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The Coulomb interaction between two impurity charges is evaluated for an atomic dielectric. The point-
dipole model is used to describe the model dielectric. The interaction potential between the two impurity
charges may be expressed as an asympotic series in 1/R, where R is the separation of the two charges. We
derive a method for systematically evaluating the coefficients of this series, and explicitly calculate all
terms up to and including those for 1/R? for the monatomic cubic lattices. The leading term is 1/€R.

I. INTRODUCTION

N 1837 Michael Faraday discovered that the differ-
ence between vacuum and an insulator can, for the
purposes of electrostatics, be characterized by a single
number, called by him the specific inductive capacity of
the insulator. Nowadays, it is more commonly called the
dielectric constant.! As every schoolchild now knows,
the force between two charges in a medium is reduced
from that in vacuum by a factor 1/¢, where e is the
dielectric constant.

A little reflection on modern views of the constitution
of matter led us to suspect that this is an asymptotic
law, valid for large distances between the charges com-
pared to distances characterizing the microscopic struc-
ture of the insulator. We therefore have investigated the
leading corrections to Coulomb’s law (modified by 1/¢)
in crystalline solids. Naturally, we did not expect, nor
did we find, effects which would cause any modification
of conventional macroscopic electrostatics. However,
even in microscopic calculations in solid-state physics,
the macroscopic idea of a dielectric constant is used, and
corrections such as we discuss may be relevant. Such
problems might be, for example, Wannier excitons in
solids,? or the off-center location of Li* impurities in
alkali-halide crystals.? In this paper, we do not consider
specific applications, but address ourselves to the basic
question of the interaction of impurity charges in an
insulating crystal.

What we do is clearly equivalent, in some sense, to
computing the longitudinal nonlocal dielectric function
(), though we have not formulated the problem in this
way at all. Our method, we believe, keeps the physical
origins of the various terms well tothefore. The physical
picture is that the impurity charges induce polarization
clouds in the crystal, and these induced moments inter-
act in a manner also conditioned by the presence of the

* Research supported by National Science Foundation Grant
Nos. GP6002 and 669GP7646. )

1 Henry Cavendish had anticipated this idea, but this remained
unknown until his papers were edited by J. C. Maxwell in 1879.
See E. T. Whittaker, A History of the Theories of Aether and
Electricity (Thos. Nelson and Sons, London, 1951), Vol. 1.

2 For a recent review, see B. Segall and D. T. F. Marple, in
Physics and Chemistry of II-VI Compounds, edited by M. Aven
a,nd7 J. S. Prener (North-Holland Publishing Co., Amsterdam,
1967).

3 See, for example, W. D. Wilson, R. D. Hatcher, G. J. Dienes,
and R. Smoluchowski, Phys. Rev. 161, 888 (1967).
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crystal. One can see, in our formalism, which terms are
due to the induction and which to the interaction.

The calculation proceeds from a purely microscopic
point of view. We put two impurity charges into the
dielectric, and calculate the interaction between them.
Each impurity atom may be anywhere within its unit
cell of the crystal. We assume that the positions of all
host atoms are unchanged by the presence of the
impurities; thus our impurities are interstitial rather
than substitutional. In order to make the calculation
tractable, we have adopted the point-dipole model for
the host dielectric. This model assumes that the induced
polarization moments of the host ions may be repre-
sented by point dipoles located at the atomic site. The
two impurity charges polarize these host atoms, thereby
affecting the net interaction between them. One of us
has previously derived the formula describing this
interaction.* Now we wish to show how to evaluate this
interaction. Specifically, this interaction can be ex-
panded in an asymptotic series in powers of 1/R, where
R is the separation of the two impurities. We derive a
method for systematically evaluating the coefficients of
this series, and explicitly calculate all terms up to and
including those for 1/R3 for simple cubic sc, fcc, and
bec lattices.

This problem has received only scant attention in the
literature. Most discussions of the corrections to the
1/eR potential have been concerned with dynamic
effects caused by the motion of the charges: An example
is Haken’s calculation for excitons. In contrast, our
impurity charges are fixed, and the deviations from
1/€R arise merely from the atomicity of the dielectric.
The only work which appears directly related to ours is
Sham’s derivation of the potential an electron feels near
a donor atom in a semiconductor.® Sham’s approach
differs from ours in many respects. He gets dynamic
effects from letting the electron move, he only calculates
1/R? terms, while we go to higher order, he includes
correlation and exchange effects, and he derives his
results by many-body theory. Although his approach is
more general than ours, it has the drawback that the

4G. D. Mahan, Phys. Rev. 153, 983 (1967); this article is
referred to as I.

& H. Haken, in Polarons and Excitons, edited by C. G. Kuper and
G. D. Whitfield (Plenum Press, Inc., New York, 1963). ‘

8 L. J. Sham, Phys. Rev. 150, 720 (1966).
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constant parameters which arise are not readily calcu-
lated from a microscopic model. The advantage of the
point-dipole model is that all of the expansion constants
can be quickly calculated from the lattice constants and
atomic polarizabilities. Furthermore, the point-dipole
system is a clean mathematical model well worth
investigating.

