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This paper presents a consistent field-theoretic perturbative calculation of the Fermi function and the
analytical model dependences of corrections to it. The screening, finite nuclear size, and radiative corrections
are considered in a unified treatment. We are able to separate out the point-nucleus Fermi function F, from
the corrections, and thus only treat the corrections in a power-series expansion. The proper way of in-
corporating the radiative correction into F\ is discussed. Detailed analytical results for the model dependence
of the finite-nuclear-size and radiative corrections are presented. The most realistic model chosen employs
the nuclear charge distributions as given by Hofstadter and the single-particle harmonic-oscillator model
for the nuclear matrix elements. The model-dependent results are used to calculate the fi values of the
super-allowed decays of O, Al?%, CI3, Sc%2, V4, Mn%, and Co%. The values of the vector coupling constant
Gy are calculated for the above nuclei using the most realistic model, and the variation of the Gy is discussed
in the light of the predictions of the conserved-vector-current theory of weak interactions.

INTRODUCTION

HE importance of the value of the vector coupling
constant Gy in weak interactions has been dis-
cussed in the literature.'® Since the fi values of
0t — 0t nuclear 8 decays are used to obtain the most
precise values of Gv,*8 the determination of the Fermi
function®1 F(Z,p) for allowed decays plays a central
role. Precise calculations of F are also needed to in-
vestigate apparent deviations in the f! values of some
super-allowed 0t — 0 decays.5:1!

The purpose of this paper is to present a consistent
field-theoretic perturbative treatment of the Fermi
function for a point nucleus, Fo(Z,p), and all the usual
corrections!® to it. Since the corrections to Fo are
usually treated in piecemeal fashion in the literature, it
becomes difficult to see each correction in perspective.
Our treatment will bring out the relative importance of
the corrections and enable us to examine the corrections
made previously in the literature for consistency with
each other. We will be able to separate out F, from the
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corrections and thus effectively only treat the correc-
tions in a perturbative expansion. In a previous paper,
Chern ef al.” gave the results of a calculation for a
simple model where the nuclear structure was ignored
in the Coulomb interaction but was taken into account
in the 8 decay. We will show how the results in that
paper were obtained and extend the formalism to take
into account the nuclear structure during the Coulomb
interaction. Thus we will obtain analytical model-
dependent results for the finite-nuclear-size, screening,
and radiative corrections. We then make use of these
results to calculate the best values of Gy for some ac-
curately measured Ot — Ot decays using realistic
nuclear models. The field-theoretic method used in this
paper has several advantages. It explicitly displays the
approximations which are implicit in the usual treat-
ment of the Fermi function, and markedly simplifies
the model-dependence calculations. This is so since we
can treat all static nuclear model dependences analyti-
cally in one calculation, whereas each new model de-
pendence necessitates a new calculation for the elec-
tron’s entire wave function in the nonperturbative
treatment. In addition, our method considers the effects
of the emitted electron back on the nucleus, i.e., where
the quantum-mechanical aspects of nuclear structure
play a role. In Sec. IT we discuss the size of such cor-
rections in comparison to the three mentioned above.
We shall also be able to comment on the effect of pos-
sible isotopic impurities on the accepted values for the
B-decay matrix elements.

The Fermi function arises naturally in the calculation
of the transition probability per unit time for 8 decay
from the expansion of the electron field operator in terms
of positive energy Coulomb wave functions rather than
plane waves. Thus F modifies the usual statistical dis-
tribution which occurs if the outgoing electron is
regarded as a free particle. We review briefly the various
corrections to Fy and the models which have been im-
plicitly assumed in their calculation.
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In Fermi’s original treatment,® only the B-decay
interaction was treated in perturbation theory and he

used the Coulomb wave functions for an electron in the |,

field of the daughter nucleus. The nucleus was regarded
as a point charge as far as the Coulomb interaction
was concerned. Because the Coulomb wave functions
which are square integrable at the origin for J=%
possess a weak singularity at =0, he introduced a
configuration space cutoff R in the divergent parts.
Letting » — 0 everywhere (except the divergent parts
where R~nuclear radius), one obtains Fy(Z,p). If one
retains the small terms containing 7, one has F2(Z,p),
which in the literature is said to include the finite de
Broglie wavelength effects.” 1012 One can write!?

FP(Z,p)=F(Z,p)
X [14-(terms proportional to powers of 7)].

Thus F? differs from F, in containing some finite-
nuclear-size corrections. The work in the literature on
obtaining accurate values of the Fermi function can be
interpreted in terms of obtaining corrections to Fo. The
usual corrections considered in the literature are due to
finite-nuclear-size,'*~1 screening of the Coluomb
potential seen by the outgoing electron due to the
presence of atomic electrons,™ ! and the radiative
corrections,20—22

Rose!” was the first to consider the effects of screening
on Fy. He used a modified WKB approximation to solve
the Dirac equation and gave a prescription for modify-
ing Fo. The method is lucidly discussed by Durand.®
For our purposes we need only note here that the model
used is that of a screened Coulomb potential for a point
nucleus. Durand,'® using particular forms of a screened
point charge Coulomb potential (Hulthén potential),
obtained exact solutions to the Schrédinger and Klein-
Gordon equations. We will compare our results with his
and Rose’s in Sec. III. If the Coulomb potential is
modified to take the finite nuclear size into account,
in general we cannot solve the Dirac equation analyti-
cally. The models that have been assumed for the static
nuclear charge density are those of a uniformly charged
spherical shell' (UCS), and a uniformly charged
spherical ball (UCB).1*-¢ Some authors also consider
the screening,?:16 whereas others neglect it.}41% In order
to use the wave functions obtained from these models
to calculate the transition probability per unit time for
B decay, one must perform the integration of the elec-
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tron wave functions over the nuclear matrix elements.
Some authors evaluate the numerical solutions for the
electron wave functions at the nuclear surface,3914:15
while others average them over the nuclear matrix
elements.5:16 The first is equivalent to assuming a model
in which the transforming nucleons are restricted to a
spherical shell as far as the 8-decay integrations are con-
cerned, while the second depends on the choice of
nuclear wave function. It should be pointed out here
that the point charge nucleus Coulomb wave functions
must also be evaluated at the nuclear surface or
averaged. Thus there exist many possible combinations
of model dependences which gave rise to “finite-nuclear-
size corrections.” Huffaker and Laird,® for the model of
a UCB, have succeeded in approximating the electron
radial functions analytically and thus provide a basis
for comparison with our results.

The radiative corrections to 8 decay have been cal-
culated treating the 8 interaction and electromagnetic
interaction in perturbation theory. In the results most
quoted in the literature0-2! the model consists of treat-
ing the nucleus as a point charge in both the 8 decay
and the Coulomb interaction.? The results for the
radiative correction were simply added to the Fermi
function as another correction.® However, the radia-
tive corrections involve an ultraviolet cutoff in mo-
mentum space contrasting with the configuration space
cutoff in Fo. Chern et al.” have discussed the incorpora-
tion of the results for the radiative correction into the
ft values for nuclear 8 decays. In Sec. I we return to
this point in more detail.

This paper is divided into four major sections. Section
I treats the Fermi function for the model of a point
nucleus. Section II considers the nuclear structure
(model dependences) in both the 8 and Coulomb inter-
actions. Section III applies the model-dependent results
to 0 — O0F decays and calculates the jf¢ values. The
results and their discussion are considered in Sec. IV.

I. FERMI FUNCTION FOR A POINT NUCLEUS

In this section we consider a perturbation treatment
of the Coulomb correction to 8 decay which will give
us to order Za the Fermi function and field-theoretic
corrections to it. The model considered in this section
is the one used in Chern ef al.” It ignores the nuclear
structure in the Coulomb interaction (the Coulomb
potential is assumed to be that due to a point nucleus),
but takes the nuclear structure into account in the 8
interaction. As discussed in the Introduction, such a
model will give rise to a Fermi function including the
screening and finite de Broglie wavelength effects. Due
to the simplicity of this model it will become clear how
to connect up the perturbation treatment with the
usual treatments in the literature and how to incorporate
the screening, finite-nuclear-size, and the radiative cor-

# B. Chern, Ph.D. thesis, University of North Carolina (un-
published). .
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rection into the Fermi function. This clarifies the pro-
cedure to be used in Sec. IT when the more complicated
models are considered.

Since we treat both the 8 and Coulomb interactions
in perturbation theory, the interaction Hamiltonian is
Hg+H,, where for positron emissionl0-24

Hy= 13 / 2 Fu(®y s Gr—Gav ()
lev(x)')’ﬂ(l‘l")’a)\pe(x) ’ (1- 1)

and the Coulomb interaction between the positron
and the nucleus of charge Z is given by?’ (units are
h=c=m.=1)

Hc=—Za/d3xgl—e(—X){i¢]L({)— exp(—A|x]).

X

(1.2)

We have modified the usual Coulomb potential to take
into account the screening due to the atomic electrons,
and A is a parameter which will eventually be deter-
mined by a comparison of the value of the atomic
electron potential of the parent atom? at the origin
with that given by a Hartree-Fock calculation. Note
that in ‘H, the nucleon field operators do not appear.

