;)NE to a calculation of the cor-

I'cctlons meDtloncd~ RDothcl sllnpllfylng RpproxlIQRtloD

may be made in the brackets for the positron's wave

"Only the static vertex part of this correction has been con-
sidered here. See Ref. 7 for reasons for including only this part.
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The 6rst term in (3.1) is the usual nonrelativistic part
of the Fermi matrix element and the second is the
relativistic contribution, For 0+ -+ 0+ decays, the
cllal'ge dellslty {o (x ) QIRy be tRke11 to be spherically
symmetric. Furthermore, for super-allowed decays the
nuclear wave functions may be taken to be states of
deinite isospin to a good 6rst approximation. Calcula-
tions of the isospin mixing32-'~ for the decay of 8O'4 have
shown it to be small, and this is assumed to be the case
for the other decays. On the other hand, one could
assume the conserved-vector-current hypothesis to be
true and then look for evidence of isospin mixing in
these decays by examining the variation of their ft
values. Some comments about this approach will be
made after the results for the ft values have been
presented.

A retardation expansion of the lepton wave functions
in the amplitude (3.1) is now made in powers of pa,
pa', and qx, keeping terms to second order. The parts
of the expansion which contribute to 0+-+ 0+ decays
are those which combine with 1 or e~ to give scalars.
In the nonrelativistic part of (3.1), we have neglected
all position dependence in the radiative correction
except in that part which diverges as lnlx —x'I as

lx—x'I ~0. Mo st of «model depen«nce « t e
radiative correction comes from this log term, since the

I»l» —x'll»lx —x'I for values of lx—x'I w»ch Rre

important in (3.1) (typically, I
x—x'I 0.01). Further-

more, a rough estimate of the contribution of the non-
logarithmic position-dependent parts of the radiative
correction to the f.n.s. correction is at most 0.08% of
f{)t.We have also completely omitted the radiative cor-
rection to the relativistic part of (3.1), since the latter
is itself small compared to the nonrelativistic part.

The corrected Fermi function is calculated in the
usual manner by inserting (3.1) into the transition
plobablllty pel unit time and summing over the un-

observed lepton spins and the neutrino momentum.
Retaining at most those terms arising from the inter-
ference of the Coulomb, 6nite size, radiative, and screen-

ing corrections with the zeroth-order amplitude, the
transition probability per unit time for the emission of a
positron of momentum p is (see note added in proof)

P(p) dp =P{)(p)dp(1 Irzo{e~/p+ Zud (2e,—'—1)/p'e„
st P'(1+ sC/e. )+—a'3~ I+«L~.(s~s+~s)+IJ&s

+(1/e„)(-,'~,—A,)$+L-', (e.—1/e„)~,—~ZW, ){R

+({I/2 )(—'e /P+10 —4C—4 lnp —4A )), (3.2)

where p is in units of III~, e„ is the decay endpoint

"W. M. MacDonald, Phys. Rev. 110 1420 (1958).
bb H. A. Weidenrniiller, Phys. Rev. 12, 241 (1962).
{)4 R. J. Blin-Stoyle and J. Le Tourneux, Ann. Phys. (N. Y.)

18, 12 (1962).
'5 R. J. Kin-Stoyle and S. C. K. Nair, Phys. Letters 7, 161

(1963).
'OA. Altman and W. M. MacDonaM, Nucl. Phys. 35, 593

(1962).» L. Lovitch, NucL Phys. 46, 353 (1963).

energy, q= e —e~, C= 0.5772 ~ is Euler's constant, the
fRC'to1 (R EP ZP+3fxxppxxbxxpxx JVpxo{oxx )bzc{/AS
results from the estimation of the relativistic nuclear-
matrix element, and

Ps{p)= (1/2)r') I G& I
'I ~n I

'P'(e —e„)'.

