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Eftective operators for valence (open-shell) nucleons are constructed for electromagnetic interactions in
nuclei. Such operators are calculated in terms of excitations and deexcitations of particle-hole pairs of the
core nucleons. The nuclear force involved here is a realistic nucleon-nucleon potential (Yale-Shakin).
The theory is applied to the tin isotopes which are described in terms of five valence neutron subshells and
of all the core and empty subshells of both the neutrons and protons between the magic numbers 8 and 126.
The effective quadrupole charge matrix, with all its elements of about the same order of magnitude, gives
the first partial support to the concept of a constant neutron effective charge. Calculations of observables
are performed with the states of the even tin isotopes described in terms of the two- and four-quasiparticle
Tamm-Dancoff theories involving explicitly only the valence neutrons. Results are presented for the
B(E2, 2~+-+ 0~+), the quadrupole moment Q(2&+), the gyromagnetic factor gs,—,and the inelastic electron
scattering form factors for the 2q+ and 3q states of Sn"'. Except for the last (3q ) form factor, good semi-
quantitative agreement with all the corresponding experimental data is obtained. The reported calculations
involve no ad hoc adjustable parameters.

r. 1mRODVnION

'HE enormous complexity and the prohibitively
large energy matrices which arise in the many-

body problem of a Gnite nucleus force us, in the shell-

model description of the nuclear spectra and of the
nuclear ground state, to eliminate from our explicit
treatment the so-called core. The core, which con-
stitutes the main bulk of the nucleus, is thought to be
the inert part of the nucleus: usually it is the ensemble
of all the protons and neutrons of all the closed sub-
shells (possibly of all the closed major shells) in the
ground state. These subshells lie deep inside the Fermi
sea and are less important for the properties of all the
low-lying states than the open (valence) shell nucleons.
This picture is, however, a fair approximation only
when one works with effective phenomenological
nuclear forces which are supposed to contain implicitly
all the effects of the excited conlgurations of the core
nucleons. In fact, it has been shown' that the effects
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of such configurations, i.e., the core polarization sects,
are extremely important in describing the low-lying

states in terms of realistic nucleon-nucleon potentials.
These have to be drastically renormalized if they are to
be used for mixing conhgurations of the valence
nucleons only.

Similarly, in a phenomenological description of elec-

tromagnetic interactions of nuclei, the nucleonic charges
of the valence protons and neutrons are supposed to be
renormalized for all the contributions of the core
nucleons. This is the concept of the effective charge
which is, in a phenomenological theory, an adjustable
parameter. This leads to an uncomfortable freedom,
since the eGective charge is different for the neutrons
and the protons and for various multipoles. In fact, in
addition to the philosophical difhculty of mixing purely
phenomenological and microscopic concepts, one also
usually has too many adjustable parameters in the
theory. Since the electromagnetic interactions with
nucleons are well known, we have even less excuse for a
phenomenological approach to these interactions than
for such an approach to the nucleon-nucleon inter-
actions between the valence protons and neutrons. It is
clear that a fully microscopic theory of nuclear prop-
erties and of nuclear spectra in terms of realistic
nucleon-nucleon potentials should be free of the concept
of a phenomenological adjustable parameter.
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Several authors ' have attempted microscopic
derivations and estimates of the effective charge using
the picture of virtual excitations of core nucleons. For
example, a neutron-effective charge could arise from
second-order processes in which. a virtual or a real
photon is absorbed by a core proton, creating a particle-
hole pair which is subsequently annihilated (de-excited)
in a collision with a valence neutron. Unfortunately, the
description of Refs. 7—9 has been based only on phe-
nomenological nuclear forces and involved many crude,
schematic approximations, thus giving only qualitative
or, at best, semiquantitative estimates.

It is clear that only realistic nucleon-nucleon poten-
tials, avoiding the introduction of new adjustable
parameters, are to be used in these calculations when a
quantitative comparison with experimental data is
wanted '0

In this paper we study the pro&lem in detail and in a
quantitative way in relation to a realistic nucleon-
nucleon potential. Our numerical analysis is performed
on the example of the even tin isotopes, which are
representative of the so-called vibrational nuclei. We
derive formulas for the effective electric (or magnetic)
multipole operator Oq„('"), which may then be treated
with all the retardation effects (no approximation for the
radial integrals involved) or in the long-wavelength

approximation.
In particular, we examine the question: To what

extent can be effective multipole operator 0),„("'& be
replaced by e,«(")0» when e~,«~( ' is a unique over-all

constant effective charge (independent of the transi-

tion configuration) P

We apply our computed Oz„'"') to the study of some

of the reduced E2 transition probabilties B(E2,I; +Ir);-
the quadrupole moment of the first excited 2&+ state,
Q(2t+); the gyromagnetic factor gs, of the St state;
and the inelastic electron scattering form factors cor-

responding to the final states 2~+ and 3~ . We compare
our results with the recent experimental data, in

particular for the nucleus Sn'".

II. EFFECTIVE SINGLE-PARTICLE OPERATORS

In the case of a realistic nucleon-nucleon potential
containing a strongly repulsive part at small separation
distances (hard core or at least a "soft" core for a local,

static potential) the effective nuclear interaction
Hamiltonian is defined in the sense of the Brueckner

7 A. De-Shalit, Phys. Rev. 113, 547 (1959); S. Fallieros and
R. A. Ferrell, i'. 116, 660 (1959).

'H. Mottelson, in International School of Physics "Enrico
Fermi, " Course XV, edited by G. Racah (Academic Press Inc.,
New York, 1962), p. 44.' Historically, the earliest considerations in terms of conhgura-
tion mixing are R. D. Amado and R. J. Blin-Stoyle, Proc. Phys.
Soc. (London) A70, 532 (1957); A. Arima and H. Hovic, Progr.
Theoret. Phys. (Kyoto) 11, 509 (1954};12, 622 (1954); R. Blin-
Stoyle, Proc. Phys. Soc. (London) A66 729 (1953};R. J. Blin-
Stoyle and M. A. Perks& sMd A67, 885 195.4)."M. Gmitro, A. Rinuni, J. Sawicki, and T. Weber, Phys. Rev.
Letters 20, 1185 (1968); because of a misprint, the definitions of
the symbols e1 and em of Eq. (1) of Ref. 10 are interchanged. How-
ever, all the numerical results are correct.

