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The Amdt-MacGregor (Livermore) nucleon-nucleon phase shifts and mixing parameters for partial
waves through 1=4 are fitted in the energy range 0-400 MeV by separable potentials. We have demanded
that the partial-wave scattering amplitudes resulting from our potentials have singularities only for real
negative values of the complex energy variabl, in addition to the usual right-hand unitarity cut guaranteed
by the Lippman-Schwinger formalism. We have also demanded that the appropriate partial-wave amplitudes.
contain the deuteron pole and the singlet antibound-state pole at the correct energies. The use of these
Gts in probing the oG-energy-shell behavior of scattering amplitudes is discussed.

I. INTRODUCTION

I
'HE main reason for the use of nonlocal separable

potentials to describe the interaction between
particles is their extreme convenience and simplicity.
Also, separable potentials provide a simple extension of
the two-body scattering amplitude oA the energy sheH,
because the separable-potential form factors determine
the o6-energy-shell behavior of the scattering amplitude
in a relatively transparent manner.

A representation of the o8-energy-shell two-body
partial-wave transition. amplitude for a particular
process should satisfy 6ve general nondynamical re-
quirements. ' In the case of nucleon-nucleon scattering,
we shall show that separable-potential forms may be
chosen which lead to scattering amplitudes that ful611

thcsc coQdltloQs. Thc 6vc r'cqUll clTlcnts Rl cthc following:

(i) Redectiorl. The oR-energy-shell amplitude must
reduce to thc correct on-shell RmplltUdc. IIl potcntlR1
theory, this condition is met by 6tting the parameters
of a given potential model to the experimental value of
the on-shell scattering amplitude expressed in terms of
phase shifts and mixing parameters.

(ii) Urtitarity. The amplitude must satisfy oR-energy-
shcll two-particle clRstlc UnltRI'lty. If the amplitude ls
generated from a potential by the Lippmann-Schwinger
equation, this requirement is automatically ful6lled.

(iii) Arsalyticity. The oR-energy-shell amplitude
T~~ (p,p'; E) should be an analytic function of the c.m.
kinetic energy E, with the only singularities in E being
the right-hand unitarity cut and bound state or reso-
nance poles. It should be analytic in the c.rn. momentum
p(p') when p')0 (p'2&0) and it shouM. have singu-
larities when p'&0 and p'2(0, which become the left-
hand or driving singularities of the on-shell Rmphtude
when p and p' are on the energy shell. In addition, we
tRke the position that the on-shell analyticity properties
of any model scattering amplitude should be as close Rs

possible to the analytic properties known from rela-
tivistic theory. ' In the nucleon-nucleon case, this means

~%'ork done under auspices of the U. S. Atomic Energy
Commission.

' Thomas R. Mongan, Lawrence Radiation Laboratory Report
No. UCRL-17452, 1967 (unpublished).

~ M. J. Moravcsik, Rev. Mod. Phys. 39, O'Eo (1967).

that the on-shell amplitude should have driving singu-
larities Oe/y for real negative values of E.

(iv) Time refer-sal inwariance

(v) Proper threshold behaoior.

We shall see that requirements (iii), (iv), and (v) can
be met by a judicious choice of the functional form of
the separaMC potential which generates the scattering
RITlplltUdC.

Tabakin' has done an earHer 6t to nucleon-nucleon
scattering data, using a separable potential of the same
general form as ours. It was the success of the Tabakin
potential in a number of calculations which prompted
the more extensive 6ts presented herein.

%cwill dlsplaythrcc dlGcrcnt scpaI'Rblc-potcQtlR1 6ts
to the nucleon-nucleon scattering data between 0 and
400 MCV and discuss their application to the study of
the qualitative oA-energy-shell behavior of partial-wave
amplitudes. It would be a most unlikely coincidence if a
particular separaMe-potential model were to reproduce
exactly the scattering amplitude which occurs in nature.
However, Noyes4 has shown that the usual local po-
tential models are Not adequate to explain the observed
nucleon-nucleon scattering amplitude. Therefore, a
potential model description of the nucleon-nucleon
HltcIRctlon 5tlsl employ R.Qonlocal potcntlal. Nonlocal
separaMe potentials are the simplest type of nonlocal
potentials, they are very convenient, and we may hope
that they give a good approximation to the exact off-
energy-shell scattering amplitude.

II. BASIC EQUATIONS AND CONVENTIONS

To enhance the utility of our results, wc shall set
forth in considerable detail the basic equations and con-
ventions used in our work. Generally, we follow the
conventions of Goldberger and Watson. ~

Ke deal with the nonrelativistic two-particle partial-
wave I.ippmann-Schwinger equation for nucleon-nucleon

' Frank Tabakin, Ann. . Phys. (¹Y.) 30, 51 (1964).
4 H. P. Noyes, SLAC-PUB-256, 1967 (unpubHshed), paper

presented at the International Colloquium on Polarized Targets
and Seams„C, E.N. , Saclay, France, 1966.' M. Goldberger and K. Watson, Collisjog Theory (John Wiley
k Sons, Inc., ¹wYork, 1964).
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led-wave phase shifts and mixing
rm f h T-matrix elementsers are given in termrmso t e -m

—22rps ReTJ i,g i(k )

—2xpg ReTJ+g J+i1 k')
7

1+22rpS ImTgpi, gpi(k')
—2mp~ ReTO

SlI126=
cos(8gyi+8g

2
' =T, (k2) = Tg+i, g i(k') .To(k') = T

e consi otential model of the
leon-nucleon interaction in which

Viv(p, p')= i —
gi v,

' =L" "1Lgi(p)gi (P') -hi(P)hi (P')] .
3'—I, is zero or twolex otential, sincep p

eon case, an eii1 the nucleon-nuc
ochan ethesigno t eo —

'
e yt ng

elements o ef th potential matrix in e
case.

