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The Arndt-MacGregor (Livermore) nucleon-nucleon phase shifts and mixing parameters for partial
waves through J =4 are fitted in the energy range 0-400 MeV by separable potentials. We have demanded
that the partial-wave scattering amplitudes resulting from our potentials have singularities only for real
negative values of the complex energy variable, in addition to the usual right-hand unitarity cut guaranteed
by the Lippman-Schwinger formalism. We have also demanded that the appropriate partial-wave amplitudes
contain the deuteron pole and the singlet antibound-state pole at the correct energies. The use of these
fits in probing the off-energy-shell behavior of scattering amplitudes is discussed.

I. INTRODUCTION

HE main reason for the use of nonlocal separable
potentials to describe the interaction between
particles is their extreme convenience and simplicity.
Also, separable potentials provide a simple extension of
the two-body scattering amplitude off the energy shell,
because the separable-potential form factors determine
the off-energy-shell behavior of the scattering amplitude
in a relatively transparent manner.

A representation of the off-energy-shell two-body
partial-wave transition amplitude for a particular
process should satisfy five general nondynamical re-
quirements.! In the case of nucleon-nucleon scattering,
we shall show that separable-potential forms may be
chosen which lead to scattering amplitudes that fulfill
these conditions. The fiverequirements are thefollowing :

(1) Reduction. The off-energy-shell amplitude must
reduce to the correct on-shell amplitude. In potential
theory, this condition is met by fitting the parameters
of a given potential model to the experimental value of
the on-shell scattering amplitude expressed in terms of
phase shifts and mixing parameters.

(i) Uwnitarity. The amplitude must satisfy off-energy-
shell two-particle elastic unitarity. If the amplitude is
generated from a potential by the Lippmann-Schwinger
equation, this requirement is automatically fulfilled.

(i) Amalyticity. The off-energy-shell amplitude
T (p,p’; E) should be an analytic function of the c.m.
kinetic energy E, with the only singularities in E being
the right-hand unitarity cut and bound state or reso-
nance poles. It should be analytic in the c.m. momentum
p(p") when $2>0 (p"?>0) and it should have singu-
larities when $2<0 and $"2<0, which become the left-
hand or driving singularities of the on-shell amplitude
when p and p’ are on the energy shell. In addition, we
take the position that the on-shell analyticity properties
of any model scattering amplitude should be as close as
possible to the analytic properties known from rela-
tivistic theory.? In the nucleon-nucleon case, this means

* Work done under auspices of the U. S. Atomic Energy
Commission.

1 Thomas R. Mongan, Lawrence Radiation Laboratory Report
No. UCRL-17452, 1967 (unpublished).

2 M. J. Moravcsik, Rev. Mod. Phys. 39, 670 (1967).
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that the on-shell amplitude should have driving singu-
larities only for real negative values of E.

(iv) Time-reversal invariance.

(v) Proper threshold behavior.

We shall see that requirements (i), (iv), and (v) can
be met by a judicious choice of the functional form of
the separable potential which generates the scattering
amplitude.

Tabakin® has done an earlier fit to nucleon-nucleon
scattering data, using a separable potential of the same
general form as ours. It was the success of the Tabakin
potential in a number of calculations which prompted
the more extensive fits presented herein.

We will display three different separable-potential fits
to the nucleon-nucleon scattering data between 0 and
400 MeV and discuss their application to the study of
the qualitative off-energy-shell behavior of partial-wave
amplitudes. It would be a most unlikely coincidence if a
particular separable-potential model were to reproduce
exactly the scattering amplitude which occurs in nature.
However, Noyes* has shown that the usual local po-
tential models are 7ot adequate to explain the observed
nucleon-nucleon scattering amplitude. Therefore, a
potential model description of the nucleon-nucleon
interaction must employ a nonlocal potential. Nonlocal
separable potentials are the simplest type of nonlocal
potentials, they are very convenient, and we may hope
that they give a good approximation to the exact off-
energy-shell scattering amplitude.

II. BASIC EQUATIONS AND CONVENTIONS

To enhance the utility of our results, we shall set
forth in considerable detail the basic equations and con-
ventions used in our work. Generally, we follow the
conventions of Goldberger and Watson.®

We deal with the nonrelativistic two-particle partial-
wave Lippmann-Schwinger equation for nucleon-nucleon

 Frank Tabakin, Ann. Phys. (N. Y.) 30, 51 (1964).

¢H. P. Noyes, SLAC-PUB-256, 1967 (unpublished), paper
presented at the International Colloquium on Polarized Targets
and Beams, C.E.N., Saclay, France, 1966.

5 M. Goldberger and K. Watson, Collision Theory (John Wiley
& Sons, Inc., New York, 1964).
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scattering, which for uncoupled waves is
To(p,p"; k) =V 1(p,p")
2u = ¢dgVi(p,0)Til(g,p"; F7)
s F—gtie
where the c.m. kinetic energy E=7%%2/2u and u is the

reduced mass of the two nucleons. For coupled waves,
the Lippmann-Schwinger equation is

Tw(p,p'; B) =V (p,p')
+2_u Jf /‘” ¢dgVii(p,0)Tiv (g,0'; ¥) '
0 k*—g*+-ie
The partial-wave transition amplitude or T matrix
obtained from the Lippmann-Schwinger equation satis-

fies the off-energy-shell elastic two-particle unitarity
relation in the form

ImT(p,p"; B) = —mpeTu(p:k; BT *(k,p'; 22 (3)
for uncoupled waves and
ImTw (p,p"; k%)
J+1
=—mpp 2 Tu(pk; B)T:*(kp'; k) (4)
1

i=J—

, (1)

2)

h? i=J—1

for coupled waves, where pg=uk/#%. We have used
time-reversal invariance to cast the unitarity relation in
the forms (3) and (4).