X in (R is a va, riable parameter which will be discussed
later. The quantities Aq, Aq, A3, and A4 appearing in

(3.2) contain the details of the nuclear models and are
given by

d'a {{)e(x)lxl', (3.3)

Ay, = dip x d gp~ x x—x

R xb {x—x')
x bafp p,p=p{x)f'p'p'p {x).', {X.p)

lx—x'I

A, = p ppp{x)f'p p'pp{x )'{xfx—'x'~~, (3.6)

(1 Zs~s) 1/s

I
I'(v+s«(e. /P)) I'

X-
I
I'(2y+1) I'

(3 &)

and Eo is a suitably chosen nuclear ra,dius. Here and

subsequently in the paper the upper sign applies to
positron emission and the lower sign to negatron
emission. The third term in the atomic electron screen-

ing correction to 6rst order ln 6 and Zn. To this order,
it agrees precisely with the %EH approximation of
Rose'8 as applied to the Dirac equation. This consists
of the prescription that the screened Fermi function
may be obtained from (3.7) by the relation

P,+(Z,P) = (e„'P'/e„P)P, +(Z,p'), (3.8)

where e„'=e„+Vs, p'= (e,'—1)'", and &{) Is the
potential at the nucleus due to the atomic electrons.
In this paper, VO=Zo.h. For the decays of interest here,
tile QIlly slgl116caIlt, par't of (3.8) whlcll co11'tllblltes to
the screening is the factor p'e„'/pe„. Expanding this to

'8 T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952).
'9 Note that this definition of the point-nucleus Fermi function

divers by the factor $ (1+y) from that used by some other authors.

where p, (x') is the charge density of the daughter
nucleus and pe(x) is the probability density for the
ploton whIch p decays.

The 6rst two terms in the angular brackets of (3.2)
may be recognized as the expansion to erst order in Zu
of the point charge Fermi function" for positron decay:

1+y e,
F{)+(Z,P) =4 — {21P)E{))'&& "exp +Irzrr

2
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6rst order in 4 gives

(2e~' —1)
F"(Z,p)= 1~Z ~l I &o'(Z,p). (3.9)

4 p'e, J

The correction factor in (3.9) is exactly that which
appears m (3.2) and, to Zn, is the screening correction.
The validity of the %KB approximation as applied to
the Schrodinger and Klein-Gordon equations has been
demonstrated by Durand. '8 Using exact solutions of
these equations for a Hulthen potential, it was shown
that, in the limit p/A&)1, the exact screened Fermi
functions coincided with those that would be obtained
from Rose's %KB approximation. That this is also
true for thc Dirac Fermi function is shown by our cal-
culation of the screening correction as give@ in Eq.
(32). It is interesting to see the effects of including the
electron spin in the screening correction to Fs(Z,p).
Spin is neglected in Durand's calculation, but is in-
cluded in ours. For decays with high endpoint energies
(i.e., super-allowed) and for values of p/A))1, our
screening correction (which agrees with that of Rose)
is about twice that obtained by Durand using the
Klein-Gordon equation. Hence, when accurate cal-
culations of the screening for these decays is desired,
one must include the effects due to the electron spin.
It should be noted here that the odd charge of the
daughter atom has been neglected in the screening cor-
rection in (3.2). Inclusion of this effect may be made by
replacing Zah by (Z+1)nh (for e+ decay), where d,

is related to the parent nucleus atomic electron charge
distribution. The fractional change in the screening
correction due to this effect is 1/Z, and is negligible
for the decays considered here. The fourth and 6fth
terms in the angular brackets of (3.2) are the usual
f.n.s. corrections, including contributions from the
neutrino wave function. It is interesting to note that
the screening does not appear in the 6rst-order f.n.s.
correction for these decays. This may be understood
from the fact that the lowest-order screening cor-
rection occurs as Znh; hence a term like (Zap')
(Zo.h) would not appear in a perturbation treatment
of the Coulomb interaction to order Zo, . In view of the
fact that the screening correction to the ft values of
the decays considered here is so small ((03%), the
screening correction to the 6nite-size correction would
be very small indeed. The maximum correction for
s7Co" is estimated at less than 0.03% of fst. Thus these
two corrections may be treated separately with negligible
error. The sixth term in (3.2) comes from the relativistic
part of the nuclear matrix element. The form of R is
from Ahrens and Feenberg. '8 Various theoretical
estimates of the parameter have been made. '8 4~4' The
most recent value, "X=2.4, has been used here and is

"D. L. Pursey, Phil, Mag. 42, 1j.93 (1951).
M. E. Rose and R. K. Osbora, Phys. Rev. 93, 1315 (1954).