h' h e have a single-term
separable potential Vi(p, p' =Xgi gi, w

= —2rps Q Ti (p k k2).T, i*(k,p'; k')

av = k/O2. We have usedaves where p~=y
~ ~

ce to cast the unitarity relation int e-reversal invariance to cast t e uniim—

The partial-wave S matrix is re a e
wave T matrix by

(~)Si& (k') =1—22ripxTiv(k2).

aves Si k') =S«(k') and the S matrixFor uncoupled w
is expresse ind' terms of thephases

'
s

P (k2) —e2i5)(22)

"dqA'(q) )=

hagi(p)gi(p')

1
'

a repulsive potentia and X= —1
'

1. F two-term separablegives an attractive p
' l. w-otential. or a w—

'
1 uncoupled waves we n

Ti(, '; k') =Xi(p,p'; k')/Di(k'),
where

(6) ~i(p pi. k2)
or

(k') =1+2ie")i"'& sinai(k2).Si(k2 = z

Combining (5) and (6) gives

2i "dqq'hP(q)=,(~) (v)()+—
„

"dqAP(q) &

-hi(P)hi(P )I

—Lgi(p)hi(p')+hi(p)gi(p')3

2p, "dqq'gi(q)hi(q)X—
h' k' —q'+2 e

—22rpe ReT i(k2)
tan2bi(k') =

ex ress the T matrix in terms ofAlternatively, we can express e
the phase shifts as

Ti(k2) = —(1/2rpii)e"&i") sinai(k2),
and

2p dqqgP(q)i

h, k2 —q2y', j
2 "dqq'hP(q) )
h' 0 k' q2+ieJ-

~
~

"dqAi(q)hi(q)i'

h' k' q'+ie j—

whence
tanb, (k2) = ImTi(k')/ReTi(k2).

e use the Stapp' parametrizationFor coupled waves, we use e
of the S matrix

es(4-1+4+1)

!

i sin ee'

cosos2e e'"~+'

cos2e e "~-'

4&&—)+V+))oisin ee'

p, '
ntis and ¹ Metropolis, Phys. Rev.6 H. P. Stapp, T. J. Ypsilantis, an

105, 302 (1957).

Then, tscattering, w ich' h for uncoupled waves is
paramet
byTi(P P' k') = V i(p,p')

2p "q'dqV i(p, q) Ti(q, p'; k )
l

k —
q +2e0

. kinetic energy E=h k /2p= ''2 andpisthe
l o Fo o l dd ced mass of the two nuc cons. or

e
'

—
'

er e uation isthe Lippmann-Schwinger eq

Tii (P,P'; k') = V«(P,P')

2ii &+1 "q'dqVi;(p, q)T;v(q, p', k'

k' —0'+2e

litude or T matrix
er equation satis-

ave transition amp
e Li mann- c winger

6es the oB-energy-shell elastic two-par
'

relation in the form

k k2~TP(k, p'; k') (3III1Ti(p p k ) 7I p@T$(P)k j $ i p

for uncoupled waves an d

ImTiv (p,p'; k')

(4)
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se of coupled waves, insertion of the
potential (7) into the Lippmann-Sc winger
yields

Tip(p p k )=& ip )
= ' '-')A .(p p' k')/D g(k'), (10)

itude for 'Sp scat-
tering and Too(k') is the transition m
I= 1, l= l'=0.

'
n in momentum space for theThe Schrodinger equation in momen

deuteron wave function is
where

&«p(p P" k')
2p

h' k'+k ' V(k, k'))Pi)(k')d'k', (13)

2y &+i "dqq'h, '(q)=) ())) ()')()+—r.

2p &+i "dqq'g)'(q)—,()) ())( —„",

' 2 is the deuteron binding energy. %ewhere (Akn)' 2)(i is e
write the deuteron wave function as

3+1
4n ~.i(k)Ci~)(0~,4 ~, )

—Lgi(p)h( (P')+h)(p)g( (P')]

2p J+1
x—p

A2 g=J—i

2& &+i "dqq'g)'(q)

"dqq'g, (q)h, (q)

0 k' —q'+re

and the potential as

.* k' s), (15)V(k,k') = ipZ. V .(k k')Cabiri(k, s)Chirp (,
stirs'

g S) s,re the normalized e'gei enfunctions o
h Hulthen and Sugawara' an uJ, J,=ALII and l given by Hu t

uantum numbers J=,q

"adi 1" of h
ombinin —

)

er e uation for t e 'ra ia
deuteron wave function in momen u

p, + ging;g, g)
jP j J—1 p P2 q2 j~ )

he tri leti let scattering length a~, the 'p

band the deuteron in
'

effective range r&, and

( /k )(1 1/ k )

24~2 2p, . In
op " p

tate( tu 1st te,
' t n

and the singlet scattering lengt y

k v ——(1—Li —(2r,/a, )]'I')/r, .

i ound state occurs at = —h'k v'/2pThe singlet ant&boun
f the complex-energypyn h sicalsheeto e

because the experimenRiemann surface, e
'

n

df. h T
ative value of y in

The scattering lengths are o taj.ne
n1atrix as follows:

x' 2p
a, = lim ——ReT, (k'),

k—pp2 Q2

2p
a)= lim ——ReTop(k'),

k~2 Q2

. Rev. 130, 2025 {1963).
5 853 {1953).We use the term

Re e in Theoretica/ Physics
E A „

V' , 196{International Atomic Energy gen

2p 1

h' k'+kiP
P V (k k')u) p(k')k"dk'.