+&XIO,„lw&(g/e+)&p'wl V»I~X&], (1)

where the first term in the sum on the right-hand side
of Eq. (1) corresponds to diagram (a) of Fig. 1 and the
second to diagram (b). Here q=+1 if rr is a (proton)
particle and x a (proton) hole, and q=0 otherwise; and
the energy denominators are e+ =E,'—Ere+ (E„e—E„').
In the following we shall limit ourselves to spherical
symmetry with degeneracy in the magnetic substates.
Consequently, we utilize the Wigner-Kckart theorem,
and only reduced matrix elements of the operators
are involved. Our notation uses Latin subscripts for the
single-particle states, except for the j-projection
quantum number rn. La corresponds to n= (a, tts ), etc.j
It is convenient to introduce the particle-hole coupled
reduced matrix elements F»(abed, J') of the neutron-

NP

(a) (b)

FIG. 1. Lowest-order diagrams for processes contributing to
rh

matrix elements (n'()O, u" ((n) in the case of a nucleus with neutrons
only in the valence shells.

xx F.Tabakin, Ann. Phys. (¹Y.) 30, 51 (1964).

theory T. his means that the two-body potential V(i,j)
is replaced by the appropriate Brueckner reaction
matrix G(i,j) in the original expression for the potential
energy operator. Any perturbation-theory calculation
is based on such an effective Hamiltonian Lan expansion
in terms of G(i,j) (e.g., Refs. 1—3)j. Only if one uses a
strongly nonlocal or velocity-dependent potential, e.g.,
Tabakin's" potential, can one use the standard pertur-
bation theory in terms of V(i,j) itself.

To be specific, let us now consider the problem of a
nucleus with a doubly-magic core possessing neutrons
only in the open (valence) shells, like a tin isotope with
the 50-50 core. We can then calculate the effective
operator of a multipole O~„ for an extra-core single
neutron. Clearly, here the neutron-proton two-body
potential V» (or E») is responsible for the trans-
mission of the electromagnetic interaction from the
core protons to the neutrons. To lowest order, this
effective interaction can be represented by the two
diagrams of Fig. 1.

In fact, since there is no first-order contribution
(except for Oq„being a magnetic interaction with the
neutron spin), we obtain in this case the following ex-
pression for the single-neutron matrix element:

&.'IO, „~ «'I.&-=—2 L&,'xI V»l. &4/e )& lO,.lx&
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proton potential t/'z& as deined by
Frump(abed,

J') = ——,
' P (j,j s, res —me I

J'M')

x(j.j.; m, —~,
I
zM')

The Wigner-Kckart theorem for the element (o'IOq„lo)
can be written as

&u'I o~. I
~&—=&"llo~llr&~ '(—)'""'

&t,'(j;j„m..—«s, l) p), (3)
R—= (2) +1)'".

It follows then immediately from Eq. (1) that for an
electric 2" pole

(& IIO„i oil&&=2 p LF,(n'~pa, ) )e= (pllO, lla)

+ &allO, ljp&e,
- F~p(n'nap) )j. (4)

In Ref. 5 reduced F elements in the isotopic spin
formalism are employed. Our Frtrp(n'Npp', J) in Eq. (4)
are connected with these F elements through the
formula

Frrp(abed, ))= ,'[F(abed, —) T—=O) F(abed,—)T= 1)j, (5)

where T is the isospin of a pair (ab and cd) and the cor-

responding matrix element (nbl V(1—Prs) IPy& is anti-
symmetrized in the two interacting nucleons.

One can also consider higher-order terms as cor-
rections to (p'IO&„&'«&

I p& of Kq. (1). For example, one

can easily include iterations of the bubble diagram
of Fig. 1, which is the simplest correction (cf. Fig. 2).
One can easily calculate the correspondingly corrected
(e'IIOqt'"'+DOE&"'&lln&, even including all the ap-
propriate exchange diagrams (not indicated in Fig. 2).
In fact, one then obtains Eq. (4) with F(abed, ) ) merely
replaced by appropriately renormalized 5 elements of
Ref. 5. However the corresponding corrections are, in

general, quite small. In Sec. IV we shall discuss these
corrections in connection with our numerical examples.

Here, however, we shall consider the case when we

have valence protons in addition to valence neutrons in
a given nucleus. The following formulas will also be
applicable to the magnetic multipoles of interaction via
the core neutron spin. We calculate the effective O~

operator for a valence proton. This contains the direct
interaction besides diagrams similar to those of Fig. 1

(gt ) (b')

FIG. 3. Diagrams contributing to the exchange
terms of Fpp in Eq. (6).

with Vs' replaced by Vpp(1 Prs), where Prs is the
exchange operator of the two protons involved. For the
reduced matrix element we And

&p"llo, t «&lip')=&p"llo, lip'&

(protons)

+2 p LFpp(p"p'pa, ) )(q./e )(pllo) lja)
ph

+ &allo, lip&(~./;)F pp(p"p'ap, ) )j
(neutrons)

+2 Q LFsjp(p"p'pa, X)(g„/e )(pljO&lla&
ph

+&all@lip&(a./e+)FNp(p"p'ap, ) )j, (6)

where q and q„are appropriate projectors of the proton
and. neutron particle-hole (ph) pairs, respectively. The
last sum in Eq. (6), which runs over all the neutron
particle-hole pairs, is present only if 0& is a magnetic
multipole operator of interaction with the neutron spin.
The quantity Fpp(abed, )) is expressed in terms of F
with dehnite isotopic spin T, i.e., we have

Fpp(abed, ) )=xs(F(abed, ).T= O)+F(abed, ) T= 1)j. (7)

The reduced matrix elements Fpz correspond to anti-
symmetrized elements of the potential Vpp, i.e., to
elements of Upp=Vpp(1 Prs). The —exchange terms
of Fpp in Eq. (6) are connected with the elementary
processes represented by the diagrams of Fig. 3. Ob-
viously& Kq. (6), rather than Kq. (4), holds for neutrons
when Q&, has nonvanishing single-neutron matrix ele-
ments (e.g., for jI11 transitions); here Fpp is replaced
by FrrN, again of the form of Eq. (7).

Equations (4) and (6) are essentially similar to the
formulas given in Ref. 7 in terms of Slater integrals.
References 8 and 9 omit terms corresponding to our
diagrams (b) and (b') of Figs. 1 and 3, respectively.

In the present paper we do not attempt to analyze any
more complicated diagrams (microscopic processes)
which may give additional contributions to 0»""&.
However, the diagrams of Figs. 1 and 3 are dominant.

o"
Fro. 2. Simplest diagram contributing to the higher-order

corrections to matrix elements (n'jjOq'rr[jw) of Eq. (i).