The partial-wave .S matrix is related to the partial-
wave T matrix by

S (B =1—2mwippT v (k?). )

For uncoupled waves S;(k%)=S1,(k%) and the .S matrix
is expressed in terms of the phase shifts by

Sz(k2) = ¢2901(k% (6)
or
S (k%) =1+424e01* sing, (k?).

Combining (5) and (6) gives
— 2w ReT 1 (k2)
14 2mpp ImT (k%)

Alternatively, we can express the T matrix in terms of
the phase shifts as

T(k) = — (1/mpg)e U sind, (k2)

tan26,(k?) =

whence
tand; (k%) =ImT ;(k%)/ReT (k?).

For coupled waves, we use the Stapp® parametrization
of the S matrix

cos2e e2ibr—1

i sin2e e¥dr—1+r+n
(i sin2e e#®s-1tds+1 )

cos2e g2id+1

¢ H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 (1957), ' '
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Then, the coupled-wave phase shifts and mixing
parameters are given in terms of the 7-matrix elements

by
- 21rpE ReTJ_l'J_l (kz)

tan2é;_,= ’
© 14-2mpp ImT g, ;-1 (%)
—2mpr ReT s, 741 (k?)
tan2dyp1= )
14 2mpe IMT yy1, 541 (%2)
—2mpr ReTy
sin2e=——,
cos(8741+87_1)
where

To(B) =T s-1,041(B) =T r41,5-1().

We consider a separable potential model of the
nucleon-nucleon interaction in which

Vi (p:p) =02 10gi(p)gv (p) — a(p)hw ()] (7)

This is not a complex potential, since I'—/ is zero or two
in the nucleon-nucleon case, and the factor {9 is
included merely to change the sign of the off-diagonal
elements of the potential matrix in the coupled-wave
case.

For uncoupled waves in which we have a single-term
separable potential V(p,p") =Ag:(p)g:(p"), we find

TI(P:P,; k2)

=%gz(P)gz(P')/<1~%ﬁw g;qji‘gj_l‘(_%)’ @)

where A\=--1 gives a repulsive potential and A=—1
gives an attractive potential. For a two-term separable
potential in uncoupled waves we find

Ti(p,p'; ) =Ni(p,p'; k) /D:(k?), O]
where
NI(P,P';k2)
2u [ dgg*hi(q)
= NN 14— ._____>
s (14 [ o
2u [ deg’g(g)
— (D) 1—— [ ——Z
{(D)n(p >( - f kz_qurk)
—Lai(p)ba(p")+Ba(p)gi(p")]
2 = dgg'gi(@hi(g)
w2 Jo k—gtie
and
2 ™ dgg?
D,(k2)=(1——”/ qqu”(Q))
72 ), k—gtie

2u [ dgg*hi*(q)
(o )
w2 )o k—gitie

+<§ /‘” dqq?gz(q)hz(q)y
), R—qgtie )
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In the general case of coupled waves, insertion of the
potential (7) into the Lippmann-Schwinger equation (2)
yields

Tuw(pyp'; B)=i"""Nuw (p,p'; #)/Ds (),

where

Nuw(pp'; ¥)

(10)

J+1

2u
=gz<p>gp(p'><1+—h; 5

j=J—1

® dgg*h*(q) )
o k2—q+ie

2u 11~ dggg,t(g)
—h:(p)hu@')(b—” > / -—)

1 i=i-1 )y k*—g*+ie
—[g:(P)v (p")+Ri(p)gu (p7)]
2u 41 /°° dqq*ei(9)hi(q)

0

hZ =J—1 kz-‘q2+ie
and
2# J+1 o0 dqq2g 2( )
DJ(k2)=(1__ 2 / -—]—q>
h2 j=J—1 0 k2—q2+i€
2u T+t dggth2(q)
x(1+— 2 / "i*—)
12 i=r-1 )y kP—q’+ie
N <2u Jf /‘” dqq%f,’j(q)hj(q))2
W i=r—1 )y k2—g*tie '

For J=1, the triplet scattering length a,, the triplet
effective range 7;, and the deuteron binding energy are

related by’
ry=(2/kp)(1—1/a:kp), (11)

where the deuteron binding energy is Ep=7%%p*/2u. In
thelSypartial wave, the position of the singlet antibound
state (or virtual state) is related to the singlet effective
range and the singlet scattering length by

kv={1—[1—(2r./a;)1"*}/r.. (12)

The singlet antibound state occurs at Ey=—#%y?/2u
on the second or unphysical sheet of the complex-energy
Riemann surface, because the experimental values of a,
and 7, lead to a negative value of kv in Eq. (12).8

The scattering lengths are obtained from the T
matrix as follows:

T 2u
a,=lim — — ReT,(k?),
k—0 2 hZ

T 2u
ai= hm _— ReToo(k2) ,
k—0 2 h2

7 H. P. Noyes, Phys. Rev. 130, 2025 (1963).

8S. T. Ma, Rev. Mod. Phys. 25, 853 (1953). We use the term
“antibound” state as proposed by Regge in Theoretical Physics
(International Atomic Energy Agency, Vienna, 1963).
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where To(k?) is the transition amplitude for 1S, scat-
tering and To(k?) is the transition matrix element for
J=1, 1=1'=0.

The Schrédinger equation in momentum space for the
deuteron wave function is ,

2p
yo(k)=——
h2 k2+ kDZ

f V(KW (k)% (13)

where (%kp)?/2u is the deuteron binding energy. We
write the deuteron wave function as

J4+1
yo (k)= l f;:__l Wa i (R)®1a1(0 1,9 5,1) (14)

and the potential as

VKk)= ¥ Vi (k)8 rai(k,S)Brar*(®,S), (15)

J8IU'M

where ®;371(6,¢,5) are the normalized eigenfunctions of
J, J.=M and ! given by Hulthén and Sugawara® and «
denotes the quantum numbers J=1, I=0, S=1 of
the deuteron. Combining (13)-(15), we obtain the
Schrédinger equation for the ‘“radial” part of the
deuteron wave function in momentum space,

0

> Viw (kb Ywar (R')k2dE" .
ll

h? k2+ k D2 0
Using the potential (7), we find

7t

2u
‘waz(k)= —_
W2 Bk p?