The complete matrix element to lowest order in the
Coulomb and B interactions is described by the dia-
grams?128 shown in Fig. 1. The electron-positron mo-
mentum and energy in the intermediate (final) state
are denoted by k and ex (p,e,), respectively, and refer-
ence to spins is suppressed. Here the initial state de-
scribes a parent nucleus having Z41 protons and
A—(Z+1) neutrons and no leptons present. The final
state describes a daughter nucleus having Z protons
and 4—Z neutrons and a neutrino and positron each
described by its appropriate free-particle quantum
numbers. The combined matrix element My; for
diagrams a+b+c can be obtained by the use of ordinary
perturbation theory, and ignoring the nuclear recoil
energies (the nucleons are regarded as the source of the
external Coulomb field) one obtains®

4
My =%V2 / B4y 3 VA Bvu(Gr—Gays)T 1%

r=1
XeXP(—iq-Xr)V+*(tl)ﬂw(1+7s)[eXP(—ip'Xr)

4 d%k(epta-k—p) exp(—ik-x,)

+Za

@2m)pJ [lp—k[>+A%][e,*—ex*+ie]

4 M (—=k) exp(—ik-x,)
o &k U_(—p),
* (Zr)‘/ (lp—k|2+A2)(ep+ek—ie)] 2

1.3)

2¢ We have here ignored the fact that the Coulomb potential due
to the daughter nucleus after the 8 decay is not fully screened.
Actually Zae 4+’ /«’ should be replaced by (Z 1o 5’ —a /.
This causes a change in the screening by 1/Z and is unimportant
for the decays considered here. This is discussed further in Sec. I}I.

% W, Heitler, Quantum Theory of Radiation (Oxford University
Press, London, 1954), 3rd. ed.
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where ¥; and ¥, are the initial and final nuclear wave
functions, At(k)=(2e;)"(exte-k=8), and V,(q) and
U.(p) are the free-particle spinors for the neutrino and
electron, respectively, of energy and momentum =g,
q and ==e,,p. One notes that the first two terms in the
square brackets are the expansion of the wave function
for an electron in an external Coulomb field due to the
daughter nucleus? in plane waves to order Za. As first
pointed out by Berman,?! the last term arises from the
fact that the nuclear charge is changed by the 8 decay
and thus is not obtainable in the usual treatment of the
Fermi function. If we neglect screening (A — 0) and
finite nuclear size even in the 8 decay (x,— 0), My
reduces to that discussed by Berman. It is the third term
in the brackets of (1.3) which is charge-independent and
gives rise to the radiative correction? to order Zo. In
the limit %,— 0 this last term is logarithmically
divergent, but in our treatment it has a configuration-
space cutoff which corresponds to that used in the
point-nucleus Fermi function.

The way the screening and finite nuclear size (here
the finite de Broglie wavelength) enter the perturbation
calculation is explicitly displayed. We note that in
addition to the usual finite-nuclear-size effects quoted
in the literature, which arise from the effect on the
electron’s wave function, the charge-independent term
also gives small finite-size corrections. In this section
we let 2, — 0 1in this term except in the part which would
otherwise be logarithmically divergent. Using some
manipulation, we can rewrite the square brackets of
Eq. (1.3) as

[+ J=exp(—ip-x)+ [4/(2m)*]
X[ Zal(x:,p)+aG(x+p)],

L(ep—l—a-k——ﬁ) exp(—ik-x,)

o=k A% (e — e +ie)

I(x,,p)= / a

er exp(—1k-x,)

1
G(x0,p) =1 (xs, ——fdsk
Co) =3l Go) = O et a9 (e —eri0)

d*k(a-k+pB) exp(—ik-x,)
5€ .
T (o] a2) (e~ i+ ie)

I and G are given in Appendix A. The results for I are
expressed in terms of a power-series expansion in px,
and p-x,. The three different expansion parameters
which occur in the Fermi function are Za, px, and A/p,
In a perturbation treatment of the Fermi function to
order Za, since we will keep only terms in the transition
probability per unit time which are at most proportional
to the square of the expansion parameters and Zeo
multiplies 7, consistency dictates we only retain terms
in I at most linear in px and A. The dominant contribu-

(1.3

26 J. D. Bjorken and S. D. Drell, Relativistic Quantum M echanics
(McGraw-Hill Book Co., New York, 1964).
27 This gives the static vertex part of the radiative correction.
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tion to G comes from the first two terms in Eq. (1.3').
It is the second term in G which in the limit #, — 0 is
logarithmically divergent and is opposite in sign to 1.

At this point we restrict ourselves to 0+ — 0% super-
allowed decays. Thus there is no contribution from the
axial-vector interaction in the 8-decay matrix elements.
Only those terms survive in the vector interaction which
combine to form scalars. One then proceeds to expand
the lepton wave function in a power series in # keeping
terms at most to order (px)2in M ;. Forming the transi-
tion probability per unit time for the emission of a posi-
tron with momentum between p and p+dp in the usual
way and performing the spin sums and angular integra-
tion for the leptons in the final state gives

P(p)ap=Po(p)ap[1—nZa(ey/p)+Zal(2e,*—1)/p%e,
+2Za((5/3)er+1/3e,+3)Ro—3 ($*{143g/ e} + ) Re?
+(@/2m)(—7*(e,/p)+10—4C—4 In(pRy))],  (1.4)

where g=en—e, and C=0.5772- - - is Euler’s constant.
Here the position-dependent terms have been evaluated
at the nuclear surface as is done in the usual treatment
of Fy and

Po(p)=(1/22)|Gv |*| M p|*p*(em—e1)*.

Here |Mp| designates the Fermi matrix element.

All terms in the square brackets of Eq. (1.4) which
are proportional to (Za)? and Za should be the usual
Fermi function for a point nucleus to order Za and the
screening and finite-nuclear-size corrections to it. Since
A and R, identify the various corrections, it is easy to
see the origins of the various terms. Thus ignoring terms
proportional to « in Eq. (1.4) one sees that the first two
terms in the square brackets are the expansion of
Fo(Z,p) to Za for a positron decay. The third term in
Eq. (1.4) embodies the screening correction to Fy and
the other terms represent the finite-nuclear-size cor-
rections. Note that in the limit A— 0, Ry— 0 only F,
to order Za thus survives.

In the usual nonperturbation calculations of the
Fermi function the screening and finite-nuclear-size
effects are obtained as corrections to the electromagnetic
effects (point Coulomb interaction) which is itself a cor-
rection to the 8 decay. The screening and finite nuclear
size only affect the electron wave function inside a
sphere of essentially nuclear dimension, while the elec-
tron’s wave function outside this sphere is that due to a
point charge Coulomb interaction. Thus one can write
the Fermi function as F, times a power series in R, and
A. Since R and A are independent parameters, in the
limiting case Ry=> 0 and A — 0 we must obtain F,. For
simplicity consider only the finite de Broglie wavelength
correction; one can then write?8

F(Z,p)=Fo(Z,p)[1+ f(Ze)Ro+g(Za)Ro*+ -+ -],  (1.5)
where f and g are, respectively, odd and even functions

% M. E. Rose, Relativistic Electron Theory (John Wiley & Sons,
Inc., New York, 1961).
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Fic. 1. Diagrams for positron decay with lowest-order Coulomb
corrections. The nuclear structure is taken into account in the
B decay but ignored in the Coulomb interaction.

of Za. Since the finite nuclear size (and also screening)
are small corrections to the Coulomb interaction, such
a representation is useful. To connect this with the
perturbation calculation of F we note that if for the
decays of interest we consider Za as an expansion
parameter in the correction terms to Fo, then keeping
terms at most quadratic in the expansion parameter
Eq. (1.5) becomes!2:19

F(Z,p)=Fo(Z,p)(1+ZaARy+BRy?),
A=(5/3)e,+1/3e,+3q,
=—3[p(14+3q/e,)+¢%].

Here the next contributions from f and g contribute
to third and second order in Za, respectively, thus com-
ing in over all to fourth order. This corresponds to ap-
proximating the electron’s wave function inside the
nucleus by a power-series expansion in Za and pR,
(also A when screening is considered). It can be done
even for more complicated nuclear models.’* Here we
have not expanded F, in Za since we wish to treat in
this way only the corrections to Fy which are small;
i.e., the electron’s wave function outside the sphere of
radius R is not to be expanded in Za. However, the
perturbation treatment of the electron’s wave function
gives a consistent expansion in Za everywhere. There-
fore, to compare with the perturbation calculation we
should replace Fy in Eq. (1.6) by (Fo)ze=1—nZae/p
and keep in (1.6) only terms to Za. This gives exactly
Eq. (1.5). Thus we see that to extract the results in the
literature from the perturbative calculation to order
Zao. we need only factor out (Fy)ze from the perturba-
tive results and replace it by F,. It must be emphasized
that the power-series expansion of the screening and
finite-nuclear-size corrections to Fy is a convenient ap-
proximation because we know that their effects on the
electron’s wave function are small. From a theoretical
point of view the expansion is meaningful because we
can think of px and A going to zero and still obtain F,.