Using the potential (7), we find

u) i k = —— [Ag((k) —Bh((k)],
h' k'+ki)'

8= A,

&+i "gP(k)k'dk

2 (=J-i 0 (k'+ki)')'2p L=J—1 p

1+G &+i "gi(k)hi(k)k'dk

M (=~—i 0 (k'+ ki)')'

with

1+G ' ~+i "hP(k)k'dk

M (=~—i, (k'+ki)')'

2p &+& "gP(k)k'dk

Q2 l—J 1 0 k2+ D

2)(i &+i "gi(k)hi(k)k'dk

dbgch deand Masao Sugavrara, in EIae' Lamek Hulthbn
Physik {Springer-Verlag, Her in„

tants A and 8 are given bywhere the normalization constan s
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TABLE I. case-I 6ts to nucleon-nucleon Phase shifts In uI1- for uncoupled waves and
coupled partial waves. These partial waves are Gtted by the
separable potential

«(P P') =sg(p)ag(p')-&g(p)lgg(p'),

where the form factors are

Z &'= Z L&g'*"(&) ~g"—'%)7

over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV.

Partial
wave

Repulsive potential
parameters

CB cz
(F ') I.(Me& F)'I'3

Attractive potential
parameters

CA CA

(F-) t:(Me») I j

gg(p) =Czpg/(pgyggggg)(g+gg&2 /gg(p) =g„pg/(pg+ogg)«+»12

except in the partial waves 'So and 'Eo, where the repulsive form
factor is

gggg (p) —CzP g+2/(P2+ggeg)(g+2)/2

The units of the attractive inverse range aA and the repulsive
inverse range eg are inverse fermis (F ', 1 F= 10 "cm). The units
of the attractive coupling strength CA and the repulsive coupling
strength Cg are (MeV F)'/'. Dots indicate that a form factor is
to be set equal to zero. Q 22 is the sulu of the squares of the
residuals

+ P t"e exggg(g. ) e fit(g.)]2

+ p Lb sxggg(g. ) g fig(g.))s

for coupled waves.
All of our Qts were made with the basic separable po-

tential form

I' ll (P,P') =9" "rfl(P)gl (P') —hl(P)&g (P')j.
An attempt was made to fit all the scattering data by
using three of the form factors mentioned in Sec. III. In
case Ig gl(P) and 1'gl(P) were taken as CP'/(P +gg') &g+"g'

In case II, gl(p) and hl(p) were of the form Cpgj
(ps+ggs)&g+2&gs. These shapes correspond to the 6rst two
members n=1 and n=2 of the family of form-factor
shapes discussed in Sec. III. Finally, in case III, gl(P)

Singlet

leap

lP1
1Dcg

1F3
1Q4

Triplet

Ipp
«P 1

&Dm

3F3
3Q4

2.1a

1.539

1.64a
1.574

500.0a

100.0

100.0a

19.64

0.786

1.456

0.990

0.957

1.059

5.420

4.931

5.415

5.784

698.2
596.9

8.972
0.708
0.0893

81.83
38.39
36.32
0.0871
4.205

TABLE II. Case-II its to nucleon-nucleon phase shifts in un-
coupled partial waves. These partial waves are Gtted by the
separable potential

l'g(p P') =zg(p)sg(p')-&g(p)kg(p')

where the form factors are

gg(p) —Czpg/(P2+ggeg)(gw)l'2 /gg(p)
—C/pg/(P24 gggg)(g42glo

except in the partial waves 'So and 'I'0, where the repulsive form
factor is

g ggg (P) —C@Pg+2/(P2+gg@2)(g+4)g2

a Special repulsive form factor must be used.

separable-potential form has more realistic analyticity
properties than the preceding forms.

The units of the attractive inverse range ug and the repulsive
inverse range eg are inverse fermis (F ', 1 F= 10 "cm). The units
of the attractive coupling strength CA and the repulsive coupling
strength Cg are (MeV/F)'/'. Dots indicate that a form factor is
to be set equal to zero. g Rs is the sum of the squares of the
residuals,

60

p pgsxpg(g. ) Sggit(h. )]2

IV. FITS TO NUCLEON-NUCLEON DATA over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV.

We have fit the Amdt-MacGregor (Livermore)
nucleon-nucleon phase shifts for laboratory kinetic
energy from 0 to 400 MeV for the partial waves through
J—4

The fitting was done on a CDC-6600 electronic com-
puter at Lawrence Radiation Laboratory using a least-
squares minimization program LsqMrg developed by
Eric Seals. For each phase parameter we used 50 data
points at 8-MeV intervals in the range 0—400 MeV
laboratory kinetic energy E. The program I.sgMxx
searches for the values of the potential parameters
which minimize the sum of the squares of the residuals

50

Z &'= Z L&g'""(&')—bg"'(&')7

Partial
wave

Singlet

leap
1pl
1Ds
lF3
IQ4

Triplet
IPp
3P1
ID'
SFp

IQ4

3 874s
2.951

679.3a
500.0

0.906

2.527a
2, 177

330.2»

43.87

1.235 7.574

Repulsive potential
parameters

CB cz
(F-') t:(Me&/F)'/'j

0.991 7.049

1.986 21.98

1.333

1.566 23.15

1.439 17.78

Attractive potential
parameters

CA CA

{F1) t (Mev/I )1/Pg

1284.8
76.94
14.55
0.157
0.251

5.674
55.47

147.2
0.968
8.883

a Special repulsive form factor must be used.
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TAszz III. Case-III fits to nucleon-nucleon phase shifts in un-
coupled partial waves. These partial waves are fitted by the
separable potential