[Agi(k)—Bhi(k)],
where the normalization constants 4 and B are given by
1+G
B= (-———)A ,
M

mr oo 2 g2(k)kAdk
WA s
2uli=r-1Jo (k*+Ep?)?
14+G\ 7+1 = gi(R)hi(k)k2dk
I
M 0 (k2_|_kD2)2
14+G\? 741 2 hR(k)kedkT
*Gr) 2 [ G
M/ =i=1 ]y (k*+kp?)?
o 2u T+ 2 g2(R)kAdk
- [) Kot
2u T+t /°° g1(k)hi(R)k2dk
0

M==
k2+kD2

72 1=0-1
9 Lamek Hulthén and Masao Sugawara, in Handbuch der
Physik (Springer-Verlag, Berlin, 1957), Vol. 39, p. 1.

I=J-1

with

72 1=J-1
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The normalization is

+1 i

/zpp*(k)zlzp (k)d%k= 3 [ kdkwa 2 (k)=1,
0

l=J—1

whence the deuteron D state probability is

Pp=f k2dkwa22(k).
0

Taking the Fourier transform of the deuteron wave
function according to

¥o(r)=

D k)eik: rd3k
[(2 )3]1/2 /‘¢ ( )e

we find

1
¢D (l’) =- Z ual(r)(lel(ohqsf’l) )
7 1=71
where

war(0)fr= G)m /o " ihoniR) i) edh

The normalization of w,;(k) insures the normalization

J+1 °

> e 2(r)dr=1.

I=7—1 J,

The deuteron quadrupole moment is given in terms of
these radial wave functions by?

VZ N 2, d 1 N 2| Zd
Q_E/;) P22 0 (1) thr2(7) r~-2—(—)/; [ U4s(r) Pdr.

In momentum space, this formula becomes

Al o k) td (la))dk
e= 10[, as( )(Zz};w“"( PP

716 /0 i [6wa22(k)+k2(dii’;wa2(k))z]dk.

We take for the nucleon mass M the average of the
neutron and proton masses so 2uc?=M¢*=938.903 MeV
and %¢=197.32 MeV F.1 We take the deuteron binding
energy Ep=2.22452 MeV and the triplet scattering
length a,=5.396 F, which yields a triplet effective range
r+=1.726 F.” We set the singlet antibound state at an
energy Ey=—0.0665 MeV on the second sheet of the
complex-energy Riemann surface and we take the
singlet scattering length a,= —23.678 F. This yields a
singlet effective range r,=2.729 F.

We havefitted our potentials to the Arndt-MacGregor
nucleon-nucleon phase shifts obtained at Livermore. We
fit all partial waves through J=4. According to the

1 A. Rosenfeld ef al., Rev. Mod. Phys. 39, 1 (1967).
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standard impact-parameter argument,!! the partial
wave l=35 does not contribute significantly to nucleon-
nucleon scattering below a kinetic energy of about 500
MeV. We believe that our fits should be useful for
energies up to 400 MeV and certainly for all energies
below the meson production threshold at 270 MeV.

III. POTENTIAL SHAPES

Although the unitarity requirement for off-energy-
shell scattering amplitudes is automatically met in the
Lippmann-Schwinger formulation of potential scat-
tering theory, and reduction to the correct on-shell
amplitude is guaranteed by choosing the potential
parameters suitably, the requirements of time-reversal
invariance, analyticity, and correct threshold behavior
must be satisfied by proper choice of the functional form
of the separable potential.

Time-reversal invariance is ensured by our separable
potential (7). Therefore we must satisfy the analyticity
and threshold requirements by building them into the
form factors g:(p) and %.(p). Note that different func-
tional forms for these form factors lead to different off-
energy-shell behavior and different high-energy be-
havior of the phase shifts.

We know that the on-shell partial-wave amplitudes
must go to zero as (k2)! when k2 — 0, where E=%2%2%/2u
is the kinetic energy. To obtain the correct threshold
behavior, Egs. (8)-(10) show that we must have
hi(p)~p* and gi(p)~(p)? as p*— 0. In addition, we
will demand that g;(p) and %:(p) have singularities only
for p? real and negative, so that our model scattering
amplitudes will have analyticity properties as close as
possible to those of the true nucleon-nucleon scattering
amplitude on the energy shell.

In the following work we consider the family of form-
factor shapes fi(p)~ pY/ (p*+a*) (H™/2 which behave as
fi(p)~p' when p2—0 and have a singularity at
p*=—a? Furthermore, fi(p)~p~" as p* —co.

We also consider the form

so-[Zo(2)]"

where Q;(x) is the Legendre function of the second kind,
which was first proposed by Mitra.2 This form has the
correct threshold behavior and goes as [ (Inp?)/p?]/2 as
p? — o0, The on-shell Born approximation to the transi-
tion amplitude obtained from a separable potential
with this Mitra form factor is identical to that arising
from a superposition of Yukawa potentials. In addition,
the Mitra form factor leads to an on-shell transition
amplitude which has a cut along the negative real
energy axis, beginning at k%= —%u? Thus this last

11 Michael J. Moravcsik, The Two-Nucleon Interaction (Claren-
don Press, Oxford, England 1963), p. 37.
2 A. N. Mitra, Phys Rev. 123, 1892 (1961)
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TaBiE I. Case-I fits to nucleon-nucleon phase shifts in un-
coupled partial waves. These partial waves are fitted by the
separable potential

Vi(p,p')=g1(p)gi(p") = (p)(p),

where the form factors are
81D =Cap?/ (P+ard 8, hu(p)=Capt/ (P+as) 2,

except in the partial waves 1S, and P, where the repulsive form
factor is

ng (p) = CRPH-2/ (pL*.aRZ)(H-B)IZ_

The units of the attractive inverse range a4 and the repulsive
inverse range ag are inverse fermis (F1, 1 F=10718 cm). The units
of the attractive coupling strength C4 and the repulsive coupling
strength Cg are (MeV F)!/2, Dots indicate that a form factor is
to be set equal to zero. Y R? is the sum of the squares of the
residuals,

50

2 Ri= 3 [6oxpt(Ey) — 8,111t (E) P,

=1

over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV.

