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For the breakup of a particle d into its constituents n and p in the Geld of a nucleus A, a Gell-Mann-
Goldberger relation is derived for which the 6rst potential excludes the np interaction. Effects of the recoil
and structure of A are neglected. The limit problems that arise in the use of Lippmann-Schwinger equations
with three-particle anal states are treated for the case of short-range forces, and the discussion is extended
to include Coulomb forces. The anal exact "post" form of the transition matrix element resembles the dis-
torted-wave Born approximation result given by Huby and Mines, and may be considered a justi6cation
of it.

1. INTRODUCTION AND PRELIMINARY
DEFINITIONS

~OR the sake of de6niteness, consider a deuteron d
disintegrating in.to a neutron e and a proton p in

the field of a nucleus 2, i.e.,

A+a ~A+a+ p+Q, (&)

where —Q is the binding energy of d. For simplicity,
take A to be structureless and in6nitely massive, so that
it can be treated in terms of 6xed potentials acting on
e and p. The problem then corresponds to an assump-
tion of pure direct reaction, and has been treated in the
distorted-wave approximation by Huby and Mines. '
The aim of the present paper is to examine the limiting
processes involved in greater detail, starting from a
more fundamental expression for the transition matrix
element. We shall consider the speci6c eGects of the
three-particle 6nal state on the derivation of the Gell-
Mann-Goldberger relation, and the validity of the Lipp-
mann-Schwinger equation generating the complete scat-
tering state (including a deuteron channel) from an
"individual particle" distorted wave without a deuteron
channel.

Considerable use will be made of the concepts of
weak and strong limits. A family of vectors (wave
functions) y(X) is said to tend weakly to y as X -+ Xs if
for every 6xed nornsalisuble vector n

(.Iy(~)) ( ly) - ~

A family of vectors can have a weak limit even though
the point-by-point limit of the corresponding coordinate
space representations does not exist. Thus the family

y(X) represented by exp(iXx) has the weak limit 0 as
X ~oo, since if n(x) is normalizable then

Weak and strong convergence can also be de6ned for
families of operators. The family 0(X) is said to tend
weakly (strongly) to 0 as X-+ Xo if (0(X)—0)e tends
weakly (strongly) to 0 for every fixed normalizable n.

Weak and strong limits will be denoted by wlim and
slim.

Let subscripts a and b label the initial and final chan-
nels, and r„and r~ be the respective position vectors
of e and p, relative to the (fixed) center of mass of A.
We disregard spin coordinates, and suppose that n and

p have equal mass m. The complete Hamiltonian is

a=Z+ V.(r.)+V„(.,)+V„„(.„),
E= (p„'+p„')/2m,

(2)

where r„= lr„—rsl . In channels a and b, II reduces to
the corresponding free Hamiltonians

H, =X+V s, Hs=E.
The initial- and. 6nal-channel interactions are

V,=H H, = V„+V„—, —
Vs—=H—IIs=—V„+V„+V„.

The free resolvents

G.(E)=(E &.) ', Gs(E—)=(E—») ' (5)

and the complete resolvent

S(E)=(E-Il)-' (6)

are also needed for complex K We assume for all these
resolvents that g(E) and b(E*) are Hermitian con-
jugates in the sense that (g(E)fll)= (fl g(Ee)n),
where e is normalizable but f need not be.

If relative and center-of-mass coordinates for m and p
are de6ned by

J'n(x)exp(i'm)dx —& 0 as X ~oo
r,=r„—rs, rs ———,'(r„+r,), (7)

by the Riemann-Lebegue lemma. In contrast, a family
y(X) tends strowgly to y if

(yP)-ylyh)-»-0 - ~- ~'
The family represented by exp(iXx) has no strong limit.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' R. Hnby and J. R. Mines, Rev. Mod. Phys. B7, 406 (1965).
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a free wave incident in the direction of kq is

y, =P(r„)exp(ikg rs) . (ga)

Here P(r„) is the bound-state wave function of the
deuteron, and

A'k,'/4m =E—Q, (9a)

where E is the total kinetic energy when all particles
i309
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are separated. A free wave in channel b is

with
yb—-exp[i(k„r.+k, r,)7

ttt'(t't '+kv')/2rrt= E.
The complete scattering wave functions are

lP,+=/, +wllm tt(E+ze) Vaf„

fb+=Qb+wllm ct(E+Ze)Vb4tb
a~0+

(8b)

P parts,
H=H +H„, Hb- H—b„+Hb„.