III. ELECTROMAGNETIC EFFECTIVE
TRANSITION MATRIX ELEMENTS

We use the nuclear many-body states which are
explicitly constructed with only valence nucleons.
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Since such states are usually given in the second
quantized form, it is useful to express the operators
O»,„'"' in terms of the creation (c„) and annihilation

(c.) operators. Using the Wigner-Kckart theorem one
can write

formula of Eq. (10); only the single-particle (sp) re-
duced matrix element (nllO&, &'"&Iln') has to be replaced
by (cf. Appendix A)

&n'Ilo~'"'(E E') lln&

0&,„I"'&=——Q X(n'n»p), (8)
2 p (F (n' pa, ) )(E '—E 0—(E'—E))—'

ph
nni

where (n'IIO&, '"'&lln& is a reduced matrix element, and

X(n'n»p) =—Q ( )&'"+""(j—„j„;m„m—, I &p)c:tc„(.9)

In practice, in medium-heavy nuclei one deals with

many quasiparticle states, and it is useful to perform
a quasiparticle transformation of Eq. (9). An explicit
expression for this form of X is given in Eq. (11) of
Ref. 12.

The matrix element for a 2" transition from the
nuclear state

I
+q~s& to the state I%'q ~.~') can now be

expressed as

(&&t'J'&s'
'

I
o .'""

I
&p~&&r')

J' '&E'J'—llo~""IIEJ&(J~' J&f&
I
J'&')

&E J llo, &" &IIEJ&

= —R-' Q (n'IIOg&"'&Iln&&E'J'IIX(n'nI&)IIEJ&, (10)

where (E'J'IIXIIEJ) is a reduced matrix element of X
between the two many-body states in question. If one

uses the expressions of Eqs. (4) or (6) for (allO&, &'"&lie'&

in Eq. (10), one introduces an approximation which is

not identical with the standard many-body perturba-
tion theory procedure used to obtain the nuclear many-

body states with which to calculate the matrix ele-

ments of Og„. In our numerical analysis we shall

examine in detail the goodness of this approximation,
Strictly speaking, the formulas of Eqs. (4) and (6) are

directly applicable to the independent-particle model,

e.g., in describing creations of pure single particle-hole

pairs in a shell model without residual interactions.
It is interesting to compare the above prescription,

that of using Eqs. (4) and (6), with the corresponding

forinula obtained from standard perturbation theory.
I,et us consider the Hamiltonian H~I of the inter-
action of the valence neutrons with the core protons.
The perturbation 6eld for the many-body system is
described by {I&pz&Lf~& IO) ), where I&pz~s) refers to the
valence neutrons only and IO) is the spin-zero ground

state of the proton core. By perturbation theory we cal-

culate the perturbed set involving the proton (ph)
pair excited con6gurations {(I &pp& I ph, I&,&~)~~} (a
vector product). On the perturbed set we now calculate

the matrix elements of O),„(~), an operator which acts
only on the proton coordinates. Again one obtains the

1 J. Hendekovic, P. L. Ottaviani, M. Savoia, and J. Sawicki,
Nuovo Cimento 548, 80 (1968).

x&pllo, '»lla)+(allo '»ll p&

X(E ' E&,'—+(E' E))—'FNp—(n'naP, X)j (11.)

The only difference between Eqs. (11) and (4) is the
dependence on the energies E and E' of the tv' states
of the valence neutron system involved instead of
the unperturbed sp neutron energies E ' and E ',
respectively. In operator form, 0&,„&"'& of Eq. (11) can
be written as

O~ "' (E) g=——R '(n'-IIO, & &(E,a„)lln&

XX(n'n»p). (12)

This differs from Eq. (8) by its dependence on E and
on the eGeetive total Hamiltonian of the valence
neutrons, H~. Like 0&,„'"'& of Kq. (8), Oq„~'"&(E) of
Eq. (12) is a nonlinear neutron many-body operator.
The formulas of Eqs. (11) and (12) arequitegeneral;
i.e., they are valid for any many-body theory of the
valence nuclear system.

Similar formulas are obtained for the case involv-
ing core nucleons that have the same nucleonic charge
as the valence nucleons. For example, if p' and
p" are two single-valence proton states, we obtain
(p"IIO&~""(EH,&)lip'& in exactly the same form as
Eq. (6), where the term E —E in e+ and e is re-
placed by H„&—K Here H, & is the eGective total
Hamiltonian of the valence nucleon system and 8 is
its initial-state eigenvalue. In our application we use a
similar formula for the valence neutrons in calculating
magnetic moments of excited states of the even tin
isotopes.

Explicit formulas for the reduced matrix elements
&E'J'IIX(n'n») IIEJ& where {I A~~&) are zero-, two-, or
four-quasiparticle eigenvectors are given in Refs. 12—14.

The Feynman diagrams appropriate to the processes
of Eq. (11) are those of Fig. 1, where the lines & and &

'

should be replaced by the "phonon" lines of lg~~~)
and IQJ ~ s'&, respectively.

Because of its dependence on E and E', the use of

& llo~'""(E E'll &

of Eq. (11) is more complicated than the use of
&IIO. '""ll& of Eqs (4), (6), and (8). It is clear that the
latter version of our theory has, in practical calcula-
tions, the advantage of universality, i.e., of the in-
dependence of the many-body eigenstates involved in
the applications. Still another complication arises from
the following difference between the symmetry prop-
erties of O&,„~ef'& and Oz„&"'&(E,E') of Eq. (11):With



the usual phase conventions" '4 which we use in the
present worI/ it is immediately veri6ed that, while
(a'Il~illo&—= (—)' '"(ollOillo'&, the same s m«ry re-
lation holds for the effective operator of Eqs. (4), (6),
and (8):

(I'll~""&ill&=(—)'" '"'(~lioi'"&Il~'& (»)
Instead, for the operator of Eq. (11)we 6nd

(n'i[Opt'"&(E, E')iiN&

=(—) '- '(eiiO), '"&(E',E)iie'&. (14)

The interchange of E and E' and of e and e' in the latter
case reilders the calculation of (E'J')(Og&"'&(E,E') ~(EJ)
more complicated than that of (E'J'((O~&"'&((EJ& for a
given EJ~ E'J' transition. Only for diagonal (E=E')
matrix elements does no such extra trouble arise Las
in calculations of the quadrupole moments, magnetic
moments, etc. ; in this case calculations with O~„('"&

(E,E'= E) are e—quivalent to those with O~„&'«& of
Eqs. (4) and (6), neglecting E„—E„s in e+J. Itfollows
from our numerical results, presented below, that the
two diferent de6nitions of the effective electromagnetic
operators lead to very small di6erences in the values of
the calculated observables. This seems to justify ex-
tensive use of the s™pierversion 6&,„&"'&, which is in-
dependent of E and E'.