In Sec. II we describe and justify the method of
generating an expansion in 1/R. The leading coefficients
are evaluated in Sec. III, and the results are discussed
in Sec. IV. Many of the mathematical details are rele-
gated to the several Appendices.

II. SURFACE INTEGRALS AND SUBTRACTIONS

A. Statement of the Problem

In a previous paper* on the subject of local field
corrections (denoted by I), one of us has given a formula
for the potential energy of interaction of two impurities
with charges ¢; and ¢» at positions l; and I, in a crystal,
the separation between them being denoted by R
=1;—1I,. Each of the positions I; and I, could be any-
where in the unit cell, but we do assume that all of the
host ions are present. In this case it was shown in I that
the effective interaction between these two point
impurities is

1 &k
V)= 4192[—"‘ 47"&] —e®Rf(k; 11,12):! AV
R Bz 2m?

The notation BZ means the integration volume is con-
fined to the Brillouin zone. Similarly, we shall use OBZ
for integrations which include all wave vector space
outside of the Brillouin zone. The function fis given by

f&; L) =W,(1, k)G )W, (I, —k),  (2.2)

where the vector function W, is given by

(l— ll)lx
-1

We use the summation convention for indices. The sum
in (2.3) extends over all lattice sites I, and V is the
volume of a unit cell. The tensor G,,(k) is obtained by
first evaluating a tensor T, (k) which is also defined as
a lattice sum:

Vo
Ty (k)=_ Z eik.l‘ibm'(l) )
4 10

Vo
W, (I k)=—3_ ¢ (-10 (2.3)
4 1

(2.4)
¢ ()= (1/B)[8,,—3512],

and then solving
[8ut+4mal (k) 1Go (k) =0,

In I it is stated that if &, &, and &=F are a set of
appropriately chosen orthonormal unit vectors, then it

(2.5)
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follows that in cubic crystals

& T-4=0,T:(k), (2.6)
and this led to a simple expression for G,,(k). Un-
fortunately, (2.6) is incorrect for an arbitrary wave
vector k. This means that after evaluating T, (k) one
must in general invert the matrix equation (2.5) to find
Gy, (k).” The simple result (2.6) was mistakenly thought
to be correct because it is valid in cubic crystals at
k— 0 and also along the symmetry directions (100),
(110), and (111). Since (2.6) is valid as 2 — 0, then the
asymptotic results (R— ) derived in Ref. 1 are still
correct.

InI, Eq. (2.1) was evaluated by making the approxi-
mations of considering only the lowest-order contri-
bution to f, and carrying the integration over all space,
instead of the Brillouin zone. In the following we show
how these approximations may be improved.

Equations (2.1) to (2.5) just apply to lattices with
one atom per unit cell. When there are more than one
atom per unit cell, as in the diamond or NaCl structure,
one must solve a set of coupled equations in order to
obtain the effective interaction. As an example, the
solution for two atoms per unit cell is given in Appendix
A. For simplicity, we are going to restrict our present
discussion to just cubic lattice with one atom per unit
cell—i.e., sc, bee, and fcc structures. This has already
been anticipated since we have assumed that the atomic
polarizability « is isotropic in deriving (2.1) and (2.5).

We should emphasize that f(k;1,l;) does not depend
significantly upon the separation R. This is because
W .(13,k) is a periodic function of l;, and hence has the
same value in each atomic cell. The value of W, does
depend upon the position of the impurity ¢; at 1; within
the unit cell. Thus the function f(k; l,l;) depends upon
where each impurity at I; and I, are in their respective
unit cells, but it does not depend upon the separation of
these two unit cells. The separation of unit cells is
entirely expressed by the R factor in the exponent of
(2.1).

B. Surface Integrals

Our aim is to evaluate (2.1) as a power series in R7L,
This will probably be an asymptotic series, and the first
few terms will provide an accurate representation of
V(I1,ls) as R becomes large. We generate this series by
changing the volume integral in (2.1) to a surface
integral over the Brillouin zone.

The trick we use to generate surface integrals starts
with the identity

. Vk

iR?

eiER=

(e%%). (2.6")

When we put (2.6’) into the integrand of (2.1), and

7 That is, Eq. (13) of Ref. 4 is incorrect for an arbitrary wave
vector.
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integrate once by parts, we get
dk 1
/ _eik~Rf= de,Reik-Rf
Bz 2m? 27%R?

1

2m*R?

/ & ¢*RR.V,f. (2.7)
BZ

The surface integral runs over the Brillouin-zone
surface. Now, we can repeat this trick on the remaining
volume integral in (2.7). In fact, after repeating the
trick # times we get

: Bl R R ! ~%118 Reis® nil (iR.Vk)jf
P . -Reik-
27% ) Bz / 2% R? =0\ R?

1 iR-V;
+__/ &k eik-R(
27? ) Bz R?

Equation (2.8) is a method of generating a power series
in R™! as » assumes successively higher values. The
volume integral acts as a remainder term for the series,
and this term is of order R".