4s J. Fujita, Phys. Rev. 126, 202 (1962).

based on the hypothesis of conserved vector currents
(CVC). The other values of X are somewhat smaller. "4'

For the decays considered here, the relativistic con-
tribution to the ft values was found to be very small.
The largest value of this correction for Co' was
~0.10%%uo of fst. The last term in (3.2) is the static vertex
part of the radiative correction to lowest order in n. As
described in Appendix A, some small energy-dependent
terms were neglected in the calculation of G(x„—x). A
rough estimate of the resulting error in ft may be put
at ~0.1%%uo for so", the decay for which the error would
be the largest.

Neglecting for the moment the radiative correction,
the terms in the brackets of the decay rate (3.2) con-
stitute an expansion of the total Fermi function in
powers of Zn, pE, and d, . In the limit of a point nucleus
for both the P decay and Coulomb interactions, the
only surviving terms are the expansion in Zo, of the
point-nucleus Fermi function and the lowest-order
screening correction. However, we want to treat the
point charge Fermi function exactly, while treating just
the f.n.s. and screening corrections in perturbation
theory. Now, the positron's wave function in Eq. (3.1)
was expanded in a power series in px and px' as well as in
Zo.. What is desired is that the Zo. expansion be used
only in the f.n.s. and screening corrections, but not in
the parts corresponding to the point Fermi function.
When this is done, as discussed in Sec. I, the brackets
in the transition rate become

&o(Z,p) C(Z,p)+ (R.C ),
where the correction factor C(Z,p) is

(3.10)

~(Z,p) = 1+«tj(2e.' 1)/p'e. st p—'(1+isle—.)+V'3~~
+Zlxt ey(-A s+A s)+/A s+ {1/e„)(—A s—As)7

+P(e„—1/e, )A g
——',ZuAs7(R. (3.11)

The R.C. cannot be considered as part of the usual f.n.s.
correction because it has a diGercnt origin, namely, the
change of the nuclear charge in the P decay. Even in the
limit of a point nucleus for both the P and Coulomb in-
teractions, it ispresent and diverges as lnlxI as

I xl ~0.
In an exact treatment of this cGect, the parentheses in
Eq. (3.10) would mean all of the terms associated with
the radiative correction. The assumption has been made
here and elsewhere~"" that only the part to lowest
order in e is the most important. Because of the
divergent nature of the 6rst-order R.C., it may turn
out that higher-order terms could significantly alter
this correction. These terms are presently under study.
The calculation of the R.C. in this paper employs, in
essence, a position space cutoft in the logarithmically
divergent term in the same way as used in the point-
nucleus Fermi function. This is in contrast to other
treatments' "which employ an ultraviolet cutoG ) in
the integration over the intermediate lepton momentum
k The cutoG is estimated from the form factors of the
P-decaying nucleon. ss In our treatment of the static
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vertex part of this correction, the charge form factor
arising from the translational motion of the P-decaying
nucleon in the nucleus appears in pp(x) along with the
charge form factor associated with the nucleon itself.
Since the 6rst form factor contributes the major
characteristics of the nuclear charge distribution due to
the P decaying proton (or 6nal proton for electron
decay), the second has been neglected in this paper.

The corrected ft values may now be obtained from
the integration of (3.10) over the decay spectrum.
Using the approximation in Appendix 3,

(ol)»= o~mg~

45 15(2e '+1) inh—
X 1+-

4p 4 4o p o

3e„(4e„'+1) lnh„

(3.18)

(3.19)

(3.20)

= fo(Z, P-) dPC(Z P)P'( - )'If—o(Z=0 P-)
2 f ~ gl2

+ dp (R.C.)p'(o —e„)'&, (3.12)
Sp ' 49 91 42—j.