Then Kq. (17) can be written

(10a)

where, for example,

&bn+= Slim eXp(—iH„t)eXp(iHb„t)

(9b)
Qb+= slim([exp( —iH t)exp(iHb„t)7

t~+ort

x [exp( iH—„t)exp(iH bvt) 7} (18)
0 +0

The weak limit wlim is to be understood to mean that

(nIwlimIy(e))= lim(NIy(e))

for every normcLisable function e.
Following Huby and Mines, we want to use the

"independent-particle" potential

V= V +V„ (12)

as "Grst potential" in a Gell-Mann —Goldberger' rela-
tion. Corresponding to V, the Hamiltonian, interactions,
and resolvent are

Xbn Xby

where, for example,

~b„+=Qb„+ exp(ik„r„)

(19)

(20)

is the wave operator for e in the potential V . The re-
placement of the strong limit of the product of operators
by the product of the strong limits is easily justined,
since the operators act on independent spaces. From
(16) and (18), it follows that

H=xyV. +V„, g(E) =(E—H)-',
V = V„+Vv —V„o, Vb= Vn+ V„,

and the complete scattering functions are

x,+=& +wlim g(E&iii)V&„
8-+0+

Xb+ ——yb+wlim g(E+iit)Vbtt)b
5~0+

(14a)

(14b)

is the complete scattering wave function of e in the
potential V„.

It is interesting that xb contains outgoing as well as
incoming tt and p waves, This is because the resolvent
in (14b) acts on the non-normalizable function Vbpb.
The function Vbpb is not normalizable even if V„and
V„are of short range; it can be rendered normalizable
only if Vb is replaced by a three-body force tending
strongly to zero as r& —+~ .

Instead of (14b) we can use

Xb+ yb+ wli——m Gb(E+itt) Vbx b+.
5~0+

(15)

Since H and Hb can be analyzed into commuting n and

'M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(1953).

s L. L. Foldy and W. Tobocman, Phys. Rev. 105, 1099 (1957l;
S. T, Epstein, ibid. 106, 598 (1957).

eR. G. Newton, Scattering Theory of Waves and 2'articles
(McGraw-Hill Book Co., New York, 1966). The symbol slim
refers to a strong operator limit.

Equation (14b), of course, uniquely defines Xb+. Equa-
tion (15) may not define Xb+ uniquely, ' but it is never-

theless a correct equation since it is just the Fourier
transform of the corresponding equation in the general
time-dependent theory.

Since both pb and Vb have a separable form, Xb+

should be easier to calculate than X +. But (14b) does

not show this separability. We therefore use the time-

dependent expression for the wave operator4 Ob+ which

satis6es
(16)

Qb+= slim exp( —iHt)exp(iHbt).
t~+oo

2. TRANSFORMATION OF THE TRANSITION
MATRIX ELEMENT

Huby and Mines show that the "prior" form of the
distorted-wave transition matrix element is equal to the
"post" form (interpreted in a certain way). In contrast,
we start from the exact prior form of the transition
matrix element (before the application of any Gell-
Mann —Goldberger relation), namely,

&=(A
I
v. I4.) (21)

~ K. Gerjuoy, Ann. Phys. (N. Y.) 5, 58 (1958).

We assume that the potentials are bounded and satisfy

r' 'V„(r) b 0, r'"Vv(r) b 0 as r —+~, (22)

which are sufhcient conditions for V,P, to be normal-
izable. These conditions are not satisfied by Coulomb
forces, which need a special treatment discussed in the
Appendix. If (22) is satisfied, the expression (21) for T
is well dered. It has been derived for the present three-
body case by Gerjuoy' from time-independent scatter-
ing theory. But the implied integration in the ("post")
expression
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diverges by oscillation, and lacks a rigorous derivation
for the three-body case.

