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A theory of the propagation of heat pulses in a phonon system has been constructed. It is based on the
solution of the Boltzmann equation for the phonon distribution function in the presence of a heat source
and in the relaxation-time approximation. The result obtained is valid at all times, whether longer than,
shorter than, or comparable to the mean phonon relaxation time, and provides a basis for quantitative inter-

pretation of the experimental data.

1. INTRODUCTION

RECENTLY there has been much activity in the
experimental study of the propagation of heat
pulses in solids. These experiments are intended to yield
various interesting properties of the thermal carriers
responsible for the heat transmission, for example, their
velocities and their mean free paths due to scattering.
In metals at very low temperature the thermal carriers
are essentially the electrons, whereas in dielectrics or
in metals at higher temperature! they are mainly the
phonons. For a general review of the situation of heat-
pulse experiments the readers are referred to von Gut-
feld.? One notices immediately from his article that the
theoretical understandings of the experimental results
are rather qualitative. The difficulty lies in the fact that
one is usually working in situations in which the trans-
mission time of the heat pulse along the sample is com-
parable to the mean relaxation time of the carriers. In
such cases the transport of heat cannot be described by
the ordinary heat conduction equation. Hence it is of
theoretical interest to construct a theory capable of
describing the physics of heat-pulse propagation valid
at all times. Then it would be possible to interpret the
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F16. 1. Heat-pulse experiment schematics.

1Tn a metal, the thermal energy is mainly contained in the
lattice vibrations (or phonons) except at very low temperature
(T'$1°K). See Eq. (2) and the discussion following it.
?R. J. von Gutfeld, in Physical Acoustics, edited by Warren
. ‘P} ll\%son (Academic Press Inc., New York, to be published),
ol. V.
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experimental data more quantitatively, and also to
correlate various observations in a coherent manner.
In this paper we shall be concerned exclusively with the
transmission of heat pulses by phonons. The theoretical
analysis is based on the Boltzmann equation of the
phonon distribution function. The main task consists
of solving the Boltzmann equation in the relaxation-
time approximation and in the presence of a heating
source (prescribing a phonon-production rate). The solu-
tion obtained represents a new result which has not
been considered before.? It leads to a description of the
transport of heat which is valid at all times. Only after
time long compared to the characteristic times in the
sample does one recover the usual heat conduction re-
sult. Before we go into the details of our theoretical
analysis let us review briefly the usual experimental
setup in a heat-pulse experiment. It consists mainly of
three elements: the heater, the sample, and the detector.
There are various kinds of heater and detectors. For
our purpose we shall take them to be thin metallic films
evaporated onto the ends of the sample (Fig. 1). The
whole assembly is immersed in a heat bath (usually
liquid helium) at temperature T,. The experiment is
started (at {=0) by passing a current pulse through
the heater. The generated heat pulse now travels down
the sample and is detected. The detector is usually a
superconducting film near its transition temperature so
that its resistivity is very sensitive to heating or tem-
perature change and is therefore a convenient quantity
to measure.

In Sec. 2 the generation of heat in the heating metallic
film is discussed. It is shown that under some simplifying
assumptions one can treat the heater as a phonon source
for the sample. In Sec. 3 the Boltzmann equation of the
phonon distribution function in the sample in the pres-
ence of phonon generation at the interface is studied.
Using the relaxation time approximation, a solution to
the Boltzmann equation is found which describes the
space- and time-dependent deviation of the phonon

3 Qur result can describe the transient behavior of the phonon
distribution after it has been disturbed far from thermal equilib-
rium and before the distribution relaxes to one which can be
characterized by local thermodynamic variables like temperature
and phonon drift velocity and their derivatives. The behavior of
the phonon system in this latter limit has been studied by many
authors, and particularly comprehensive discussions can be found

in R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, 766 (1966);
148, 778 (1966).
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distribution function from total thermal equilibrium.
In Sec. 4, the result is discussed in various limiting
cases, in particular, the heat conduction (diffusion) or
long-time limit. In Sec. 5, the detection of the pulse
is briefly considered. It is followed by concluding re-
marks on the applicability of the present theory to
explain various experiments.