7 10p ' 2p ' p

fo(Z p-) = dp&o(Z, p)p'(o —o )'.
21e„(3e '+1) lnh„-

(3.21)

The indicated integrals may be done analytically to
yield an expression for the fractional correction to
fo(Z, p )t in terms of the nuclear-model-dependent
quantities Aq-Ao and the p endpoint momentum p„.
From Eq. (3.12), the fractional correction to fot is

(inp)»= g=' P-'+op-'—1»p-

fot gin

where
—E1—21nh~ —4 ln2+4 1n(h„o—1)j

8f =Zn(-,'A, +do)(e„)»+Zoo(g)»
0 f'.n.s.

+Zn(ooA o
—Ao)(1/e, )»

o~ ~(p'—(1+8/")+~')»

+ L-', (o„—(1t'o,)»)~,——,'Z a,)~lt, (3.15)

bf n fo(Z=O, p„)

fo a~D 2or fo(Z, p )

10—4C—m' — —4 ln Bp—4A 4 . 3.16
p BF

+g'e„l.(h '), (3.22)

J.(oo) =— *dy lny

is the Spence function of (x), and

h =e„+p„,
15 15@„ink

ptR 2pwl

10 15 6——
i g„' 1— + —,(3.23)

p » p~~

2e„'—1 Se 3 3 ink
g

—1 1 +
p o»l » p 2pol 2otBptS

(3.17)

The quantities (X)» are de6ned in Appendix 8 and
are given by

IV. RESULTS AND DISCUSSION

The expressions just presented for the f.n.s, , radia-
tive, and screening corrections are now applied to the
fot values of the 0+-+ K positron decays specified at
the beginning of Sec. III. The results are presented in
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TABLE I. Model-dependent parameters.

B-S. B-Bb P-So P-Bd O14
Hofstadter HO'

A126m C134 S{42 V46 Mn5p C054

Al Rp 53R02 Rp2 5Rp
(6/5)Rp (36/35)Rp Rp 4Rp

As (4/15)Ro (6/35)Ro ssRo rsRo
A 4 lnRp+0. 193 lnRp —1.140 lnRp lnRp —0.333

1.66r'
1.36r
0.29r

g 1QA1+g ln(45)
+0.193

1.32r2 1.23r2
1.43r 1.4ir
0.28r 0.27r
InA1+ x, ln(6/7)

+0.193

1.50r' 1.45r' 1.39r' 1.36r'
1.47r 1.47r 1.47r 1.44r
0.30r 0.30r 0.29r 0.30r

2 lnA1+g ln(8/9)+0. 193

& Uniformly charged sphere of radius Ro for charge density of daughter nucleus. Lepton wave function evaluated at the nuclear surface.
b Same charge density as in a. Lepton wave functions averaged over a uniform sphere of radius Ro.
& Point charged nucleus. Lepton wave functions evaluated on a shell of radius Ro.
d Same charge density as in c. Lepton wave functions averaged over uniform sphere of radius Ro.
e Hofstadter (Ref. 43) charge densities for the daughter nucleus, where r denotes the root-mean-square radius of the daughter nucleus charge distribu-

tion. The HO shell model was used for 80'4. The charge distributions of the other nuclei were represented with a trapezoidal model with the same half-
density radius and shin thickness as given by Hofstadter. The lepton wave functions were averaged over the position of the decaying proton with the
probability density obtained from the single-particle HO shell model.

three tables. Table I gives the values of the model-
dependent parameters Aq, A2, A3, and A4 for 6ve
representative models of the nucleus. Above each
column, the first word denotes the daughter nucleus
charge distribution, while the second indicates the
assumed probability density of the P-decaying proton.
A legend below the table gives a description of the
models. Table II gives the percentage corrections to the
fot values from the f.n.s. and radiative corrections for
the three most realistic models of Table I. These are
the ball-shell (B-S), the ball-ball (B-B), and the
Hofstadter harmonic-oscillator (H-HO) models. The
screening correction as calculated from Eq. (3.17) is
also presented. The f.n.s., screening, and radiative cor-
rections usually quoted in the literature are included
for comparison. In Table III, the H-HO f.n.s. and
radiative corrections are combined with the screening
correction of Eq. (3.17) to obtain the corrected ft
values for the seven positron decays considered in this
paper. For comparison, the same f.n.s. and screening
corrections have been combined with the radiative cor-
rection as calculated by Kallen. 22 The percent deviation
of the average Gy& from G&, the Cabibbo angle, and 8,
an isospin mixing parameter, are given for both cases.

