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Theory of Heat-Pulse Propagation in a Phonon Gas
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A theory of thc propagation of heat pulses in a phonon, system has been constructed. It is based on the
solution of the Iqloltzmann equation for the phonon distribution function in the presence of a heat source
and, in the relaxation-time approximation. The result obtained is vahtd at all times, whether longer than,
shorter than, or comparable to the mean phonon relaxation time, and provides a basis for quantitative inter-
pretation of the experimental data,

1. .INTRODUCTION

ECENTLY there has been much activity in the
experimental study of the propagation of heat

~

~

pulses in solids. These experiments are intended to yield
various interesting properties of the thermal carriers
responsible fox' thc hcRt transmission for CXRnlplc tllclx'

vclocltles Rnd their Incan fx'cc pRths duc to scRttcllng.
In metals at very low temperature the thermal carriers
Rrc essentially the electrons, whereas in dielectrics or
1Q metRls Rt highcx' temperature they Rrc IIlalnly thc
phonons. For a general review of the situation of heat-
pulse experiments the readers are referred to von Gut-
feld. ' One notices immediately from his article that the
theoretical understandings of the experimental results
are rather qualitative. The diKculty lies in the fact that
one is usually working in situations in which the trans-
mission time of the heat pulse along the sample is com-
parable to the mean relaxation time of the carriers. In
such cases the transport of heat cannot be described by
thc ordinary heat conduction equation. Hence it is of
theoretical interest to construct a theory capable of
describing the physics of heat-pulse propagation valid
at Rll times. Then it would be possible to interpret the
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FIG. l. Heat-pulse experiment schematics.

'In a metal, the thermal energy is mainly contained in the
lattice vibrations (or phonons) except at very low temperature
(T&1'K). See Eq. (2) and the discussion following it.

~ R. J. von Gutfcld, in Ehysica/ Acoustics, edited by Warren
, P. Mason (Academic Press Inc. , New York, to be published),

Vol. V.

experimental data more quantitatively, and also to
correlate various observations in a coherent manner.
In this paper we shall be concerned exclusivdy with the
transmission of heat pulses by phonons. The theoretical
analysis is based on the Boltzmann equation of thc
phonon distribution function. The main task consists
of solving the Boltzmann equation in the relaxation-
time approximation and in the presence of a heating
source (prescribing a phonon-production rate). The solu-
tion obtained represents a new result which has not
been considered before. ' It leads to a description of the
transport of heat which is valid at all times. Only after
time long compared to the characteristic times in the
sample does one recover the usual heat conduction re-
sult. Before we go into the details of our theoretical
Rnalysls let us rcvlcw' brieQy thc usuRl cxpcx'lI1MntRl

setup in a heat-pulse experiment. It consists mainly of
three elements: the heater, the sample, Rnd the detector.
There are various kinds of heater and detectors. For
our purpose we shall take them to be thin metallic films

evaporated onto the ends of the sample (Fig. 1). The
whole s,ssembly is immersed in a heat bath (usually
liquid helium) at temperature Ts. The experiment is
started (at t=o) by passing a current pulse through
the heater. The generated heat pulse now travels down
the sample and is detected. The detector is usually a
superconducting 61m near its transition temperature so
that its resistivity is very sensitive to heating or tem-
perature change and is therefore a convenient quantity
to measure.

In Scc.2 thc gcncI'ation of heRt lQ the heRtlng metalhc
61m is discussed. It is shown that under sonle simplifying
assumptions one can treat the heater as a phonon source
for the sample. In Scc. 3 the Boltzmann equation of the
phonon distribution function in the sample in the pres-
ence of phonon generation at the interface is studied.
Using the relaxation time approximation, a solution to
the Boltzmann equation is found which describes the
spRcc- and tllne-dependent devi ation of thc phonon

'Our result can describe the transient behavior of the phonon
distribution after it has been disturbed far from thermal equilib-
rium and before the distribution relaxes to one which can be
characterized by local thermodynamic variables like temperature
and phonon drift velocity and their derivatives. The behavior of
the phonon system in this latter limit has been studied by many
authors, and particularly comprehensive discussions can be found
in R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, N6 (1966);
148, 7/8 (1966l.
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distribution function from total therma1 equilibrium.
In Sec. 4, -the result is discussed in various limiting
cases, in particular, the heat conduction (diffusion) or
long-time limit. In Sec. 5, the detection of thc pulse
is brie6y considered. It is followed by concluding re-
marks on the applicability of the present theory to
explain various experiments.