We have neglected the radiative correction in the
discussion above since, as previously noted, it is not
obtainable from the solution of a Dirac equation with a
static potential. Equation (1.4) is to be written as

P(p)dp=Po(p)dp
X[Fo(Z,p)(1+insts)+(R.C)a], (17)

(1.6)
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z,Ef

z+,EY

z+1,E}

() (b) (c)

F16. 2. Positron decay with lowest-order Coulomb corrections.
p and q are the momenta of the outgoing positron and neutrino,
respectively, k is the momentum of the lepton in the intermediate
state, and E;V and E." are the energies of the intermediate
nuclear states in (b) and (c), respectively.

where f.n.s.+s. stand for the finite-nuclear-size and
screening terms in the square bracket of Eq. (1.4), and
(R.C.)q is the radiative correction obtained from the
perturbative calculation to order a. To incorporate the
radiative correction into the Fermi function we rewrite
Eq. (1.7) as

P(p)dp=Po(p)dpFo(Z,p)
X[1+£fns.4s4(R.C)o/Fo]. (1.8)

Suppose we had performed the perturbation cal-
culation to Z%?; what then would be the changes in
Eq. (1.4)? First we would develop Fy to Z%?, but in
addition we would obtain the finite-nuclear-size and
screening corrections to higher orders. If we keep only
terms quadratic in the expansion parametes and at most
first order in Za, then the screening and f.n.s. correc-
tions are identical to what was obtained in the perturba-
tion calculation to Za, and these are identical to the
results in the literature. However, we would also gener-
ate the radiative correction to a, a? and Za? In general
the radiative correction to any order in Za: (A — 0 and
x— 0) is defined as Fypet— Fo to that order. Thus in
effect we again can write

[1—nZae,/p+ (Za)*(- - -)[1+fns.+s.J4+R.C.)o2.

Now we see that we are generating F always with the
same finite-nuclear-size and screening corrections (to
second order) but with higher-order radiative correc-
tions. This can be written as

FoZ,p)[1+fns~+s+R.C)Y/Fol.  (1.9)

If we were to generate the perturbation expansion to all
orders in Za, the only change in Eq. (1.9) would be
that the radiative correction would be generated to all
orders. We emphasize that this is the correct way to
incorporate the radiative correction into the Fermi
function.

Rigorously, then, one should use the radiative cor-
rection to all orders in a when one incorporates it into
the Fermi function, since as one generates Fo, we
generate the radiative correction to the same order in
a. We cannot use the argument that a is to be
considered an independent parameter like px and A
and which, when allowed to go to zero, F — Fy. The
radiative correction to all orders contains an infinite
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number of terms which are logarithmically divergent
as x— 0. We do not krow that this sum is small com-
pared to Fy. Since the radiative correction is only known
to order a, we have replcced R.C. by its value to order
a to obtain corrections to the ft values. We are now
investigating a field-theoretic perturbative treatment of
the Fermi function to Z%? and the radiative correction
to this order. The results of the calculation and their
effect on the accepted value of the lowest-order radiative
correction will be communicated as soon as completed.

II. NUCLEAR STRUCTURE IN BOTH THE §
AND COULOMB INTERACTIONS

The preceding section on the simple model of a point
charged nucleus has shown how the corrections to the
point-nucleus Fermi function may be extracted from a
perturbation treatment of the Coulomb corrections to
B decay. These ideas will now be extended to the more
general case in which the nuclear structure plays a role
in the Coulomb interaction as well as in the 8 decay.
This will involve specific nuclear models for the 8 and
Coulomb interactions. The corrections to the Fermi
function may be expressed in terms of these models,
thus allowing a study to be made of their model
dependence.

The effect of the nuclear structure is taken into
account by quantizing the nucleon fields in the 8
decay and in the Coulomb interaction between the
nuclear protons and the emitted electron (positron). As
in Sec. I, the V—A theory of weak interactions is as-
sumed; thus the 8-decay Hamiltonian is given by Eq.
(1.1). The Coulomb interaction between the nuclear
protons and the emitted electron (positron) is repre-
sented by the “screened” Coulomb Hamiltonian

H=—a / af / par BB )

[x—x|

Xexp(—A[x—x']). (2.1)

As in the 8-decay Hamiltonian, we need not know the
specific form of the nucleon spinors here, since they
will be absorbed in the specification of the nuclear wave
functions. The factor exp(—A|x—x’|) has been in-
serted in (2.1) to account for the screening of the nuclear
charge by the atomic electrons. The parameter A may
be related to the atomic electron potential at the nucleus
as mentioned in Sec. I. For the decays of interest in this
paper, the screening correction to the ft value is very
insensitive to the detailed form of the screening factor.

In the rest of this section, the transition amplitude
for nuclear 8 decay with lowest-order Coulomb cor-
rections will be presented. Various approximations
which may be made to the amplitude are discussed. Of
particular interest will be the one which leads to the
formalism ordinarily employed in the study of 8 decay.
Since we will eventually be interested in calculations to
the vector coupling constant Gy, only the details for
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positron decay will be given. The extension to electron
decay is straightforward and will be indicated at the
end of this discussion.

In Fig. 2 are shown the diagrams for the positron
decay of a nucleus of initial charge Z+1 and energy
E:" into a nucleus of final charge Z and energy E,V.
Diagram (a) gives the 8 decay with no Coulomb inter-
action. Diagrams (b) and (c) represent the first-order
Coulomb corrections to the decay. These two must be
summed over all intermediate states of the positron
(electron) and nucleus. Because of the large nuclear rest
mass energy compared to the decay energies involved,
the nuclear recoil energy will again be neglected and the

e s [ rrmemicinss [
i — O - X f 8 zexp —1P-X;
" ansval

l gm=]

XV @Ba(1+9) / &

and for diagram (c)

m r=1
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energies E;Y and E," taken to mean the internal
energies of the nuclear states. The transition amplitude
for the diagrams of Fig. 2 was obtained by Chern®
using ordinary second-order perturbation theory, in
which the intermediate states are on the energy shell.
For diagram (a), we have

A
Mper=3V2 | da?4 30 W A[Byu(Gv—Gays)m1r¥;
r=1

Xexp[—i(p+q) - X1V H(@)Byu(1+vs) U-(—p); (2.2)

for diagram (b),

A
a3 3 Ui [Byu(Gv—Gays)T 1Y, exp(—iq-x,)

r=]l

A~ (—k) exp[ —i(x,—x,’) - k]

(Ip—k|*+A2)(EAN — EN+e,—extie)

U_<—p>] ; (23)

8=]1

4r 1 4 4
M f¢“=a(2 s \72_[ 2 / a4z 3 YA BYi(Gy—Gays)r1-¥m exp(—iq-x,) f d*4x' 3 W, *PoY;
T

X exp(—ip-x/) V4 (@Byu(1+79) / &

where P,=3-(7%), is the isospin operator which gives 1
when it operates on a proton state and 0 when it
operates on a neutron state. The total amplitude for the
decay is then

Mpy=Mzo+Md+Mye. (2.5)

Because the present understanding of nuclear physics
allows only an approximate knowledge of the nuclear
wave functions, the sums over the intermediate
nuclear states in M;;® and M, given by

Wy(x1, X0, X ) U H (X1, X 5+ - +,X4)

S =3 (2.6)
[ (EN—E¥+ep—eytie)
and
‘I’m(X1,X2, cee ,XA)‘I’m*(xll’x 2,) co 7XA/)
Se= Z ’ (2'7)

n (EnV—EfN+ep+er—ie)

M (—k) exp[—i(x,—x,’) - k]

(Ip—k[*+A)(En¥— EN+e,tex—ie)

U_(—p)], (2.4

cannot be evaluated exactly. However, it is possible to
make some reasonable approximations to them by
making specific assumptions about the relative impor-
tance of the nuclear and lepton energies which appear in
the denominators. An examination of the actual dis-
tribution of the contributing nuclear states of the parent
and daughter nuclei for a particular decay should help in
making an appropriate assumption. Two opposite
approximations which do not require knowledge of the
details of a particular decay have been discussed
previously by Gell-Mann and Berman? and sub-
sequently by Chern.? The closure approximation con-
sists of the assumption that the important nuclear ex-
citation energies in the denominators are negligible
compared to the lepton energies e, and ;. Neglecting
the nuclear energies altogether, the sums over the nu-
clear states may be performed by closure (Cl) to yield?

4
(M si)or=3VZ / d*x 3 VM BYu(Gy—Gavs)r= 1% exp[—i(p+q) %IV 4 (@)Byu(1+75) U_(—p)

r=1

e

r,8=1

L)\‘(—-k) exp[ —i(x,—x,) - k]

4 1 4
il —[ / a*x 30 Y P [Byu(Gv—Gays)r=1,¥; exp[—i(p-x,+q-x,)]

XV H@By.(1+79) / &

X exp[—i(p-xeFa-x) TV @Bra(1t7) f o

* M. Gell-Mann and S. M. Berman, Phys. Rev. Letters 3, 99 (1959).

(Ip—k|24A%)(e,~ex+-ie)

A
U_(—p)+ f P45 5 U AByGr—Gars)rT,P

r,8=1
M(—k) exp[—i(x,—x,) k]
(|p—Kk|2+A2) (e, +e,—ie)

v(-n]. @9
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It should be noted that the matrix elements between the initial and final nuclear states in the second and third
terms of (2.8) are not just that of the 8-decay interaction, but include the Coulomb interaction with the positron
as well. This is to be compared with the opposite approximation in which the assumption is made that the energies
of the contributing excited nuclear states are much larger than the lepton energies. In this case it is assumed that

the nucleus is not excited in the intermediate state and only the terms in S® and S for which I= f and m=71,

respectively, are retained. The “no-excitation” (NE) approximation thus yields?

