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The importance of ground-state correlations in the spectroscopy of a 6nitc many-particle system, such
as the nucleus, is investigated for the model Hamiltonian of Lipkin, Meshkov, and Glick. In particular,
eve have investigated their CBect on the solution of the equations of motion for excitation energies, transition
matrix elements, and the correlation energy of the ground state. Methods are studied for calculating the
correlations needed to make the necessary corrections to.the equations of motion. Also studied is the be-
haviors vUth 1ncrcasc of 1nteract1on strength» of thc phRsc translt1on fl'om the spherical to thc strongly de-
formed intrinsic states, in the projected Hartrec-Pock scheme.

1. DI'TRODUCTION
' "T has been suggested' that ground-state correlations

may hRve R vcly lIQpoI'taQt IQHucnce on the systeIQ"
Rtics of nuclear spectroscopy. To take an extreme
example, one has only to contrast the ground state of a
highly deformed nucleus with that of a so-caHcd

spheI'lcRl nucleus. The dI'RIQatlc ' diGercQcc 1Q . the
spectra of the two nuclei is well known- and can be at-
tributed directly to the character of their ground states.
However, we are not concerned here so much with the
comparatively mell-understood. rotational correlations
of strongly deformed nuclei as with the shape-fIuctua-
tion correlations of spherical and transition nuclei. In
particular, we are interested in the CGect of correlations
on vibrational spectra. The present model investigation
may thus bc coQsldcI'cd Rs R prellIIllQRry suI'vcy
for the dificult problem of the spectroscopy of
trRIlsltloQ nuclei.

A major objective is to study the c6cct of ground-
state corrclatiorj. s on the solution of the formally exact
equatlors of motion that have been proposed~ for
nuclear:excitations. The simplest approximate solution
ls to lestI"lct thc excltatlon opcI'Rtols to i-particle-. hole:
opclatoI's RQd to I'eplRcc the corrclRtcd gl'ouQd stRtc lQ

thc equations of motion by the uncorrelated particle-
hole vacuum. IQ this RppI'oxlInatlon onc lcgaiDs the
well-known random-phase approximation (RPA). It
has been argued, ' however, that the usc of correlated
densities in the equations of motion can introduce im-
portant coherent corrections to the RPA. This we in-
vestigate in terms of a simple model Hamiltonian, which
can be solved exactly for comparison. Thc.corrections
are found to be sizeable and when included give much
improved results.

In view of thc dlQlculty of evRluatlng colI'clRted two"
particle densities in a realistic problem, 'a higher
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(renormalized) RPA has been suggested's in which un-
correlated. Hartree-Fock (HF) single-particle energies
and densities are replaced by renormalizcd quantities,
dc6ned for the correlated ground state, but speci6c
two-body correlations are ignored under the assumption
that they contribute with random phases. Such a re-
QormaIizcd RPA comes quite close, although not ex-
actly, to what one already does in most practical RPA
calculations, when one takes single-particle energies
from experiment Rnd chooses an cGcctive interaction
to 6t the data. The present calculations indicate that,
for the mod. el problem, the renormalizcd RPA is extra-
ordinarily good, cveQ fol interactions 80 strong thRt thc
HF ground state is about to undergo a phase transition.

Now to use. the rcnormalized RPA equations in a
general nuclear problem, we need. a reliable method, for
calculating the one-particle densities of the correlated.
ground state. Various. methods were discussed in the
preceding paper' (hereafter referred to as I). Here we

apply these methods to'thc model problem and compare
the results with exact calculations. Again the (re-
normalised ZPA)+ (renorm'alised qgasiboson) approxi-
MQHos glvcs cgtraordinarily good results.