2. PHONON PRODUCTION BY HEATER

We begin by studying how the heater plays the role
of an external time-dependent phonon source for the
sample and thus provides the necessary boundary con-
dition for the phonon Boltzmann equation in the sample
to be studied in Sec. 3. As mentioned before, the heat-
pulse experiment begins when one passes a current
pulse through the heating metallic film at ¢=0. Thus
the current I(#) is a known function of time. It is beyond
the scope of this paper to investigate in detail the time-
dependent behavior of the coupled electron-phonon sys-
tem in the metal to study how heat is generated. One
makes the simple assumption that the film remains
always in thermal equilibrium. In other words, it is
characterized by a temperature T'z(f) which is time-
dependent. For simplicity we take Ty to be uniform
in the film. The assumption of thermal equilibrium is
valid if the thermal relaxation time (time for thermali-
zation) of electron-phonon system is very short com-
pared to the width of the current pulse. This condition
is usually satisfied in real experimental situations.2 Then
denoting the total energy of the system by Ex(f), whose
dependence on time is entirely through Tx(f), we have
the energy balance equation

EE O=I*(HhR —(—a—E (t)) 1)
a T \ot ’

loss

where Ry is the resistance of the film. The first term on
the right-hand side represents the input power which is
just Joule heating in our case. It will, of course, take on
different forms if the film is heated by other means,
e.g., by a laser beam. The second term represents the
heat loss to the environment. The film loses its heat
both to the heat bath and to the sample. In actual sys-
tems the latter loss is by far the dominant one. This
unfortunately creates a slight difficulty, namely, that
one cannot, in principle, decouple the energy-conser-
vation equation (1) from the heat-propagation equation
in the sample to be discussed later. The reason is that
part of the heat contained in the heat pulse transmitted
into the sample will at a later time diffuse or reflect back
to the film. However, in order not to complicate our
analysis, we shall make the reasonable assumption that
the total amount of heat which will eventually reach
the film at later times is small compared to the initial
energy input. This condition is satisfied if the sample is
large.

We shall now study Eq. (1). The total energy of the
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film Ey consists of two parts, an electronic part which
is proportional to (Tx#)? and a phonon part proportional
to (Tw)Y, ie.,

Eq(@)=0GlyTa@P+3[Te®I9XV.  (2)

The quantity V is the volume of the film and the con-
stants v and & are characteristic constants of the par-
ticular metal in question. The two contributions are
comparable at very low temperature, 75~ 1°K. Thus,
in usual situations, the phonon part dominates. The
energy-loss term arising from the heat transfer across
the metal-dielectric interface is quite complicated. How-
ever, the situation is much simplified if one ignores the
role of the electrons and assumes that the dominant
mechanism is phonon transmission. A thorough dis-
cussion of this topic of heat transfer across solid boun-
daries may be found in the articles by Little* and by
von Gutfeld et al.b

We shall now outline the derivation of the energy-loss
term in Eq. (1). Heating of the film increases the phonon
population. Since we have assumed thermal equilibrium
at all times, the change in the phonon distribution func-
tion is simply given by

() =m0 (T (1)) —m°(To) ©)]
mp’(T)=Lexp(fuon, ™ /ksT)— 1771, €Y

where A and p denote the polarization and wave vector
of the phonon with frequency w\,®. Next we calculate
the number of these extra phonons striking a unit area
of heater-sample surface per unit time. This can be
readily found to be

dmap() X (po/ )on D {10y B[ 1—exp(— 1/, ) ]}
#:>0), (5)

where 9 is the sound velocity for branch A, and
T is some effective phonon scattering time. The
appearance of the phonon relaxation is obvious by con-
sidering the two limiting cases. In the case of no scatter-
ing (7®) —e0) all the phonons within a distance v (¥
X (po/p) will hit the surface within 1 sec. Now scattering
will reduce this number and, in fact, when 7«1 sec,
only those phonons within a distance of the order of a
mean free path v+ from the surface can reach it.
Finally we consider the generation of phonons in the
insulator sample by the phonons [Eq. (5)] striking the
surface. Such a process is in general very complicated and
explicit results have been obtained only for some simple
cases.® For our purpose, we shall simply describe this
process by a transmission coefficient a(Ap,\'p’) which
represents the probability of creating a phonon (Ap)in
the sample by a phonon (\'p’) in the metal incident
upon the surface. One property of that is obvious is that

*W. A. Little, Can. J. Phys. 37, 334 (1959).