The Gell-Mann-GoMberger relation can be derived
formally by using

It ~
———Xg-+wlim g(E—ie)(Vy —Vy)Xs-. (23a)

The derivation of this equation is less straightforward
than for the case of potential scattering. For potential
scattering (Vy—Vy)Xg 18 normallzable, so that the
resolvent acts on it to produce pure incoming vraves
in the limit e-+ 0+. Accordingly the right-hand side
of (23a} has the proper asymptotic behavior, and since
it satisfies the appropriate Schrodinger equation, it can
be identified with f~ . IIut in the present case the re-
solvent acts on a non-normalisable vector, and it is not
trivial to deduce the asymptotic behavior of (23b). This
remark is illustrated by the previously mentioned be-
havlol' Of Xy .

To avoid such ambiguities associated with the three-
particle anal state, we shall derive the GeB-Mann-
Goldberger relation without using (23a). The derivation
will in fact provide a justification of (23a), as we shall
note.

Accordingly, we treat the limits in Eqs. (10) and (14)
explicitly. From (10a) and (15), one obtains

pg- —Xg,
—=wlimLg(E —ie) Vg g

—Gg(E—ie) Vg(g-5
g~0+

=wlimLB(E —ie) Vg(X g
—wlim Gg(E-ib)

&~0+ 8~0+

xvox' }—Gs(E—ie)vox r5
=wlim g(E ic)(Vq—Vq)xq-

e~0+

+wlim wlim i(e—8)LB(E—ee) —Gg(E—ee)5
@~0+ 4~0+

XGg(E—9)VgXg
— (23b)

by making use of such identities as

S(E )-8(E.)=(E.-E.)8(E.)O(E),
g(E)-G (E}=B(E)V G(E)

The second term of Eq. (23b) must be shown to make
no contribution to (21) if the usual Gell-Mann-Gold-
berger relation is to result.

3. DISCUSSION OF THE REMAINDER TERM

The contribution of the second term of (23b) to (21)
18

R= i lim lim(e——8)(Xy
—

l VeGy(E+ib)

XLg(E+i.) G,(E+i.)-lV.ly.), (24)

which will be shown to vanish.
De6ne:

N~(&) = LB(E+i&)—G~(E+i&)5VA' (25)

Since V,P, is normalizable, and g(E+ie) and G&(E+je)
are operators on Hilbert space for e/0, N~(e) is normal-
izable. Therefore,

i~(x, lP,G,(E+~S)lNN)

=(whm Gy{E—i8)$ g(g l NN)
$~0+

=(x~ —i~In~)

by (15). Since the lI limit is the limit of a product of
numbers, the limit of the factor (e—8) can be taken
independently, provided that the limit of the other
factor exists. Thus

It.= —ilim e(Xr 4a—
l pg(E+ie)

-G (E+ )5V.I~.). (26)

The e limit cannot be taken inside the scalar product
because X~ —pq is not normalizable. However, if we
can show that the limit of the scalar product is Pnite,
we can conclude that 8=0, since e —+ 0.

To test whether the scalar product tends to a Gnite
limit, we use the lemma: If the derivative of f(x) exists
for x~& a and tends to sero as x ~~, then the integral

f(x)exp[i(kg+ik2)x5dx
a

tends to a pnite limit as km ~ 0+, provided that the eon
stant kq80. (This result follows on integrating by parts.
The integrated part is finite in the limit km-+ 0+, and
the remaining integral converges uniformly in k2 for
k2~&0. Therefore the kg limit can be taken inside the
integral, and gives a finite result. )

Tt is sufhcient to examine the part of the scalar
product coming from large distances. Let

s~(e) =ng —Qs,

Qg ——8(E+t8) Vgg„ ls ——Gg(E+$e) V.f..
The function n~ is a normalizable solution of

(E+ie B)= V,P, . —
No%' f and t'& Inay slnlultaneously tend to in6Ility 1Q

two %Rays:

(a) r„-+~, r„+~, r, fixed-(d channel),

(b) r„-+~, r„~~, r„~~ (np channel}.

In case (a), V,=V+V„~0 but V „W0, so that
B-+X+V„~. If n and p have only one bound state,
then at large distances Ng is of the form

ssg=P(r„) fe(Qe) exp(ikere)re I, -
where Qe= (8@,pe) are the angular coordinates of re, and

ke= $4mA '(E Q+ie)5'"-,

which has a positive imaginary part. The normali-
zability of nq excludes a solution in exp(-ikey),
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In case (b), B-+ K. Hence, at large distances Ni is a
solution of

(F+ie E—)Ii=0.
Now

E=A'(V '+ V ')/2m= k'Ve'/2m.