. Of particular interest is the projection method, in
which a correlated ground state is projected from a de-
foI'Incd dcterIQIQRnt. This determinanty which ls de-
termined variationally after projection, in general
looks very different from the HF -determinant, ob-
tained, by variation before projection. The projection
method is of special interest because it relates, in a
continuous manner, thc vlbI'RtloDR1 correlations of
the so-called "sphcricRV' nuclei to the rotational corre-
lations of the strongly deformed nuclei. Thus it holds
particular promise .for the nuclei in thc transition
region, where it is not clear whether the structure is
predominantly rotational or vibrational. Indeed, it is Qot
certain that the distinction is altogether meaningful.
Thus it is interesting to follow the deformation of thc
Inta'lnslc stRte Rs a fuDctlon of lntclRctloD strength to
see whether the transition from the spherical to the de-
forrned limit takes place smoothly or suddenly. For the
model problem we 6Ild the unexpected result that a
sudden phase traD. sition, in the deformation, does occur

1293



|294 J. C. PAR IKH AND D. J. ROWE 175

for suSciently large particle number. The deformation
before the phase transition is not zero, however, as in
the HF description.

The model Hamiltonian employed is that invented. by
Lipkin, Meshkov, and Glick' and used by them to in-
vestigate various many-body approaches. In particular,
these authors have investigated equation-of-motion
methods with various linearization prescriptions. Their
equations of motion dier from ours, which avoid
the linearization problem and reveal more clearly the
approximations and the next corrections. Even so, our
renormalized RPA equations are closely related to their
improved linearization methods. In testing our methods,
designed. for more realistic problems, we have tried to
avoid duplicating the work of these authors as much as
possible. In fact, there is little overlap. They have in-
vestigated various approximations for calculating exci-
tation energies as a function of particle number, for a
few fixed values of the interaction strength. We, on the
other hand, have investigated diferent methods for
calculating excitation energies, transition matrix ele-
ments, ground-state correlations, and the ground-state
energy, as a function of interaction strength, for a few
fixed numbers of particles. In particular, we have
emphasized the intermediate interaction regions in the
neighborhood of the HF phase transition. The model
is reviewed briefly in Sec. 2. The general applications
of 1-particle-hole equations of motion to derive excita-
tion energies, transition matrix elements, and the corre-
lated ground state have been reviewed in I. In Secs. 3—5
the methods are applied to the model problem. The
projection method is applied in Sec. 6.

2. MODEL

The model has been discussed in some detail by its
inventors' so that we shall here only review its essen-
tial constituents. It is supposed that the system is
composed of E fermions occupying two energy levels,
each having an E-fold degeneracy. Each state has a
quantum number 0 which has the value +1 in the

upper level and —1 in the lower level, and a quantum
number p distinguishing the degenerate states within a
level. The system is described by the Hamiltonian

&=kEZ &o'er an~+2V Z ~n~ an'~ ~r' ~~n-~~ (1)

which has the property that the interaction scatters
particles only between upper and lower states having
the same value of p. The model does not attribute any
particular physical significance to the quantum num-
bers p and 0. For convenience, however, we consider 0.

as a parity quantum number. The virtue of the Hamil-

3 H. J. Lipkin, ¹ Meshkov, and A. J. Glick, Nucl. Phys. 62,
188 (1965};¹ Meshkov, A. J. Glick, and H. J. Lipkin, ibid. 62,
199 (1965};A. J. Glick, H. J. Lipkin, and N. Meshkov, ibid.
62, 211 (1965};D. Agassi, H. g. Lipkin, and N. Meshkov, ibid.
S6, 321 (1966}.

tonian (1) is that it can be written

H=eJ, +-', V(J+'+J '),

where J„J+,J are quasispin operators

(2)

J+=~ ~~+~ +~~~

obeying the usual angular momentum commutation
relations. It follows, therefore, that J' is a constant of
motion and, that its eigenvalue for the ground state of
the X-particle system is j(j+1),where j=2X.

In this paper we shall be concerned only with the
ground and first excited states of II. It has been shown'
that these belong to a common multiplet, j=-,'E. In
the limit V=0, the ground state is simply the state

I j, m= —j) and the first excited. state
I j, m= —j+1).