Repulsive potential Attractive potential

parameters parameters
Partial ar Cr aa Ca
wave (F1)  [(MeV F)12] (F1) [(MeV F)12] IRz
Singlet
1S, 2.1s 500.0= 0.786 5.420 698.2
1Py 1.539 100.0 oo ... 596.9
1D2 cee .o 1.456 4.931 8.972
1Fs 0.544 1.491 oo oee 0.708
1Gs oo oo 0.990 1.979 0.0893
Triplet
3Po 1.642 100.02 0.957 5.415 81.83
3Py 1.574 19.64 oee oo 38.39
3Dy .o “ee 1.059 5.784 36.32
3Fs 0.849 2.410 “ee cee 0.0871
3Gy cee ves 1.085 4.555 4.205

a Special repulsive form factor must be used.

separable-potential form has more realistic analyticity
properties than the preceding forms.

IV. FITS TO NUCLEON-NUCLEON DATA

We have fit the Arndt-MacGregor (Livermore)
nucleon-nucleon phase shifts for laboratory kinetic
energy from 0 to 400 MeV for the partial waves through
J=4.

The fitting was done on a CDC-6600 electronic com-
puter at Lawrence Radiation Laboratory using a least-
squares minimization program rsQMIN developed by
Eric Beals. For each phase parameter we used 50 data
points at 8-MeV intervals in the range 0-400 MeV
laboratory kinetic energy E. The program LSQMIN
searches for the values of the potential parameters
which minimize the sum of the squares of the residuals

Z R2= sgol [6lexpt(Ei)_6lfit(Ei)]2

THOMAS R. MONGAN
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for uncoupled waves, and

50

Z Ri= Z [5J_1expt(Ei)_ 5J_lfit(Ei):|2

=1

+ Z [eJexpt(Ei)_ leit(Ei):F

=1

50
+ 2 (0711 (E ) — 851t (Ey) P
=1

for coupled waves.
All of our fits were made with the basic separable po-
tential form

Vi (p,0")=[iV="0][g:(p)gw (") —ha(p)he () ].

An attempt was made to fit all the scattering data by
using three of the form factors mentioned in Sec. III. In
case I, gi(p) and %(p) were taken as Cp?/ (p2-+a?) (DR,
In case II, g,(p) and hi(p) were of the form CpY/
(p4a?) (272, These shapes correspond to the first two
members #=1 and #=2 of the family of form-factor
shapes discussed in Sec. III. Finally, in case III, g:(p)

TasLE II. Case-II fits to nucleon-nucleon phase shifts in un-
coupled partial waves. These partial waves are fitted by the
separable potential

Vi(p,p") = g1(0)5:1(p") = ki (p) ("),

where the form factors are
§1(0)=CrpY/ (P*+ar) D72, h(p)=Cap'/ (p*+aaP) 41D/,

except in the partial waves 1Sy and 3P,, where the repulsive form

factor is
2R (p) = Crp*t?/ (p2+agh) (o,

The units of the attractive inverse range a4 and the repulsive
inverse range a are inverse fermis (F1, 1 F=10"1 cm). The units
of the attractive coupling strength C4 and the repulsive coupling
strength Cgr are (MeV/F)2, Dots indicate that a form factor is
to be set equal to zero. 3 R? is the sum of the squares of the
residuals,

0
Y R= EZ [8exrt(E)) — 8,114 (E) T,

=1

over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV.

Repulsive potential Attractive potential

parameters parameters
Partial ar Cr a4 Ca
wave (B0 [(MeV/Fy2]  (F1) [(MeV/F)u2] ZR
Singlet
15 3.874» 679.32 0.991 7.049 1284.8
1P, 2.951 500.0 LR oo 76.94
1D» LR cee 1.986 21.98 14.55
1F3 0.906 3.926 ce LR 0.157
1Gs e .- 1.333 6.982 0.251
Triplet
3Po 2.527s 330.2a 1.117 8.348 5.674
3Py 2.177 43.87 cee . 55.47
3Dz (R e 1.566 23.15 147.2
2F3 1.235 7.574 oo cee 0.968
3Gy LR ese 1.439 17.78 8.883

a Special repulsive form factor must be used.
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TaBLE III. Case-III fits to nucleon-nucleon phase shifts in un- 60 : T T . T . : : . 12.8
coupled partial waves. These partial waves are fitted by the 3
separable potential P