To exploit the symmetry of the six-dimensional La-
placian, we express it in terms of new coordinates

We assume that the amplitudes fq, f„, f„, and F are
bounded, so that the integrations over the finite ranges
of the angular variables cannot diverge and need not
be considered.

For the d-channel term of Eq. (27), we use coordinates
r~ and r„. If the integral over rd converges for fixed r„
so will the subsequent integral over r„, because P(r,)
tends strongly to zero at in6nity. Substituting»(e)
and (xi,-—gb)* in (28b) shows that the integrand con-
tains the wave numbers (analogous to ki of the lemma)

and one of the direction cosines

l„=r„/r, 1,= r~/r= (1 i')'"—.
The result is

where

k„+k,+kg,
k~—k„cos8q„+k~,

k —k~ cos8d~+kg,

(30)

V,'= 8'/Br'+5« '8/Br+« 'D
cos8d„k„rq/k——„rq, cos8dy= kg) ' rg/kyrie.

where D is a second-order differential operator in the
angular coordinates 0„, 0&, and l„only.

For large r the term r 'D is negligible, so that u~ is a
solution of

(8i/8«i+5« '8/8«+k')iii=0 k=[2m@ '(Fgi~)]'"

In the same way as before, "it can be shown that

Ni=Fi(l~, Q,Q„)r '" exp(ikr)

at large distances in the ep channel. Again a solution
in exp( —ikr) is excluded.

The discussion of case (b) applies also to N2, which

has no deuteron channel. Therefore at large r„and r„,
the form of »(e) is

»(e) =Ni N2= fg(Q—g)P(r„)rg 'exp(ik~-„)

+F(l Q Q„)r '" exp(ikr). (27)

We now apply the lemma to the contributions of the
two terms of (27) to the scalar product part of E, namely

(xi —4»I»(&)&

From Eqs. (9a) and (9b), one finds

where

—k„l„cos8„+k~3„+k,

k„l„cos8~+k„i„—+k,

k f +k~l„+k,

cos8 = ir„ r„/k„r„, cosH„= k~ r„/k~r„.

(31a)

(31b)

(31c)

The wave number (31c) can never vanish. For (31a)
to vanish it is necessary that

k /0, cos8„&0,

lb i cos8 k~l„l ~& lk„—k—„l
~& (k„'+k„')'"=k'

provided that Q&0. Therefore, none of the wave num-
bers (30) can vanish, and hence the d-channel contribu-
tion to R vanishes.

For the np channel, we express the integrand in
terms of r, l„, 0„,0„, and find that as a function of r it
contains wave numbers

q *IN e d'r d'&„

(xy —fg)»(t)d rgd i'

(2ga) by (9b). The equality can aPPly only if

O„=l~=k„=0 or l =k =0.
Therefore (31a) does not vanish unless the exceptional
condition

is satisfied. This result is independent of the sign of Q;
(x& &~)»( )"d" f~ f+f~dQ~dQi ( g ) a similar analysis applies to (31b).

Consequently, R= 0 unless k or k~ vanishes.

Upon substituting the asymptotic forms of X„and
x~ into (19), the function (xq

——pq)~ is found to reduce

at large distances to

(Xi,
——Pq)*= [exp(—ik„.r„)+f„(Q )r„-' exp(ik„r„)]

X [exp(—ilr~ r~+ f~(Q,)r„' exp(ik, r,)]
—exp[—i(k„.r„+k„r,)]. (29)

& N, Danop @Dd ~, Greiner, Z. Physik 202, 125 (1967).