As the interaction is turned on, the members of the
multiplet mix and m is lost as a good quantum quantum.
However, it can be seen from inspection of the Hamil-
tonian (2) that the total parity of the system is con-
served: J+ and J are od.d-parity operators and J, is
even. Thus components of even m do not mix with
odd m.

The diagonalization of the Hamiltonian (2) is
straightforward and has been carried out by the authors
for X=8 and 20 as a function of the interaction strength;
the relevant parameter is SV/e. The parameters of
interest, for which we compare the predictions of various
approximate methods, are the following: the excitation
energy (Ei—Eo)/e of the first excited state in units of 6;
the transition matrix elements (1I(J'++I )lo) be-
tween ground and first excited state; the single-particle
density parameter

which is the number of particles occupying the upper
single-particle level; and finally the correlation energy
(i.e., the energy difference of the correlated and un-

correlated ground states).

where
I ) is the HF (Hartree-Fock) ground state

The reason for the denominator in (5) is to maintain

3. RANDOM-PHASE APPROXIMATION

It is convenient in the RPA to write the excited. state
creation operator
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the usual RPA normalization

pA —to B q pV~

kB A+a i &Z)
The values obtained from this expression, for different
values of XV/e, are shown on Fig. 1 in comparison with
the exact values.

To obtain the correlated ground state, we need to
solve the equation

where ce is the excitation energy (Er—Ee) and

A =( I L~ »~-+jl )/& I C~-,~+jl &

B=-& IC~-,~,~-jl &/& IP-,~+3l &
= v(~-1) (9)

olo)=0. (14)

For the model problem this equation has been solved
(10) exactly by Meshkov, Glick, and Lipkin' (MGL),

with the result

These equations are trivially solved, giving

o) = (A' —B')"',

tion at which the HF state becomes unstable and a new

( I CoP'jl
(deformed, i.e., parity-mixed) HF ground state emerges.

Transition matrix elements for the operator (J++J )
With this normalization the coeKcients Y and Z are are g&ven n e Rp by'

completely dered by the RPA matrix equation &1 I (~ +~-)
I
o&—=& I C~ (~++~-)jl &

=(v+z)& IP,s+jl )» (13)
=Ã'is(V+Z).

A+(a)'~' A —(o)'~s
F'= I, z=—

2M ) 2to

Varit= e/(1V 1) (12)

and for larger values of the interaction becomes imagi-
nary. As is well known, V„;&is the value of the interac-

In Fig. 1, the excitation energies given by (10) are
compared to the exact results for X=8 and 20 as a
function of SV/e. It is seen that to vanishes at the
critical value

where

I0)=a Q b"(c„)"sly,m= —j+2N&,

(+-~) '= Z &"c-,

6=Z//V,

4) 2&

(16)
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FIG. 1. The excitation energy co/e= (Ej.—Eo}/e of the erst excited state as a function of interaction strength for various approximate

solutions of the equations of motion, (a) for 20 and (b) for 8 particles. Exact results are shorn by 6lled circles. Transition matrix ele-
ments (1 ( (J++J l (0&, normalized to unity at zero interaction, are shown as numbers on the curves for each approximation. The exact
matrix elements are enclosed by circles.
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FIG. 2. The number of parti-
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HF orbitals as a function of
interaction strength, calculated
in various approximations.
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MGL solutions and solid lines
the quasiboson approximations.
Exact results are shown by
6lled circles.
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(17)
and the method of generator coordinates gave

This gives the single-particle density N+ [defined energy: The oscillator proj ecti-oe method gave
byEq (4)] ~~= —Z (2~+1)&»& lO~gtO~g~ & (21)

This result, which we call the MGL result, is compared
with the exact result in Fig. 2 for twenty particles.
Qualitatively similar results were obtained for N=g.