2. PHONON PRODUCTION BY HEATER

Kc begin by studying how the heater plays the role
of an external time-dependent phonon source for the
sample and thus provides the necessary boundary con-
dition for the phonon Boltzmann equation in the sample
to be studied in Sec. 3. As mentioned before, the heat-
pulse experiment begins when one passes a current
pulse through the heating metaDic 61m at I,=O. Thus
the current I(1) is a known function of time. It is beyond
the scope of this paper to investigate in detail the time-
dependent behavior of the coupled electron-phonon sys-
tem in the metal to study how heat is generated. One
makes the simple assumption that the 61m remains
always in thermal equilibrium. In other words, it is
characterized by a temperature Tq~(t) which is time-
dependent. For simplicity we take T~ to be uniform
in the film. The assumption of thermal equilibrium is
valid if the thermal relaxation time (time for thermali-
zation) of electron-phonon system is very short com-
pared to the width of the current pulse. This condition
is usually satis6cd in real experimental situations. ' Then
denoting the total energy of the system by E~(t), whose
dependence on time is entirely through T~(1), we have
the energy balance equation

8 f8—& (1)=I'(~)& —
I

—~ (&) I

8$ E8$ 1 1

where R~ is the resistance of the 61m. The 6rst term on
the right-hand side represents thc input power which is
just Joule heating in our case. It will, of course, take on
di6erent forms if the 61m is heated by other means,
e.g., by a laser beam. The second term represents the
heat loss to the environment. The 611n loses its heat
both to the heat bath and to the sample. In actual sys-
tems the latter loss is by far the dominant one. This
unfortunately creates a slight difBculty, namely, that
one cannot, in principle, decouple the energy-conser-
vation equation (1) from the heat-propagation equation
in the sample to be discussed later. The reason is that
part of the heat contained in the heat pulse transmitted
into the sample will at a later time diGuse or reQect back
to the 61m. However, in order not to complicate our
analysis, we shaH make the reasonable assumption that
the total amount of heat which will eventually reach
the 61m at later times is small compared to the initial
energy input. This condition is satis6ed if the sample is
large.

Wc shall now study Eq. (1).The total energy of the

bnl (t) =nl '(Tlr(t)) —nl '(Te)

nl, '(T)= Lexp(A(0), s&~&/AT) —Q-',
(3)

(4)

where X and y denote the polarization and wave vector
of the phonon with frequency cols&~&. Next we calculate
thc number of these extra phonons striking a unit area
of heater-sample surface per unit time. This can be
readily found to be

3",«) X(p./»". &",.I:1--p(-1/", -)j)
(P.&0) (5)

where e),&~& is the sound velocity for branch X, and
gq~&~& is some elective phonon scattering time. The
appearance of the phonon relaxation is obvious by con-
sidering the two limiting cases. In the case of no scatter-
ing (r &~& -+ee) all the phonons within a distance s&, &~1

X(p /p) will lilt tllc sllrfacc wltlull 1 scc. Now scattcrlng
w111 reduce this number RIll 1n fact when 'P~ ~QQi scc
only those phonons within a distance of the order of a
mean free path e&~&v &~& from the surface can reach it.
Finany we consider the generation of phonons in the
insulator sample by the phonons LEq. (5)j striking the
surface. Such a process is in general+Cry complicated and
explicit results have been obtained only for some simple
cases. ' For our purpose, we shall simply describe this
process by a transmission coefficient n(Xy,X'y') which
represents the probability of creating a phonon (Xy) in
the sample by a phonon (h'y') in the metal incident
upon the surface. One property of that is obvious is that

4 W. A. Little, Can. J. Phys. 87, 334 (1959).
~ R. J. von Gutfeld, A. H. Nethercot, Jr., and J. A. Armstrong,

Phys. Rev. 142, 436 (1966).
4)See Ref. 4 and H. Kolsky. , Stress 8"eye jg SOMs (Dard

University Press, London, 1953).

61m E~ consists of two parts, an electronic part which
is proportional to (T~)s and a phonon part proportional
to (T11)', i.e.,

&~(~)= (sbT~(~) j'+-'bI:T~(1)j'}&& I' (2)

The quantity V is the volume of the 61m and the con-
stants y and b are characteristic constants of the par-
ticular metal in question. The two contributions are
comparable at very low temperature, T~ I'K. Thus,
in usual situations, thc phonon part dominates. Thc
energy-loss term arising from the heat transfer across
the metal-dielectric interface is quite complicated. How-
ever, the situation is much simpli6ed if one ignores the
role of thc electrons and assumes that thc dominant
mechanism is phonon transmission. A thorough dis-
cussion of this topic of heat transfer across solid boun-
daries may bc found in the articles by Little' and by
von Gutfeld eI al.'