Vi(p:p) =g1(®)g1 () — i (p) I (),
where the form factors are
g1(9)=GeL(1/xp*)Q1(1+ur?/2p%) 7, 3
hi(p) =Gal (1/mp")Qi(1+na®/20% T, s
except in the partial waves 1Sy and 3P,, where the repulsive form 2l <
factor is 2r £
812 ()) =[Gt/ (Pt L (L/m$) Q01 ur?/ 28 T2 a1 £
The units of the attractive inverse range p4 and the repulsive F 2 2
inverse range ug are inverse fermis (F1, 1 F=10"3 cm). The units . > .
of the attractive coupling strength G4 and the repulsive coupling NG et ]
strength Gg are (MeV F)!”2, Dots indicate that a form factor is : :
to be set equal to zero. ) R? is the sum of the squares of the 3 ]
residuals
50 [ ]
T R= ¥ (60t (E) —5,fit(E) T,
=1 ~200. ..., . . . . . . . . -1238
over the 50 data spaced at 8-MeV intervals in the range 0- 0 Lab kinetic energy (MeV) 400
400 MeV. )
F16. 1. Fits to the singlet phase shift 1S, with special repulsive
; ; ; ; form factors. The curve marked A is the data value of the phase
Repulsive potential Attractive potential parameter in degrees and is read with the left-hand scale. The
parameters parameters
Partial n P Ga other curves are the absolute error (fitted value minus data value)
HE g sl in degrees of the various fits and are read with the right-hand
wave FH [MeVERE]  (F) [(MeV B)U] ZR: scale. The dashed curve represents the case-I fit, the solid curve
Singlet marks the case-II fit, and the dotted curve indicates the case-III
10 23192 21.50s 1203 9416 1805.9 fit.
1Py 0.931 465.7 ‘e 2406.1
1D .- 1. 453 10.86 3.434 . . : .
w7y 0.330 2.645 . 2.562 With this approach, we obtained fits to most of the
1Gs e 0.820 5.316 0.0018  partial-wave phase shifts. However, in the partial waves
Triplet 1Sy and 3P, reasonable fits could be found only if we
$Po 1.800= 20002 1.550 2900 386.7 used the following special repulsive form factors:
Py 1.193 500.0 .. ‘e 187.6
D, ‘e 0.912  10.49 3.884 P pl
3Fs 0.666 5.583 .- .- 0.216 . LE(p) —
iGs e 0926 1148 o5 casel: g lRE(p)=C

pta? (pra)FHor -

a Special repulsive form factor must be used.

I pt
eIl: g,/I.B C
and %;(p) were taken to be of the Mitra form case g (p)= pta? (pPar) e’
G2 ”‘2 1/2 L GZ M2 1/2
[—e(+5)] - case I g) = L/ ] 0,1+ |
P 2p? P 2p*

TaBLE IV. Case-I fits to nucleon-nucleon phase parameters in coupled partial waves. These partial waves are fitted by the
separable potential Vi:(p,p")= ("~ ’)[g:(ﬁ)g;:F N—hi(p)hi(p")], where the form factors are gi(p)=CiBpl/[*+ (a;R)Z:](“‘l)’*, hz(p)
=Ci4pl/[ p*+ (ar14)* JHD2, except in the SR fits to the J=1 system, where the repulsive form factor for J—1(}=0) i is 2iR=CiBpi2/
[#*+ (,F)*]*9)2, The units of the attractive inverse ranges as414 and as_14 and the repulsive inverse ranges as1* and as1® are
inverse fermis (F?, 1 F=10"% cm). The units of the attractive coupling strengths Cs414 and C;1# and the repulsive coupling strengths
CJ%R z;,nd Cs1® are (MeV F)'2. Dots indicate that a form factor is to be set equal to zero. 3 R? is the sum of the squares of the
residuals,

50
T R= T (05 Pt (E) — 8541 S E) P+-Ler ™ (E:) — s 11(B:) P+-[871°%P4(B) —b-111(E:) I},

=1

over the 50 data spaced at 8-MeV intervals in the range 0-400 MeV.

Parameters for I=J+41 Parameters for I=J—1
Coupled Repulsive parameters Attractlve parameters Repulsive parameters ~ Attractive parameters
wave as® Cink @yt Cry a;1® CraP a4 Cra4

system (F) [(MeVEw]  (FY) [(MeV Fye] FY) [MevE)2]  (F1) [(MeV F)17] R
J=1 0.849 19.57 0.747 10.81 3.836 21.45 0.984 9.754 2271.3
J=1SR 1.059 62.62 0.885 13.07 1.841» 59.632 1.416 10.72 1392.7
J=2 e X 0.551 0.727 1.415 5.010 11.16
J=3 1.019 4.347 cee e 0.899 3.342 1.165 4.628 10.25
J=4 0.604 0.776 1.514 3.964 6.704

a Special repulsive form factor must be used.
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TaBLE V. Case-II fits to nucleon-nucleon phase parameters in coupled partial waves. These partial waves are fitted by the
separable potential V11(p,p") = (i ~O[g1(p)gw (#") —hi(p)hv (p')], where the form factors are gi(p)=CiBp!/[ 2+ (a:iR)*]H+D12, fyy(p)
=C4pl/[ p*+ (ar4)*]+DP, except in the SR fits to the J =1 system, where the repulsive form factor for J—1(I=0) is g;2(3) = C Rpi+2/
[#*+ (a:®)*]4+9"2, The units of the attractive inverse ranges ¢s,1® and a4 and the repulsive inverse ranges a;,1® and a;_1® are
inverse fermis (F7%, 1 F=10"1% cm). The units of the attractive coupling strengths C,14 and C;_;4 and the repulsive coupling strengths
CH.&R zlmd Cra® are (MeV F)Y2 Dots indicate that a form factor is to be set equal to zero. Y R? is the sum of the squares of the
residuals,

50
Z Ri= Z {[5J+lexpt(Ei) —5J+1ﬁt(E,‘)]z‘*‘[éJeth(E{) —_ Eint(Ei)]Z_‘_[aJ_lcxpt(Ei) —‘51_1‘“(E1’)]2},

=1

over the 50 data spaced at 8-MeV intervals in the range 0-400 MeV.

Parameters for I=J+1

Parameters for I=J—1

Coupled Repulsive parameters  Attractive parameters Repulsive parameters  Attractive parameters

wave ara® Crf arpt Crp# aj.F 71 a4 Cra4

system (FY) [MeV F)12]  (FY) [(MeV F)12] (FYH) [Mev F)2]  (F1) [(MeV F)12] TR
J=1 1.283 49.11 1.174 34.07 3.308 81.68 1.979 41.42 866.9
J=18R 1.410 33.20 0.838 4.760 2.411» 60.21» 1.288 13.18 1083.6
J=2 cee e 0.932 2.134 e e 2.094 21.83 10.02
J=3 1.357 13.92 e e 1.387 11.46 1.641 17.86 15.74
J=4 cee e 0.898 2.330 e e 1.935 17.45 6.847

a Special repulsive form factor must be used.