Now the MGL method is peculiar to the model and
cannot be used in general to solve Eq. (14). We there-
fore consider the approximate method based on the
quasiboson approximation4

C~,~+]:—
& IP- ~+]I &=——2& I~*I &=N (Ig)

The method has been described in I for the general
problem. For the model it leads to the approximate
ground state

1 e—co)'t2
(O&=No exp —

I J+~+
2N e+&o)

and to the single-particle density'

AE=-', Q (2J+1) Q u)» —TrA &g& (22)

For the model problem in the RPA, these expressions
are equivalent and give

AE= 2 (G7 e) . (23)

4. EXACT 1-PARTICLE-HOLE
(EXPH) EQUATIOHS

In taking into account the effect of ground-state
correlations in the equations of motion, it is convenient
to express the excited-state creation operator

This prediction is compared to the exact results for 20
particles in Fig. 3, and is seen to be very good. Similar
results were obtained for %=8.

N~ ——Z'= (c—cg)/2'. (20)
o'= (»+—~J-)/&0 IP-,~+] I o& ~', (24)

Results using this expression are also included in Fig. 2.
The interesting observation is that the quasiboson
approximation gives a result which is extremely close
to the MGL result, which is an exact solution of Kq.
(14). Both methods give values for N+ which are too
large. This error can be attributed directly to the fact
that the RPA underestimates or.

Two expressions were given in I for the correlation

4 E. A. Sanderson, Phys. Letters 19, 141 {1965).' Note that we here use the expression derived in I based on
Sanderson's method but which di8ers from the expression he
derives {also quoted in I) from the "factor pairing" approxima-
tion. For comparison we also calculated densities in the "factor
pairing" approximation, but they were at all times inferior and
are not shown in the figures.

where
~
0) is now the correlated ground state. With this

denominator we then have the normalization'

&0~ [o,ot]
~
o)= I ~—z2=1. (25)

Given the approximate expansion (24) for Ot and the
exact ground state

~
0), it is possible to solve the equa-

tions of motion

(0~ Loo,B,Ot][0)=co&0~[80,0t]~0) (26)

without any further approximation. One again obtains
the matrix equation (8) of RPA form but with matrix

t

6 Note the distinction between these equations and the RPA
equations {5) and {7) in which the correlated ground state is
replaced by the HF particle-hole vacuum.
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evaluated for the EXPH solutions. The predicted
values for E+ are plotted in Fig. 2 and are seen to be
much improved, although now slightly underestimating
the correlations for large values of the interaction.

Recognizing that the MGL method is not generally
applicable, we also calculate the ground state in the
renormalized quasiboson approximation:

P-,~+]=—(oIP-,z+] I
o&= —2(ol x.lo&. (29)—4&o I ~' I o&+« I ~~-+~~+ I o&

(27)
2(olz, lo& Following the methods described in I, we obtain

These equations fully take into account ground-state
correlations but are still approximate in as much as the
true excitation operator should contain components
in (J+)', (J )', etc. They are therefore described as
the exact 1-particle-hole (EXPH) equations.

The solution of these equations is again given by
Eqs. (10) and (11),although, of course, with the EXPH
values for A and B.The results for the excitation energy
cv are plotted in Fig. 1. It is seen that good results are
obtained for interaction strengths right up to V j$.

Transition matrix elements for the operator (J++J )
are given in the EXPH model by

&11(~++~-)I
0&= &o I Lo (I++~-)ll o&

= (—2(olz. lo&)«2(v+z) (2s)

and are also shown in Fig. 1. Again the predictions are
very much improved over the RPA.

To calculate the ground state we can again use the
MGL method to solve Eq. (14). The expressions
(15)—(17) remain unchanged except that b=Z/V is

1t'A —(a "' JQ+
lo&=rom -I

4L A+~ (0ls, 10&

(30)

S~=D= (A —ar)/2(o. (31)

AE= X(A &o)/4(0 I J, I 0&. —(32)

Values obtained with this expression are plotted in Fig.
3 and are accurate to 10%or better right up to V= V„;~.
The agreement with the exact result is about as good
as in the RPA but errs in the opposite direction. This
in itself is a healthy trend, however, since any reliable
method of estimating the ground-state energy should
always give a value too,large and never too small.