%C shall now outline the derivation of the energy-loss
term in Eq. (1).Heating of the film increases the phonon
population. Since we have assumed thermal equilibrium
at all times, the change in the phonon distribution func-
tion is simply given by
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it must be zero when p, &0. Thus the total number of
phonons of the kind (Xy) produced in the sample per
unit tlQ1C Rnd pcl unit RrcR of thc surface ls

&&L1—exp( —1/rvy' ')3 (P*&o) (6)

It will be discussed, in more detail in Sec. 3 that these
generated phonons are to be treated as being localized
in the region near the heater (Fig. 1). Now from Eq.
(6) one can ianmediatciy calculate the rate of energy
loss Rs

8
+ —Ear(t) = (P Alogy jay{a))XA,

8$ loss

%herc A is the contact area of the heater with the
sample Rnd Mg& 18 thc phonoD frequency ln thc dielcc-

trics. Combining Eq. (7) with Eqs. (1)—(3), the unknown

time-dependent temperature of the 6lm Tar(f) may be
determined. This allows us to determine jly{t) explicitly
as a function of time. We shall conclude this section by
discussing bricQy thc quREtRtivc feature of thc spec-
trum of the emitted phonons. For this purpose the
transmlssaon cocfllclellt rr(Xy, X y ) ls slBlply takcrl as
ably 8yy, where n is a constant. Then Eq. (6) says that
the spectral distribution of the phonons generated in
the sample is approximately proportional to the change
ln thc thermal spcctruIQ ln thc heater 61ID.

The phonon distribution in the sample is described

by the function ¹y(rt).To avoid further compHcation

%c RssuIDc that thc diIncnsion of thc sRInple ln thc 5
Rnd p dircctloDs ls large compared to thc length I.along
s. This' RBows us to Dcglcct coIQphcRtcd surface 66ects,
The dynamlCal devclopnmnt Of the phonon dlstrlbutlon
function is determined by the Boltzmann equation' (for
0&s&1.)

8
~+ly{r~)+Vly'+~¹y(r~) (ri¹y/@)oolHsion

N
+ (r'i¹y/@)sousoss (g)

%here vga is the group velocity of the phonon de6ncd by

Vgy VyMgys (9)

The function b¹y(r/) is used to represent the deviation
of thc phonon distribution froIQ the coInplctc thermal
equilibrium distribution at the ambient temperature
2 0) 1,C.) S¹,(r~) =¹,(r~)—¹,e(T,),

¹ye(Te)= t'exp(bio), y/4Te) —11-'.

r R. E. Peierle, QNolases Theory ef SoMe (Pergamon Press, &e.,
London, j955).

Th«rst term on the right-hand side of Eq. (g) ls the
collision integral describing the rate of change of the
phonon distribution function due to scattering of pho-
nons. More will be said of this tcrID later. The last term
in Eq. (8) describes the rate of phonon production due
to an external source. %'c vill now deterge its form
using the result obtained in Sec. 2. Let us first recall
that the function ¹y(rt) represents the number of pho-
llons of tllc type (Xy) pcl ulllt volume at posltlon
(and time t). Such a description necessarily implies
that one must treat thc phonons as %ave packets which
are simultaneously quite vrcll localized in momentum
and coordHlatc spRcc. Hence fox' phonons %1th %'avc-
lengths comparable to the size of the crystal, the concept
of a local distribution is no longex valid. In Sec. 2 wc
found july(i) $Eq. (6)j, the rate of phonon production
pcl' unit Rx'ca ln thc sRHlplc by thc hcRtlng 61Q1. One
immediately has the relation

To dctcrIBlnc (BX/8$) explicitly, we first, make use
of the concept of the localization of the phonons which
iIQplies that thc phonons px'oduccd Rx'c localized within
quantum distances from the boundary (z=0). Further-
IQorc~ %'c assume that thc dlmcnsloDs of surface Rx'ca A
Rrc sIDRB compaxed to those of the sample. With these
condltlons %'c may treat thc hcatcI' Rs R point source
and obtalD