A
(M y)ne=3V2 / B4z Y, Y Byu(Gy—Gays)T 1Y exp[—iq- %]V (@)By,.(1+vs)

r=1

47 4
% {eXP(“ip'Xr)+a(2 )3[/ d*4x’ 3 WPy exp(—ip-x,')
¥y

s=1

4
+ / d*y' 3 WP, exp(—ip-x,)

s=1

It should be noted that in this case it has been possible
to factor out the 8 interaction from the Coulomb inter-
action. In effect, this approximation ‘‘decouples” the
two from each other. The positron wave function in
(M ;;)nw depends only upon the Coulomb interaction of
the positron with the nuclear protons, but does not
depend upon the particular details of the 3-decay inter-
action. This feature is true only for the NE approxima-
tion. The inclusion of excitated intermediate nuclear
states will specifically introduce the particular nuclear
states playing a role in the B decay into the calcula-
tion of the positron wave function. It may be re-
called that in the usual studies of 8 decay one tacitly
assumes that the positron wave function has been
separately calculated for an assumed nuclear charge dis-
tribution and is then inserted into the 8-decay matrix
element. From inspection of (M ;)ng, it can be seen
that the approximation of no nuclear excitation is
precisely what is assumed in the usual treatments of 8
decay. The excited intermediate nuclear states, which
occur as the result of the emitted positron (or electron)
acting back on the nucleus® via a “virtual Coulomb ex-
citation process,” are thus neglected in these treatments.

The no-nuclear-excitation approximation is probably
the more realistic of the two discussed above. This may
be inferred from a close look at the general amplitude
in Eq. (2.5). If, as far as the Coulomb interaction is
concerned, the nucleus was strictly a point charge, then
the Coulomb matrix elements appearing in M;® and
M ;¢ would vanish for all excited nuclear states. This is
due to the orthogonality of these states with the
initial or final nuclear states. Only the NE terms would
contribute in the point charge™nucleus limit. When the
nuclear electromagnetic size is considered, the excited
states are brought in as f.n.s. corrections along with the
electromagnetic size corrections arising in the NE terms.
The latter corrections would be expected to be more
important, since they would be calculated with the
nuclear charge density p(x’), with /d®/p(x")=1. In

30 Tn addition to the effects of the nuclear recoil.

/dak)\—(— k) exp[—i(x,—x,") - k]
(Ip—k|2+A%)(ep—extic)
‘/‘d"kw(*k) exp[—i(x,—x/)-k]
(Ip—k|2+A%)(eptex—1e)

Jle-cn. 9

contrast, the f.n.s. corrections from the excited states
would be calculated from a “transition charge density”
pi(x"), with f'd*p./(x")=0. Furthermore, the values
of k which contribute most to the integration over the
intermediate lepton momentum would be expected to
be near the value of p, the observed positron momen-
tum. Now in allowed decays the observed lepton
energies are generally comparable to typical nuclear
excitation energies, while in forbidden decays the
latter may be expected to dominate. Since the excited
nuclear states can contribute to S® and S only
as small fin.s. effects, the no-nuclear-excitation ap-
proximation would be more appropriate. The charac-
teristic feature of the closure approximation is that it
overemphasizes the high values of momentum k of the
lepton in the intermediate state.?® This becomes im-
portant in the part of M y; which is usually referred to
as the radiative correction,®® namely, that part in
which the same nucleon participates in both the 8 and
Coulomb interactions. Because of this overemphasis of
high values of k, the closure approximation leads to a
radiative correction that is logarithmically divergent
as k—o even in the presence of an extended nuclear
charge distribution.

Since our main purpose in this paper is to study the
model dependence of the usual f.n.s. and radiative cor-
rections to B decay, and, as will be shown, these cor-
rections are in exact agreement with the results ob-
tained by the use of the no-nuclear-excitation approxi-
mation, the remainder of this paper will be restricted
to use of this approximation to treat the sum over
intermediate nuclear states, Work is presently in
progress on determining the contributions of the excited
nuclear states to these corrections, and the results will
be communicated at a future date.

Before applying (M s;)nE to a calculation of the cor-
rections mentioned, another simplifying approximation
may be made in the brackets for the positron’s wave

31 Only the static vertex part of this correction has been con-
sidered here. See Ref. 7 for reasons for including only this part.
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function. This is the assumption that the proton dis-
tribution in the daughter nucleus is essentially the same
as that in the parent nucleus, with the exception of the
proton which 8 decays. This will be particularly good
for decays for which the parent and daughter nuclei are
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at or near the ground state. In this case, the protons
which may take part in the 8 decay may be thought of
as moving outside a nuclear core which distorts the
positron’s wave function but does not contribute to the
B decay. With this approximation, (M ;;)ns becomes

4
(M y)ne=%V2 / a4y 3 VA Byu(Gv—Gays)T 1¥: exp(-—iq-x,)V+T(q)ﬂ'y,,(1+fy5)[exp(—ip-x,)

r=1

4
+Zo:
2

Xy

where p.(x’) is the charge density of the daughter
nucleus (normalized to unity) of charge Z and pg(x’)
is the probability density of the 8-decaying proton. The
functions I(x,—x’) and G(x,—x’) are the same func-
tions as given in Sec. I but with x, replaced by (x,—x’)
in I and x, by (x,—x’) in G. Again, we note that the
first and second terms in the brackets in Eq. (2.10) are
just the Neumann expansion to first order in Za of the
integral form of the Dirac equation? for a positron
moving in the potential

oo’
o zl exp(—A|x—x]).

V(x)=Ze / a3’ (2.11)

If it were not for the third term in the brackets, which
is the static vertex part of the radiative correction, all
higher terms in the Neumann expansion would just
correspond to multiple scatterings of the positron in the
potential V(x). The presence of the radiative correc-
tion serves to introduce additional terms in the ex-
pansion.

The extension of the above formalism to electron
decay is obtained by the substitutions

Z——Z, Vil @Bvu(1+vs) — Uil(p),

B8——8, U_(=p) = Bru(1+7s) V(—x).
(2.12)

In the radiative correction, pg(x’) is taken to mean

the probability density for the proton created in the
decay.

T 4
. fdsx'pc(x’) exp(—ip-x’)I(xT—x’)-!-oz(2 y

f &/ ps(x) exp(—ip-x’)G(xr—x')]U.(—w , (2.10)

vy

III. APPLICATION TO 0+— 0 DECAYS AND
CALCULATION OF ft VALUES

The results of Sec. IT are now applied to a study of
the effects of the nuclear model dependence of the
f.n.s. and radiative corrections to the f values of some
0+ — 0" super-allowed positron decays. The atomic
electron screening correction is also calculated. The
particular decays that will be considered here are those
of 3014, 13Al26m, 17C134, 21SC42, 23V46, 25M5°, and 27C054,
for which the endpoint energies and half-lives are ac-
curately known.® The model dependences are obtained
by assuming various charge distributions for the daugh-
ter nucleus and various probability densities for the
B-decaying proton. The results are expressed in terms
of a correction factor which multiplies the exact point
charge nucleus Fermi function. Terms up to order
(pR)2, ZapR, |v/c|n(pR), |v/c|nZa, and ZaA have
been retained in the correction factor. In the above, R
denotes the nuclear radius and (v/c)x denotes a typical
velocity of a nucleon in the nucleus. For decays of
interest in this paper, pR, Za, and |v/c|y are each
~0.1, while A~0.05; thus higher-order terms in the
correction factor, which would go as (pR)%, Za(pR)3,
(Za)2(pR)4, etc., are negligible for these decays. The ft
values are obtained from the integration of the cor-
rected Fermi function over the decay spectrum. An
approximation described in Appendix B allows this
integration to be performed analytically. The per-
centage error in the i values due to this approximation
is at most 0.02%, for the above decays.

For 0 — 0% decays, the amplitude (M s;)xe in Eq.
(2.10) becomes

4
Odwa=r #5059l iaon V@479 fexp(ivx-+ Zo o [n) expliex)
7l'

S (5r— X))+
x,—X')+o——
2y

Gy
d3x'ps(x’) exp(—ip- x’)G(xr—x’)}U_(— )——\—a— /d”x > U Ha¥r), ¥,

r=1

47
Xexp(—iq-x,) V+1(¢I)(¥(1+75)[6XP(-1'D'Xr)+2aw /d%’pc(x’) exp(—ip-x)I(x,—x')

4
+a—— /dsx’pg(x’) exp(—ip-x')G(x,-fx'):IU_(—p). 3.1)

(2m)?
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The first term in (3.1) is the usual nonrelativistic part
of the Fermi matrix element and the second is the
relativistic contribution. For 0F— 0F decays, the
charge density p.(x’) may be taken to be spherically
symmetric. Furthermore, for super-allowed decays the
nuclear wave functions may be taken to be states of
definite isospin to a good first approximation. Calcula-
tions of the isospin mixing3?~% for the decay of s0'* have
shown it to be small, and this is assumed to be the case
for the other decays. On the other hand, one could
assume the conserved-vector-current hypothesis to be
true and then look for evidence of isospin mixing in
these decays by examining the variation of their fi
values. Some comments about this approach will be
made after the results for the ft values have been
presented.