4. FINAL FORM OF THE TRANSITION
MATRIX ELEMENT

Since 2= 0, substituting (23b) into (21) yieldsi

2'= &» I
I'. I&.&+»m(x~ I I'-nB(E+ie) p. le.& (32)

7 It can now be seen that (23a) has been proved, since the only
property of Vop, used was its normalizability.
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We want to eliminate g(E+ie) T. he result is not
changed by inserting a "convergence factor"' exp( —nr„)
in each term and taking the limit as n -+ 0+, since

lim exp( —ur„)V „b(E+ie)V p,

is uniform in r„and r~. This is true as long as e/0, for
then the function that exp( —nr„) multiplies is normali-
zable. Hence,

T= lim lim L(Xi-[exp( —a~.)V.I&.)a~0+ a~a+

+(x.-l-p(-- -)V.,S(E+ )V. le.)1
The e limit can be taken first, since the 0, limit is

uniform in e. Since V„~ exp( —nr„)Xb—is normalizable,
the e limit can be evaluated by taking it inside the scalar
product as a weak limit, and using (11).The result is

T= lim (xt,
—

I exp( —nr„)
I
V,y.+V„„(g,+ y,))—

= lim Dx t, I exp( —nr„)(V,—V„„)I p, )

+(x -I-p(-:-)V-.l~.')3
The 6rst term can be written as'

lim (x p-
I exp( —nr„) (II—H.) I y.)a~0+

= lim(Xa-lexp( otr )—(H E) Iy—.)a~a+

= lim DXi,-(H—E)exp( —nr„) Iy,)a~0+

Huby and Mines were chiefly interested in sequential
decay, in which p is emitted directly while e forms a
resonance with A and is delayed. The new derivation
shows that the accuracy of the Huby-Mines distorted-
wave approximation is independent of the validity of
the sequential-decay assumption, but depends on the
extent to which f,+ can be represented by an elastically
scattered deuteron wave. Good results can be expected
if the inelastic processes (including d breakup) are weak.
Furthermore, the appropriate function Xq is the
product of functions Xq„and Xq„representing scatter-
ing of n and p by potentials V„and V„.Even though p
is emitted at a time when m still forms a resonance with
A, V~ is the interaction of p with A, and Not with
(A+e) in a resonant state.
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APPENDIX

If Coulomb forces U„and U~ are added to the short-
range interactions V„and V„, the treatment can be
modified as follows. Gerjuoy' has shown that the tran-
sition-matrix element can be written in the form

T=(P
I
V +V +U +U U&lx-+) (34)

where the Coulomb forces are

+An(2mi) '(Xq I p„exp( —nr„)1exp( —nr„)p„ I p,)]. U~= ZzZ~/t'~, U„=ZaZ~/r» Uq Zg(Z„+Z——„)/rq,

The Grst term of this vanishes, since B can act to the
left because exp( —ar„)p, is normalizable, and (H E)—
)&Xy =0. The second term tends to zero by the type
of argument used for the d channel of R. The final result
is

T= lim(xi, -lexp( —nr„)V „IiP.+). (33)

This exact expression for the transition element may be
regarded as an interpretation of the nonconvergent form

2 =("-Iv-. l~."),
which results from a purely formal derivation.

5. DISCUSSION AND CONCLUSIONS

The present result (33) reduces to the expression
given by Huby and Mines if P,+ is replaced by a func-
tion X&+ describing elastic scattering of d by a model
potential acting only on its center of mass. This dis-
torted-wave approximation is useful because it can be
evaluated easily in zero-range approximation.

8 We have omitted a term arising from the discontinuity of the
derivative of exp( —car ) at the origin. This term tends to zero as
n', and could be eliminated by choosing a convergence factor
with continuous derivative at the origin.

and X„+ is the solution of

(E+Ug+ V„„—E)X„+=0,
which asymptotically contains a Coulomb-distorted in-
cident wave with d in its ground state, plus outgoing
waves. Sinde U~ acts only on the center of mass of d,
this potential cannot by itself induce d breakup —unlike
the true Coulomb potential U +U~.

Now the function (V„+V„+U„+U„—Uq)X„+ is
normalizable if V„and V~ satisfy (22), since in the
Coulomb terms the monopole part (which falls off as
r ') cancels, leaving only dipole and higher terms, which
fall o8 at least as fast as r '. Therefore Eq. (34) can
be treated in the same way as (21). The logarithmic
phases appearing in iPb and X„+ do not affect the
application of the lemma, because the factor

expL —i~I In(2') g

can be absorbed in f of the lemma, since its derivative
tends to zero at infinity.

The final result is just Eq. (33), where g,+ and Xi,
—

are appropriate eigenfunctions of Hamiltonians includ-
ing the true Coulomb interaction U„+Ui,.

9,E. Gerjuoy, Ref. 5, p. 79.