(Bray/Bt)„„, =AY(r) july(i), (12)

which obviously satisfies Eq. (11).The Boltzmann equa-
tion {8)will offer a complete description if the colHsion
tclQl ls spcclicd. In thc foHO%'ing dlscusslon t%'o types
of phonon scattering processes will be considered. The
6rst case is the simpler one in which the dominant
phonon scattering process is the absorption of phonons
by other quantum-Incchanical systems. The recmissions
of phoDQns IQRy bc lgnoI'cd because they occux' Rt R DMch
later time (long compared to the passage of thc heat
pulse through the sample). In this case the solution to
thc BoltzIQRDD cgUation ls very simple, describing %'hat
vriH be CRBcd a baQistic Qow. The energy in the pu1se
18 carried by the individURl phonons created Rt the
boundary. They tx'Rvcl down thc crystal %1th thclr I'c-
spective group velocities until being absorbed and thus
losing their share of energy. The second case is the more
coxnpbcated one, ln which the phonon scattering pro-
ccsscs consldcrcd conscx'vc thc total BIIlount of cncrgy 01
the phonon system. This leads to the existence of
another type of BO% besides the ballistic one and is
referred to as the thermal Row. "Zhis is the result of
thermalization or thermal mixing of the phonon dis-
tributions It wiH be seen that the initial Qow is ballistic
ln nature ~ then gI'RduRQy thc thcrYQRl part of thc phonon
distribution is huBt up at the expense of the balHstic



part. Finally, after a time extremely long compared to
the average relaxation time, the thermal part approaches
R local equilibrium form. In this limit the heat Goer

may be adequately described by the ordinary heat-
conduction equation.

Case 1:Phonon Absorytion

In case j. we consider the situation in which the
dominant phonon Scattering process is absorption by
impurity states. A familiar and interesting example is
the resonant phonon absorption by paramagnetic im-
purities in the presence of R variable magnetic 6eld.
A review of the theory of spin-lattice interaction may
be found in the article by Tucker. s Another example
is the absorption of phonons by shallovr neutral im-

purity states, ' Hovrcver, here one cannot vary the re-
sonant Rbsol ptlon frequency Rnd lt occul'8 Rt 1Rthel

high frequencies (o&& 10" sec ' Ae&jksT&3'K) In the
relaxation-time approximation the collision integral for
such px'occss 18 extremely simple) namely)

(r&¹y bE), y{rt)
(13)

Couision &&y
(&)

where v.),~(') denotes the branch- and @rave-number-

dependent phonon relaxation time or the inverse of the
rate of phonon absorption. "Equation (13) says that
the extra phonon disappears according to the absorption
rate and the phonon distribution function is reduced
to complete thermal equilibrium. Substituting Eqs. (12)
and (13) into Eq. (8), we obtain

(8/at+very

V+ 1/rly&'&)b¹y&»{rt) =Ab'(r)rj)y(t). (14)

A superscript {1)will be used to denote that we are
dealing with case i. This equation can be readily solved
and the solution is

where g(') is the Green'8 function de6ned as the re-
sponse to a unit pulse

(8/Bt+v&, y V+1/r&, y"&)g),y&r&(r —r', t t')—
=b'(r r') b{t t')—(16)— .

In Scc, 4 wc have occasion to use the morc formal
cxpl csslon fol' g)i, y ) QRIDcly)

g&, y&'&(r —r, t—t')=(8/Bt+v&, y V+1/r&, y&'&) '
Xb'(r —r')b(t —t'). (1S)

Substituting expression (1l) for the Green's function
in (15),we obtain the explicit solution to the Boltzmann
cquRtlon

b¹,«&(rt) =AS(*—~.s)b(y —~„s)

s )1 ( s
xcxpl — I- p, l

t——,(19)
Vly 7&y J Sly~ 5 sly

Ve= sly*/e& y'
& Vy =

sly "/r&ay',

where we have used the property that rj&,y
=0 for P,(0

and have assumed, that the s component of the phonon
pllasc velocity sly ls posltlvc fol posltlvc pg. Tile Ilatlll'c
of 'tllc solut1011 (19) ls obvlolls. It describes a colllmatcd
baHistic Sow ln which thc lnltlRl pulse shRpc of cRch
phonon component remains unchanged. The velocity
of thc propaga'tloll ls sllllply 'tlm gl'ollp velocity vly (01'

y&, y' along the s direction). Its amplitude is decreasing
duc to phonon Rbsol'ptlon- Thc RttcQuRtlon suGercd

by Rny coInponcnt of thc 80%' Rt R posltloI1 I' dcpcnds
on the number of mean free paths it has traversed.