The purpose of this study is to examine the analytical
model dependence of the f.n.s. and radiative corrections
and to compare them to other corrections to the fof

values. The first four models in Table I are those which
have been used in the literature to calculate electron
radial wave functions. " '6 As a check on our model-
dependent parameters, we have used the approximate
analytical lepton wave functions obtained by Hu6aker
and Laird" to calculate the parameters AI—Aa for the
models considered by them (B-B,B-S, and Point-Shell).
The results are in exact agreement with ours. For a
given charge density, the differences in these parameters
resulting from the evaluation of the lepton wave func-
tions at the nuclear surface or averaging them over a
uniform sphere can be seen by comparing the B-S with
the B-B, or comparing the P-S with P-B. Differences
arising from the use of different charge densities (a
uniform sphere or a point) but with a given treatment
of the lepton wave functions are seen by comparing the
B-S with the P-S, or comparing the B-B with P-B.

The major part of the f.n.s. percentage correction to
jot comes from the fIrst term in (hf/f)&, , namely,
Zn(soAs+As)(e~)sss. A look at Table I shows that this
term varies by as much as 20%%uo with the use of dif-
ferent charge distributions (the B-S versus the P-S or
the B-B versus the P-B) or with the different treatment
of the lepton wave functions (B-Sversus the B-B or the
P-S versus the P-B). Since the f.n.s. corrections for
some of the heavier nuclei considered here (ssSc4',
ssV", ssM", and Q7Co'4) are from 1.5 to 2.5% of fot, the

TABLE II. Corrections to fpk. (See note added in proof. )

Decay
(Sf/fo)s

b 0 c1
(&f/fo)RoD, %

b 0 f (&fifo)s, %

pl4 ~
A126m ~

CP4 —+
SC42
V4' ~

Mn'P ~
Co'4 —+

N14@

Mg'
S'4
Co4'
Ti4'
Cr5P
Fe54

0.20 0.16 0.18 0.20 0.34
0.61 0.52 0.56 0.66 0.69
1.10 0.95 1.02 1.13 1.05
1.68 1.49 1.60 2.01 1.74
2.09 1.82 1.93 2.61 1.82
2.55 2.18 2.41 3.00 2.21
3.00 2.62 2.84 4.08 3.05

1.64
1.48
1.40
1.38
1.38
1.37
1.37

2.37 1.69 1.75 2.52
2.29 1.61. 1.9) 2.49
2.27 1.58 1.53 2.60
2.30 1.46 1.52 2.70
2.32 1.47 1.52 2.72
2.36 1.48 1.52 2.75
2.40 1.49 1.52 2.77

0.12 0.16
0.17 0.13
0.17 0.16
0 19 e ~ ~

0.20 0.20
0 22 ~ ~ ~

0.23 0.24

& Ball-Shell Ro = Q(5/3) (r&m) Hofstadter.
b Ball- Ball.
o Hofstadter-HO.
~ Previous f.n.s. corrections /taken from Freeman et al. (Ref. 6)g.f.n.s. corrections of Blin-Stoyle and Nair (Ref. 8), after subtracting Rose's screening.
& Radiative correction of Ref. ?, using point-shell model Ro =1.2A,113X10» cm.I Radiative correction of Khllhn I.G. Khllbn, Ref. 22; Blememtary Particle Physics (Addison-Wesley Publishing Co. , Ines s Reading, Mass„(1964)g afterdividing by Fo(Z,P~).