A retardation expansion of the lepton wave functions
in the amplitude (3.1) is now made in powers of px,
pa’, and g¢x, keeping terms to second order. The parts
of the expansion which contribute to 0% — 0% decays
are those which combine with 1 or " to give scalars.
In the nonrelativistic part of (3.1), we have neglected
all position dependence in the radiative correction
except in that part which diverges as In|x—x'| as
|x—x/| — 0. Most of the model dependence of the
radiative correction comes from this log term, since the
|In|x—x/|[>|x—x’| for values of |x—x’| which are
important in (3.1) (typically, |x—x’|~0.01). Further-
more, a rough estimate of the contribution of the non-
logarithmic position-dependent parts of the radiative
correction to the f.n.s. correction is at most ~0.08%, of
fot. We have also completely omitted the radiative cor-
rection to the relativistic part of (3.1), since the latter
is itself small compared to the nonrelativistic part.

The corrected Fermi function is calculated in the
usual manner by inserting (3.1) into the transition
probability per unit time and summing over the un-
observed lepton spins and the neutrino momentum.
Retaining at most those terms arising from the inter-
ference of the Coulomb, finite size, radiative, and screen-
ing corrections with the zeroth-order amplitude, the
transition probability per unit time for the emission of a
positron of momentum p is (see note added in proof)

P(p)dp=Po(p)dp{l—rZae,/p+ZoA(2e,*—1)/p%,
—3[p*(1+-3¢/ep)+q* 141+ Zal e,(3 42+ A5)+94s
+(1/e,) (34— As) JH-[3(em—1/e)A1—5Zad R

+(o/27) (— 7%,/ p+10—4C—4 Inp—44,)}, (3.2)

where p is in units of m.c, e is the decay endpoint

32 W, M. MacDonald, Phys. Rev. 110, 1420 (1958).

33 H, A. Weidenmiiller, Phys. Rev. 128, 241 (1962).

# R. J. Blin-Stoyle and J. Le Tourneux, Ann. Phys. (N. Y.)
18, 12 (1962).
( ;5 R) J. Blin-Stoyle and S. C. K. Nair, Phys. Letters 7, 161
1963).
( 36 1\5 Altman and W. M. MacDonald, Nucl. Phys. 35, 593
1962).

37 L, Lovitch, Nucl. Phys. 46, 353 (1963).
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energy, = en—€,, C=0.5772- - - is Euler’s constant, the
factor®s R= E;’N— EfN+Mneutron_Mprot.on—' >\ZO‘/2R0
results from the estimation of the relativistic nuclear-

matrix element, and
Py(p)=(1/27%) |Gy |?| M ,| 2P*(em—ep)?.

A in ® is a variable parameter which will be discussed
later. The quantities A1, 4, 43, and A4 appearing in
(3.2) contain the details of the nuclear models and are
given by

A= / s pa(®) ]2, (3.3)

Aa= [ Baps(x) f Bo®|x—¥], (34
xb- (x—x)

abdy= f depa(x) / d"'x’p,,(x')%F—, (3.5)

Ag= / d3xpa(x) / &3¢ pp(x’) In|x—x'| , (3.6)

where p.(x’) is the charge density of the daughter
nucleus and pg(x) is the probability density for the
proton which 8 decays.

The first two terms in the angular brackets of (3.2)
may be recognized as the expansion to first order in Za
of the point charge Fermi function®® for positron decay:

1
Foﬂ:(Z,p)=4(——£1)(2pRo)2<7—1) exp[:F rZaEf]
?

| T(y+iZales/p))|?

, (37
|T(2y+1)|? ¢

==z,

and Ry is a suitably chosen nuclear radius. Here and
subsequently in the paper the upper sign applies to
positron emission and the lower sign to negatron
emission. The third term in the atomic electron screen-
ing correction to first order in A and Za. To this order,
it agrees precisely with the WKB approximation of
Rose!® as applied to the Dirac equation. This consists
of the prescription that the screened Fermi function
may be obtained from (3.7) by the relation

Fs*(Z,P)-"' (eplp’/epp)FOi(ijl) )

where e,/=e,£V,, p'=(e,>—1)'% and V, is the
potential at the nucleus due to the atomic electrons.
In this paper, Vo= ZaA. For the decays of interest here,
the only significant part of (3.8) which contributes to
the screening is the factor p’e,’/pe,. Expanding this to

(3.8)

38T, Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952).
3 Note that this definition of the point-nucleus Fermi function
differs by the factor § (1+7) from that used by some other authors.
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first order in A gives

2e,2—1

Fsi(Z,p)'z[ld:ZaA( )]Foi(z,p). (3.9

€p

The correction factor in (3.9) is exactly that which
appears in (3.2) and, to Zo, is the screening correction.
The validity of the WKB approximation as applied to
the Schrodinger and Klein-Gordon equations has been
demonstrated by Durand.’® Using exact solutions of
these equations for a Hulthén potential, it was shown
that, in the limit p/A>>1, the exact screened Fermi
functions coincided with those that would be obtained
from Rose’s WKB approximation. That this is also
true for the Dirac Fermi function is shown by our cal-
culation of the screening correction as given in Eq.
(3.2). It is interesting to see the effects of including the
electron spin in the screening correction to Fo(Z,p).
Spin is neglected in Durand’s calculation, but is in-
cluded in ours. For decays with high endpoint energies
(ie., super-allowed) and for values of p/A>>1, our
screening correction (which agrees with that of Rose)
is about twice that obtained by Durand using the
Klein-Gordon equation. Hence, when accurate cal-
culations of the screening for these decays is desired,
one must include the effects due to the electron spin.
It should be noted here that the odd charge of the
daughter atom has been neglected in the screening cor-
rection in (3.2). Inclusion of this effect may be made by
replacing ZaA by (Z+1)aA (for e* decay), where A
is related to the parent nucleus atomic electron charge
distribution. The fractional change in the screening
correction due to this effect is 1/Z, and is negligible
for the decays considered here. The fourth and fifth
terms jn the angular brackets of (3.2) are the usual
f.n.s. corrections, including contributions from the
neutrino wave function. It is interesting to note that
the screening does not appear in the first-order f.n.s.
correction for these decays. This may be understood
from the fact that the lowest-order screening cor-
rection occurs as ZeA; hence a term like (ZapR)
(ZaA) would not appear in a perturbation treatment
of the Coulomb interaction to order Za. In view of the
fact that the screening correction to the ff values of
the decays considered here is so small (<0.3%,), the
screening correction to the finite-size correction would
be very small indeed. The maximum correction for
27C0% is estimated at less than 0.03%, of fof. Thus these
two corrections may be treated separately with negligible
error. The sixth term in (3.2) comes from the relativistic
part of the nuclear matrix element. The form of ® is
from Ahrens and Feenberg.’® Various theoretical
estimates of the parameter have been made.?840—42 The
most recent value,*? A=2.4, has been used here and is

40 D. L. Pursey, Phil. Mag. 42, 1193 (1951).
4 M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954).
42 J. Fujita, Phys. Rev. 126, 202 (1962).
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based on the hypothesis of conserved vector currents
(CVC). The other values of \ are somewhat smaller 404
For the decays considered here, the relativistic con-
tribution to the ft values was found to be very small.
The largest value of this correction for Co® was
~0.10% of fot. The last term in (3.2) is the static vertex
part of the radiative correction to lowest order in a. As
described in Appendix A, some small energy-dependent
terms were neglected in the calculation of G(x,—x). A
rough estimate of the resulting error in f¢ may be put
at =0.1%, for s0, the decay for which the error would
be the largest.

Neglecting for the moment the radiative correction,
the terms in the brackets of the decay rate (3.2) con-
stitute an expansion of the total Fermi function in
powers of Za, pR, and A. In the limit of a point nucleus
for both the 8 decay and Coulomb interactions, the
only surviving terms are the expansion in Za of the
point-nucleus Fermi function and the lowest-order
screening correction. However, we want to treat the
point charge Fermi function exactly, while treating just
the f.n.s. and screening corrections in perturbation
theory. Now, the positron’s wave function in Eq. (3.1)
was expanded in a power series in px and px’ as well as in
Za. What is desired is that the Za expansion be used
only in the f.n.s. and screening corrections, but not in
the parts corresponding to the point Fermi function.
When this is done, as discussed in Sec. I, the brackets
in the transition rate become

Fo(Z,p)C(Z,p)+(R.C.),

where the correction factor C(Z,p) is

C(Z,p)=14ZalA(2e,'— 1)/ p%e,— 3[p*(143q/e,)+ ¢ 141
+Zaley(3421+A45) +qds+(1/e,) (34— 45)]
+[3(en—1/e,)A1—3Za45]R. (3.11)

The R.C. cannot be considered as part of the usual f.n.s.
correction because it has a different origin, namely, the
change of the nuclear charge in the 8 decay. Even in the
limit of a point nucleus for both the 8 and Coulomb in-
teractions, it is present and diverges as In|x| as |x| — 0.
In an exact treatment of this effect, the parentheses in
Eq. (3.10) would mean all of the terms associated with
the radiative correction. The assumption has been made
here and elsewhere”-2*22 that only the part to lowest
order in « is the most important. Because of the
divergent nature of the first-order R.C., it may turn
out that higher-order terms could significantly alter
this correction. These terms are presently under study.
The calculation of the R.C. in this paper employs, in
essence, a position space cutoff in the logarithmically
divergent term in the same way as used in the point-
nucleus Fermi function. This is in contrast to other
treatments?+?2 which employ an ultraviolet cutoff A in
the integration over the intermediate lepton momentum
k. The cutoff is estimated from the form factors of the
B-decaying nucleon.?? In our treatment of the static

(3.10)
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vertex part of this correction, the charge form factor
arising from the translational motion of the 8-decaying
nucleon in the nucleus appears in pg(x) along with the
charge form factor associated with the nucleon itself.
Since the first form factor contributes the major
characteristics of the nuclear charge distribution due to
the B decaying proton (or final proton for electron
decay), the second has been neglected in this paper.