SR. J. von Gutfeld, A. H. Nethercot, Jr., and J. A. Armstrong,
Phys. Rev. 142, 436 (1966).

¢ See Ref. 4 and H. Kolsky, Stress Wave in Solids (Oxford
University Press, London, 1953).
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it must be zero when $,<0. Thus the total number of
phonons of the kind (\p) produced in the sample per
unit time and per unit area of the surface is

ﬁkp(t) =0 (If’z< 0)
= Z aO\P:)\’pl)ank’p’(l)v)\'(H){Tk'p'('m
)\/pl
X[1—exp(=1/mvp®)]}  (p:>0). (6)

It will be discussed in more detail in Sec. 3 that these
generated phonons are to be treated as being localized
in the region near the heater (Fig. 1). Now from Eq.
(6) one can immediately calculate the rate of energy
loss as

0
+(—-Ea<z>) — (S FongimaOIXA, ()
at loss

Ap

where A is the contact area of the heater with the
sample and w, is the phonon frequency in the dielec-
trics. Combining Eq. (7) with Egs. (1)-(3), the unknown
time-dependent temperature of the film 7T'x(f) may be
determined. This allows us to determine 7 ,(#) explicitly
as a function of time. We shall conclude this section by
discussing briefly the qualitative feature of the spec-
trum of the emitted phonons. For this purpose the
transmission coefficient a(Ap\'p’) is simply taken as
adanBppr, Where a is a constant. Then Eq. (6) says that
the spectral distribution of the phonons generated in
the sample is approximately proportional to the change
in the thermal spectrum in the heater film.

3. PHONON BOLTZMANN EQUATION IN SAMPLE

The phonon distribution in the sample is described
by the function Nyy(rf). To avoid further complication
we assume that the dimension of the sample in the x
and y directions is large compared to the length L along
2. This allows us to neglect complicated surface effects.
The dynamical development of the phonon distribution
function is determined by the Boltzmann equation” (for

0<z<L)

d
—3Np(t)+ Vap VN (rt) = — (ONxp/ ) cotision
ot
+ (aN) p/at) sourcey (8)

where vy, is the group velocity of the phonon defined by
Vap=V ginp. )

The function 8N»,(rf) is used to represent the deviation
of the phonon distribution from the complete thermal
equilibrium,_ distribution at the ambient temperature
To, i.e.,

3N p(xt) = N p(xt) — N,*(T0)

N (To)=[exp(finp/ksTo)—111.

7R, E. Peierls, Quantum Theory of Solids (Pergamon Press, Inc.,
London, 1955).

(10)
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The first term on the right-hand side of Eq. (8) is the
collision integral describing the rate of change of the
phonon distribution function due to scattering of pho-
nons. More will be said of this term later. The last term
in Eq. (8) describes the rate of phonon production due
to an external source. We will now determine its form
using the result obtained in Sec. 2. Let us first recall
that the function Ny ,(rf) represents the number of pho-
nons of the type (Ap) per unit volume at position r
(and time #). Such a description necessarily implies
that one must treat the phonons as wave packets which
are simultaneously quite well localized in momentum
and coordinate space. Hence for phonons with wave-
lengths comparable to the size of the crystal, the concept
of a local distribution is no longer valid. In Sec. 2 we
found 9,(#) [Eq. (6)], the rate of phonon production
per unit area in the sample by the heating film. One
immediately has the relation

/ d3r<aN;‘; & )m;Axma). (1)

sample
volume

To determine (ON/8%)sourcs €xplicitly, we first make use
of the concept of the localization of the phonons which
implies that the phonons produced are localized within
quantum distances from the boundary (z=0). Further-
more, we assume that the dimensions of surface area 4
are small compared to those of the sample. With these
conditions we may treat the heater as a point source
and obtain