As for a critical evaluation of the usefulness of the
extremely crude effective-charge approach, we cal-
culate the "eRective-charge matrix" (E™),defined as

ei(~',~)—= (~'llo~""'Il~)/(~'tloill~&-t, (»)
where ("'llOillN&-t is the "reference matrix" de6ned
in the usual way for "direct" e —+ e' transitions, and
e,f~(")= i. ECM gives the actual theoretical eGective
charge for each individual e ~ e' transition.

IV. APPLICATION TO ELECTROMAGNETIC
PROPERTIES AND TO INELASTIC SCAT-

TERING OF ELECTRONS FROM THE
EVEN ISOTOPES OF TIN

The spectra of the even isotopes of tin have been
generally successfully described by two- and four-
quasiparticle random-phase-approximation (RPA) and
Tamm-Danco6' theories. ' ' " " In particular, the
realistic nucleon-nucleon potentials of Tabakin" and of
Yale-Shakin' ' including the core polarization re-
normalizaton have been applied in the quasiparticle
Tarrun-DancoR (QTD) and second Tamm-DancoR

'3 P. L. Ottaviani, M. Savoia, J. Sawicki, and A. Tomasini,
Phys. Rev. 153, 1138 (1967).

'4 A. Rimini, J. Sawicki, and T. Weber, Phys. Rev. 168, 1401
(1968)."R. Arvieu, Ann. Phys. (Paris) 8, 40'l (1963); R. Arvieu,
E. Saranger, M. Saranger, M. Vdn4roni, and V. Gillet, Phys.
Letters 4, 119 (1963).' P. L. Ottaviani, M. Savoia, and J. Sawicki, Phys. Letters
248, 353 (1967).

~7 K. E. Lassila et at. , Phys. Rev. 126, 881 (1962).' C. M. Shakin et at. , Phys. Rev. 161, 1006 {196/).

(QSTD) theories. s' It is our aim here to calculate the
eGective electromagnetic operators appropriate to our
equations of Sec. III, corresponding to one such
realistic eGective nuclear force, and then to use them
to calculate some electromagnetic properties of the
even tin isotopes. The 6ve valence neutron subshells
are 2d5(2, igv(2, 3sg12, 2dgf2, and ihgglg. For the particle-
hole excitations of the core nucleons we consider all
subshells between the magic numbers 8 and 126.

Unfortunately, the .lack of direct experimental -in-

formation on the shell-model sp energies on the one
hand, and of any self-consistent Hartree-Fock (HF)
or Hartree-Fock-Bogolubov (HFB) calculations of such
energies on the other, forces us to use other methods for
determining them which are much less satisfactory. .
In addition, many observables and even some energy
levels not of a collective character are well known to be
sensitive to the input values of the sp energies. A pro-
cedure which seems to be appropriate in the cir-
cumstances is that of deriving the sp energies from the
observed energy levels of the odd isotopes by the
inverse-gap-equation (IGE) method. "" This pro-
cedure is currently being applied by the present authors
in coDaboration with Alzetta and Gambhir. ~' Since the
validity of the main conclusions of the present paper
does not hinge on a detailed quantitative 6t to any
particular experimental data, we are in the present
numerical applications limiting ourselves to a less well-
justiit, d choice of the set of the sp energies involved.
To do so, we have employed the values of the sp binding
energies obtained by the Bonn group" with a reaspnable
'Ql'oods-Saxon potentiaL The energies (in Mev) for
the 6ve valence subshells (Nlj) are —10.52(2dss),—9.36(ig-,'), —8.145(3s~s), —7.78(2das), —7.16(ih+); for
the eight important proton core (hole) subshells we
have —30.09(its), —27.93(idas), —27.07(2'), —22.91
(1f-,'), —19.0'/(1 f-,'), —18.82(2Pss), —1"/.28(2P-,'),—15.24(igf); in addition to the 6ve valence subshells

consider six higher proton particle sub shells:—2.26(2f-,'), —1.14(3Ps), —0.23(3Px), +1.01(2fs),
+1.04(h—", ), +1.07(ih'). These energies are most
appropriate to the isotope Sn~~e. Any other particle
or hole subshells give negligibile contributions. The
oods-Saxon radial wave functions are reasonably
approx1IIlated with those of the harmonic oscillator
with b '=+v=0.46F '. It appears that the (s,e'p)
data on some light nuclei and other similar information
suggest, in general, considerably larger binding energies
for the deep-lying subshells than those corresponding
to a "reasonable" %oods-Saxon potential. Interpreted
as a correction for many-body eGects, this discrepancy

» V. Gillet and M. Rho, Phys. Letters 21, 82 (1966).» g. K. Gambhir, International Center for Theoretical Physics,
Trieste, Report No. IC/68/32 {unpublished); Phys. Letters 268,
695 {1968).

» R. Alzetta et al., International Centre for Theoretical Physics,
Trieste, Report No. 1C/68/83 (unpublished).» K. Sleuler, M. Seiner, and R. De Toureil, Nuovo Cimento
$25, 45 (19@');528, 149 (1967);and private communication from
M. Seiner.
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TsaLE I. Matrix of the effective quadrupole charge of Eq. (1~)
for E2 transitions fear the five valence-neutron subshells in Sn. The
numbers without parenthesis refer to 0~2&' & of Eq. (4), and those
in parenthesis to the O+2('") (E=E') of Kq. (11).The sp and other
parameter values are explained in the text.

/

3s~~

2l$

3$$

0.6143
(0.6154}
0.6459

2'
0.6757

{0.6096)
0.6989
(0.6398)
0.6521

ig-'

1.1636
(1.0516)
1.1132

(1.1054)
1.0844 ~ ~ ~

0.6535

would imply more spread-out sp HF energies than in
our present calculation (a smaller sp level density). This
could lead to a reduction of the contributions to
((i0&,&"'&(() of the deep-lying core nucleons. On the
other hand, the most important contributions (such
as that of the igsssubshell) may be even greater with
an actual HF basis.