V (p,p')=g (p)g (p') —h (p)h (p'),
where the form factors are

g 1(p) =G&t[ (1/tr pt) Q & (1+/t&&2/2 ps) ]'/2

hl (p) =Gg[(1/x p') Ql (1+&tg'/2pt)]t»

except in the partial waves 'So and 'Po, where the repulsive form
factor is

g &a (p) = [Gspt/(p'+-'/ a')][(1/~p')Qi(1+/ a'/2p')]"'.
The units of the attractive inverse range pg and the repulsive
inverse range pg are inverse fermis (F ', 1 F= 10 "cm). The units
of the attractive coupling strength Gg and the repulsive coupling
strength Gg are (MeV F)I/'. Dots indicate that a form factor is
to be set equal to zero. P R' is the sum of the squares of the
residuals

50

Z f&"= 2 [g&'*"(h*)—g&"'(&')]',
i I

over the 50 data spaced at 8-MeV intervals in the range 0—
400 MeV.

60

-20 '

0 Lab kinetic energy (MeV)

12.8

C&2
&2&'O

l
C&

ey
&2&

—'i2.8
400

Partial
wave

Singlet

leap

IPI
ID2
1+2
'G4

Triplet

aPp

'D2
Spa

SG4

2.319a

0.931
21.50.

465.7

0.330 . 2.645

1.800»
1.193

200.0a
500.0

0.666 5.583

Repulsive potential
parameters

p,R Gz
~F-I~ t-~MeV F~I/2g

1.203 9,416

1.453 10.86

0.820 5.316

1,550 29.00

0.912 10.49

0.926 11.48

Attractive potential
parameters

p,A GA

(F I) [(Me/' F)1/2) ZR2

1805.9
2406.1

3.434
2.562
0.0018

386.7
187.6

3.884
0.216
0.573

Fro. 1. Fits to the singlet phase shift S0 with special repulsive
form factors. The curve marked & is the data value of the phase
parameter in degrees and is read with the left-hand scale. The
other curves are the absolute error (fitted value minus data value)
in degrees of the various fits and are read with the right-hand
scale. The dashed curve represents the case-I fit, the solid curve
marks the case-II fit, and the dotted curve indicates the case-III
fit.

case I:
p2 pl

g, r&l (p),
p2+ &22 (p2+ &22) & 1+1)/2

With this approach, we obtained fits to most of the
partial-wave phase shif ts. However, in the partial waves
'$0 and 'P0 reasonable fits could be found only if we
used the following special repulsive form factors:

a Special repulsive form factor must be used.

and hl(p) were taken to be of the Mitra form
case II: gl'1 n(P) =(."

p2+ &22 (p2+ g2) & 1+2)/2

-G2 ( 2& —1/2

caseI«: g "'"(p)=Lp'/(p'+l/')j Q&l I+
wP2 1 2Psi

TABLE IV. Case-I fits to nucleon-nucleon hase parameters in coupled partial waves. These partial waves are fitted by the
separable potential Ut& (p,p') = (2&' ')[gl(p)gl ') —hl(p)hl (p')], where the form factors are gi(p) =C&ap&/[ps+(o&s)2]&&+'&/2 hi(p)
=C&xp'/[ps+(o&")2]&'+t&/' except in the SR fits to the 5=1 system, where the repulsive form factor for 7—1(1=0) is g&&& = Ct&tp&te/
[p'+(ate)t]&&+'&/t. The units of the attractive inverse ranges aq+t" and oq i" and the repulsive inverse ranges aq+ta and a~ t&t are
inverse fermis (F ', 1 F= 10 "cm). The units of the attractive coupling strengths CJ+I~ and CJ I"and the repulsive coupling strengths
CJ+p and CJ I" are (MeV F)'". Dots indicate that @form factor is to be set equal to zero. g R'is the sum of the squares of the
residuals,

50

P 112= P {[S& exyt(g. ) g& fit(g.)]t+[e&exyt(g.) e&fit(g.)]2+[S& texyt(h. ) g& t&tt(iv.)]2)
i I

over the 50 data spaced at 8-MeV intervals in the range 0-400 MeV.

Coupled
wave

system

J=l
J=l SR
J=2
J=3
J=4

0.849
1.059

~ ~ ~

1.019

19.57
62.62

~ ~ ~

4.347

Parameters
Repulsive parameters

~J+I CJ+I
(F ') [(MeV F)"']

for /= J+1
Attractive parameters

~J+I CJ+I
(F ') P(MeV F)'"j
0.747 10.81
0.885 13.07
0.551 0.727

~ ~ ~ ~ ~ ~

0.604 0.776

3.836
1.841~

~ ~ ~

0.899

21.45
59.63a

~ ~ ~

3.342

0.984 9.754
1.416 10.72
1.415 5.010
1.165 4.628
1.514 3.964

Parameters for /= J—1
Repulsive parameters Attractive parameters

CJ—I CJ-I aJ I" CJ I"
(F ') [(MeV F)t/2] (F ') [(MeV F)t/2]

2271.3
1392.7

11.16
10.25
6.704

a Special repulsive form factor must be used.
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Fzo. 11. Fits to the triplet phase shift ISI (1=1 coupled waves).
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FIG. 20. Fits to the triplet phase shift 3D3 (J=3 coupled waves).
Description of curves is as for Fig. 1.