The corrected jff values may now be obtained from
the integration of (3.10) over the decay spectrum.
Using the approximation in Appendix B,

1(Z,pw) )
= o(Z,p) [ APC(Z, )P (om—en)?] foZ=0, pu)
+ / " P R.C) P (en—ey)?, (3.12)
where ’

fU(Z’pm)Ef mdPFO(Z;?)P%em_eP)Z-

The indicated integrals may be done analytically to
yield an expression for the fractional correction to
fo(Z,pm)t in terms of the nuclear-model-dependent
quantities 4;-44 and the 8 endpoint momentum pm.
From Eq. (3.12), the fractional correction to fof is

D)), A

where

of 2e,"—1
2\ =24 , 3.1
(fo)s Z A< o >SF (3.14)
()
(f) =Za(§A2+As){ep) sr+Zad () sr
0/ fn.s
+Za(34:—A35)(1/ep)sr
—34:(p*(1+39/e)+ %) sr
+[3(en—(1/en)sr)A1—5Zad,J®,  (3.15)

o flZ=0, pm)
(%RAD:foiz,sz

><(10—4c—7r2<f;>SF—4<1np>sp—4A4>. (3.16)

The quantities (X )sr are defined in Appendix B and

are given by
26,2 — Sem 3 3k,
< —"g —1[ + ])
Pzep SF Pm me2 zemi’mg

(3.17)
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(ep)sr= Fengm!
45  15(2e,2+1) Ink,
X[ + _.__.~._______] , (3.18)
4p,t depnpm®
(q),sr:em— (ep)sr, (3.19)
17 15
< > =~—g ‘1[1+—~+
€p/ SF zem 2? 2 4:jlm4
3em(den?+1) Inky,
—W] . (3.20)
2pm®
2q
<ﬁ<PF~—)+¢>
3 ey SF
Spm? 49 91 42
=——~gm”1[1— S
7 10pn2  2pm?t  pud
Zlem(36m2+ 1) Ink,,
], (3.21)

30
<1nP>SF—;—gm 1[( mO+3pm )lnpm

()5l 6)

hw?—1 1 1 hw?
i P R
2hm, 4hpt 4

—[1—2Ink,—4 In244 In(h2—1)] }

=+ %emL(h,n?)] , (3.22)

is the Spence function of (x), and

hm= em—l_ P’m )

5 15
2pm®  2pmt

IV. RESULTS AND DISCUSSION

15¢,, lnkm>
2w )

The expressions just presented for the f.n.s., radia-
tive, and screening corrections are now applied to the
fot values of the 0T — OF positron decays specified at
the beginning of Sec. III. The results are presented in
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TasLE I. Model-dependent parameters.
Hofstadter HO®

B-S» B-BP P-Se P-Bd ou Alzéem  C]34 Sct2 V4  Mnb Cob
Ay Ry? 2R Ry? 2R 1.6672 1.3272  1.232 1.5072 1.45,2 1.3972 1.36¢2
As (6/5)Ro (36/35)R, Ry 2Ry 1.36r 143r 141r 147 1470 147 1.44r
4;  (&/15R, (6/35R, iR, iR, 0.297 028 0.27r 0.30 0.30r 0297 0.30r
Ay  InR¢+0.193 1InRp—1.140 InR, InR,—0.333 3In4;+3In(® 3Ind 1-}-% 1115(6/7) 4 Ind,+4%1n(8/9)40.193

+4-0.193 -+-0.193

a Uniformly charged sphere of radius Ro for charge density of daughter nucleus. Lepton wave function evaluated at the nuclear surface.

b Same charge density as in a. Lepton wave functions averaged over a uniform sphere of radius Ro.

¢ Point charged nucleus. Lepton wave functions evaluated on a shell of radius Ro.

d Same charge density as in c. Lepton wave functions averaged over uniform sphere of radius Ro.

© Hofstadter (Ref. 43) charge densities for the daughter nucleus, where » denotes the root-mean-square radius of the daughter nucleus charge distribu-
tion. The HO shell model was used for sOM, The charge distributions of the other nuclei were represented with a trapezoidal model with the same half-
density radius and shin thickness as given by Hofstadter. The lepton wave functions were averaged over the position of the decaying proton with the

probability density obtained from the single-particle HO shell model.

three tables. Table I gives the values of the model-
dependent parameters A4;, A, As;, and A4 for five
representative models of the nucleus. Above each
column, the first word denotes the daughter nucleus
charge distribution, while the second indicates the
assumed probability density of the 8-decaying proton.
A legend below the table gives a description of the
models. Table IT gives the percentage corrections to the
fot values from the f.n.s. and radiative corrections for
the three most realistic models of Table I. These are
the ball-shell (B-S), the ball-ball (B-B), and the
Hofstadter harmonic-oscillator (H-HO) models. The
screening correction as calculated from Eq. (3.17)is
also presented. The f.n.s., screening, and radiative cor-
rections usually quoted in the literature are included
for comparison. In Table III, the H-HO f.n.s. and
radiative corrections are combined with the screening
correction of Eq. (3.17) to obtain the corrected ft
values for the seven positron decays considered in this
paper. For comparison, the same f.n.s. and screening
corrections have been combined with the radiative cor-
rection as calculated by Killén.?2 The percent deviation
of the average Gv? from G*, the Cabibbo angle, and 8,
an isospin mixing parameter, are given for both cases.

The purpose of this study is to examine the analytical
model dependence of the f.n.s. and radiative corrections
and to compare them to other corrections to the fo

values. The first four models in Table I are those which
have been used in the literature to calculate electron
radial wave functions.’?~1¢ As a check on our model-
dependent parameters, we have used the approximate
analytical lepton wave functions obtained by Huffaker
and Laird® to calculate the parameters A-A4; for the
models considered by them (B-B, B-S, and Point-Shell).
The results are in exact agreement with ours. For a
given charge density, the differences in these parameters
resulting from the evaluation of the lepton wave func-
tions at the nuclear surface or averaging them over a
uniform sphere can be seen by comparing the B-S with
the B-B, or comparing the P-S with P-B. Differences
arising from the use of different charge densities (a
uniform sphere or a point) but with a given treatment
of the lepton wave functions are seen by comparing the
B-S with the P-S, or comparing the B-B with P-B.

The major part of the f.n.s. percentage correction to
Jot comes from the first term in (Af/f)t.n.s., namely,
Zo(3As+As){ep)sr. A look at Table I shows that this
term varies by as much as 209, with the use of dif-
ferent charge distributions (the B-S versus the P-S or
the B-B versus the P-B) or with the different treatment
of the lepton wave functions (B-S versus the B-B or the
P-S versus' the P-B). Since the f.n.s. corrections for
some of the heavier nuclei considered here (2;Sc%,
23V, 2sM®, and 2;Co%) are from 1.5 to 2.5%, of fyt, the

TasLE II. Corrections to fof. (See note added in proof.)

b (5f/fo)f‘;n.s., % 4

. (5f/fo)§AD, % . (5hf/fo)s, ?b

Decay e
Ol — Nu4* 020 016 0.18 020 034 1.64 237 1.69 1.75  2.52 012 0.16
Al2em — Mg26 0.61 052 056 066 0.69 148 229 1.61 1.60 249 0.17  0.13
Cl3¢ — S3¢ 1.10  0.95 1.02 1.13 1.05 140  2.27 1.58  1.53 2.60 0.17  0.16
Sct2 — Co*? 1.68 1.49 1.60  2.01 1.74 1.38 230 1.46 1.52 2.70 0.19 e
V46— Tit6 2.09 1.82 1.93 2.61 1.82 1.38 2.32 1.47 1.52 2.72 0.20 0.20
Mnt0 — Crbo 255 218 241 3.00 221 137 236 1.48 1.52 2.75 0.22 e
Co% — Febt 300 262 28 408 3.05 1.37 . 240 1.49 1.52 2.7 0.23 0.24

a Ball-Shell Ro=4/(5/3) (rems) Hofstadter.

b Ball- Ball.