(aN)‘p/at)source=Aas(r)"'l)\p(t) ’ (12)

which obviously satisfies Eq. (11). The Boltzmann equa-
tion (8) will offer a complete description if the collision
term is specified. In the following discussion two types
of phonon scattering processes will be considered. The
first case is the simpler one in which the dominant
phonon scattering process is the absorption of phonons
by other quantum-mechanical systems. The reemissions
of phonons may be ignored because they occur at a much
later time (long compared to the passage of the heat
pulse through the sample). In this case the solution to
the Boltzmann equation is very simple, describing what
will be called a ballistic flow. The energy in the pulse
is carried by the individual phonons created at the
boundary. They travel down the crystal with their re-
spective group velocities until being absorbed and thus
losing their share of energy. The second case is the more
complicated one, in which the phonon scattering pro-
cesses considered conserve the total amount of energy in
the phonon system. This leads to the existence of
another type of flow besides the ballistic one and is
referred to as the thermal flow. This is the result of
thermalization or thermal mixing of the phonon dis-
tribution. It will be seen that the initial flow is ballistic
in nature; then gradually the thermal part of the phonon
distribution is built up at the expense of the ballistic
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part. Finally, after a time extremely long compared to
the average relaxation time, the thermal part approaches
a local equilibrium form. In this limit the heat flow
may be adequately described by the ordinary heat-
conduction equation.

Case 1: Phonon Absorption

In case 1 we consider the situation in which the
dominant phonon scattering process is absorption by
impurity states. A familiar and interesting example is
the resonant phonon absorption by paramagnetic im-
purities in the presence of a variable magnetic field.
A review of the theory of spin-lattice interaction may
be found in the article by Tucker.® Another example
is the absorption of phonons by shallow neutral im-
purity states.® However, here one cannot vary the re-
sonant absorption frequency and it occurs at rather
high frequencies (w2 10" sec™!, #iw/ksT23°K). In the
relaxation-time approximation the collision integral for
such process is extremely simple, namely,

N SN p(x?)
(=) --—m W)
At/ eoltision P

where 7, denotes the branch- and wave-number—
dependent phonon relaxation time or the inverse of the
rate of phonon absorption.!? Equation (13) says that
the extra phonon disappears according to the absorption
rate and the phonon distribution function is reduced
to complete thermal equilibrium. Substituting Eqs. (12)
and (13) into Eq. (8), we obtain

(8/3t-+Vapr V-+1/72,D)5N3, @ (rt) = A5%(1)7np (). (14)

A superscript (1) will be used to denote that we are
dealing with case 1. This equation can be readily solved
and the solution is

Bpr“)(l’t)=/d3r'/dt’g>‘p“>(r——r’, t—1t)
X (A48 )mp(?)), (15)

where g is the Green’s function defined as the re-
sponse to a unit pulse

(8/8t+vap: V+1/m,0) gy P (x—1, t—1)
=§B@—r)s(—1). (16)

The solution which satisfies the boundary condition
that g=0 at infinite past ({—# — — ) is

o P—r,t—1)=0 (<)

t—t
= exp(—- npm)63(r-— r’-—(:’:;f;-— t,z:7)

8 E. B. Tucker, in Physical Acoustics, edited by Warren P.
Mason (Academic Press Inc., New York, 1966), Vol. IV, Part A.

9P, C. Kwok, Phys. Rev. 149, 666 (1966).

10 Formal study of the collision integral may be found in the
references quoted in Ref. 3.
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In Sec. 4 we have occasion to use the more formal
expression for gx,, namely,

gxp“) (r—rjy - t,):: (a/at+v)\p’ V+ 1/7)\p(1))_1
X8 (r—r)o(t—¢). (18)

Substituting expression (17) for the Green’s function
in (15), we obtain the explicit solution to the Boltzmann
equation

SN, D (xt) = Ad(x—1v.2)6(y—7y2)

g 1 2
Xexp(-———-—*) ﬁxp(t—“—>, (19)
D Tap P/ 0ap* Uap

Y= ”Apx/v)npz s Y= vkpy/v)\pz ’

where we have used the property that g,=0 for $,<0
and have assumed that the 2 component of the phonon
phase velocity v),? is positive for positive p,. The nature
of the solution (19) is obvious. It describes a collimated
ballistic flow in which the initial pulse shape of each
phonon component remains unchanged. The velocity
of the propagation is simply the group velocity vy, (or
7,° along the z direction). Its amplitude is decreasing
due to phonon absorption. The attenuation suffered
by any component of the flow at a position r depends
on the number of mean free paths it has traversed.