Let us consider 6rst the most important If'2 transi-
tions. Kith all the above-mentioned sp states there are
29 nonvanishing (E2 allowed transitions) proton
matrix elements. The nine nonvanishing distinct
(e&e') elements es(e,e') of Eq. (15) for the valence
neutrons are given in Table I. 0»( o is given by Kq.
(4). The nuclear force (F~. elements) is the "bare"
Yale-Shakin reaction matrix. The corresponding values
of es&'=~&(n, n') with (nlloi'"'(E» =E)lln') of Eq.
(11) are given in parenthesis for comparison (clearly
the diagonal elements of the two variants of our theory
are identical for E'=E). We observe only very small
di6erences between the two table entries for each off-
diagonal m'~ e element in Table I. The differences
between the elements (e((0&,t"'&~~I') of Eq. (9) and the
elements (m(~O~t"' (E,E'=E+1.29 MeV)iie') are pre-
cisely of the same order. The values of es(e,e') are of
the desired sign and the same order of magnitude.
They are actually grouped in two clusters: those
higher than unity and those somewhat smaller than
0.7. The composition of each one of the nine elements of
Table I in terms of the partial contributions of the sub-
shells of the (ph) pairs involved is given in Table II. The
entire if2P major shell, plus igf of the core with
all their transitions to the five lowest-lying particle
subshells, contribute, on the average, slightly more than

about 50% of all the es(m, e'). Transitions from the
same to the six sp levels of the upper major shell
(2f,3P, ii—",, ihs) contribute the surprisingly large
amount of 30-40% of all the es(e,e'). The 1d2s major
shell of the core is of little importance. The numbers of
Table II refer to Os&'"& as defined in Eq. (4). A similar
distribution of the (ph) contribution obtains for
0,&"'&(E,E'= E). The two terms on the right-hand side
of Eq. (4) Lor of Eq. (11)]each gives contributions of
the same order of magnitude (equal for N=n' and for
E'=E). Some authors" suggested schematic models in
which they were considering only one of the two terms.
This is clearly not suitable for a quantitative analysis in
view of the symmetry properties of these terms leading
to Eqs. (13) or (14). In order to examine the relative
importance of our individual es(e,m') we compute the
observables 8(E2,2&+ —+ 0,+) and quadrupole moment
of the 2i+ state, Q(2&+), using numbers of Table I. The
corresponding eigenvectors ~0&+) and ~2&+) of Sn'"
are those of Ref. 23 computed in the QTD and QSTD
approximation with the Yale-Shakin force renormalized
for the core polarization. The core-polarization re-
normalization of all the proton and neutron subshells
mentioned is taken to second order which is a good ap-
proximation' '; the valence neutron subshells are as-
sumed to be, on the average, exactly half occupied;
no other approximation of the propagators of the core-
polarization terms is made. The sp energies and wave
functions are exactly those of our es(e,e') calculation.
In the QTD approximation, ~0i+) is quasiparticle (qp)
vacuum itself and ~2&+) is a nine-component vector.
The corresponding QSTD vectors of Ref. 23 have 56 and
94 components, respectively. These are free of all the
basic spurions due to the nucleon-number nonconserva-
tion (such kets are projected out). The QSTD Oi+

eigenvalue lies —0.363 MeV lower than the qp vacuum,
and the QSTD 2i+ eigenvalue is 1.153 MeV; the QTD
2&+ energy lies at 1.259 MeV; the observed 2j+ energy is
1.291 MeV. In QSTD we distinguish for ~0i+) between
the case (I), in which we define the four-qp spurious
kets tl', o4) due to the nucleon number nonconservation
so that they have no vacuum component ((0~ ~'„4)=0),
and the case (II) in which (0~/, s4) &O.s' (In the latter
case we project out exactly the Quctuation of 1V —1V0,
where X is the nucleon number operator and Eo its
correct eigenvalue. )

In Table III we compare the calculated (QTD and

TAszE II. Partial contributions to the elements e&(a,e') of Table I coming from the four groups of the h-p transitions:
3—= (2p1fL1gs) ~ (3s2d ig~, 1h 2') =(o), f3=1'—', -(a), C=—(2sld) &+ (o) D=(2pi f) ~(2f 3p li'&' 1kso) =(upper major shell)

(3ss22d-,') (2dss2dg) (3s)2ds) (2d~g2d-,') (2d-', 2d-', ) (2dsstg-,') (2a-;ig-, ) (ig-,'ig') (ih~lh+)

0,1840
0.1016
0.0319
0,2968

0.1465
0.1314
0.0417
0.3264

0.2254
0.0966
0.0497
0.3040

0.1761
0.1221
0.0647
0.3359

0.1760
0.0946
0.0772
0.3042

0.5914
0.1021
0.1050
0.3651

0.5813
0.0630
0.1308
0.3382

0.3476
0.2451
0.0845
0.4072

0.1837
0.0847
0.1054
0.2797

M, Gmitro, A, Rimini, J. Sawicki, and T. Weber, Phys. Rev. 173, 964 (1968).
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Twsrz III. Vaiues of the reduced transition rate B(E2,2~+-+ 0&+) and of Q(2&+) of Sn'" caicuiated with es&")=1 and with es(n, n') of
Table I. The QDT and QSTD eigenvectors {Iand II, explained in the text) refer to the renormalized Vale-Shakin force of Ref. 23.

+Theory
Observable'

B(E2,21+-+ 01+)
(units of e'F')

QI,'21')
(b)

QSTD(II)

273.7

QTD

232.3

of Eq. (4)
QSmg) QSTDICII)

259.4 202.2

of Eq. (11)
QTD @STD

229.5 o ~

QSTD) values of B(E2,21+~01+) and Q(21+), both
theoretical Lcomputed with the ss(n, n') of Table Ij and
computed with the neutron CGective charge, @2&"&=i.
The reported observed value of B(E2,21+-+ 01+) varies
between 200 and 500 e'Il4. In comparing this with our
theoretical values of Table III we should keep in mind
that our predicted results were obtained without any
adjustable parameter. It is clear that by varying the sp
parameters a better agreement with experiment could
be obtainecL The observed value of Q(21+) of Sn"'
is'4 +0.4&0.3 b. Our QSTD values lie around the lower
limit of the experimental error. Q(21+) is generally a
"delicate" quantity sensitive to the detailed structure
« the I21+) vector. The QSTD predictions are much
better than those of QTD because of the very important
enhancement due to the large two-qp —four-qp inter-
ference terms even in the case of quite small four-qp
components. It should bc stressed that our theory is
based on the purely spherical shell model; we feel
therefore that the assumption of a stable deformation
in the 2&+ state in Sn is probably premature.