Screening correction as obtained in this paper. Values of d, taken from Vo of Matese and Johnson (Ref. 19).
& Numerical calculation of Rose's screening. Taken from Matese and Johnson (Ref. 19).
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variation of Zrp(s4Ap+Ap)(e~)ep by 20% would result
in a variation of the f.n.s. corrections on the order of
0.3-0.5% of fpt. But this is larger than the screening
correction for these decays (0.20% of fpt for pqScP' to
0.25% of fpt for»CoPP). Recently, several detailed cal-
culations of the screening eBect '6 "have been made
for the purpose of obtaining precise ft values for the
0+ —+ 0+ positron decays. The eGorts put into these cal-
culations will have been in vain, however, if one com-
bines the screening corrections with f.n.s. corrections
whose uncertainty is as large as or larger than the
screening itself. For this reason, an effort has been
made in this paper to calculate a more precise value of
the f.n.s. correction to the fpt values. This has been
done by using the charge distributions of Hofstadter, 4'

as determined from high-energy electron scattering ex-

periments, for the charge density of the daughter
nucleus and the single-particle Ho shell model for the
probability density of the P-decaying proton. The
oscillator constants were adjusted so that the nuclear

charge density that would be obtained with the HO
model matched that given by Hofstadter'. The parame-
ters Aq, A2, and As as calculated for this model are

given in Table I. The radiative correction was also
treated with this model. In this case, the HO model

was replaced by a shell of radius r „,the value of r for
which the HO radial probability density for the P-decay-

ing proton is a maximum. This is a reasonable approxi-
mation since the HO radial probability density pea~s
rather well at this value of r=r, .

The results for the f.n.s. correction for the B-S, B-B,
and H-HO models are given in Table II. The estimated
percentage error in the ft values due to the approxima-
tion used in performing the integration of thesecor-
rections over the decay spectrum ranges from ~0.00%
of fpt for pO" to 0.02% of fpt for»CoP4. The rela-

tivistic matrix elements were found to contribute very
little to the f.n.s. corrections for the value of X=2.4.
Even for the Ahrens et al. value (X= 1.0), which is not
in accord with the CVC, the maximum contribution to
the ft of »Co" would be only 0.40%. There is good

agreement of the f.n.s. corrections as calculated here

for 80' »Al' and»Cl' with those given in the
literature'" for the same models (column d, Table II).
On the other hand, the f.n.s. corrections for the other
nuclei considered here are, for a given model, lower than

those usually quoted in the literature by amounts

ranging from -0.3% for, &Sc4p to -1.1% for»Cop4.
This substantiates the findings of several recent
papers' ""which have pointed out an inconsistency
in the phase conventions adopted in Ref. 13 for the

numerical calculation of the positron's wave function

for the B-S model. The f.n.s. corrections calculated in

this paper are in good agreement with this finding.

The model dependence of the f.n.s. correction for the

decays of 80" »Al"'"' and»Cl3' was found to be very

4' R. Hofstadter, Ann. Rcv. Nucl. Sci. 7, 231 (3.957).



small. OQc would have expected 'Lhls, slncc this cor'-

rection is itself small for these decays, The variation of
the f.n.s. correction fox 2j,Sc»2, 23V'6, qqMD~', and 27CO~»

duc to thc Usc of diferent nuclear models was found to
be comparable to the screening correction for these
decays. The di6erence between the H-HO and S-S
f.n.s. correction ranged from about ~0.5 of the screen-
ing for ~~Sc»' to about 0.7 of the screening for ~yCo~.
It shoUM be remarked that the B-Smodel is most com-
monly used in the literature. The dBkrcncc between
the H-HO and B-H f.n,s. correction is approximately
the same size as thc screening correction, while thc dif-
ference between the B-S and B-B f.n.s. correction
x'Rngcs from ~I.2 times thc sclccnlng foI' glSC to
~1.7 times thc sclccnlng foI' 2yCO~. This would in-
dicate that the inclusion of such a small CGect as the
screening correction in the calculation of ft values
requires, for consistency's sake, a more precise treat-
ment of the f.n.s. correction than has been previously
done. The usc of the H-HO model in this paper repre-
sents such a calculation. For further comparison, the
recent f.n.s. corrections of Blin-Stoyle and Nair' have
been included in column e of Table G. The B-Smodel
was used in Ref. 8 in a numerical calculation which
combined both the screening and f.n.s. corrections. To
compare their f.n.s. correction with ours, the screening
correction, assumed to be that given by Rose or
Suhring, was subtracted from their results to get the
values in column e. Within the 0.3% error quoted by
Ref. 8, the values of column e are in agreement with
those of column a which we have calculated for the
same model (B-S). There is, however, considerable
scatter between the two sets of numbers, especiRBy for
80'», gj,Sc»2, 23V46, Rnd ggM50. We were not able to
dctcrmlnc thc I'cRson for this. No neutrino f.n.s. OI'