Case 2: Energy-Conserving Phonon Scattering

The next case is more complicated; we assume that
the dominant phonon scattering processes conserve the
total energy of the phonons. Examples of such are
phonon-phonon interaction including both normal and
Umklapp processes. If the normal phonon processes
dominate the collisions, then not only the phonon en-
ergies but also the phonon momenta are conserved.
This makes the situation slightly more complicated.
However, no new concepts other than those discussed
below need be introduced. We shall come back to
this point at the end of the section. Other examples of
such processes are elastic scatterings of phonons by
impurities, defects and dislocations, etc. In this case
the collision integral in the Boltzmann equation
(ON/3%)conision has (a) the property of conserving pho-
non energies, namely,

N,
Z hwhp( ) =0.
Ap N 0t /collision

An immediate consequence of this is a conservation
equation for the phonon energy density. Multiplying
Eq. (8) by #w\p and summing over (Ap), one gets

(20)

¢}
EE(ﬂH- V- ju(tt)=Pu(tt), @1

where E is the phonon energy density, J& is the energy
current, and Py is the power input by the heater. They
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are given by

E(l‘t) = Z flw)\pﬁN)\p(rt) ’ (22)
Ap
JE(l‘t) = ; hwxpvxpépr(rt) , (23)
P
0Ny
PH(rt)=Z hw;\p( )
Ap at source
(24)

= A53(1') )‘Z Tieon pﬁhp(t) .

Another property of the collision' term is (b) that it
vanishes when the distribution function Ny,(rf) cor-
responds to a local equilibrium distribution N, (rf)
which is a Planck distiibution characterized by a space-
and time-dependent temperature function 7'(r9), i.e.,

0N
( ) =0 for Nyy(tt)=N,,(x), (25)
ot collision
Nop(xt) =Ny, %(T(xt)
= {exp[ A p/kaT (xf) ]—1}71. (26)

At present the function 7'(rf) must be considered as
arbitrary and not be interpreted as a physically mea-
surable local temperature. In the relaxation-time ap-
proximation the collision term takes the form

( 6; > = (ONp(xt)— ‘SNAP(“:))/”P@) » (27)
oollision ]

which obviously satisfies Eq. (25). The quantity ),®
is the phonon collision time, and 6}V is the deviation of
the local equilibrium distribution from the complete
thermal equilibrium function:

8N\ (xt) =Ny (2t) — N> ,°(T'0)

=N (T (11))— N (T) . (28)

Using Eq. (27), one finds that the Boltzmann equation
in this case is

(8/0t+vap: V41/12, )N, @ (x) = A8 (1) i p(8)
+5N)\p(l‘l)/7’)\p(2) . (29)

This equation differs from Eq. (14) for case 1 by having
an extra term proportional to a yet undetermined local
equilibrium distribution function. The solution to (29)

can be immediately written as
SN p @ (xt) = 8N, B (xt)+ 6N, W (xf) . (30)

The first term, which shall be referred to as the ballistic
part, is given by
BNXP(B)(rt)=/dsr'/dt’gh‘”(r-—r', i—1)

XA ) i),  (31)
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This expression is identical to the result obtained for
case 1 [Eq. (15)] except that 7, has been replaced by
@ (hence the change of superscript on the Green’s
function). One point to keep in mind is that SN® is
completely determined once the source term is known.
The other term in Eq. (30), which shall be called the
thermal part, is

8NP (rt) = / ad’ / A, ® -1, 1—1)

X sV (')

Tap®

1
=/d3r'/dt’g>‘p‘2)(r—r’, 1—1)
Tap®

XLN"(T (1)) — Nay*(To) ].