An interesting observable is the static magnetic mo-
ment p, (51-) of the 51—state (observed at 235 MeV in
Sn'" and at 2.29 MeV in Sn'"). This 51 state may be
almost degenerate with the 3~ state in Sn"0 and thus
any data for SI—in Sn'" have to be taken with caution.
For &u(51 ) Sodenstaedt sf &ILss give the following re-
spective VRlucs of thc g fRctoI's:

gs, (A = 116)= —0.065+0.005,

gs, (2 = 120)= —0.058+0.007.

The g fRctox' ls deGQed Rs

g.= V(~+I)(»+I))- "(Jllp, & II» (16)

in the usual notation, where the magnetic dipole
opeI'Rtox' is

P &I) g&s)s*+g&I)f*~

In Table IV we give the computed "CGective magnetic
reduction matrix" (EMRM) analogous to KCM of
Table I. Thc nRme suggests thRt thc bRI'c sp matrix
elements (nil)it&I)lln )b „are generally greater than the
computed theoretical values based on Eq. (6) (here

~4 J.De Boer, in Proceedings of the International Conference on
Nuclear Structure, Tokyo, IN7, p. 203 (unpublished).

~6 E. Bodenstaedt et al. , Z. Physik. 168, 370 (1962); Coopera-
tion of the Angular Correlation Gioups of Bonn and Hamburg,
Nucl. Phys. 89, 305 (I966).

speci6ed for neutrons). This is indeed the case and it
goes in the direction of a better agreement with experi-
ment. The bare matrix corresponds in this case to pure
neutronic matrix elements of the valence neutrons
only. We choose here to use the neutron (ph) projector
&t„= s for all the (ph) pairs involved, which corresponds
to an RvcrRgc occupatIon of thc ncutx'on VRlcncc sub-
shells equal to —,'; indeed in Sn'" we have N/32= ,'. We-
6nd that the contributions of the (ph) pairs (both
neutrons and protons) are of opposite sign to those of the
valence neutron, and lead to an over-all xeduction, i.e.,
0(p(n, n') & 1 where p(n, n') is our

EMRM—=( litt ""'ll ')i( ll)I& II
').

The allowed. Mi transitions (ph pairs) are igs. ++ igs.
(both protons and neutrons) and 1)'s~s ~ ihss(neutrons
only). The inclusion of the latter transitions (with the
upper major shell) leads to up to 40% reductions of
Ir(n, n'). The off-diagonal I1(2dss2dss) is given also for
&2&1)&'"&(E,E'=&) of the type of Eq. (12) (the number
in parenthesis). The symbol eo for 11(3ssr2dss) and
tu(2&fss ig-,') in Table IV indicates that the bare elem~~ts

(nllP&I)lln')b„, vanish (are /-forbidden) in th~s~ cases,
while the corresponding theoretical "CGective" ele-
ments (nljtt&I)'"'lln') are WO

I
the I-selection rule is

1'elaxed through Kq. (6)j.Tile nlost. 1IIlpoI'taI1't 1eduction
in n(n, n') comes from the (ph)-neutron spin part~ of
(nllO), &""l[n'); less important negative contributions
are those of the core-proton spin terms. The core-
proton current (electric) terms are roughly smaller by
Rn order of magnitude.

In Table V we give our computed QTD and QSTD
bare and theoretical values of the g factor g5, of Sn'".
The QTD and QSTD eigenvectors I51 ) refer to the

Matrix « I (n»') =&nil) '")lln')/&all)" & ) Iln')b
de6ned in the text for Mi transitions for the Gve valence-neutron
subshells in Sn. The numbers vrithout parentheses refer to p, (I)('"&
of Eq. (6) and those in parentheses to p&o&"'&{8'=E) of the
analog of Eq. (Ii).

0.6972 0.3900
(0.5280)
0.6333
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Tanzx V. The gyromagnetic factor g&, of the 3g state of Sn'" calculated with (a((f&&g) )[a')b,~ and with j&o&&'&o given in the text T. he
QTD and QSTD eigenvectors refer to the renormalized Vale-Shakin force of Ref. 23.

with (a([Qo&([r&')b,

QTD QSTD—O.f382 —O.I504

with fM, (1)('") of Eq. (6)

QTD QSTD-0.0579 —0,0648

with P( )( fo (g g =g)
QTD QSTD—0.0536 —0,061k

50' 60'

QTD
2+ @STD(I)

@STD(II)
QTD3- QSTD(I)
QSTD (II)

0.86j 0.858 0.850
0.860 0.856 0.848
0.863 0.858 0.850
0.937 0.954 0.975
0.935 0.953 0.9N
0.938 0.955 0.976

0.832 0, 795
0.83I 0.793
0.832 0.794
I.OOI 1.032
I.000 I.032
I.005 1.032

"R.l. Lombard, Nucl. Phys. 71& 348 (i965).
~~ P. Barleau and I, B. Bellicard, Phys, Rev.

(1967).
A. RjHllnlf J. Sawlcklp and T. Webels Phys.

6/6 (1968).

Letters 19, f444

Rev. Letters Po,

same Yale-Shakin force renormalized for core polariza-
tion which was used for our computations of Table III.
%c note that while our four theoretical values are very
close to each other, they are by a factor of -', smaller
than the bare values. The theoretical results compare
very weB with the observed value for Sn"6. %c may
mention that a calculation by Lombard" based on the
(5& ) QTD eigenvector of Ref. 15 and QTD and QSTD
calculati&&ns «Ref. 23 ~sling (&slip&&&llts')b„, led to a
sharp disagreement with experiment, similar to what
we find with the same (I))fs(t& ((n')b.„.

Recently, Barreau and Bcllicard'~ published the 6rst
experimental data on the inelastic electron scattering
from tbc cvcn tin lsotopcs j.i6, 120, and 124 with ex-
citation of the 2g+ and the 3j—states. The bombarding
electron energy was I50 MCV, and the scattering angle
varied between 45 and 80 . The electric quadrupole
and octupole form factors squared, ~F; (Q)~s, have
been extracted from the diGcrential cross sections as

~F;.
~
s=~(see)/ss~M. «(Z= 1).

Both the absolute values of ~F;,~' and their angular
distributions should, particularly when combined with
the static F)& moments and the B(E)&), serve as a good
test of any microscopic or other nuclear wave functions
of the excited states in question.