In case III, this introduces a pole at the beginning of
the repulsive force cut in the on-shell amplitude. These
special repulsive form factors go to zero as p? — 0 faster
than the corresponding attractive form factors, while
both types of form factor have the same behavior as
p*— . Therefore, at low energies, the potential will be
mainly attractive and will have the correct threshold
behavior, and the repulsive potential will become im-
portant only at high energies.

We have also used these special repulsive form factors
in the 35 fit labeled SR and for the /=0 repulsion in the
fit to the coupled waves J=1 which is labeled SR.

The parameters which fit the phase shifts are given in
Tables I-VI, and we have included the values of > R?
since a comparison of these numbers for a single partial-
wave or coupled-wave system J-+1, J—1 gives an
indication of the relative goodness of fit of the three
types of parametrization. We have displayed our fits to

the phase parameters graphically in Figs. 1-25, where
the curve marked A is the data value of the phase
parameter in degrees and is read with the left-hand
scale. The other curves are the absolute error (fitted
value minus data value) in degrees of the various fits
and are read with the right-hand scale. The dashed
curve represents the case-I fit, the solid curve marks the
case-II fit, and the dotted curve indicates the case-III
fit.

We have fit the coupled waves 35y, 3P,, 3D3;, and
3F4, assuming e;=0 and neglecting 8741 in each case.
Thus one can discard higher partial waves at any point.
These results are presented in Tables VII-IX and
Figs. 26-30.

In the partial wave 1Sy, we must fit the three low-
energy parameters [scattering length, virtual (anti-
bound) state pole position, and effective range] as well
as the phase shift. Only two of these low-energy parame-

TasLE VI. Case-IIT fits to nucleon-nucleon phase parameters in coupled partial waves. These partial waves are fitted by the

separable potential Viy(p,p") = GV Y[ g1(p)gu (#') —hi(p)hi (') ], where the form factors are gi(p) =GE[ (1/mp?)Qui(1+ (ui®)?/2p2) ]2,
hi(p) =GAL(1/mp?) Qi (14 (u14)2/29%) 2, where Qi (x) is the Legendre function of the second kind. In the SR fits to the /=1 system, the
repulsive form factor for J—1(I=0) is g;%(p) = {Gi® p2/[$*+% B2} { (1/xp) Qi1+ (ui®)?/2p21}12, The units of the attractive inverse
ranges ps14 and w4 and the repulsive inverse ranges us1® and ps_i® are inverse fermis (F~1, 1 F=10"1 cm). The units of the
attractive coupling strengths Gs;14 and Gs14 and the repulsive coupling strengths Gy41® and Gy_1® are (MeV F)12. Dots indicate
that a form factor is to be set equal to zero. 3 R?is the sum of the squares of the residuals,

50
T Ri= 3 {[8541°%t(E:) — 8741 U(E:) P4 [er*Pt (E:) — et (Eq) P+t (E:) — 871114 (E) 1),
=1

over the 50 data spaced at 8-MeV intervals in the range 0-400 MeV.

Parameters for I=J+41 Parameters for I=J—1

Coupled Repulsive parameters  Attractive parameters Repulsive parameters ~ Attractive parameters
wave prpa® Grpf T4 41 BI—1 71 mI—1 J-1

system F) [(MeV F)12]  (F1Y) [(MeV F)!2] F1Y  [(MeV F)12] FY) [(MeV F)12} SR
J=1 0.617 49.81 0.507 16.51 5.502 52.32 0.974 13.42 6027.4
J=1SR 0.594 145.5 0.512 17.47 3.2768 145.32 1.320 13.31 3737.6
J=2 vee oo 0.334 1.163 oo oo 1.446 8.942 28.52
J=3 0.887 16.84 cee e 0.655 6.814 1.055 9.246 6.132
J=4 .- 0.360 1.463 e 1.546 11.33 6.668

a Special repulsive form factor must be used.
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ters are independent and we choose the scattering length
tobe —23.678 F and the antibound pole at Ey = —0.0665
MeV on the second sheet of the complex-energy
Riemann surface, which implies a singlet effective range
of 2.729 F. To fit this wave, we note that the antibound-
state pole on the second or unphysical sheet leads to a
zero in the S matrix at the corresponding position on the
physical sheet of the complex-energy surface. The con-
dition that the .S matrix have a zero at Ey=—0.0665
MeV was used to obtain the attractive coupling strength.
We then searched for the values of the repulsive coupling
strength and the attractive and repulsive inverse ranges
which give the best fit to the phase shift and the
scattering length. Effective-range theory was then used
to determine the value of the effective range produced
by the separable-potential model. Our amplitudes are,
therefore, guaranteed to contain the antibound state
pole at the correct position on the unphysical sheet.

If we consider the partial wave 3S; as uncoupled, we
demand that the S matrix have the deuteron pole at
Ep=—2.22452 MeV on the physical sheet. This is
obtained by forcing the denominator function D to have
a zero at the pole position. This condition (D=0) was
used to determine the attractive coupling strength.
Then our search programs determined the values of the
remaining three parameters which gave the best fit to
the phase shift and scattering length. Later we obtained
the effective range from Eq. (11).

- When we at last consider the coupled waves 3S; and
3D, we again guarantee the correct binding energy for

TaBLE VII. Case-I fits to nucleon-nucleon phase shifts in
coupled waves, assuming ;=0 and neglecting 8,,1. These partial
waves are fitted by the separable potential

Vi(,0") =g1(0)8:(p") — (D) a (p'),

where the form factors are

81(9) =Crp?/ (P*+ar) 4072, by (p)=Cap’/ ($*+aa®) 07,
except in the SR fits to the partial wave 353, where the repulsive

form factor is
817 ($) = Captt/ (P ag) o,

The units of the attractive inverse range a4 and the repulsive
inverse range ag are inverse fermis (F-1, 1 F=10"1cm). The units
of the attractive coupling strength C4 and the repulsive coupling
strength Cr are (MeV F)1”2, Dots indicate that a form factor
is to be set equal to zero. ¥ R? is the sum of the squares of the
residuals,

50

2 R= 3 [sexrt(E)) -8 (E) T

=1
over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV.