Results using this expression are shown in Fig. 2.
The expression (21) for the correlation energy is

independent of the manner in which the excitation
operators Ot are derived. In the EXPH approximation
it gives, for the model,
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+2VD0I~~-I0&/(«I~. I0)-V)). (34)

Interaction matrix elements are obtained from the RPA
by multiplying by the renormalization factor

2(0IL~-,~.)I0&-( IP-,~.) I & «0l~. l0&+~
(35)

(0IP-,&.) l0) 2«l~*l0)

8= V(E—1)L2+E/2(OI J, IO&). (36)

It is seen that the renormalization factor involves
evaluating the ground. -state expectation of a j.-body
operator but requires no speciac knowledge of 2-body
correlations. The renormalized single-particle energies
do involve information concerning 2-body correlations,
but in practice one w'ouM, estimate e(+) and e& ) ex-
perimentally and, not calculate them; e&+& is the cen-
troid energy of the single=particle pickup strength while
e& ) is the centroid of the stripping strength.

The solutions of the renormalized RPA equations
are again given by Eqs. (10) and (11). Excitation
energies are plotted, in Fig. 1 and are seen to be extra-
ordinarily good,—better, .in fact, than the EXPH xe-

5. RENORMALIZED RPA

In any realistic problem we do not have sufBcient
knowledge of the correlated ground state to set up the
EXPH equations. We therefore consider the renormal-
ized RPA in which we use only information concerning
the ground state which we believe we can estimate
reliably in practice or calculate self-consistently. In
particular, we believe that renorrnalized. single-particle
energies can be estimated experimentally and. 1-particle
densities cRn be cRlculated but we do not anticipate
being able to calculate 2-particle correlation functions
reliably. However, since we wish to investigate the effect
of ground-state correlations on the equations of motion
and, to test our ability to calculate ground-state corre-
lations as two distinct problems, we have chosen not
to proceed self-consistently in the present calculation.
The information needed to set up the renormalized
RPA equation was therefore extracted from the exact
ground state of the model Hamiltonian.

The expansion (24) is again used for the excitation
operator Ot, so that the normalization (25) is retained.
F and Z remain solutions of the matrix equation (8),
but with renormalized matrix elements. The general
renormalized RPA expressions were derived by Rowe'
and summarized in I. For the model problem the parti-
cle-hole energy e, of the RPA, is replaced by (e&+&—e& &),

where c&+& and e&-~ are dered by

'«I '10&=«l L» ')l0),
' '(oI ' Io)= —«I 'I.» (33)

Because of the symmetry, e&+& and c& & are independent
of p and are readily evaluated to give

suits. Since the renormalized. RPA makes more approxi-
mations than the EXPH model, the improved agree-
ment is due to cancellation of errors. The important
observation, however, is the dose agreement between
the renormalized RPA and the EXPH results, which
indicates that specific two-body correlations (i.e., those
which do not renormalize the single-particle energies)
can be neglected in the equations of motion without
introducing signilcant errors.

Transition matrix elements in the renormalized RPA
are again given by (28) and. are included. in Fig. 1.
Once more the renormalized RPA is in very good agree-
ment with the EXPH and in even better agreement
with the exact results.

The MGL expressions (15)—(17) for 1V+ remain un-

changed in the renormalized RPA as also do the re-
normalized quasiboson expressions (29)-(31). The
predicted values are shown in Fig. 2. The quasiboson
results, in particular, are seen to be virtually perfect.

Finally, the correlation energy given by Eq. (32)
has been evaluated, and is shown in Fig. 3. Once again
the results are surprisingly good.