° Hofstadter-HO.

d Previous f.n.s. corrections [taken from Freeman et al. (Ref. 6)].

e f.n.s. corrections of Blin-Stoyle and Nair (Ref. 8), after subtracting Rose’s screening.
f Radiative correction of Ref. 7, using point-shell model Ro=1.241/3X1071% cm,

& Radiative correction of Killén [G. Kallén, Ref. 22; Elementary Particle Physics (Addison-Wesley Publishing Co., Inc., Reading, Mass., (1964) ] after

dividing by Fo(Z,Pm).
h Screening correction as obtained in this paper. Values of A taken from Vo of Matese and Johnson (Ref. 19),
I Numerical calculation of Rose’s screening. Taken from Matese and Johnson (Ref. 19).
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Tasie IIL. Corrected f¢ values and vector coupling constants.

§X100

@ (Cabbibo)
L]

d

G“d— Gv*/G* (%)

L
1.3967

b

GyPX10™ (erg cm?®)
1.4025

ft (sec)

fot (sec)®

12 (sec)®

71.360

em (MeV)2

2.3236

Decay
Q1 — N1#*

+0.32

0.00

1.32

+0.32

1.40
0.00

+0.0022

1.4059

+0.0022

1.4117

3128-£10 3153+10

306610
+0.090
6.376

=+0.0014

3.7190

311247

30857

30157

Al26m — Mg?6

+0.0016

1.3926

+0.0016

1.3992

+0.006

1.565

+0.0019

4.9707

1.92

1.78

3140:20 317220

3055420

Cl3t — S3

+0.64

1.09

+0.64

0.71

+0.0044

1.3985

+0.0044
1.4065

=+0.007
0.6830

=£0.0040

5.9200

+0.32
1.26

+0.32
0.91

0.226
+0.003 +0.003

0.205

2.58
+0.16

+0.16

2.08

+0.0023

1.3974

+0.0023

310610 314510
1.4057

300910

+0.0015

0.4259

+0.0023

6.5431

Sciz —Ca??

315148

3112:£8

30048

V46 — Tit6

-

+0.30
1.29

+0.30
0.91

+0.0018

1.3971

+0.0018

1.4057

=£0.0008

0.2857

£40.0022

7.1200

315149

311149

298949

Mn# — Cr30

A.

+0.30
0.93

+0.30
0.65

=£0.0020

1.3996

+0.0020

1.4080

+0.0006

0.1937

=+0.0026

7.7387

+0.71

+0.71

+0.0052

=+0.0052

310322 3140422

296622

=+0.0010

+0.0038

Co®— Fe®
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Killén divided by Fo(Z,pm).

h screening of Eq. (3.14).
h radiative correction of

G# =1.4350=£0.0011 X 1074 erg cm3,

¢ Results of column ¢ with G# =1.4350=:0.0011 X10~% erg cm?3.

s Values of em and half-lives f1/2 from Freeman et al. (Ref. 6). fof values from N.B.S. tables. All errors shown in this table are experimental.
wit

b H-HO f.n.s. and radiative correction
¢ Same f.n.s. and screening as b, but wit

d Results of column b with
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variation of Za(4A4:+A3){er)sr by 209 would result
in a variation of the f.n.s. corrections on the order of
0.3-0.5% of fot. But this is larger than the screening
correction for these decays (0.20%, of fof for 21Sc*? to
0.25%, of fot for »Co®). Recently, several detailed cal-
culations of the screening effect®:16:1* have been made
for the purpose of obtaining precise ft values for the
0+ — Ot positron decays. The efforts put into these cal-
culations will have been in vain, however, if one com-
bines the screening corrections with f.n.s. corrections
whose uncertainty is as large as or larger than the
screening itself. For this reason, an effort has been
made in this paper to calculate a more precise value of
the f.n.s. correction to the fof values. This has been
done by using the charge distributions of Hofstadter,*
as determined from high-energy electron scattering ex-
periments, for the charge density of the daughter
nucleus and the single-particle HO shell model for the
probability density of the B-decaying proton. The
oscillator constants were adjusted so that the nuclear
charge density that would be obtained with the HO
model matched that given by Hofstadter. The parame-
ters A1, A2, and Az as calculated for this model are
given in Table I. The radiative correction was also
treated with this model. In this case, the HO model
was replaced by a shell of radius 7max, the value of 7 for
which the HO radial probability density for the 8-decay-
ing proton is a maximum. This is a reasonable approxi-
mation since the HO radial probability density peaks
rather well at this value of 7=7max.

The results for the f.n.s. correction for the B-S, B-B,
and H-HO models are given in Table II. The estimated
percentage error in the ff values due to the approxima-
tion used in performing the integration of these cor-
rections over the decay spectrum ranges from ~0.00%
of fot for 0" to ~0.029, of fot for 57Co%. The rela-
tivistic matrix elements were found to contribute very
little to the f.n.s. corrections for the value of A=2.4.
Even for the Ahrens et al. value (A\=1.0), which is not
in accord with the CVC, the maximum contribution to
the ft of »Co% would be only 0.40%. There is good
agreement of the f.n.s. corrections as calculated here
for O, 13A126m and ;Cl3* with those given in the
literature®:1* for the same models (column d, Table II).
On the other hand, the f.n.s. corrections for the other
nuclei considered here are, for a given model, lower than
those usually quoted in the literature by amounts
ranging from ~0.3%, for 2:Sc® to ~1.19% for 7Co™.
This substantiates the findings of several recent
papers® 1516 which have pointed out an inconsistency
in the phase conventions adopted in Ref. 13 for the
numerical calculation of the positron’s wave function
for the B-S model. The f.n.s. corrections calculated in
this paper are in good agreement with this finding.

The model dependence of the f.n.s. correction for the
decays of §04, 13A126”, and 1;CI** was found to be very

4 R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
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small. One would have expected this, since this cor-
rection is itself small for these decays. The variation of
the f.n.s. correction for 21Sc%2, 53V46, 5sMn®0, and 5;Co%
due to the use of different nuclear models was found to
be comparable to the screening correction for these
decays. The difference between the H-HO and B-S
f.n.s. correction ranged from about ~0.5 of the screen-
ing for 2:Sc*? to about ~0.7 of the screening for 2;Co®.
It should be remarked that the B-S model is most com-
monly used in the literature. The difference between
the H-HO and B-B f.n.s. correction is approximately
the same size as the screening correction, while the dif-
ference between the B-S and B-B f.n.s. correction
ranges from ~1.2 times the screening for 2:Sc* to
~1.7 times the screening for 2Co%. This would in-
dicate that the inclusion of such a small effect as the
screening correction in the calculation of ff values
requires, for consistency’s sake, a more precise treat-
ment of the f.n.s. correction than has been previously
done. The use of the H-HO model in this paper repre-
sents such a calculation. For further comparison, the
recent f.n.s. corrections of Blin-Stoyle and Nair8 have
been included in column e of Table II. The B-S model
was used in Ref. 8 in a numerical calculation which
combined both the screening and f.n.s. corrections. To
compare their f.n.s. correction with ours, the screening
correction, assumed to be that given by Rose or
Biihring, was subtracted from their results to get the
values in column e. Within the 0.3%, error quoted by
Ref. 8, the values of column e are in agreement with
those of column a which we have calculated for the
same model (B-S). There is, however, considerable
scatter between the two sets of numbers, especially for
8OM, 215c2, 43V, and ;M. We were not able to
determine the reason for this. No neutrino f.n.s. or
relativistic effects were considered in their work, but
this would not account for the erratic difference be-
tween the two sets of corrections.

The radiative correction for the B-S, B-B, and H-HO
models is given in the middle of Table II. Aside from the
neglect of some small energy-dependent terms, the f.n.s.
correction to the radiative correction was also ignored.
This was based on the fact that the major variation in
the radiative correction due to the nuclear models used
will come from the logarithmically divergent part.
While the treatment of this effect is not quite as precise
as the fn.s. calculation, the main purpose here is to
examine the general nuclear model dependence of the
radiative correction. A look at Table II shows that
there are considerable differences in this correction
among the models given. The largest occurs between
the B-S and the B-B models and is ~19%, of fyf for
27Co%4. On the other hand, the B-S and finite de Broglie
wavelength models give a radiative correction close to
that given by the H-HO model. These results show the
radiative correction to be somewhat more sensitive to
the nuclear models than the usual f.n.s. correction.
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This would answer, in part, a query posed by Freeman
et al.,5 who questioned whether nuclear structure effects
could alter the radiative correction by amounts of the
same order as the correction itself. For the most
realistic models for this correction, namely, the H-HO
and the B-S, the variation is about on the order of the
screening,

The corrected ft values of the seven 0t — OF positron
decays considered here are given in Table III for the
H-HO radiative correction and for the radiative cor-
rection of Killén.?2 The H-HO finite nuclear size and
the screening as given by Eq. (3.14) were used in both
cases. The ft values are fairly consistent among each
other, with an rms deviation from the unweighted mean
of 0.5% of fot. This is especially true for the heavier
elements 2,Sc?2, 2V%, 3sM®, and 5,C0%, with an rms
deviation of their f values from their mean of about
0.2% of fot. The over-all uniformity of the f¢ values is
slightly better using the radiative correction of Killén.
With the exception of the ff value of 13A126™, which is
about 19, lower than the rest, the other f¢ values may
be said to be equal to within the experimental errors.
The vector coupling constants Gy#, the percent devia-
tion of the average Gv® from G®, and the average
Cabibbo angle are also given in Table III for both
radiative corrections. The Cabibbo angles for both
cases are in fair agreement with ,=0.21 as obtained
from the AS=1 semileptonic decays.