We must make two important modifications to Eq.
(2.8) before it can be used to generate the desired
expansion in powers of R~1. The first arises from the fact
that f(k;I;,l,) is not an analytic function of k, and this
causes the volume integrals in (2.8) to diverge at £ — 0.
This difficulty can be eliminated by subtracting from f
its nonanalytic parts. The second modification of (2.8)
is a simplification: All of the surface integrals vanish.
% We will now show that all of the surface integrals
vanish. They vanish because the surface integration
over two opposing faces of the Brillouin zone exactly
cancel. The normal vector to a Brillouin-zone face is
given by ko=%Ko, where K, is the appropriate recipro-
cal-lattice vector. For the j=0 surface integral term in
(2.8), the integration over two opposing faces is

ko-R
27%R?

)7 e

/dzkleikl'a[eiko'kf(ko,kl; ]1)12)
—e kR f(—ko ky; 1,10)].

The k, wave vector runs over the zone face perpen-
dicular to ko. In order to show that (2.9) vanishes, we
need to evaluate f(k+K;1,l;). First, note that if K is
any reciprocal-lattice vector, then from (2.3)

Wl b+ K)=E 3 gitktK): <1—n>w
T 1 (l— 11)3

=M, (1),

(2.9)

Both T, (k) and G,, (k) are periodic functions of recip-
rocal-lattice vectors. Therefore, from the definition of
fin (2.2) it follows that

J&+K; L) = %R f(k; 1,L). (2.10)
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Recalling that 2ko= K, the two terms in (2.9) cancel

since

e—iko'Rf(—k%kl; l1:12)= ——iko~R[eZiko-Rf(ko,kl; 11112)]
=R f (ko ky; 11,l).

Thus we have shown that the surface integrals vanish

in (2.8) for the j=0 term. The terms for j#0 also

vanish, and the proof is the same as for the j=0 terms.
From (2.10) we find that

iRV,
(e
so that all of the surface integrals over two opposing

faces cancel. Since the Brillouin zone is composed of
pairs of opposing faces, then

RV
f dS-Re“"R< )f(k;11,12)=0. 2.11)

RZ

iRV
2

)jf (k+K; 11,12)=e"'”( R )jf(k; bl

This result is valid for all values of j. The results (2.8)
and (2.11) are the main results of this section.

C. Subtractions

It was noted above that the function f(k;Iy,lz) is not
an analytic function of k. At the point k=0 in the
Brillouin zone the function f cannot be expanded in a
power series in terms of the variables (ks,k,k.). For
example, the volume integral on the right-hand side of
(2.7) and (2.8) actually diverges, since f— Gk2 as
k— 0, where G=(e+2)/3e. We might be able to
eliminate this divergence by subtracting the Gk~2 term
from f:

1
Bk %R f= v Ple=R(f—GE2)
27% /52 / 27 ./Bz /

1
+G [ &Pk etk R
BZ 2m2k?

If f—Gk™® were now an analytical function of %, we
could change it into a surface integral by using (2.8).
Actually, f—Gk is still not an analytic function of %,
and after several operations by (R-V;) in (2.8) we again
find terms ~%~% occurring. Thus we need to subtract
from f an additional function besides Gk~2. Let us call
the total subtracted function d(k; I,L;):

1

a3k eik-Rf

2n% /B2

2% ) Bz

1
Tk = dT— / &k e*Rd, (2.12)
™

BZ

The function d(k; I;,l5) will also depend upon where the
impurities I; and I, are in their respective unit cells, but
not upon the separation of unit cells. It is convenient
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to manipulate the last term in (2.12) by letting the
integration over k£ go to infinity and then subtracting
out the part for OBZ:

&k &% &%
__eik-Rd=/ eik‘Rd_/ —ptkRy
BZ 2 © 2m? OBZ 27

The integral to infinity is just the Fourier transform of
d(k; 1.,1,), which we call D(R;1,1,);

1
DR; 1 l)=— f P exRd(k; L), (2.13)
2% ) o

The notation D(R;I,l;) means that D depends upon
the separation R, and also upon the location of the two
impurities in their unit cells. The terms in (2.12) may
be collected as

1

&k =R f=D(R; 1,1y

27 Jpz

1 1
+——/ &k e"k'R[__f—d]—-——/ &k e Rd,  (2.14)
27% /B2 27% J oBz

In deriving (2.14) we have made the significant assump-
tion that the integral in (2.13) converges. We also make
the assumption that d is analytic in k in the region
OBZ. This allows us to change the last term in (2.14)
into a sum of surface integrals over the Brillouin zone
by using (2.8). Of course, since f—d is now an analytic
function of % for £ within the BZ, this term can also be
changed into a sum of » surface integrals by using (2.8).

Bk R f=D(R; L]
2 ) f=D(R; Il

+

1 n—1 ’l:R'Vk
f dS-ReERY [
2n2%R? =0

1 n—1 iR -V i
Fosmor (M5
2% R? =0 R?

]j(f— ?

RZ

1 iR Vi\ ™
F— d%eik‘R( ) (—d)
272 ) Bz R?
) iIR-Vi\"
— d*"ke’k'k< )d. (2.15)
27% J oBz R?