relativistic effects were considered in their work, but
this would Dot RccouQt fox' thc erratic difference be-
tween the two sets of corrections.

The radiative correction for the B-S, B-B, and H-HO
Inodcls ls glvcQ ln thc middle of Table II.Aside froID tll
neglect of some small energy-dependent terms, the f.n.s.
coxrcctlon to thc radiativc correction %'Rs Rlso lgnoI'cd.
This was based on the fact that the major variation in
the radiative correction due to the nuclear models used
will come from the logarithmically divergent part.
While the treatment of this cGect is Qot quite as precise
Rs thc f.n.s. calculation thc Inain purpose hcI'c 18 to
examine the general nuclear model dependence of the
radiative correction. A look at Table II shows that
there Rre considerable differences in this correction
among the models given. The largest occurs between
the B-S and the B-B models and is ~l%%u& of fof for
27Co~». Gn the other hand, the B-S and 6nitc de Broglie
wavelength models give a radiative correction close to
that given by the H-HO model. These results show the
1Rdlatlvc correction to bc somewhat Inorc scnsltlve to
thc nuclear models than the Usual f.n.s. correction, .

This would answer~ 1D part~ R query posed by Freeman
ef, a/. ,' who questioned whether nuclear structure dkcts
could alter the radiativc correction by amounts of the
same order as the correction itself. For the most
realistic models for this correction, namely, the H-HO
and the B-S, the variation is about on the order of the
screening,

The corrected ft values of the seven 0+~ 0+ positron
decays considered herc are given in Table GI for the
H-HO radlatlvc collcctlon and foI' thc rlllRtlvc cox'-

rection of Kalian. 22 The H-HO 6nitc nuclear sixc and
the screening as given by Eq. (3.14) were used in both
cases. The ff values are fairly consistent among each
other, with an rms deviation from the unweighted mean
of 0.5% of fot. This is especially true for the heavier
elements 21Sc»~, geV»6, q~M~O, and ~7CO'», with an rms
deviation of their ft values from their mean of about
0.2% of fat. The over-all uniformity ot the ft values is
slightly better using the radiative correction of Kallen.
With the exception of the ft value of iIAP', which is
about i% lower than the rest, the other ft values may
bc said to be equal to within the experimental errors.
Thc vcctox' coupling constRQ. ts Gy~» thc pcl'cent devia-
tion of thc average Gy& from gl; and the average
Cabibbo angle are also given in Table III for both
radiative corrections. The Cabibbo angles for both
CRscs Rx'c ln fair Rgl"ccIQcnt with HE=0.21 Rs obtained
from the AS= i scmlleptonlc decays.

We comment now about the anomalously low ft
value of ieAP~~ ln the light of the CVC theory. H the
CVC is valid, then the variation in Gy& calculated
under the assumption of isospin conservation should
be due to the presence of Coulomb and other charge-
dcpcndcnt nuclear 1Qtel'actions. H wc knc%' vGth con-
6dencc tlM magnitude of thc lsotoplc spin mbHIlg coI-
rections to the Fermi matrix elements for RH of the
Rbovc decays, R good check on thc CVC could bc made.
Unfortunately, the current status of the calculations" "
of this mixing are still uncertain. Most of the work has
been done only for the 8O'»~7N'4~ decay, giving
values of b(Oi4), the kactional change in the square of
the Fermi Inatxix element due to isotopic spin mixing,
ranging from R fcw hundreths of R percent'~ to slightly
ovei' 1%.