FIG. 23. Fits to the triplet phase shift 'F4 (J=4 coupled waves).
Description of curves is as for Fig. 1.
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FIG. 22. Fits to the triplet phase shift 3G3 (J=3 coupled waves).
Description of curves is as for Fig. 1.

FIG. 25. Fits to the triplet phase shift 'II4 (J=4 coupled waves).
Description of curves is as for Fig. 1.
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TABLE V. Case-II fits to nucleon-nucleon phase parameters in coupled partial waves. These partial waves are fitted by the
separable potential U// (p,p') = (2' t&[g&(p}gv(p') —ht(p)h&~{p')5, where the form factors are gi(p) =C//tp//[p'+(o&/2)2]&'+'&/2, ltt(p)=Ci"p'/[p'+ (ats)2]&'~&/2, except in the SR f&ts to the 7= 1 system, where the repulsive form factor for J 1—(l= 0) is g//2(p) =CI»p/~/
[pt+(ate)2]&/+t&/2. The units of the attractive inverse ranges og+t&t and &tg 1" and the repulsive inverse ranges &ted+1/2 and aq ta are
inverse fermis (F ', 1 F=10 "cm}. The units of the attractive coupling strengths CJ+1 and CJ 1~ and the repulsive coupling strengths
CJ+1~ and CJ 1~ are (MeV F)"2. Dots indicate that a form factor is to be set equal to zero. p R is the sum of the squares of the
residuals,

50

p 2ft —g {[g expt(rt. ) g fit(g.)52+[2+expt(g') —eJ/it(gi, )]2+[gJ lex-pt(J&. ) g+ 1/it(g. )]2}
i 1

over the 50 data spaced at 8-MeV intervals in the range 0-400 MeV.

Coupled
wave

system

Parameters for /= /+1
Repulsive parameters Attractive parameters

aJ 8 CJ 18 aJ+I CJ+1
(F—

1) [(MeV F)1/25 (F—
1} [(MeV F)1/25

Repulsive
aJ-I
(F-1)

Parameters for l=J—1
parameters Attractive parameters

CJ-1~ aJ 1~ CJ 1~
[(MeV F)"] (F ') [(MeV F)'"]

J=i
J=1 SR
J=2
J=3
J=4

1.283
1.410

~ ~ ~

1.357

49.11
33.20

13.92

1.174 34.07
0.838 4.760
0.932 2,134

~ ~ ~ ~ ~ ~

0.898 2.330

3.308
2.411~

~ ~ ~

1.387

81.68
60.21~

11.46

1.979
1.288
2.094
1.641
1.935

41.42
13.18
21.83
17.86
17.45

866.9
1083.6

10.02
15.74
6.847

' Special repulsive form factor must be used.

In case III, this introduces a pole at the beginning of
the repulsive force cut in the on-shell amplitude. These
special repulsive form factors go to zero as p' —+ 0 faster
than the corresponding attractive form factors, while
both types of form factor have the same behavior as
p' —+~. Therefore, at low energies, the potential will be
mainly attractive and will have the correct threshold
behavior, and the repulsive potential will become im-
portant only at high energies.

We have also used these special repulsive form factors
in the 'S~ fit labeled SR and for the l=0 repulsion in the
fit to the coupled waves J=1 which is labeled SR.

The parameters which fit the phase shifts are given in
Tables I—VI, and we have included the values of P Rs
since a comparison of these numbers for a single partial-
wave or coupled-wave system 1+1, J—1 gives an.

indication of the relative goodness of fit of the three
types of parametrization. We have displayed our fits to

the phase parameters graphically in Figs. 1—25, where
the curve marked 6 is the data value of the phase
parameter in degrees and is read with the left-hand
scale. The other curves are the absolute error (fitted
value minus data value) in degrees of the various fits
and are read with the right-hand scale. The dashed
curve represents the case-I fit, the solid curve marks the
case-II fit, and the dotted curve indicates the case-III
fit.

We have fit the coupled waves 'S~, 'P2, 'D3, and
'F4, assuming eg=0 and neglecting bJ+~ in each case.
Thus one can discard higher partial waves at any point.
These results are presented in Tables VII-IX and
Figs. 26—30.

In the partial wave 'S0, we must fit the three low-
energy parameters [scattering length, virtual (anti-
bound) state pole position, and effective range] as well
as the phase shift. Only two of these low-energy parame-

TABLE VI. Case-III fits to nucleon-nucleon phase parameters in coupled partial waves. These partial waves are fitted by the
separable potential Uii (p,p') = (2/' ')[gi(p)gi (p') ht(p)ht (p—')5, where the form factors are gi(p) =Gts[(1/trpt)Q/(1+(pt/2)2/2p')]'/',
hi(p) =Gi"[{1/trp')Qi (1+(/2 1")'/2p')]'o, where Qi (s) is the Legendre function of the second kind. In the SR 6ts to the J= 1 system, the
repulsive form factor for 5—1(1=0) is gta(P) = {Gta Pt/[Pt+)(/2 &a)2]}{(1/trP2)Q&[1+ (&t&a)2/2P2]}t/2. The units of the attractive inverse
ranges pJ+1 and }tfJ 1 and the repulsive inverse ranges p J+1+ and pJ p are inverse fermis (F ', 1 F=10 '3 cm}. The units of the
attractive coupling strengths GJ+1 and GJ 1 and the repulsive coupling strengths GJ+1 and GJ ~~ are (MeV F)'". Dots indicate
that a form factor is to be set equal to zero. P R' is the sum of the squares of the residuals,

P 212—P {[S e Pt(r)xS

&fit�(g.