We comment now about the anomalously low fi
value of 13A1%™ in the light of the CVC theory. If the
CVC is valid, then the variation in Gy# calculated
under the assumption of isospin conservation should
be due to the presence of Coulomb and other charge-
dependent nuclear interactions. If we knew with con-
fidence the magnitude of the isotopic spin mixing cor-
rections to the Fermi matrix elements for all of the
above decays, a good check on the CVC could be made.
Unfortunately, the current status of the calculationg32—36
of this mixing are still uncertain. Most of the work has
been done only for the 01— ;N#* decay, giving
values of §(0™), the fractional change in the square of
the Fermi matrix element due to isotopic spin mixing,
ranging from a few hundreths of a percent® to slightly
over 19,.%7

One could work backwards to get an estimate of
what the relative mixing should be in order that the
CVC be valid. By assuming the CVC to be true, the
isospin mixing parameters 8; and 8 for the decays j
and % are related by

()
(f0)i

According to Blin-Stoyle and Nair,? the isospin mixing
is expected to decrease the Fermi matrix element. Since
(f?) a1 is the lowest of all the 0+ — Ot decays, one may
assume the mixing to be least for 13A126™. If one takes

=1—

(1—6x). (4.1)
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this to zero, the prediction of the isospin mixing in the
other decays can be made from

8= ((f0;—(fD)/(f0;, (4.2)

where 7 can be any of the other 0 — 0% decays. Values
of §; using this relation are given at the end of Table ITI.
For O, this gives §%(0'%)=1.4024-0.329, and §°(0¥)
=1.324-0.33%,. These are just at the edge of the range
of values calculated in the literature. More work on this
is needed in order to determine whether or not the
variation of Gy# among the nuclei can be accounted
for solely on the basis of isotopic spin mixing. What is
needed is a careful calculation of the relative isospin
mixing among Ot — OF decays.

On the basis of the analytical model-dependent
results presented in this section the following comments
may be made:

1. For the heavier nuclei considered (4>34), the
f.n.s. corrections as calculated in this paper are as
much as 19, of fo¢ lower than those that have been
previously quoted in the literature.®!3 This is in agree-
ment with the conclusions of several recent papers?15-16
which have calculated electron radial wave functions.

2. The nuclear model dependence of the f.n.s. cor-
rection is negligible for O, Al%= CI3,

3. For Sc*?, V4, Mn®, and Co%, the variation of the
f.n.s. correction due to the use of different models is
comparable to the screening corrections.

4. In view of this last finding, we have made a more
precise calculation of f.n.s. correction in which the
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Hofstadter charge densities have been used for the
daughter nuclei, and the single-particle HO has been
used for the wave function of the decaying proton.

For all of the decays considered in this paper, the
variation of the radiative correction due to the use of
different nuclear models was found to be as much as 1%,
of fof. However, the H-HO nuclear model gave results
close to that given by Chern et al.7 for the finite de
Broglie wavelength model.

The details of the atomic electron screening cor-
rection calculation have been presented for the results
given in Chern ef ol. The equivalence between this cal-
culation of the screening and Rose’s WKB approxima-
tion is shown.

APPENDIX A: EXPRESSIONS FOR
I(x) AND G(x)

The expression for I(x) is
I60= /d% (er+a-k—p) exp(—ik-x) ,
R

where the limit ¢ — 0 is taken after the integration is
performed. The integration is carried out by first ex-
pressing the denominators in the integrand of (Al) in
terms of an auxiliary Feynman variable, then perform-
ing the k integration, and finally performing the
integration over the auxiliary variable. The exact
result is?

(A1)

o oo explip| x| (B+1—0?)2—ip-x(o+1)]
I(X)= _;[(Ep_!"(ra'p-_ﬁ)(z/:—u d" (t2+1__0.2)1/2

s / dtexp[—plxl<a2—1—t2>1f2—ip-x<a+t>3)+wp(i / e RGN
Y

(c2—1—)1f2
e exp[—p|x] (= 1= #)2—ip-x(o-+1)]
+/,, o (e?—1—)1i2 )

0—0

0—0

(P+1—o?)12

-0

+p‘;3—( (i f dt exp[ip| x| (E+1—0%) 2 —ip-x(o+1)]

x|\ Jo

+ / K exp[—PlXI(ffz—1—t2)”2—"p"‘("+t)])]’ (42

where o= 1+A2%/2p? and yo=o0— (¢>—1)*/2 The integra-
tion over the auxiliary variable may be performed by
expanding the exponentials in (A2) in powers of px and
p-x. This is a good expansion for 8 decay, since px and
p-x~0.1 for x and x on the order of the nuclear dimen-
sions. For the O+ — 0t decays considered in this paper,
the contributing terms of the expansion of (A2) are
those that will combine with 1 or &? to form scalars.

For the radiative correction, we have to evaluate the
expression for G(x):

& )__1 /d“ (er—e-k+B) exp(—ik-x)
0= ) kA e et erid)

(A3)
2

This may be rewritten as

ey, exp(—ik-x)

1
G)=3I(x)— | &%
() =210 zf (|p—k[2+A%)(e,*—ex*+ie)
_%ep/dak

(e-k+p) exp(—ik-x)
"ek( |p—k| 2+ A2)(e,*—ex?+ie) '

For the decays considered in this paper, G(x) was
approximated as follows: First, A and x were put equal
to zero everywhere except in the part of G(x) [Eq.
(A4)] which diverges as In|x| as x— 0. For values of
|x| (typically ~0.01) which are important in G(x), the

(A4)
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In|x| is much larger than the other f.an.s. termsin
G(x), since these other terms occur as powers of x.
Furthermore, the In|x| varies much more than do the
powers of x for a given change in |x|. Thus the major
nuclear model dependence will come from the In|x|
term. The other approximation to G(x) was to set
ex>~|k| in (A4) which is valid if most of the contribu-
tion to the integrals come from |k|>>1. This will be
the case for decays with large endpoint energies, such
as the super-allowed decays considered here.
The above two approximations give

Gx)~31(0)+7[2(2—C)—2 In(p|x|)+epe-p/p*],
C=0.57721---.

APPENDIX B: APPROXIMATE ANALYTICAL
INTEGRATION OF TRANSITION RATE
OVER DECAY SPECTRUM

In the integration of P(p)dp over the decay spectrum,
we have to evaluate quantities defined by

<X>Fo(SF)E[d?Fo+(Z,P)(SF)X/
f dpFHZ,p)(SF), (BY)

where Fgt(Z,p) is the point-nucleus Fermi function
[Eq. (3.7)], SF stands for p*(en—e,)? and X denotes
the various quantities appearing in the correction
factor C(Z,p) [Eq. (3.11)]. An approximate but quite
accurate analytical calculation of (X)p,sr) may be
made if one takes advantage of the fact that, for decays
with high endpoint energies (p..>>1), F¢t(Z,p) is es-
sentially constant over the decay spectrum. In these
cases, F¢t(Z,p) may be factored out of the integrals in
(B1) to give

(X>Fo(sz«")“(X>SFE/(ZP(5F)X//¢P(SF)' (B2)
The error in (X)py(sr) due to the use of (B2) in place

of (B1) may be estimated as follows: Expand Fg+(Z,p)
in (B1) in powers of Za to get

1—nZo(epp ™) (smx * *

(Xrosm=(X )sp,: :I . (B3)

1—nZo(epp ) sp+ - -
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For the decays of interest in this paper, the terms of
the expansion in (B3) are less than unity, so the
denominator may be expanded further to get

X rosmy=(X)sr[1—nZa((epp~") smx
—{exp~sr) 1.

When P,>>1, both (e,/p)srmx and {e*/p)sr will be
very close to 1, which gives (X)r,sm=~(X)sr. As a
specific example, consider the f.n.s. correction. Most
of this correction is due to the first term in Eq. (3.15),
which is proportional to {e,)sr. Equation (B4) gives
(keeping just the term to first order in Za)

(ep)ro(sm=1.0005(¢,)sF

(B4)

for 47Co%, and
(ep)rosm=1.007{e,)sF

for gO. This results in an error in the f¢ values for
27Co% and sO'" of 0.015% and 0.0009, respectively.

Note added in proof. In the transition probability
Eq. (3.2), and in succeeding formulae, the contribution
from the relativistic nuclear matrix elements appears as

E{em_l}Al—za(Az/Z)]&

€p

The parameter 45/2 should be replaced by A,—As,
where 45 is the mean radius of the daughter nucleus
charge distribution:

Ag= / B4pa() x|

The results of this change are as follows:

(1) The finite-nuclear-size corrections for Cl, Sc, V,
Mn, and Co in Table II, columns a, b, and ¢ should
all be decreased by an amount ranging from 0.03 ft
for C to 0.01 fyf for Cl.

(2) The effect is negligible for O and Al. ‘

(3) The conclusions pertaining to the model de-
pendence of the finite-nuclear-size correction are
unchanged.

(4) These corrections have been incorporated into
Table III.