(32)

In contrast to the ballistic term this expression is not
completely determined because it still contains an un-
known function 7'(rf). To solve for T'(rf) one must now
make use of the energy-conservation equation (21).
The result is an integro-differential equation determin-
ing T'(xt):

i)
B;E(th) () + V- Tt (et) = Poss(tt) | (33)
where
EW(et) =3 fiunpdNap ™™ (xt) (34)
Ap
(35)

JEM () =3 fonpVapdNap () (xf).
Ap

The function Pet(rf) denotes the known effective power
(density) driving the thermal part of the energy density
and is given by

0
Pogs(rt) = Py (xt)— EE B(r)—v-Je®(xt), (36)
E® (1))=Y ionpo N2, B (rl) , 37)
Ap
JE(B)(l‘l)-':Z ﬁw)\pV)‘pﬁN)\p(B)(l‘t). (38)
Ap

For reference purposes, Egs. (33) and (36) are written
more explicitly as!*

9
fd3f’/dtl Z {[ﬁwxp—gxpm(t—-r', t—t')—f—flw;\p
Ap at
XVap* Ver,, @ (r—r, t"tl):IXI:N)‘PO(T(rt))

—N)p°(To):|/np(2’l =Pes(rt), (39)

11 We shall assume here that the solution for 7'(rf) is unique.
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Peff(l’f)=A53(r) Z hw)\pr))\p(l)—i-/l Z hwxpa(x—-'yzz)
Ap Ap

: >( : >
N SOV AN

><m<t—_—z—). (40)

Up®

Xo(y—v,2) eXp<-—

Therefore, in the present case the phonon distribution
consists first of all of a decaying ballistic part, charac-
terized by an angular distribution which is entirely in
the positive s direction as 7x,=0 for ,<0. The phonon
distribution also contains a thermal part which is grad-
ually building up as a consequence of phonon energy
conservation. Its space and time behavior is, in general,
very complicated except in certain limiting cases con-
sidered in Sec. 4. One property of the thermal part
that we may notice from Eq. (32) is that the angular
distribution is quite isotropic, implying a backflow of
the phonons which are generated originally only in the
positive z direction.

We will now make a few remarks on the generalization
of our present treatment to more complicated cases.
First of all, let us suppose that the dominant phonon
scattering mechanism is a normal process. Then besides
energy conservation, Eq. (2), one also has phonon mo-
mentum conservation, i.e.,

Ny,
> hp( ) =0.
D dt /mnormal

collision

(41)

This leads to a momentum density conservation law
similar to Eq. (21) for the energy. Furthermore, the
collision integral has the property of vanishing when
the phonon distribution is equal to a “drifted” local
equilibrium distribution:

Np (rt) = { exp[reon,— ip- V(x) /5T (xt) ]— 1)1

The vector function V(rf) may be interpreted as a local
phonon drift velocity if it is much smaller than the
sound velocities. In the relaxation-time approximation,
the collision integral is simply

— (8N p— 8N, @)/ 70,

(42)

(43)

Now the Boltzmann equation may be solved as before.
The solution is similar to that of case 2, i.e., Egs. (30)-
(32), except that 7@ is replaced by ™ and that the
local equilibrium distribution function which appears
in the thermal part is replaced by the drifted distribu-
tion ¥ @, Now there are four unknown functions, 7'(rf)
and V(rf), instead of one and we need the additional
momentum-conservation equations (three components)
to determine them.

Finally, we remark on the most general case in which
all kinds of phonon scattering processes are present and
are equally important. These different processes relax
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the phonon distribution in different ways. However, in
the relaxation-time treatment, no fundamental com-
plications arise because the collision integral can be
systematically decomposed into appropriate terms.1?
Then one can solve the Boltzmann equation as before
and make use of the conservation equations (which may
now contain damping terms) to determine 7°(rf) and
V(x?) if they have been introduced.