6. PROJECTION METHOD

It has been suggested in I that a good way to calcu-
late the correlated ground state might be to project
it from a determinant in which angular momentum
is not a good. quantum number. The analog in the
present model is parity projection. H the interaction
strength V exceeds the critical value V;q LEq. (12)),
a HF ground state will emerge in which parity is not a
good quantum number. To obtain an approximation
for the true ground state, we might therefore project
good parity out of the HF determinant. This is some-
times described as the HFP (Hartree-Fock variation
followed by projection) method. Such calculations were
carried out for the model problem by Agassi, Lipkin,
and Meshkov' and lead to good. results in the limit of
large interaction strength. From a variational point of
view, a much sounder approach would be to project
first and perform the variation after. ~ This is sometimes
described as the PHF (projection followed by Hartree-
Fock variation) method. It was argued in I that this
method. should lead to a ground. state with vibrational
correlations, even when the interaction strength is well
below the critical value at which a deformed (i.e.,
parity-mixed) HF solution lrst appears. One of the
virtues of the PHF method is, therefore, that it is con-
tinuously applicable from the spherical to the strongly
deformed. limits.

The methods for performing the projection in the
model problem were developed by Agassi el, ul. ' and we

shall merely summarize the pertinent results. An arbi-
trary determinant In) can be obtained from the HF
determinant

I ) by a rotation through an angle &r about

~ H. Rouhanincjad and J. Voccoz Nncl. Phys. 78, 353 (1966).
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the x axis in quasispin space' tained for /=8. The agreement on the whole is satis-
factory, although poorest in the transition region
V= V„;~. One nevertheless is encouraged. to use this
method as a means of calculating ground-state wave-
functions for spherical and mildly deformed nuclei,
as well as for strongly deformed nuclei, for which it
was always a natural choice.

For comparison we have also shown in Fig. 3 the
HF energy (i.e., the minimum energy (nlHln&) and
the HFP energy (i.e., the energy of the positive-parity
state projected from the HF state). For large values of
the interaction it turns out to be immaterial whether
one projects before or after variation —or, indeed,
whether one projects at all.

To study the transition of the intrinsic state from the
spherical to the strongly deformed limit, we have
plotted, in Fig. 4, the values of 0, which minimize the
PHF energy and which minimize the HF energy as a
function of interaction strength. The HF deformation
is zero for V& V„~~ and then suddenly increases very
rapidly. For 20 particles it appears that the PHF defor-
mation is 6nite for all nonvanishing interactions, but
for a particular value of the interaction undergoes a
sudden phase transition to a more deformed state. Ke
surmise that this phase transition represents the divid-
ing line between the vibrational and the rigid deformed
states of the system, rather than the point at which a
deformed HF solution erst emerges. Thus we conjecture
that before the PHF phase transition the deformation
of the intrinsic state is associated with the mean defor-
mation of the vibrational fluctuations. The negligible
diGerence between the PHF and the HF deformations
after the phase transition suggests that the vibrational
correlations have suddenly become negligible. For
E= 8 the phase transition is largely smeared out. It will

n =e' ~* (37)

Instead of rotating the wave function, however, it is
convenient to rotate the quasispin operators:

The transformed Hamiltonian (2) then becomes

H& '= e ' *Be'~ *=e(J, cosn+ J„si en)

+VLJ,5—(J„cosa—J, sinn)5j (39)

Thus we obtain the energy expectation of la)

(ol&l~)=( I&"
I &

= —5j(cosn+ (V/5) (j——,') sin'e), (40)

where j=Ej2.
Now the positive parity component la+& of ln&

is given by
(41)

and its energy expectation by

(~+ l&l~+& l+(co~)' '
= (~l& l~&

(0'+ l o+) l+ (cosn)'&
(42)

The PHF approximation to the ground state is the state
l n+& which minimizes this energy. This minimization
we have performed numerically as a function of the
interaction strength. Results for the ground-state energy
are shown for E=20 in Fig. 3. Similar results were ob-

It is readily shown that, for V positive, the energy will always
be minimized, whether one projects or not, by restricting the rota-
tion in quasispin space to the ys plane. The argument is based on
the observation that, for V positive, the relative phases of the
j, m= j), ( j, m= —j+—4), ~ ~, and the Ij, m= j+2), —

,

'j, m = —j+6), ~ ~ ~, components must be opposite,
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be very interesting to see if such eGects exist for nuclei.
The single-particle density operator N+, whose

ground-state expectation is E+, can be expressed.