Case 2: EQ81~-Consef vlQg Phonon Scat(ex'iQg

The next case is more complicated; we assume that
the dominant phonon scattering processes conserve the
total energy of the phonons. ExaInples of such are
phonon-phonon interaction including both normal and
Umklapp processes. If the normal phonon processes
dominate the collisions, then not only the phonon en-
ergies but also thc phoQoQ momcntR Rrc conserved.
This makes the situation slightly more complicated.
Hovrcver) no new concepts other than those discussed
below need be introduced. We shall come back to
this point at the end of the section. Other examples of
such processes are elastic seatterings of phonons by
lmpurltlcs) defects Rnd dlslocatlons) etc. ID this case
thc coHision lntcgrRl in tl1c BoItzmann equation
(C&iV'/r&t)eeuisioe hRS (a) the prOperty Of COnSerVing phO-
QOQ cncx'glcs) xlRHMly)

Thc solution %'hich satis6cs thc boundR1'y condition
that g =0 at infinite past (t t' -+ —oo ) is—

(BE&,yZ»l, l
=0.

&y 'h at
(20)

gl &»(r—r' t—t')=0 («t')

= cxpl — Ib'(r —r' —vzy(t —t'))

(t&t'). (17)

8 E. 3. Tucker) ln Php$$cc/ AcolsgA') edited by Warren P.
Mason (Academic Press Inc. , New Vorir, 1966), VoL IV, Part A.

9 P. C. Kvrok, Phys. Rcv. 149, 666 {j966}.
"Formal study of the colhsion integral may be found in the

references Quoted ln Rcf. 3.

AQ imIncdiatc coDsequencc of this 18 R coDscrvation
equation for the phonon energy density. Multiplying
Eq. (8) by So», y and summing over (Xy), one gets

8—E{rt)+V js{rt)=I'rr{rt),
N

(21)

where E is the phonon energy density, J&y is the energy
current, and I'II is the power input by the heater. They



P. C. K%OK

are given by
E(rt) =P &' „aN„(rt),

)p

Js{rt)=P &I&&Plpvlp&&N&, p(rt),
Xp

PII{rt)=p 4)&,p

80lll'Ce

= A8'(r) g ha&), p j&,p(t).

This expression is identical to the result obtained for
(22) case 1 t Eq. (15)j except that r lp&'& has been replaced by

r&, p&'& (hence the change of superscript on the Green's
function). One point to keep in mind is that bN& & is
completely determined once the source term is known.
The other term in Eq. (30), which shall be called the
thermal part) ls

t'&N&, p&'"&(rt) = d'r' dt'g&, p&'&(r r', t——t')

Another property of the colhsjon term is (b) that it
vanishes when the distribution function N&, p(rt) cor-
responds to a local equilibrium distribution N&, p(rt)
which is a Planck distlibution characterized by a space-
and time-dependent temperature function T(rt), i.e.,

(
Xgp =0 for N&, p(rt)=¹p(rt),

collision

Sip(rt) =N&,p'(T(rt))

= f expLA&p&, p/k&&T(rt)] —1} '.

At present the function T(rt) must be considered as
arbitrary and not be interpreted as a physically mea-
surable local temperature. In the relaxation-time ap-
proximation the collision term takes the form

(
BEgp = (bN&, p(rt) —bS'&, p(rt) )/rip&'&, (27)

oollision

X SÃ—„(r't')
(2)

d'r' dt'g&, p&'&(r —r', t—t')
(2)

where

8—E""&(rt)+V Js""&(rt)=P «(rt)
8t

E&'»(rt) =g e~„er„«»(rt),
Xp

(33)

In contrast to the ballistic term this expression is not
completely determined because it still contains an un-
known functi&&n T(rt). To solve for T(rt) &&ne must now
make use of the energy-conservation equation (21).
The result is an integro-di6erential equation determin-
ing T(rt):

J ""&(rt)=p tt,v,bN, ""&(rt).
)p

help(rt) = j&It'&, p(rt) —
N&, p'(TII)

=N&„'(T(rt)) —N&, ,'(Tp).
8

P,«{rt)=PII(rt) E&~&{rt)—V .JI—I &s—&(rt), (36)
8$

(35)
wlllcll obviously satlsf les Eq. (25)' Tile qllRlltlty t), p&

is the phonon collision time, and 8S' is the deviation of
tile locRl cqulhlMlum dlstrlbutlon fl'oIIl tile colllpletc Thc fllllctloIl Pe&I(rt) dellotcs 'tile kllowll effective powcl'

thermal equilibrium function: (density) driving the thermal part of the energy density
and ls glvcn by

Using Eq. (2/), one 6nds that the Boltzmann equation
ln this case ls (37)