)]2+[2&exPt(g.) + tt(g2}/52+[/&& ex . t(g.) PS& fit(g.)]2}
i~1

over the 50 data spaced at 8-MeV intervals in the range 0—400 MeV.

Coupled
wave

system

J=1
J=1 SR
J=2
J=3
J=4

0.617
0.594

~ ~ ~

0.887

49.81
145.5

~ ~ ~

16.84

0.507
0.512
0.334

~ ~ ~

0.360

16.51
17.47
1.163

~ ~ ~

1.463

Parameters for l =J+1
Repulsive parameters Attractive parameters

Ijf J+1 gJ+1 6J+1
(F ') f(Mev F)'"5 (F ') [(Mev F)"]

5.502
3.276~

~ ~ e

0.655

52.32
145.3.

6.814

0.974 13.42
1.320 13.31
1.446 8.942
1.055 9.246
1.546 11.33

Parameters for l =J—1
Repulsive parameters Attractive parameters

PJ-1 }(gJ-1 GJ-1
(F ') [(MeV F)"'] (F ') [(MeV F)'"] Q R'

6027.4
3737.6

28.52
6.132
6.668

a Special repulsive form factor must be used.



ters are independent and we choose the scattering length
to be —23.678 F and the antibound pole at Eg———0.0665
MeV on the second sheet of the complex-energy
Riemann surface, which implies a singlet eGective range
of 2.729 F, To 6t this wave, we note that the antibound-
state pole on the second or unphysical sheet leads to a
zero in the 5matrix at the corresponding position on the
physical sheet of the complex-energy surface. The con-
dition that the 8 matrix have a zero at Ey= —0.0665
MeV was used to obtain the attractive coupling strength.
We then searched for the values of the repulsive coupling
strength and the attractive and repulsive inverse ranges
which give the best fit to the phase shift and the
scattering length. Effective-range theory was then used
to determine the value of the eEective range produced
by the separable-potential model. Our amplitudes are,
therefore, glarunteed to contain the antibound state
pole at the correct position on the unphysical sheet.

If we consider the partial wave 'Si as uncoupled, we
demand that the 8 matrix have the deuteron pole at
E~———2.22452 MeV on the physical sheet. This is
obtained by forcing the denominator function D to have
a zero at the pole position. This condition (D=O) was
used to determine the attractive coupling strength.
Then our search programs determined the values of the
remaining three parameters which gave the best 6t to
the phase shift and scattering length. Later we obtained
the effective range from Eq. (11).

When we at last consider the coupled waves 'Si and
'Di, we again guarantee the correct binding energy for

Partial
wave

Repulsive potential
parameters

aB cz
(F-1) I.(Mev F)»sj

Attractive potential
parameters

%4 ca
(F-1) $(MeV F)1/sj

SSS
sSx SR
SPS
SOS

SP4

2.230
2,036a

75.58
76.46»

2.044
1.735
1.406
1.836
1.562

70.48
12.45
5.007
4.64/
4.176

174.6
179.8

4.933
0.0470
0.154

a Special repulsive form factor must be used.

TABLE VII. Case-I Gts to nucleon-nucleon phase shifts in
coupled waves, assuming ~q=0 and neglecting by+~. These partial
waves are 6tted by the separable potential

«(P,p') =g~(p)g~(p') hl(p)hl(p'), -
where the form factors are

g ~(P) =&ep'/(P'+us') "+"" k~(p) =~~p'/(P'+n~') "+""
except in the SR Gts to the partial wave 'S~, where the repulsive
form factor is

gin(p) —C@pHQ/(ps+ ger) (t+ll)/8

The units of the attractive inverse range eg and the repulsive
inverse range an sre inverse fermis (F ', 1 F= 10 'sem). The units
of the attractive coupling strength Cg and the repulsive coupling
strength C~ are (MeV F)». Dots indicate that a form factor
is to be set equal to zero. P R» is the sum of the squares of the
residuals,

60

2 i~'= Z B~'*"(~)—~~"'(~)j'
i j,

over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV,

2 &'—= 2 9P*"(F*) si'*'(&—')3'

over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV.

Partial
wave

Repulsive potential Attractive potential
paraineters parameters

aa cz aA c~
(F ~) I (MeV' F&ls)g . (F ~) I.(MeV Ft/s)g

SSt
sS& SR
SPS
SOS

SP4

2.624
2.515a

84.69
62.67a

2.176
1.330
2.080
2.366
1.977

68.10
13.82
21.62
22,50
18.51

164.9
186.6

0.310
0.020
0.319

a Special repulsive form factor must be used.

the deuteron by obtaining the attractive strength. in
l=O from the condition that D=O at Eg) ———2.22452
Mev. Next we searched for the values of the remaining
seven parameters which yielded the best 6t to the phase
shifts, mixing parameter, scattering length„deuteron
quadrupole moment, and D-state probability. The
effective range was obtained as before, from Eq. (11).
Since the quadrupole moment of the deuteron depends
on the oG-energy-shell behavior of the two-nucleon
interaction, we weighted this quantity so that our
searching routines were heavily biased in favor of those
parameter sets that led to a nearly correct quadrupole
moment. We found that the resulting D-state proba-
bilities were quite low. However, since the available
estimates of the D-state probability are imprecise and
seem to be somewhat model-dependent, we do not
believe that these low D-state probabilities constitute a
serious drawback. Table X gives the low-energy parame-
ters resulting from our Qts.