Repulsive potential Attractive potential

parameters parameters

Partial ar Cr a4 Ca

wave (F)  [(MeVF)32] (F1) [(MeV F)i2] ZR
L 2.230 75.58 2.044 70.48 174.6
351 SR 2.036» 76.468 1.735 12.45 179.8
P2 cee ce 1.406 5.007 4.933
D3 s e 1.836 4.647 0.0470
3Fy 1.562 4.176 0.154

= Special repulsive form factor must be used.
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TaBLE VIII. Case-II fits to nucleon-nucleon phase shifts in
coupled waves, assuming ¢;=0 and neglecting ;1. These partial
waves are fitted by the separable potential

Vi(p,0) = 81(p)gi(p) — k(D) (2'),

where the form factors are
§1(0)=Crp*/ (P*+ar) 972 hi(p)=Cap’/ (p*+aa?) DA,
except in the SR fits to the partial wave 35, where the repulsive

form factor is
2iR(p) =Crp*2/ (p*+agr?) (02,

The units of the attractive inverse range a4 and the repulsive
inverse range ag are inverse fermis (F7!, 1 F=10"% cm). The
units of the attractive coupling strength C4 and the repulsive
coupling strength Cg are (MeV F)!2, Dots indicate that a form
factor is to be set equal to zero. X R? is the sum of the squares
of the residuals,

50
T R= X [t (B) —aii(E) T,
i=1
over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV.

Repulsive potential ' Attractive potential

parameters parameters

Partial ar Cr aa Ca

wave (F1) [(MeV F¥)] (F1) [(MeV F2)] ZR2
351 2.624 84.69 2.176 68.10 164.9
351 SR 2.5158 62.67= 1.330 13.82 186.6
P2 X 2.080 21.62 0.310
3Ds (X oo 2.366 22.50 0.020
3Fy vee v 1.977 18.51 0.319

= Special repulsive form factor must be used.

the deuteron by obtaining the attractive strength in
I=0 from the condition that D=0 at Ep=—2.22452
MeV. Next we searched for the values of the remaining
seven parameters which yielded the best fit to the phase
shifts, mixing parameter, scattering length, deuteron
quadrupole moment, and D-state probability. The
effective range was obtained as before, from Eq. (11).
Since the quadrupole moment of the deuteron depends
on the off-energy-shell behavior of the two-nucleon
interaction, we weighted this quantity so that our
searching routines were heavily biased in favor of those
parameter sets that led to a nearly correct quadrupole
moment. We found that the resulting D-state proba-
bilities were quite low. However, since the available
estimates of the D-state probability are imprecise and
seem to be somewhat model-dependent, we do not
believe that these low D-state probabilities constitute a
serious drawback. Table X gives the low-energy parame-
ters resulting from our fits.

For the coupled waves J=2 and J =4, we were able to
reproduce the phase shifts and mixing parameters with
four parameters, an attractive strength and inverse
range in J41 and an attractive strength and inverse
range in J—1. In the coupled waves J=3, we need six
parameters to fit the phase shifts and mixing param-
eters. Since there is no attractive force for J+1, our
separable-potential formalism guarantees that the mix-
ing parameter is positive. Note that if we had taken only
the repulsion needed to reproduce G; and the attraction
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F16. 26. Fits to the triplet phase shift 35; (assuming & =0 and
neglecting §°D;). Description of curves is as for Fig. 1.

needed to fit 3D;, this attempt at a four-parameter fit
would have e;=0.

We would like to point out that our fits to the im-
portant phase parameters 1Py, 35y, and 3D, deviate from
the energy-dependent data curves in the same way as
the energy-independent data points of the Livermore
phase-shift analysis.

Generally speaking, our type-II fits seem to be the
most successful and this is particularly fortunate since
all the relevant integrals can be done analytically for
1=0 and /=2. The type-III fits are the least successful,
except in the higher partial waves. We have not given
values of X2 since this number is meaningless without
some knowledge of the error in the input data, which is
not available for the Livermore energy-dependent phase
shifts. '
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Fic. 27. SR fits to the triplet phase shift 35; (assuming ¢ =0
and neglecting 8*D,) with special repulsive form factor. Description
of curves is as for Fig. 1.
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TaBLE IX. Case-III fits to nucleon-nucleon phase shifts in
coupled waves, assuming e;=0 and neglecting 5s,1. These partial
waves are fitted by the separable potential

Vi(p,p') = 81(0)g:1(8") — b (p) I ("),

where the form factors are

£1(p) =GrL(1/mp?)Qu(1+ur?/2p9) 112,
h(p) =GaL(1/x %) Qu(1+pa?/ 287 V7,

except in the SR fits to the partial wave 35, where the repulsive
form factor is

82 (p) =[Grp*/ (P*+1ur?) LA /7 p)Qu(1+pr?/247) I
The units of the attractive inverse range u4 and the repulsive
inverse range ug are inverse fermis (F~1, 1 F=10"1 cm). The units
of the attractive coupling strength G4 and the repulsive coupling
strength Gg are (MeV F)12, Dots indicate that a form factor is
to _l‘):le slet equal to zero. 3 R? is the sum of the squares of the
residuals, -

50
T Ri= ¥ o)~ a1t (E) T,
=1
over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV.

Repulsive potential Attractive potential

parameters parameters

Partial uR Gr pA Ga

wave (F-1)  [(MeVF)2]  (F1) [(MeV F)uz] IR
351 4.326 300.0 1.818 39.52 690.8
351 SR 3.387s 200.0» 3.092 28.27 646.2
3Py o see 1.437 8.952 22.90
3D; ves e 2.048 11.96 0.248
3Fy s oo 1.620 12.14 0.0158

a Special repulsive form factor must be used.