The vector dS points outward from the Brillouin zone
and is normal to the faces. Similarly, the vector S’
= —dS points inward since it was derived from a volume
integral for OBZ. Thus the two surface integrals of d
cancel. We have already shown in (2.11) that the surface
integrals of f vanish, and (2.15) immediately simplifies
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to
— @k fe'=R=D(R; 11,
27t /B2
LY R R(iR V’°>"<f )
P 61 . —
27 J Bz R?
iR -Vi\ "
—_— d*k e“"R( )d. (2.16)
27% J oz R2

The result (2.16) shows that we have achieved a con-
siderable simplification in formulating our calculation.
The problem of evaluating V(I,l;) in (2.1) as R —e
has been now made relatively easy. Instead of inte-
grating the function fexp(?k-R) over a finite volume
of wave-vector space (BZ), all we need is the integration
of d(k;Iy,l2) exp(ik-R) over all & space in (2.13). This
latter integration is in practice much easier to perform.
As we let # —, the two volume integrals for BZ and
OBZ become unimportant. Of course, the result (2.16)
is only sensible if D(R; I,l;) is a uniquely defined func-
tion for large R.

One does not need to be clairvoyant to guess the total
form of d(k;l.,l;). Instead, it is possible to generate d
in a step-by-step method. This technique has the
advantage that one can derive directly the lowest-order
terms in R™L

When we generate d in a step-by-step process, we are
essentially producing d as a series of terms:

dk; 1l = f: d™ (k;1lp). (2.17)
m=0

If we use (2.13) to transform (2.17) term by term, we
will get

DR;Ll)=Y DW®R;LL).  (218)
m=0

Basically we are going to use (2.16) and let » increase
by successive integers starting from zero. Before each
increase in #, we examine the remaining volume integral
of f—d for its nonanalytic parts. These are subtracted
off, which just adds another term to the series (2.18) for
D(R;1,L;). Then one can integrate by parts again,
which just increases # by unity. This process is re-
peated, and hence the series for D(R; 1.,ly) is generated.
Thus we rewrite (2.16) as

1 n—1
J— a3k eik-Rf= Z D (R; ]1’]2)
27r2 BZ m=0
+ 1 &% et R(iR'Vk)”[ "f dm]
—— ei 4 — m,
272 [ nz R? f m=0
iR Vi\ ™ n—1
— e"“‘R( ) T dm(k; k). (2.19)
27? J oBz R2 m=0
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In writing (2.19) we have assumed that #>1. We
already noted that the first subtraction must be

d® (k; 1,l,)=Gk2,
DO(R; L];)=GR-.

Some criteria must be agreed upon for deciding the
terms to be subtracted. We have used the standard of
subtracting out all terms in the volume integral for BZ
in (2.19) which have a wave-vector power of £~2 By
this we mean wave-vector terms of dimension 2~2; the
term k,/k® thereby qualifies. For each value of » in
(2.19), the term to be subtracted isdenoted C® (k;1;,15).

C™ (k; 1,1;)=terms of order (1/k?) in

(iR.Vk)n[ T do (k; 1l)]. (2.20)
—) - a1

If no terms of order 42 are present, then no subtraction
is needed and C™=0. The relationship between C™
and d™ is simply

iR-Vi\™
(I Tyl = (—R—) amGLL), (.21)

d’k
Do (R; I ly)= f RO ). (222)
w0 &M

It should be emphasized that C(k;1,ly) is
the important quantity. One never needs to deter-
mine d™ (k; l,l;) for m>1. The Fourier transforms
D (R; 13,l;) are found directly from C™ in (2.22).
This transform will always exist since we always chose
Cm~FE—2, In contrast, note that the direct transform
of d™ (k;1,l;) may not exist, but that this is unim-
portant for our calculation. Since C™ is the important
quantity, then in evaluating (2.19) one really would use
the identity

iR Vi\ ™ n—1 iR-Vi\"
( ) 2. dm (k;11,12)=<_1€2—) d® (k; 1,1,

_R2 m=0

n—1 f4R - Vp\ "™
( " ) C(m) (k, 11,]2) .

m=1

We hopefully can clarify how the C™ are determined
by listing the lowest two:

iR

CW=F~2 parts of ( >[f— dO (k;1,lp) 7,

. Vk
:

2 iRV
foemr (52

We emphasize that by determining the C™ (k;l,,l,)
rather than ¢ (k;1;,1;), and by doing so in a step-by-

iR

"V
C® =}~ parts of (
R2
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step method, we do not alter the conclusion that these
subtractions do not contribute any net surface integral.

In summary, we generate the C™ by successively
integrating by parts and subtracting out the non-
analytic terms. These are Fourier transformed using
(2.22) to obtain D™ (R;I,,l;). These are added to give
DR;1,ly) in (2.18), and this is the evaluation of the
integral in (2.1) since (2.16) is valid.

This method does produce the desired expansion in
powers of R, Since we always chose C™ proportional
to( k7%, then from (2.20) we see that dependence of
Ctm is

C(m) (k, ll,lz)~k~2R_m.