In a letter by three of us" the corresponding squares
of theoretical form factors (F; (' have been presented
calculated with the QTD and QSTD

~
2&+) and ~3t )

eigenvectors of Ref. 23, which correspond to the two-
bodf nuclear potentlRl of TRbakln x'enolnlRllzed fol
core polarization. The concept of a constant effective
charge eq('") was applied, and the calculations werc
based on the "reference" sp matrix elements (t&()0&,((e')„&
of the appropriate Dx. The Coulomb and the transverse

TAnLs VI. Ratios [P&~(theor) (/)Fn(e&&'«=I) [ of the theo-
retical and the reference (e&,

&'&O = I) inelastic election form factors
for the reactions Sn«&(e s')Sn'"(2, +,3& ). The theoretical effective

0),('«) operators are calculated as from Eqs. (4) and (6) for each
(e,e') scattering angle e. The QTD and QSTD (I and II) eigen-
vectors refer to the renormalized Vale-Shakin force of Ref. 23.

electric parts (spin and current terms) of ~F~ ~a were
calculated according to Eq. (3.64) of de Forest and
%alccka. 29 Although the calculations vmrc done es-
sentially in Born approximation, corrections for the
distortion c6ccts as proposed by Czyz and Gottfried»
Lcf. also Kq. (8.13) of Ref. 29$ were included. The
transverse electric terms are found to be negligible as
compared vrith the Coulomb parts. %ith the numerical
values of the CGective constants em"")= 1.23 and
e3("')=2.19, good 6ts to the data of Ref. 27 were
obtained.

In the present work vie have recalculated the results
of Ref. 28 with our present (i.e., those of Ref. 23) QTD
and QSTD eigenvectors 12&+) snd

I
3&-) appropriate to

the core-renormalized Yale-Shakin two-body force. The
constant c6ective charge results we then compare with
those obtained with the theoretical CGectivc operators
calculated according to Kqs. (4) and (6).

In Flg. 4 wc compRrc thc dRtR of Rcf. 27 with oui
theoretical

~
F&a

~
s(0&+ -+ 2&+) calculated with the QTD,

QSTD(I) and QSTD(II) eigenvectors ~0&+) and (2&+).

Except for large angles (large momentum transfer),
agreement with the data is rather good bothforthe
angular distribution Rnd fox' tIlc Rbsolut, c VRlUcs. Thc
calculated angular distribution of IF &al s(0&+~ 3& ) is
consistent with the data of Ref. 27, Unfortunately, the
absolute values of the same quantity are too small, as
also are those of Ref. 28. H the 3l- cross-section data
of Rcf. 27 Rrc Indeed based on a SU%.clcntly plcclsc
resolution discriminating between neighboring 5j and

other states, the explanation of the latter discrepancy is
to be sought probably in the inadequacy of our treat-
ment of sonic cxcltcd coIl6gurations of thc co1'c nucleons.

In Table VI we give the (e,e') angular distribution of
ratio of thc theoretical elective form factor

~F;,(theoret)
~

to the reference form factor (F; (ref,
ex&e&o=1) ~, i.e., to the one computed with a constant
effective charge (= 1). This ratio can be interpreted as
an effective 2"-pole charge which depends on the (e,e')

scattering angle 8. This dependence measures the in-

adequacy of a constant c6ective charge theory of the

(e,e') cross sections. From Table VI we notice that the
ratio ( F; (theoret) ( / ( F;,(ref, e&,

&'"&= 1) (
varies between

0.79 and 0.86 for the Ol+ ~ 3~ excitation and. between

0.94 and 1.03 for 0~+ —+ 3l in the region 45 &8&65 .
Although the theoretical CGectivc charge is larger in

the 3& case, it is still much too small (by a factor of
about 3) to explain the experimental data on the
absolute values of the (e,e') cross section of Ref. 27

(cf. the results of Ref. 28).

~'T. de Forest and J, D. %aleck, Advan. Phys. 15, I (1966).
&o +.Czyi and K. Gottfried, Ann. Phys. (¹Y.) 2I, 47 (j,963).
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10

:IF'

10

0.8

Fro. 4.Theoretical inelastic scattering form factor 7; (theoret) P
for the reaction Sn"'(e e') Sn'" (21+) at 150 MeV incoming elec-
tron energy). Q is the momentum transfer. The QTD (dashed
line), QSTD(i) (solid line), and QSTD(II) (dotted line) resultsrefer
to the eigenvectors of Ref. 23 obtained for the renormalized Yale-
Shakin force. The experimental data (bars) are those of Ref. 2'I.

In general, the di6erences between the respective
QTD, QSTD(I), and QSTD(II) results (cf. Table VI)
are quite small. By increasing the (s,e') scattering angle
8 the theoretical-to-reference ratio of Table UI de-
creases slightly in the 2~+ case and increases slightly in
the 3» case.

V. CONCLUSIONS

Our calculations of the effective operators of elec-
tromagnetic interactions with nuclei are fully micro-
scopic and they involve essentially no adjustable
parameters, i.e., the only parameters of the theory are
the same single-particle parameters which are involved
in the corresponding shell-model spectra. The two-body
nuclear force (reaction matrix) is derived from a
realistic nucleon-nucleon potential. The theoretical
construction is based on a perturbation theory treat-
ment of the particle-hole excitations of the core nu-
cleons. In this sense it is similar to the Kuo-Brown' —'
core polarization of the two-body nuclear force (cf.
also Refs. 5 and 6) and to the double (multiple) scat-
tering terms of the Brueckner theory.

Our numerical calculations for even Sn isotopes pro-
vide a partial justification (for an otherwise completely
arbitrary) concept and approximation of a constant
eGective charge. The computations are based on the
Yale-Shakin realistic nucleon-nucleon force and on a set
of sp parameters of a Woods-Saxon potential. The over-
all agreement with the observed values of B(E2),Q(2t+),
and p(5r ) and the inelastic electron scattering form
factors (except for the Or+ —&3t transition) is even

surprisingly good, in view of the lack of any ad hoc
adjustable parameter, and in view of the crudeness of
some of the theoretical assumptions. The results seem
to'. be encouraging, and future calculations for other
nuclei and calculations with sp basis which are deter-
mined in a possibly self-consistent (HF) way are most
desirable.

A direct proof of the validity of our perturbation-
type, procedure by performing direct calculations with
shell-model wave functions explicitly involving con-
6gurations'of the core nucleons treated in a more exact
way is not possible as yet because of the enormous
dimensions of such shell-model problems. Approximate
treatments (cf. Appendix B) based on simple QTD and
QRPA calculations seem to be quantitatively incon-
sistent (e.g., they leave out energetically equivalent
four-qp or two-particle-two-hole excited configurations),
and cannot provide a valid criterion for our theoretical
Ox&"o. We may point out that, in contrast to a sug-
gestion by Bando, "we 6nd that the bare nuclear force
is a sumac'e t approxi tion in the seco d-o d cal-
culation $F(abed, J) in Kqs. (4), (6), and (11)) of the
effective electromagnetic interaction 0),("".