(&&/at+v&, V+1/~&, &'&)1&N&, &'&(rt)=AY(r) jl (t)
+&&lp(«)/~lp&'&. (29)

Js&~&(rt) =Q jt&olpv&, pwlp&~&(rt).
Xp

t9

dt 2 "&Ap g&,p& &(r r, t—t)+—h&p&,p-
)p — 8t

&&N& p&2&(rt)= t'&N&„&~&(rt)+t'&N&, p&'"&(rt) . (30)

This equatj&&n djffers fr&&m Eq (14) f&&r case 1 by havjng For I'cfel'cIlcc purposcsq Eqs, (33) Rnd (36) al'6 writ'tcIl

an extra term proportional to a yct undetermined local Dmre expllcltly as"
equilibrium distribution function. The solution to (29)
can bc 1DUQcdlatcly wllttcn as

The 6rst term, which shall be referred to as the ballistic
part, is given by

&&v& p &g&.p&2&{r r', t t') X N&,p'(—T{rt—))

t'&N&, p&s&(rt) = d'r' dt'gl p "&{r r', t—t')— —N& p'(Tp) ~&.p
"& =~.n(«), (39)

XAb'(r') j&„(t'). (31) "Ke shall assume here that the solution for T(rid) is unique.



p. «(«) =A "es(r) p Ae», y&», y(t)+A p Ae», yb(x —y.s)

(Bf&/»
p iyl&~ =0.
&y 5 N

(41)

This leads to R IQomentUIQ density conservKtion law
similar to Eq. (21) for the energy. Furthermore, the
collision integral has the property of vanishing vrhen
thc phonon distribution ls cquRl to a "drifted" locRl
equilibrium distribution:

g„,&'&(rt)=( pPi, —hy V(rt)/k T(rt)]—1)-'. (42)

The vector function V(rt) may be interpreted as a local
phonon dl'lft velocity lf lt ls Inuch sIQRllcr thRQ thc
souQd. vclocltlcs. In thc relaxatlon-t linc Rpproxlnlatlon
the collision integral is siIQply

—(l&Ã&, y-l&Ã'& y&'&)/r&, y&~&. (43)

Noir thc Soltzmann equation may be solved as before.
The solution is similar to that of case 2, i.e., Eqs. (30)-
(32), except that r&s& is replaced by r&"& and that the
local cqujljbrjum djstrjbutjon function which appears
in the thermal part is replaced by the drifted distribu-
tion S&s&. Now there are four unknown functions, T(rt)
and V(rt), instead of one and we need the additional
momentum-conservation equations (three components)
to dctcrlnlIlc thcxQ.

Finally, vrc remark on the most general case in which
RB kinds of phonon scattering processes are present and
ax'c cquRlly lrnpox'taIlt. These dMcrcnt px'occsscs I'clRx

X july ~——
xp

Therefore, in the present case the phonon distribution
consists 6rst of RB of a decaying ballistic part, charac-
tcl'lzcd by RQ RngU1Rx' distllbutloQ %hich ls cntlrcly 1Q

the positive s direction as j&,y=0 for p, &0.The phonon
distribution also contains a thermal paxt which is grad-
ually building up as a consequence of phonon energy
conservation. Its space and time behavior is, in general,
very comphcated except in certain limiting cases con-
sidered in Sec. 4. One property of the chem al part
that we may notice from Eq. (32) is that the angular
distribution is quite isotropic, implying a back6ovr of
thc phonons vvhich are generated originally only in the
positive 8 direction.

%c%ill now IQakc R fcYv rcIQarks on thc gcnerRllzatlon
of our pl'cscnt treatment to IQorc complicated CRscs.
First of all, let us suppose that the dominant phonon
scattering mechanism is a normal process. Then besides
energy conservation, Eq. (2), one also has phonon mo-
mentum conservation, i.e.,

the phonon distribution in different ways. However, in
thc relaxatlon-tlQlc tl eatmcntq Qo fundRIDcntal com-
plications arise because the collision integral can be
systematically decomposed into appropriate terms. "
Then one can solve the Boltzlnann equation as before
and make use of the conservation equations (which may
now contain damping terms) to determine T(rt) and
V(rt) if they have been introduced.