For the coupled waves J=2 and J=4, we were able to
reproduce the phase shifts and mixing parameters with
four parameters, an attractive strength and inverse
range in 7+1 and an attractive strength and inverse
range in J—1. In the coupled waves J=3, we need six
parameters to Gt the phase shifts and mixing param-
eters. Since there is no attractive force for 7+1, our
separable-potential formalism guarantees that the mix-
ing parameter is positive. Note that if we had taken only
the repulsion needed to reproduce 'G3 and the attraction

TABLE VIII. Case-II 6ts to nucleon-nucleon phase shifts in
coupled waves, assuming eg=0 and neglecting by+1. These partial
waves are Gtted by the separable potential

Fi(p, p') =g~(p)g~(p') In(—p)h~(P'),

where the form factors are

gi(P) =("-sp'/(P'+us')"+"", 4(p) =C~p'/(P'+&ss)"~'"i

except in the SR Gts to the partial wave 'S~, where the repulsive
form factor is

gin(p) —Q pl+8/(ps+ses)(l+4)lI

The units of the attractive inverse range eg .and the repulsive
inverse range gg are inverse fermis (F ' 1 F=10» cm). The
units of the attractive coupling strength Cg and the repulsive
coupling strength Cg are (MeV I")'/~. Dots indicate that a form
factor is to be set equal to zero. g E.' is the sum of the squares
of the residuals,
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Tmr.E IX. Case-III Gts to nucleon-nucleon phase shifts in
coupled waves, assuming eJ =0 and neglecting Sg+1. These partial
waves are Gtted by the separable potential

i'g(p, p') =gg(p)gg(p') &g(—p)&g(p')

where the form factors are

gg(p) =&ggL(&/ P')Qg(l+pgg'/2P')3"
kg(P) =G/I (1/vPs)Qg(l+gggs/2P )gg&s,

except in the SR its to the partial wave sS~, where the repulsive
form factor is

g ggg (p) =
I Gggpg/(ps+ sggggs) )L(1/grp&)Q! (l+ggRs/2P&) lgl&

The units of the attractive inverse range pg and the repulsive
inverse range gggg are inverse fermis (F ', 1 F=10 "cm).The units
of the attractive coupling strength Gg and the repulsive coupling
strength |"g are (MeV F)'/'. Dots indicate that a form factor is
to be set equal to zero. P E' is the sum of the squares of the
residuals,

50

2 ~'=- 2 I:~g'*"(@)-sg""(4)7

over the 50 data spaced at 8-MeV intervals in the range 0-
400 MeV.

Fn. 26. Fits to the triplet phase shift 'S1 (assuming &1=0 and
neglecting b D1). Description of curves is as for Fig. 1.

needed to 6t 'D3, this attempt at a four-parameter 6t
would have &3=0.

Ke would like to point out that our fits to the im-
portant phase parameters 'I'1, '51, and 'D1 deviate from
the energy-dependent data curves in the same way as
the energy-independent data points of the Livermore
phase-shift analysis.

Generally speaking, our type-II its seem to be the
most successful and this is particularly fortunate since
all the relevant integrals can be done analytically for
3=0 and L= 2. The type-III fits are the least successful,
except in the higher partial waves. We have not given
values of X.' since this number is meaningless without
some knowledge of the error in the input data, which is
not available for the Livermore energy-dependent phase
shifts.

110

ggg

rsg

'a

0
L
gn

ggg

Leb kinetic energy tMeV)

-6.7
400

FIG. 27. SR 6ts to the triplet phase shift 'S» (assuming F1=0
and neglecting O'Dt) with special repulsive form factor. Description
of curves is as for Fig. 1.

Partial
wave

Repulsive potential
parameters

iggR Gz
(F-') L(Mev F)'/'g

Attractive potential
parameters

PA GA
(~ ') t:(Mev F)'/'3

3S1
381 SR
3+2
&Dg

gp4

4.326
3.387R

~ ~ ~

300.0
200.0R

1.818
3.092
1.437
2.048
1.620

39.52
28.27
8.952

11.96
12.1.4

690.8
646.2

22.90
0.248
0.0158

R Special repulsive form factor must be used.

Fgp(P P'; k')=Egp(P P'; ks)/Xgp(k, k'; k')

Fgp(k, k; k ):Fgp(ks) =1. —

Once tile hest VRhlcs of thc separable-po tclltla1
parameters were found, it seemed desirable to have an
independent check on our work. Therefore, the sepa-
rable potentials were put into computer programs that
solve the Lipplnann-Schwinger equations (1) angl (2) as
complex matrix-inversion problems. The latter pro-
grams were developed completely independently of the
present work. Since the values of the T matrices and
phase parameters calculated from the two approaches
agree, this constitutes an independent check of our
results.

V. USE OF FITS

These 6ts can be used. in a straightforward manner to
reproduce the on-shell scattering amplitude. The sepa-
rable-potential approach also provides a convenient
extension of the scattering amplitude oR the energy
shell.

For calculations involving oR-energy-shell nucleon-
nucleon scattering amplitudes, we suggest the following
approach. In our separable-potential formalism,

Tgp(pp', k') =Ngp(pp', ks)/D(ks),

wherel=Pforuncoupleglwaves. Thus, when Tgp(ks)WO,

Tgp(p, p'; k') =Fg p(p, p'; k')Tg p(k'), (16)
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Tmrx X. Low-energy parameters. '
18

Experiment
Case-I 6t
Case-II 6t
Case-III 6t

So parameters

Singlet scattering
length a,

(F)
—23.678—23.679—23.677—23.681

Singlet eGective
range r,

(F)
2.729
2.728
2.731
2.722

Experiment
Case-I 6t

with SR
Case-II 6t

with SR
Case-III 6t

with SR

'S~ parameters (coupling to 'D' neglected)

Triplet scattering Triplet eGecttive
length ag range rg

(F) (F)
5,396 1.726
5.391 1.719
5.394 1.723
5.393 1.722
5.567 1.938
5.406 2.739
5.411 1.745

0
0

~ / ~

~ . ~ . I ~
' ~ ~ 1 ~ ~ ~ I. ~ 'I. . . . I

Lab kinetic energy (MeV)

0'o.