Therefore, the integral in (2.22) makes D™ (R;1,1,)
~R=0mt1) and the series (2.18) is a power series in R~
We can obtain the first few terms in the expansion for
R by evaluating first few of the D™ (R; 1,1,).

We conclude this section by emphasizing that these
results are quite general. They are valid for arbitrary
position I; and I; of the two impurities in their unit cells.

III. EVALUATION OF THE POTENTIAL
A. Form of f(k)

In order to proceed with the actual calculations, it is
necessary to have an explicit expression for the leading
terms of f(k) in powers of k.2 This can be obtained as
follows: W,(1.,k) is given by

W (k) =ik,/B2+A, 1)+ Cru()+- -+, (3.1)

where 4, and C,, are expressible in terms of lattice
sums, the exact forms of which are derived in Appendix
B. The constants 4, and C,» are real.

The tensor T, is of the form#*

Tuv=knkl'/k2'—%6w+ (a/"r)zwﬂvaﬁkakﬁ“‘ e, (3.2)

which we denote as 7@ ,,+T7T®,,+ . - - | the superscript
denoting the order of the 2 dependence ; the components
of w,,q4s are given in I for the various cubic structures.
Hence G,,, which is the inverse of 8,,+4mraT,,, is given
by

G,”,"—'G(O)My—47FC¥G(0);¢)\T)\KG(O)U+O(k4) » (33)

where G©@,, is the inverse of 8,,+4raT©,,,. Specifically,
GO, =[8,,—4mrak,k,/R2(1+87a/3) J(1—4mwa/3)1.

We note that G© is diagonal in a coordinate system
with k one of the axes; the k£ element of G© we shall
call G. If we put together (3.1), (3.2), and (3.3), we get

(k) =G/k*+iGk[ A, (1) — A4, (L) ]/
+4,G9,,4,—4raG%k, TPk, /k
+G (kukr/E)[Cs (1) +C oo (1) ]H+O(R) .
8 Henceforth we simplify our notation by dropping the explicit
reference to I and I, in function arguments. Thus f(k), C® (k),

d(k), and D(R) are the previously defined functions, and still
depend upon the positions I; and I; in the unit cells.

(3.4)
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The first term is O(k™2), the second O(k™), and the
remaining three O(k%) by the conventions already
established.

B. Integral Evaluation

We now return to (2.16). It is readily seen that
d® (k)=G/k?, and hence

DO(R)=G/R. (3.5)
The leading term in f—d® (k) is d® (k) =1Gk,[A4.(l2)
—A,(l)]/*2 Hence

cw (k) = ”‘LG[A n (ll) -4 n(l2):] (6151'_ 2k MkV/kZ)RV .
(kR)*

(3.6)
Now
1 2kkN\N1 R,R,
— | &k e"k‘R<6,,,—— >—= (3.7
22 k2 /k2  R®
and therefore
DO (R)=~+GR,[A,(1)—A4,(L)]/R:. (3.8)

The next subtraction is d® (k), which consists of the
remaining terms on the right-hand side of (3.4). Con-
sider first A4,(1,)G®,,4,(ls); evaluate this in the
coordinate system which diagonalizes G. Using the
representation (3.3), we find 4,G9,4,=—(e—1)
X (e+2)A4,4,k.k,/(F23¢) plus a term which is inde-
pendent of %,. The constant term does not contribute
to D@, because one must differentiate to get C® from
d®, Carrying out the double gradient, and then inte-
grating over & space, one obtains for the contribution of
this term to D® (R)

—(e—1)(e+2
“‘(*1‘“‘—)14 » (ll)d’uﬂ (R)A v (12) .

€

The last term involving C,, clearly contains exactly the
same combination of %’s, and hence yields

G[Cor(1)+Cois (1) Jpur (R)..

The remaining contribution, involving T®, is a bit
more complicated. We have shown the form of T® in
(3.2) for cubic crystals. Hence

kuky Ty ® [ht= Qwiu—w11) — Qwa— 3wk, 2k 2/ k,
3.9

where W11= Warrre™= Wyyyy = Wezzz, W= Wayzy™= Waryyz
=...% Again, the constant term plays no role. We
carry out the double k-space gradient, integrate over k

space, and obtain for the contribution to D® (R)
3R-3(Qwa— Sw1)4raG[5R2R,2/R—3].  (3.10)

The polynomial in square brackets in (3.10) will be
recognized as a Kubic harmonic for the 4,, repre-
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sentation.? The potential must, of course, have this

symmetry.
Now recall that

V(R)=q—;§—2[1—47ra 3 DO (R)+O(R=1)] (3.11)

8ma\ !
(1
3

draG= (e—1)/e.

and that

(3.12)

Putting all these results together, we find

(e=1)  Au()—A4,()
R

1
V(R)= [ R
0 eR € R

(e—1)
A B (ll)d’nv (R)A v (l 2)

+

€

e—1)?
- E‘T')‘qs;w (R) [Cuv (ll)+cﬁ”’ (12)]

e—1\2/7a\?
+%< > (‘) (—%wu— 2w44)
€ T

X (SRR R~ 3)/R3+O(R‘4)] . (3.13)