4. APPROXIMATION SOLUTIONS OF LOCAL
TEMPERATURE FUNCTION

The exact solution to Eq. (40) for the local tempera-
ture function T(rt) is obviously impossible to obtain.
%C shall thus restrict oUx'sclvcs to consider liI11iting
cases fol which approximate solutions can bc calculated.
First of RB, let us substitute the explicit form of the
Green's function g~y&s&(r —r', t—t') LEq. (1't) with y& y&"

replaced by r&, y&'&j into Eq. (39).We get

&exp — — g8 T r—vq~ I,—3', f
g~ (2)

=&.«(«), (44)

where bg is the function defined by Eqs. (26) and (28).
If we use the formal solution (18) for the Green's func-
tion, Eq. (39) may be written alternatively as

Z 1+r»"'l. —+v» V . AMi,—+A~»v» V)
& y k&&t Bt

Xt&8&,y/T(rt) j=E. (rt«). (45)

Thcsc t%'o cxpI'csslons are~ of course, cqUlvRlcnt but
they Rlc respectively morc Rppx'opl'1Rtc forms to bc used
for each of the two limiting cases considex'ed below.

Case 1:Short-Time Limit

We first consider the behavior of T(rt) at times short
compared to the relaxation time y &s& (some average of
yqy&'&). In this short-time limit Eq. (44) is the more
useful expression to deal with. The reason is that the
second term on the left-hand side may be neglected
compared to the 6rst since it is smaller by a factor of
the order t/r "&. Therefore„we have approximately

tIgcd), y
bE&, y LT(rt)j—E,«(rt) .

pox (2)

To solve for T(rt) we assume that the difference between
T(rt) and the ambient temperature 2'e is small, i.e.,

0 (rt) = (T(rt) —Ts)/T&&((1. (47}

"J.Callaway, Phys. Rev. 113, 10% (1959).
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Thus according to Eq. (28), the deviation» to linear
oldCl' lIl 0' ls

(48)
»»I T'(«) j=s» ~(«),

SI,,o——X),y'{&o)(1+N), yo(& o))(&~ay/4&o).

Thus Eq. (46) becomes

Spy AMgy.(«)=- Z, P.«{«)
~~ (2)

(49)

This expression says that the deviation of the local
temperature function from To ls proportional to the
eRective power input into the thermal part of the dis-
tribution. A note of caution is appropriate here. One
must not interpret T(«) as the actual local tempera-
ture in the sense that it can be measured by an external
t.hermomet, er. The phonon distribution still contains
a ballistic part and the thermal part is still a long way
from attaining a local equilibrium form. Thus one may
regard T(rt) as a temporary theoretical construct by
which one expresses the solution of the Soltzmann
CquRt. loll.

K

o{«) V'o («)=—P,«—{rt-), -
Bf b

CRse 2: LOQg-Tive Lim.it

Next we turn our attention to obtaining an approxi-
mate solution to T(«) at times long compared to o N.
By this time thc ballistic part of bE would have almost
been completely attenuated. The solution in this limit
is meaningful only if we are working with samples that
are much longer than thc mean free path /('&=ex(').
Ill 'tllls CRsc Eq. (45) 1S morc Rpprop11atc to usc. Onc
assumes that bÃ('"& is relaxing towards the local equilib-
rium dlstrlbutlon» RIld III 'tlIC sRIIIC 'tllllc 'tile VRrl-

ation of T(«) in space and time is becoming less rapid.
%hen such a limit is approached, one may expand the
inverse derivative operator in Eq. (45). Retaining only
the leading terms in the expansion and using the linear

approximation for bS, we obtain 'the familiar heat-
conductlon equation dcscrlblng thc diGuslon of heat:

wavcform rather than the diffusive form (50)." This
corresponds to the well-known second sound mode of
heat 01 temperature pl'opRgatlon.

%c shall now consider the detection of the heat pulse.
Thc amount of heat flowing across the sample-detector
interface can be calculated from the rate of phonon
generation in the detector. Denoting thc phonon dis-
tribution function of the detector by n'q and thc phonon
transmission coeKcient from the sample to the detector
fIlm by a'{»,X'y'), one 6nds the rate per unit area is

c
d ),y)

I
=o (p*«)

Bt i;,
= ~ '{»l'p')Iv~ y'"l(p'ip')L»'y(«G

) lyy

(po& 0, s= 1.), (53)

I» y'"I= Ivt, y I(~I y""I1—exp( —1/r1, ~&»)j).
(54)