After the present work was completed an independent
work by Hamamoto and Molinari" came to our atten-
tion. Their letter" is concerned with the quadrupole
effective charge of nuclei around Z= 28, and conclusions
are reached similar to those of Ref. 40.
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APPENDIX A: DERIVATION OF THE
FORMULA OF EQ. (11)

The interaction Hamiltonian of the valence neu-
trons and the core protons, H~~, generates proton
particle-hole pairs (ph) from a given unperturbed state
lf~srs)l0), where llfqjrs) is the eigenvector of the
valence neutron system and l0) is the ground state
of the closed-shell proton core. The many-body per-
turbation theory then gives for the state perturbed
to erst order the expression

14~)=lf~~) I0) + 2 2 &(x-~-)~+"p")
/II J'l I ph +II

&&(ill -")l(ph)&")), (A1)

"H. Bando, Progr. Theoret. Phys. (Kyoto) 38 1285 (1967)."I.Hamamoto and A. Molinari, Phys. Letters 26$, 649 (1968).
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with v' and r' (X and 4r are distinct as a hole and a
particle, respectively).

APPENDIX 3:REMARKS OH EXPLICIT
TREATMENT OF CORE CONFIGURATIONS

IN QTD
In the QTD approximation it is still possible to in-

clude explicitly at least some of the excited configura-
tions of the core nucleons. Even the limitation to a
relatively small number of extra subshells in Sn (in
addition to those of the valence neutrons) does not
render such a model very reasonable.

First, an explicit treatment of the core nucleons
means that, to avoid double-counting, no corresponding
core-polarization corrections must be included. It is
readily found that for bare realistic two-body forces
(Z matrix), one 6nds generally only a weak Bardeen-
Cooper-Schrieffer (BCS) pairing effect even for the
subshells close to the Fermi level, i.e., the correspond-

ing energy gaps and single-qp energies are small. ''
It is then clear that, in the circumstances, the quasi-
particle approach is bound to fail and an exact shell-

model approach is necessary. On the other hand, we

know that the Cooper pair-elements of the core-
polarization corrections to the eRective nuclear force
are large. Consequently, they must and in fact can be
treated on the same footing with the corresponding
bare elements, i.e., by the BCS method. The remaining

(residual) parts of the qp-transformed Hamiltonian are
then relatively weak and can be treated by a Tamm-
DancoR-type approximation.

As an illustration we give here the numerical pre-
diction of B(E2, 2~+ —+ Ot+) in such a simple extended

QTD. We have considered 10 neutron and 10 proton
subshells in Sn, i.e., the subshell kg~~and the entire

major shell (2P, if) in addition to the five valence
neutron subshells. The numerical values of all the sp
parameters involved were exactly those of the main

text of the present paper, i.e., those of Ref. 23, and
the same Yale-Shakin nuclear force was employed.

The calculated energy spectrum of Sn'" is in marked

disagreement with experiment. For B(E2, 2~+ ~ Oq+) we

6nd only the very small value of 5.03e'F4 (with the
neutron effective charge exactly=0). One extra reason

why the model fails to reproduce even the right order

of magnitude of the observed value is that the six
subshells of the upper major shell should be the most
important for a collective eRect of all the single-proton
transitions in B(E2, 2&+~ 0&+), and the (2s,1d) major
shell should be included. In fact, one must not compare
the last result with the results of Table III but, if at
all, rather with the corresponding model where only
the 6ve core subshells (Igsa and Pf) are included both
in calculating the QTD eigenvectors and t.he effect. ive

charge matrix (KCM). In this case we obtain

B(E2, 2)+ -+ Og+) = 50.19e'F4

which is about five times smaller than the value cal-

culated in our theory with all the sp levels between the

magic numbers 8 and 126.

where

Q()44 Je 1)J(E ph)

(A2)
E 0 E4O+—E~~

and where (~pl"E")
~
(ph)X"&)l~ is a vector-coupled

product of the unperturbed valence neutron eigen-
vector of energy E", spin J" and a proton (ph) pair
of spin 'A".

The Hamiltonian H~I can be put in the form

Elle —2 p——F~p(n'np'p, 1')X(n'n, J'M')

(—)'- 'OJ M(p'p), (A3)

where X(nn', Xl4) is de6ned in Eq. (9) and

O.~(«')=—2 (—)' ""
X(j,j;;—ln ln

~
JM)b tb (A4)

is a proton (aa') particle-hole creation operator.
Straightforward algebra gives for the expansion coef-
ficient (A2) the result

no, "l")l(E",ph) = 2 Q F~p(n'nhp, X")( )lv & "+I—l"I— —
nnl

&tb,- "(jx(n'n, z)((tj, )
X . (AS)

E@o+E'~ E
We now proceed to calculate the lowest-order non-

vanishing contributions to a matrix element of the
electric 2~ pole, 0&,„, &4l 44E'~O&,„~4'l4rE). There are
two first-order terms; the first one is

&Og,&(~)—= p p no-l-)l(E' ph)
ph g/I )t II J'll

XQl M (.&OiO),„(lpga- &8 i(ph)X &)l4r. (A6)

A simple evaluation of this expression leads to

&Oq„&&»
———g &n'((Oq ""(E, E')((n &~&~K

'J '
nn'

X&tel 'IIX(n'n&) III''&(~'M~I ~'M'& (A7&
where

&hllo Ifp&
&n'IIO& ""(EE') lln&(~)

—=2 &

X (E„D E:+E -E) 4Fn p-(n nh-P, ~) (AS).
A similar formula is easily obtained for the second
term. Combining the two terms, we finally obtain
Eq. (11).

I et us now take a 2~-pole magnetic operator Oq„. In
addition to the nonvanishing zero-order (bare) matrix
elements Ql ll e'I,Oq„jfl4re&, we find in this case the
first-order terms of the virtual excitation of the core
neutrons corresponding to the terms of Eq. (11) with
F» replaced by the antisymmetrized elements PN~
of the valence-neutron-core-neutron interaction. In
deriving the latter formula, in the same way as for
Kq. (6), all the contractions between the neutron
creation and annihilation operators (ct and e) are to be
made in the matrix elements
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i.e., x is contracted with v and v, while X is contracted