Transformed, it becomes

P+&~&= ',S+J,—cosn+J„sinn

and. gives a ground-state expectation

(a+ ~P+ ~u+) 1—(cosn)" '
= j(1—cosn)

(u+
~
a+) 1+ (cosn)'&

~ (45)

Va1ucs predicted with this formula are shown in Fig. 2.
They are not as good as those obtained with some of the
other methods, but are nevertheless acceptable.

More detailed investigations of occupation prob-
abilities were made by Agassi et a/. ' in the HF and HFP
approximations, which naturally limited them to inter-
action strengths in excess of V„;~, for which there is a
nontrivial HF so1ution. We, on the other hand, have
concentrated on the PHF method and interaction
strengths V= V.„&.

7. IHSCUSSION

In this work we have investigated. the importance of
ground-state correlations on the solutions of the equa-
tions of motion and various approximate methods for
calculating then. in order to make the necessary
corrections.

In the RPA two approximations are made.
(i) Neglect of 2nd RPA effects: By this we mean the

restriction of the excitation operator O~ to be a 1-par-
ticle-hole operator. The true excitation operator should
include 2-particle-hole, 3-particle-hole components,
etc., which are included in a 2nd RPA calculation.
{For the mod. el problem the 2-particle-hole components
are in fact suppressed by a parity-selection rule. )

(ii) Neglect of ground-state correlation effects: By
this we mean the substitution of the uncorrelated HF
state for the correlated ground state in the equations
of motIOn.

Fig. 1 shows that these approximations lead. to an
excitation energy which is too low, while the transition
matrix elements and single-particle densities of Figs.

1 and 2 show that it predicts correlations which are
too large.

The EXPH equations still make approximations (i)
but do not make approximation (ii). Thus the difference
between the EXPH and the RPA is due entirely to
ground-state correlation eGects, while the difference
between the EXPH and the exact results is due entirely
to 2nd RPA eGects. Inspection of Figs. 1 and 2 show
that the EXPH model overestimates the excitation
energy slightly and underestimates the correlations.
This ls a gcneI'al Icsult which can bc urldcrstood on
general grounds. It was shown in I that the excitation
energy ~ of the exact equations of motion for the opera-
tor Ot is equal to the centroid energy of the strength
distribution of the state Ot~ 0) among the exact eigen-
states of the system. Thus, if the operator space of Qt
is restricted. , ~ will always exceed the excitation energy
of the lowest excited state. It is interesting that 2nd,
RPA errors are small for V& V„;t, but, for larger values
of V, they suddenly become very large. It should. be
emphasized, however, that the model is not designed to
investigate 2nd RPA corrections, which are almost cer-
tainly unrealistically small because of the suppression
of the 2-particle-hole components in 0~ by the parity-
selection rule.

In the renormalized RPA, approximation (i) is again
made but efforts are made to correct for (ii) in an ap-
proxirnate manner. From the small diGerence between
the renormalized RPA and the EXPH results, we con-
clude that the renormalization procedure does indeed
take into account by far the largest contribution from
the ground-state correlations. The extraordinarily good
agreement between the renormalized RPA and the
exact results must to some extent be regarded as acci-
dental since it is due to the fortuitous cance11ation of
errors. However, 2nd RPA and correlation corrections
will in general tend to cancel, but not always
so successfully.

An interesting and very encouraging observation
from our results is that if one werc given the excitation
energy experimenta11y and chose an interaction to 6t
it in any of the above three approximations, one would
simultaneously predict transition matrix elements and
ground-state correlations very well. This argues, that,
as far as the above properties are concerned, the various
approximations can all be taken into account by the
usc of an cGectlvc 1ntc1actlon.