EquRt1011 (53) ls, of course, SImIiar to Fq. (6) Thc
total lmput powcl ls then glvcn by

p o) ff&~yx=5 'xy(

Thc integration is over the contact area A' between the
sample and the detector (Fig. 1). This is the quantity
that one hopes to measure directly. However, in the
usual experimental situations, it is only possible to make
indirect measurement of E;„,for example, by measuring
the temperature change in the detector. Assuming that
thc rRtc of thcrmalizatlon ls fRst onc can dctcrminc thc
time-dependent temperature To(f) if one knows the
total energy XII(t) as a function of TD and the rate of
energy loss. It turns out that, in rn.ost cases, the loss
of heat is through the contact with the sample. In other
words, the heat loss is due to reradiation of phonons
back into the sample. From previous considerations, one
can immediately write thc expression as

&=s' Z ~o1xy(yxy) 5&y +&y
Xy

(51)

(52)

I

—EII(t) I
=8'&(g a"(XP,X'P') Aa)»gyyI;; ~oI'

&gg

&(2"o(&))—yy1'"'(&o)jl» y
'"I (P'/P') (56)

The quantity ~ is the thermal conductivity. In deriving

Eq. (52) we have also assumed cubic symmetry. The
nature of the solution to Eq. (50) needs no further dis-
cussion. In the present limit the function T(rt) does
indeed represent the physically measura, blc local tem-
perature. Let us remark that if the phonon collisions

are completely normal, the equations determining the
local temperature T(«) and the local phonon drIft veloc-

ity V(«) in the present limit will assume a damped,

where e"is thc transmission coefBcient froln the detector
to the sample. %C have also made use of the assumption
of thermal equilibrium. Now Eqs. (55) and (56), to-
gether with the energy balance equation

8 8 (8—~~(&)=—~oL&o(~)j=P'.(&)—I

—~~(~)
I (57)

N &a& i1,, '

13 See, for example, P. C. Kwon', Physics 3, 22j. (19g').
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will enable us to determine Ta(f), or Tn(f) —Te, caused
by the arrival of the heat pulse.

%e have succeeded above in constructing R kinetic
theory of thc propRgRtlon of hcRt pulse ln dielectric
materials. Oux result is equally applicable to the experi-
mental situation in which the transit time of the heat
pulse is short as well as long compared to the mean
phonon colhsion time. However, it is obvious that for
thc intermediate tiIQc rcgiIQC the I'csu1t ls 80 coIQpllcatcd
that lt scclns very dlScult to cxtrRct useful lnforIQRtlon
from it. The simplest situation is vrhen the heat Qow
is mainly baOistic in nature. ID this case the result is
stralghtfor%'Rrd and various properties of thc phonons
can bc studied directly. For example, one can study the
dispersion and. damping of high-frequency phonons
which cannot bc Rchlcvcd by ordinary ultI'Rsonlc Incans.
It is possible in heat-pulse experiments because the
phonons irected into the sample are predominantly at
the thermal frequency of the heater (see Sec. 2). Thus
by varying the power input into the heater, i.e., chang-
ing the heater temperature TIr(t), one can excite various
high-frequency phonons in the'SRIQple.

Our result in the long-time limit looks simple also.
However) it must be borne in mind that wc have con-
sldcI'cd CRscs ln which only onc SCRttcrlng IQcchRnlsm
dominates thc phonon coQisions. When several are
px'cscnt, thc x'csult bcconMS Dlorc COIQplicatcd RDd de-
pends rathcI' intricately on thc rclRtlvc lmpol'tancc of
dlGerent 1'clRZRtloIl tlIQes. Furthermore) onc IQRy now
have to consider the arrival of those portions of the
heat pulse that have suffered rejections 06 the boundary
surfaces ln thc 4 Rnd p dlrcctlons.

%C will conclude by co~cnting on the feasibility of
measuring second sound ln solids by thc hcRt-pulse
IQcthod. In principle, this CRD bc doDc if thc following
conditions are satisfied. First of all, one should work at
3 tcIQpcratuxc low enough that thc UIQklRpp pl'occsscs
are negligible compared to the normal processes.
Secondly, the sample shouM. be as pure and free of dis-
locations and other types of defects as possible (the
ideal case Is a pure single crystal)' These 'two conditions
alc Intended to reduce thc TQGIQcntUIQ Donconscrvtng
phonon co11islson processes @which damp the second-
sound mode. Finally, the length of the sample IQust bc
very long coIQpaI'cd to thc Rvcragc DMRD free pRth of
thc norIQal px'occsscs to cnsuxc adequate thcrTQRllzation
of the phonon distribution necessary for the appearance
of the collective second-sound mode. These conditions
are extremely dificult (nearly impossible) to satisfy
in practice for most solids (with the obvious exception
of solid helium" ). Thus the measurement of second
sound in solids by heat-pulse methods reIQains an experi-
mental challenge.
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