4l
ED

O
CA

. ' -1.5
400

Experiment
Case-I 6t

with SR
Case-II 6t

with SR
Case-III 6t

with SR

J=2
Triplet

scattering
len th a&

F)
5.396
5.655
5.482
5.394
5.592
5.988
5.634

parameters

Triplet
effective
range r~

(F)
1.726
2.042
1.834
1.723
1.968
2.409
2.018

Deuteron
quadrupole

moment
(F—

2)

0.278
0.277
0.276
0.278
0.278
0.278
0.276

Deuteron
D-state

probability
(%%uo)

~ ~ ~

0.7
1.0
1.1
0.8
0.5
0.5

a All fits to the partial waves 1Se contain a singlet antibound-state pole
at E = -0.0665 MeV on the second or unphysical sheet of the complex-
energy Riemann surface. All fits to the J=1 coupled-wave system and to the
ISi partial wave neglecting the coupling to ID1 contain the deuteron pole atE= -2.22452 MeV on the physical sheet of the complex-energy Riemann
surface.

for k'=ko, where S~p&'&(ko) and T~p&'&(ko') are the first
derivatives of E~p(k') and T~~. (k') evaluated at ko=koo.
Thus we have, for k'=ho',

Now, we can use Eq. (16) in calculations with
Fip(p, p'; km) obtained from the separable-potential
model and T~p(k') )expressed directly in terms of the
experimental phase'shifts and mixing parameters. Of
course, the expression for T& (pp, p', k') in Eq. (16) is
still separable in the incident and outgoing momenta p
and p'. Similarly, if Tip(koo)=0 we have E'p(koo)=0
and

zip(p, p'; k')
T„,(p,p', k') = — T, p&' (ko')

X'p&'&(ko')

FzG. 28. Fits to the triplet phase shift gPq (assuming &2=0 and
neglecting 5'F2). Description of curves is as for Fig. 1.

6 0.2

Fl
D

47
Ol

8

the phase shifts and mixing parameters, can be inserted
into calculations and the model dependence will lie only
in the treatment of the region k'(0 and of oG-energy-
shell effects. The desirability of this separation between
on-shell and off-shell effects is indicated by recent p p-
bremsstrahlung calculations. "In these calculations, the
small differences between the on-shell predictions of
various potentials seem to inQuence the results as much
as the inclusion of o6'-energy-shell eGects. With our
approach any difference in the results of two potential
models will be a consequence only of differences in o6-
energy-shell predictions. Although similar separations
of on-shell and o6-shell behavior can be made for local

where
Tip(P,P', k') =Fipo(P,P', k')Tip "(ko), (17)

Fipo(P P'; k') =N~ p(P P', k')/Sii &'&(ko'),

and again the oG-shell amplitude is given by the product
of a separable factor obtained from the separable-
potential model and a quantity dependent only on the
on-shell scattering data.

By using Eqs. (16) and (17), the exact experimentally
determined scattering ™plitude for k2&0, in terms of

0
0 Lab kinetic energy (MeY}

-0.2
400

FyG. 29. Fits to the triplet phase shift 'Da (assuming e3 0 and
neglecting 8'Gs). Description of curves is as for Fig. 2.

"W. A. Pearce, W. A. Gale, and I. M. Duck, Null. Phys. 83,
241 (1967).
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have proposed, where we keom that the on-shell ampli-
tude for k'&0 is represented exactly, and the only
possible difference between the difterent calculations
lies in k2(0 or o6'-energy-shell e6ects. We might 6nd
that many calculations are relatively insensitive to the
details of the oA'-energy-shell behavior of scattering
amplitudes.

The 6ts that we have given will go immediately into
any calculations involving nucleons that have been set
up to use separable potentials and, in particular, they
can be used directly in calculations based on the
Tabakin potential. Some of the integrals involved in
our 6ts will have to be done numerically and put into
computing machines in tabular form, but this is a very
simple matter.

0
0 Lab kinetic energy (MeV)

-0.2
400 ACKNOWLEDGMENTS

FIQ. 30. Fits to the triplet phase shift 'E4 (assuming e4=0 and
neglecting 5 H4). Description of curves is as for Fig. i.

potentials, ' they are much simpler and easier to use in a
separable-potential formalism.

If we use several diferent models for the oG-energy-
shell scattering amplitude in a single calculation, we
should get an indication of the dependence of the
calculation on oQ-energy-shell behavior and k'&0 be-
havior. This is particularly true in the approach that we

I would like to thank Dr. Joseph V. Lepore and Dr.
Robert J, Riddell for their friendship, support, and
encouragement. I am grateful to Dr. Richard A. Amdt
and Dr. Malcom MacGregor for providing me with the
phase-shift data in a convenient form prior to publica-
tion. I would especially like to thank Eric R. Heals,
William F. Dempster, Dr. Loren P. Meissner, and Carl
Quong of the Mathematics and Computing Group at the
Lawrence Radiation Laboratory. Their assistance in the
completion of this work was invaluable.