4. APPROXIMATION SOLUTIONS OF LOCAL
TEMPERATURE FUNCTION

The exact solution to Eq. (40) for the local tempera-
ture function 7'(rf) is obviously impossible to obtain.
We shall thus restrict ourselves to consider limiting
cases for which approximate solutions can be calculated.
First of all, let us substitute the explicit form of the
Green’s function ga,® (r—v’, t—#') [Eq. (17) with 7),®
replaced by 7\,®] into Eq. (39). We get

I )‘p
%:p Tap® 8NM[T(Yt)] /dt A (73pD)2
Xexp(— _ )XSN[T(t-vM,(t— ), )]
@

=Peu(rt), (44)

where 6N is the function defined by Egs. (26) and (28).
If we use the formal solution (18) for the Green’s func-
tion, Eq. (39) may be written alternatively as

3 *‘ 9
> [1+ T)\p(2)(‘(§+")\p' V):I (ﬁw)‘p:9—¢+ FiwonpVap® V)

Ap

XN\ [T(xt) )= Pess(rt). (45)

These two expressions are, of course, equivalent but
they are respectively more appropriate forms to be used
for each of the two limiting cases considered below.

Case 1: Short-Time Limit

We first consider the behavior of T(rf) at times short
compared to the relaxation time 7 (some average of
2 p®). In this short-time limit Eq. (44) is the more
useful expression to deal with. The reason is that the
second term on the left-hand side may be neglected
compared to the first since it is smaller by a factor of
the order #/7®. Therefore, we have approximately

Z

AP Tap

azvh[r(rt)]NPeﬂ(rt) (46)

To solve for T'(rf) we assume that the difference between
T(r?) and the ambient temperature Ty is small, i.e.,

()= (T(xt)—To)/Tok1. %))

12 J, Callaway, Phys. Rev. 113, 1046 (1959).
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Thus according to Eq. (28), the deviation SN to linear
order in ¢ is

SN LT (xt) ]=Shp% (xf)

48
St= Nr XL A+ Mo (T g/ BsTo). )
Thus Eq. (46) becomes
S np\ !
a(rt)E(Zu) Peae(rd). (49)
A 1@

This expression says that the deviation of the local
temperature function from 7T is proportional to the
effective power input into the thermal part of the dis-
tribution. A note of caution is appropriate here. One
must not interpret 7'(rf) as the actual local tempera-
ture in the sense that it can be measured by an external
thermometer. The phonon distribution still contains
a ballistic part and the thermal part is still a long way
from attaining a local equilibrium form. Thus one may
regard T'(rt) as a temporary theoretical construct by
which one expresses the solution of the Boltzmann
equation.

Case 2: Long-Time Limit

Next we turn our attention to obtaining an approxi-
mate solution to 7'(rf) at times long compared to =®.
By this time the ballistic part of 6V would have almost
been completely attenuated. The solution in this limit
is meaningful only if we are working with samples that
are much longer than the mean free path I® =97,
In this case, Eq. (45) is more appropriate to use. One
assumes that 8V is relaxing towards the local equilib-
rium distribution 8N and, in the same time, the vari-
ation of 7'(rf) in space and time is becoming less rapid.
When such a limit is approached, one may expand the
inverse derivative operator in Eq. (45). Retaining only
the leading terms in the expansion and using the linear
approximation for 8, we obtain the familiar heat-
conduction equation describing the diffusion of heat:

] K 1
—o(rt) —=V20 (1) =—Pes:(xf) , (50)
ot b b
where
b= TunpSrp®, (51)
Ap
(52)

K= % )Z ﬁw)p(ﬂ).p)zs)\pof)\p(z) B
P

The quantity « is the thermal conductivity. In deriving
Eq. (52) we have also assumed cubic symmetry. The
nature of the solution to Eq. (50) needs no further dis-
cussion. In the present limit the function 7'(xf) does
indeed represent the physically measurable local tem-
perature. Let us remark that if the phonon collisions
are completely normal, the equations determining the
local temperature T(rf) and the local phonon drift veloc-
ity V(rf) in the present limit will assume a damped
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waveform rather than the diffusive form (50).!% This
corresponds to the well-known second sound mode of
heat or temperature propagation.