C. Simplification

Although Eq. (3.13) looks fairly formidable, some
simplification is possible if the impurities remain near
the centers of their respective cells. Let the displace-
ments from the centers be 4, and 4,2, respectively. Then
(a) 4,=%6,4+0(5* and (b) Cuy=C6,,+0(6%). Thus, to
order § we have

1 /e=I\R-@E—8)
V(R)—qlquR (35/ o FO(R )]. (3.14)

The force at the center of the cell containing particle 2,

say, is
R, e—

Fqu‘[~—
TR 3

1R,
~+0(R*3)]
R3

R,
=41Q2%(e+2)£:;+0(R'3) . (3.15)

That is, we get immediately the well-known 3(e+2)
local field correction: The local electric field at a site of
cubic symmetry is %(e+2) times the average internal
field defined as —V(1/€R).

9F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947).
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IV. DISCUSSION

We have calculated some of the important contri-
butions to the Coulomb interaction between two point
charges in an atomic dielectric. This Coulomb potential
has been shown to be a series—probably an asymptotic
series—in powers of 1/R. Furthermore, we have pre-
sented a method of evaluating the coefficients of the
leading terms in this series. This method is easy to use
and hard to justify. Thus Sec. II, in which we justify
the method, is much longer than Sec. III, where we
calculate the results. These results consist of the first
few terms in the series in 1/R for the sc, bce, and fce
lattices:

1 1 R,
V(R)=qu{—i—*——EA»(ll)—A..(lz)]E

€. €

(e=1)

-+ A u(11)¢uv (R)A,(lz)

€

e—1
— “:"[Cul‘ (11)+va (12) ]d’w‘ (R)

e—1\2 1 /R2R.}?
st el Y )

X (a/1r)2+0(1/R“)] . (@Y

This result is interesting because some of the terms
are intuitively reasonable, while others are apparently
not derivable by insight alone. For example, the
A-R/R? terms are just a charge-dipole interaction. If the
impurities 1; are located at a position with inversion
symmetry, the coefficient A(l;) vanishes. However, if
the impurity is located at an off-center position within
the unit cell, then the impurity is nearer to some host
atoms than to others. The nearby ones get polarized
more. This gives the unit cell containing the impurity—
indeed, the entire crystal region surrounding the
impurity—a net polarization moment. This provides
the dipole moment for the charge-dipole interaction
with the other impurity charge. The coefficient 4,
= (e—1)A, is just the value of this dipole moment. We
can also see that the term

fI wDus (DE V/ €

is just the dipole-dipole interaction between the two
polarization moments caused by the two charges. The
approximation 4 ,=%$, only applies when the impurity
is displaced a small distance  from a position of cubic
symmetry.

Similarly, most positions of the impurity within the
unit cell will cause the polarization field around the
impurity to have a quadrupole moment. This is the

COULOMB INTERACTIONS IN DIELECTRIC

1197

origin of the term

[(6’“ 1)/€]CIW¢IIV(R) )

which is just the interaction of this quadrupole with the
other impurity charge. The value of the quadrupole
moment is C,= (e—1)C,,. However, if the impurity is
at a position of cubic symmetry, there is no quadrupole
moment, as was noted above; in this case C,,=C$,, and
the entire term vanishes.

The polarization cloud surrounding the impurity may
also have higher moments, and these induce inter-
actions with higher powers of R. Note that for an
impurity at I, all of these induced polarization moments
are derivable from the wave-vector expansion of
W,.(3,k). It appears in the definition of

f (k) =W, (ll;k)G/w (k)Wv (lz, - k)

that the W’s describe the formation of the two polari-
zation clouds around each of these two impurities, while
G,y describes how these two polarization clouds interact.

The terms involving the dipole 4, and the quadrupole
C,» could perhaps have been derived by intuition
without having to go through our complicated analysis.
On the other hand, we do not see how the term involving
Wag, and its proportionality to a Kubic harmonic, could
have been derived except by starting as we did from Eq.
(2.1). These terms arise from spatial dispersion, i.e.,
from the wave-vector dependence of the dielectric
response function. This fact is easily demonstrated by
showing how G,,(k), and its wave-vector dependence,
enter into the definition of the dielectric response func-
tion e(q,w). Let us consider how an applied electric field

E(l,¢) = Egeitk- o0

propagates through the lattice. At each lattice site 1 a
polarization

P(l,{)=Pyeiti1-a0
will be induced. By considering the local electric field
at each lattice site, one can show that the polarization
amplitude is obtained by solving the equation®

Pi=a-[Ei—47T (k)-Po].
From (2.5) we see that this has the solution
Pi=G(k) - E,.
This result, along with Maxwell’s equation,
Eot+47Po=— (c/w)*k X (kX Ey),

defines the normal modes of the point-dipole solid, which
in turn give the dielectric response function. Only by
starting from (2.1) would one know how to properly
include the spatial dispersion characteristics of the
solid.