Once the best values of the separable-potential
parameters were found, it seemed desirable to have an
independent check on our work. Therefore, the sepa-
rable potentials were put into computer programs that
solve the Lippmann-Schwinger equations (1) and (2) as
complex matrix-inversion problems. The latter pro-
grams were developed completely independently of the
present work. Since the values of the T matrices and
phase parameters calculated from the two approaches
agree, this constitutes an independent check of our
results.

V. USE OF FITS

These fits can be used in a straightforward manner to
reproduce the on-shell scattering amplitude. The sepa-
rable-potential approach also provides a convenient
extension of the scattering amplitude off the energy
shell.

For’, calculations involving off-energy-shell nucleon-
nucleon scattering amplitudes, we suggest the following
approach. In our separable-potential formalism,

Tuw(p,p'; BD=Nuw (p,p'; k?)/D(k?),
where /=1’ for uncoupled waves. Thus, when T';;» (k2)70,
Tuw (psp's B)=F o (p,p"; BT 0w (), (16)

where
Fu (pyp"; k) =Nuw (pyp'; k2)/Nuw (k' &)
Fu(b s B)=Fu () =1.

and
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TaBLE X. Low-energy parameters.*

150 parameters

Singlet scattering = Singlet effective

length q, range 7,
(F)

Experiment —23.678 2.729
Case-I fit —23.679 2.728
Case-II fit —23.677 2.731
Case-III fit —23.681 2.722

%S, parameters (coupling to 3D; neglected)
Triplet scattering Triplet effecttive

length a, range r;
(F) ¥)
Experiment 5.396 1.726
Case-I fit 5.391 1.719
with SR 5.394 1.723
Case-II fit 5.393 1.722
with SR 5.567 1.938
Case-III fit 5.406 1.739
with SR 5411 1.745
J =1 parameters
Triplet Triplet  Deuteron Deuteron
scattering effective quadrupole D-state
length ¢, ranger, moment probability
F) ) (F%) (%)
Experiment 5.396 1.726 0.278 oo
Case-I fit 5.655 2.042 0.277 0.7
with SR 5.482 1.834 0.276 1.0
Case-II fit 5.394 1.723 0.278 1.1
with SR 5.592 1.968 0278 0.8
Case-II1 fit 5.988 2.409 0.278 0.5
with SR 5.634 2.018 0.276 0.5

& All fits to the partial waves LSy contain a singlet antibound-state pole
at E=—0.0665 MeV on the second or unphysical sheet of the complex-
energy Riemann surface, All fits to the J =1 coupled-wave system and to the
351 partial wave neglecting the coupling to 3D contain the deuteron pole at
Er=f —2.22452 MeV on the physical sheet of the complex-energy Riemann
surface.

Now, we can use Eq. (16) in calculations with
Fu (p,p'; k?) obtained from the separable-potential
model and Ty (k2)fexpressed directly in terms of the
experimental phase_shifts and mixing parameters. Of
course, the expression for T (p,p’; #?) in Eq. (16) is
still separable in the incident and outgoing momenta
and p’. Similarly, if T (k*)=0 we have N;» (k2)=0

and
Nuw(p,p'; k%)
Ny (ke?)

Tw(pp'; k)= T (ke?)

for k2=k¢?, where NP (ko?) and T'1,,(9 (ke?) are the first
derivatives of N (k2) and T, (k?) evaluated at £2=Fk¢
Thus we have, for k2=k?,

T (bt )=Fu(p,p' s BT 10 (ke?),  (17)

where

Fu®(p,p' s =N (p,p"; k) /N 10D (Re2),

and again the off-shell amplitude is given by the product
of a separable factor obtained from the separable-
potential model and a quantity dependent only on the
on-shell scattering data.

By using Egs. (16) and (17), the exact experimentally
determined scattering amplitude for 2> 0, in terms of
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F1G. 28. Fits to the triplet phase shift P, (assuming e;=0 and
neglecting 8°F3). Description of curves is as for Fig. 1.

the phase shifts and mixing parameters, can be inserted
into calculations and the model dependence wil lie only
in the treatment of the region k2<0 and of off-energy-
shell effects. The desirability of this separation between
on-shell and off-shell effects is indicated by recent p-p
bremsstrahlung calculations.’® In these calculations, the
small differences between the on-shell predictions of
various potentials seem to influence the results as much
as the inclusion of off-energy-shell effects. With our
approach any difference in the results of two potential
models will be a consequence only of differences in off-
energy-shell predictions. Although similar separations
of on-shell and off-shell behavior can be made for local

(deg)

3, 03
Absolute error (deg)

-0.2
400

Lab kinetic energy (MeV)

F16. 29. Fits to the triplet phase shift 2D; (assuming es=0 and
neglecting §°Gs). Description of curves is as for Fig. 1.

1BW. A. Pearce, W. A. Gale, and I. M. Duck, Nucl. Phys. B3,

241 (1967).
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Fi1c. 30. Fits to the triplet phase shift 3, (assuming e;=0 and
neglecting 8H,). Description of curves is as for Fig. 1.

potentials,! they are much simpler and easier to use in a
separable-potential formalism.,

If we use several different models for the off-energy-
shell scattering amplitude in a single calculation, we
should get an indication of the dependence of the
calculation on off-energy-shell behavior and k%<0 be-
havior. This is particularly true in the approach that we
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have proposed, where we know that the on-shell ampli-
tude for £2>0 is represented exactly, and the only
possible difference between the different calculations
lies in k%<0 or off-energy-shell effects. We might find
that many calculations are relatively insensitive to the
details of the off-energy-shell behavior of scattering
amplitudes.

The fits that we have given will go immediately into
any calculations involving nucleons that have been set
up to use separable potentials and, in particular, they
can be used directly in calculations based on the
Tabakin potential. Some of the integrals involved in
our fits will have to be done numerically and put into
computing machines in tabular form, but this is a very
simple matter.
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