5. DETECTION OF HEAT PULSE

We shall now consider the detection of the heat pulse.
The amount of heat flowing across the sample-detector
interface can be calculated from the rate of phonon
generation in the detector. Denoting the phonon dis-
tribution function of the detector by #'y, and the phonon
transmission coefficient from the sample to the detector
film by o/ (A\p,\'D’), one finds the rate per unit area is

(an’“’) 0 (p:<0
= 2 <
). $:<0)

= T & ODND) vy (/)0 6]

(P=>07 Z=L), (53)
where

lvh’p'affl = !Vk’p' | {rvp @P[1—exp(— 1/7')\’11’ @)}

Equation (53) is, of course, similar to Eq. (6). The
total imput power is then given by

an/)‘p
Pal)= / / dady Y hw')‘p( ) 55)
A Ap ot /i

The integration is over the contact area 4’ between the
sample and the detector (Fig. 1). This is the quantity
that one hopes to measure directly. However, in the
usual experimental situations, it is only possible to make
indirect measurement of Piy, for example, by measuring
the temperature change in the detector. Assuming that
the rate of thermalization is fast, one can determine the
time-dependent temperature Tp(#) if one knows the
total energy Ep(#) as a function of Tp and the rate of
energy loss. It turns out that, in most cases, the loss
of heat is through the contact with the sample. In other
words, the heat loss is due to reradiation of phonons
back into the sample. From previous considerations, one
can immediately write the expression as

i}
(SEEDG) ) =4'X z "‘HO\P,)\IPI) f“"kp[nh' P o
loss A

X(To@®))—=myy @' (To) o y| (p:'/2), (56)

where o’ is the transmission coefficient from the detector
to the sample. We have also made use of the assumption
of thermal equilibrium. Now Egs. (55) and (56), to-
gether with the energy balance equation

aE e BE a3
)= D[TDa)J-Pm(t)—(S;ED(t)) , (7)

loss

13 See, for example, P. C. Kwok, Physics 3, 221 (1967).
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will enable us to determine T'p(f), or T'p(f)— T, caused
by the arrival of the heat pulse.

We have succeeded above in constructing a kinetic
theory of the propagation of heat pulse in dielectric
materials. Our result is equally applicable to the experi-
mental situation in which the transit time of the heat
pulse is short as well as long compared to the mean
phonon collision time. However, it is obvious that for
the intermediate time regime the result is so complicated
that it seems very difficult to extract useful information
from it. The simplest situation is when the heat flow
is mainly ballistic in nature. In this case the result is
straightforward and various properties of the phonons
can be studied directly. For example, one can study the
dispersion and damping of high-frequency phonons
which cannot be achieved by ordinary ultrasonic means.
It is possible in heat-pulse experiments because the
phonons injected into the sample are predominantly at
the thermal frequency of the heater (see Sec. 2). Thus
by varying the power input into the heater, i.e., chang-
ing the heater temperature T'x(#), one can excite various
high-frequency phonons in the sample.

Our result in the long-time limit looks simple also.
However, it must be borne in mind that we have con-
sidered cases in which only one scattering mechanism
dominates the phonon collisions. When several are
present, the result becomes more complicated and de-
pends rather intricately on the relative importance of
different relaxation times. Furthermore, one may now
have to consider the arrival of those portions of the
heat pulse that have suffered reflections off the boundary
surfaces in the x and y directions.

HEAT-PULSE PROPAGATION IN PHONON GAS
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We will conclude by commenting on the feasibility of
measuring second sound in solids by the heat-pulse
method. In principle, this can be done if the following
conditions are satisfied. First of all, one should work at
a temperature low enough that the umklapp processes
are negligible compared to the normal processes.
Secondly, the sample should be as pure and free of dis-
locations and other types of defects as possible (the
ideal case is a pure single crystal). These two conditions
are intended to reduce the momentum nonconserving
phonon collision processes which damp the second-
sound mode. Finally, the length of the sample must be
very long compared to the average mean free path of
the normal processes to ensure adequate thermalization
of the phonon distribution necessary for the appearance
of the collective second-sound mode. These conditions
are extremely difficult (nearly impossible) to satisfy
in practice for most solids (with the obvious exception
of solid helium!). Thus the measurement of second
sound in solids by heat-pulse methods remains an experi-
mental challenge.
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