Equations similar to (2.1) were given in I for the
charge-dipole and dipole-dipole interactions between

10 G, D. Mahan, J. Chem. Phys. 43, 1569 (1965).
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impurities. Although we have not analyzed the asymp-
totic expansions of these interactions in any detail, it is
easy to see that they could be evaluated by the same
method. For example, by examining the function which
is equivalent to f(k) for these two types of interactions,
one sees immediately that the surface integrals vanish
as they did for f(k) in Eq. (2.11). Thus it appears that
the asymptotic series for the charge-dipole and dipole-
dipole interactions between impurities could also be
found by just subtracting and Fourier-transforming the
nonanalytic parts of the interaction.

Our calculation assumed that the host dielectric was
composed of point ions, which when polarized are point
dipoles. Within the framework of this point-dipole
model, we have been able to calculate exactly the lead-
ing terms in the asymptotic expansion of the Coulomb
interaction between impurity charges. Although this
model is a highly idealized simplification of a real
dielectric, it is employed widely to calculate the proper-
ties of real materials. This is because point-dipole
calculations are relatively easy to perform, while com-
putations are very much harder for actual solids with
finite and overlapping charge distributions. We have
adopted the attitude that, as long as this model is going
to be employed so extensively, it is worthwhile to deduce
its properties as accurately as possible. We feel that our
calculation of the asymptotic properties of the Coulomb
potential is a contribution towards understanding this
model.

It is interesting to speculate how our results would be
altered in a real dielectric with finite charge distribu-
tions. It is reasonable to conclude that the main features
of our results would pertain to the potential in an actual
dielectric. An impurity charge off center in the atomic
cell would still cause the induced polarization field to
have a dipole, quadrupole, and higher moments. One
would still get the same type of interaction terms be-
tween these induced moments, and only the magnitude
of the moments are altered by the properties of the real
dielectric. Similarly, in a real insulator the wave-vector
dependence of the dielectric response function will be
different than in the point-dipole model. The term
proportional to wes which arose from the wave-vector
dependence of Gy, (k) will be different in the real di-
electric. On the other hand, since the general form of
T, (k) is fixed by group-theoretical arguments, then
only the values of the parameters wj, w1, Wi can
change. The basic form of the interaction term in (4.1)
should be the same, and only the coefficient w.g should
change. This discussion suggests that in a real insulator,
the asymptotic expansion for the Coulomb potential
should have the same form as we have derived for the
point-dipole model: The only change is that the
parameters 4,, Cy,, and w.g will have different values.
However, Sham’s calculation® indicates that additional
terms may occur which arise from the effect of correla-
tion and exchange.
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APPENDIX A: TWO ATOMS PER CELL

Equations (2.1) and (2.2) only apply to solids with
one atom per unit cell. In this Appendix we derive the
equivalent relations for solids with two atoms per unit
cell. This is a fairly important case, since it includes
lattice structures such as alkali halides, diamond, and
zinc blende.

We arbitrarily select one sublattice and designate its
quantities by a superscript (1), e.g., its atoms have a
polarizability a«®. The atomic positions of the sublattice
are at l. The equivalent to (2.3), which is the wave-
vector transform of the charge-dipole interaction be-
tween an impurity at lo and this sublattice, is

(1—1o),
(-l

Similarly, the functions associated with the second sub-
lattice are designated by a superscript (2). Here the
atoms positions are at (I4%), where = is a nonprimitive
translation. Thus one has to define an additional

transform
Vo ’ (I++—1lo),
W(2)v(107k) [ Z etk (hr—lo) ,
(l+‘!7—'lo)3

T 1
where V is the volume of a unit cell, and «® and a®
are the atomic polarizabilities per unit cell volume.

One must also enlarge the number of wave-vector
transforms of the dipole-dipole interaction. Let us
define

Vo
WO, (lpk)=— 3 ¢t

4 1

(A1)

(A2)

vV
T(i,j)w(k)=,_0 3 exp[ik- 19 —10)]p,, AP —10)
4qr 1) (A3)

where W=} 1®=]++. When we write out the four
possibilities (7, j=1, 2), there are only two different

transforms. In accord with our prior usage,** we define
the equivalent T(® (k) and unequivalent T @ (k) sums

14
70, (=T00,, (k)= 762, ()=~ £ e 1,1,
4ar 190
T(")“,,(k)= T(2,1)“v(k)= T(I’Q),.,,(——k)

Vo
=I5 g, (1),
4r 1

(A4)

Since for all crystal structures the sublattice has in-
version symmetry, then 7, (k)=T(,,(—k). But
only for structures in which 2+¢=1 does T, (k)
=T®,,(—k). Thus there are lattices where 79, (k)
is invariant under k reversal, although 7®,, (k) is not;
for example, diamond.

The functions G, (k) define how polarization is
propagated through the lattice. For the case of two

1 G. D. Mahan, J. Chem. Phys. 41, 2030 (1964).
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atoms per cell, we must evaluate four functions
GG, (k), where i, j=1, 2. These are defined as the
probability that polarization starts on the (i) type of
atom and travels to the () type. Hence these functions
have the equations

GV (k)=1—-47T©@ (k) -«®-G®D (k)

— 47T (k)-«®@ -GV (K),
GeD (k)= —4rT@ (k) - «®- G (k)

— 47T (k)-«®-GAD (k),
G2 (k)= —47T@ (k) - - G (k)

— 47T (k) -a®-G@ (k),
GeY(k)=1—47T @ (k)-a® -G (k)

— 47 TO (k) - G2 (k).