OQc could work backvrards to get RD estimate of
what the relative ~ing should bc in order that the
CVC be valid. By assuming the CVC to be true, the
lsospln m~g parameters B~ Rnd 8g fox' the decays g
and k are related by

According to Blin-Stoyle and Nair, s the isospin mixing
is expected to decrease the Fermi matrix element. Since
(ft) gi is the lowest of all the K~ 0+ decays, one may
assume the mixing to be least for IIAP' . If one takes
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»~x~ is much larger than the other f.n.s. termsin
G(x), since these other terms occur as powers of x.
Furthermore, the»~ x~ varies much more than do the
powers of x for a given change in ~x~. Thus the major
nuclear model dependence will come from the 1n~x~
term. The other approximation to G(x) was to set
e)

~
k~ in (A4) which is valid if most of the contribu-

tion to the integrals come from ~lr~))1. This will be
the case for decays with large endpoint energies, such
as the super-allowed decays considered here.

The above two approximations give

G(x) = lf(0)+~L2(2—C)—2»(P I xl)+e.n 1I/P'3,

C=o 57721"

APPENDIX 3: APPROXIMATE ANALYTICAL
INTEGRATION OP TRANSITION RATE

OVER DECAY SPECTRUM

In the integration of F(p)dp over the decay spectrum,
we have to evaluate quantities de6ned by

(X)p (ep)= dpF +(Z,p)(SF)X

For the decays of interest in. this paper, the terms of
the expansion in (83) are less than unity, so the
denominator may be expanded further to get

(enp—')»)" j (84)

When F~)1, both (ep/p)(ep)» and ( e/p) epwill be
very close to 1, which gives (X)p, (ep) (X)ep As .a
specihc example, consider the f.n.s. correction. Most
of this correction is due to the first term in Eq. (3.15),
which is proportional to (ep)». Equation (84) gives
(keeping just the term to 6rst order in Zn)

(e&)po(ep) 1 000.5(e&)ep

for 80". This results in an error in the ft values for
IICO'4 and ()014 of 0.015% and O.MK/0, respectively.

Note added iw proof. In the transition probability
Eq. (3.2), and in succeeding formulae, the contribution
from the relativistic nuclear matrix elements appears as

The error in (X)p«») due to the use of (82) in place
of (81) 111Ry be estimated Rs follows: Expand F()+(Z,p)
in (81) in powers of Zn to get

1-IrZn(e„P ')(»)»
(X)I)()(ep) = (X)ep

1 xZn(e„p ')»— ~ (83)

where Fo+(Z,p) is the point-nucleus Fermi function
LEq. (3.7)$, SF stands for p'(e —ep)', and X denotes
the various quantities appearing in the correction
factor C(Z,p) $Eq. (3.11)$. An approximate but quite
accurate RIIRlytlcal cRlcllla'tloli of (X)pa(») lllay bc
made if one takes advantage of the fact that, for decays
wltll lllgll Cll(lpolllt, CIIClglCS (pm)))1)) Fo+(Z~p) ls Cs-

sentially constant over the decay spectrum. In these
cases Fo+(Z p) 111ay bc factored out of tllc llltcglals ill
(81) to give

(X) .)g )=(X))) =— dp(SF)X fdp(Sp). (82)

—e„—A I——Zn(A2/2) (R
3 e~

The parameter AI/2 should be replaced by A2 —A(;,
where A~ is the. mean radius of the daughter nucleus
charge distribution:

A5 —— d'x'((), (x')
)
x'( .

The results of this change are as follows:

(1) The f(nite-nuclear-size corrections for Cl, Sc, V,
Mn, and Co in Table II, columns a, b, and c should
all be decreased by an amount ranging from 0.03 fo))
for C to 0.01 jot for Cl.

(2) The effect is negligible for 0 and Al.
(3) The conclusions pertaining to the model de-

pendence of the 6nite-nuclear-size correction are
unchanged.

(4) These corrections have been incorporated into
Table III.