(AS)

These equations can be solved to obtain the four tensors
G @9 (k). After this has been done, one can evaluate the
Coulomb interaction between two impurity charges
Jas qp at 1, and Iy, with R=1,—1;. This result is

1 1
VR)=quge| —— | @k e*Rf(k) |, (A6)
1ed [R 272 [Bz :l

where
2
f0=tr £ WO@,k)-a®

7=1; j=1
-GEN(k)- W@ (1, —k). (A7)

We have denoted the above function by f, since it
differs in normalization from the fin (2.1) by a factor
of 4ra.

These equations can be simplified if one just wishes to
evaluate the Coulomb interaction in (A6). One does not
need to evaluate the four tensor functions G (k).
Instead, let us define two vector functions U, for
=1, 2:

2
UO,k)=2 Gu@? WD, (1, —k).  (A8)
=1

If we take the four equations (AS) and insert them into
(A8), we generate the equations

U, 1K) = WD, (I, —k)—4r T, (k)a® U,
— 47T, (K)a® U O,
Umn(lb:k): Wﬂ)ndb —k)
—47I'T(°);n(k)a(?‘)v)\U(z))\(lb,k)
— 42T O, (k)W U Wy

(A9)

Furthermore, from (A7) and (A8) we see that

2
F=4r ¥ WOI,K) -« UO(1,k) . (A10)

J=1

One only needs to solve for the two vector functions in
(A9) in order to obtain (A10). This should be easier
than solving for the four tensor functions G@+9,
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A further simplification is possible in the case that all
of the atoms have the same polarizability, a®=a®.
Then it is convenient to introduce

U, (lpk)=UD,£U®,,
W&, (k) =WD,£ W,
TE,,=T®,,+ T,
By adding and subtracting (A9), we get that
U =W, —4r T, U,
F=27[WHaUH WU,
In (A11), one just needs to solve a single vector equation
for U™ and one for U); the pair of equations (A9)
become uncoupled when e® = g®,

We have not carried out any detailed calculations for
the two-atom-per-cell case.

(A11)

APPENDIX B: LATTICE SUMS

The technique we use for dealing with lattice sums is
due to Born and Bradburn® and some of the formulas
are given also by Cohen and Keffer.®

W(13,k) is given by Eq. (2.3), and can be written

4 19
—W, (L k)=-—3 el -0 |]-];|3, (B1)
v L Ok, 1

0 1 ;m

The sum in (B1) is like the S; of Cohen and Keffer,
except that I, is not a lattice vector. Nevertheless, the
Born-Bradburn techniques are still applicable ; one must
merely use the generalized Ewald transformation
formula given by Born and Huang, instead of the
simple one used by Born and Bradburn. We find that

3

4TW (k) i 2 e "y (n|1-11[?)
J— K)=i— etE (=10gy o (p|1—
Vo i ak,, I‘(—%) 1 e '

w32 oy \
+—I;;I—‘@)—1;;¥ e gy (|b—k| /477)} . (B2)

Here 7 is the parameter which regulates the relative
contribution of the direct and reciprocal lattice sums.
The total sum is independent of 4. The b vectors are 27
times reciprocal lattice vectors, V, is the volume of a
unit cell, and the ¢ functions are as given by Refs. 12
and 13. Thus

T ="
Ve " T@®)
b—k)n

1 7r3l2 (
- e g (|b—k|2/4%). (B3
iVﬂ%§ 2¢¢m [2/40%). (B3)

( “41;%. Born and M. Bradburn, Proc. Camb. Phil. Soc. 39, 113
1943).

13 M. H. Cohen and F. Keffer, Phys. Rev. 19, 1128 (1955).

¥ M. Born and K. Huang, Dynamical Theory of Crystal Lattice
(Clarendon Press, Oxford, England, 1954), p. 251.

¥ e -1 (1— 1),y o (2| 1= 11 |2)
1
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If we now expand in powers of k, we get, from the b=0
term of (B3),

ka0
T@V, & ! ’

(B4)

From the direct-lattice sum we get
”3
r'@3)

(Zl (=112 (n?|1-11|?)
+ik, Zl: A-1),A—=1) 12 ([ 1=1t |4 ), (BS)

while the reciprocal-lattice sum gives

(b_k)u _

vt bk

|b—k|*

2312
VoI‘ (%) b0

(B6)

If we further expand (B6) in powers of k,, we obtain

2m312

iVL'@3) v

e—-ib < 11— b2 /4n2

by ky 2bbeka buboka

[ o | e
o b 2b™?

Collecting powers of k,, we finally get Eq. (3.1), where

Vo
Ay(l)=——n* X (A=11),p1/2(n*|1=11]?)
27['3/2 1
—i Y emiblignlntp [f2

b0

> (=1, (=1).p1/2(n|1=11[?)

1

(B3)

3

o AL
MV(1)~27r3/2

+ 3 e gV He[s,,—b,b,(2/b—1/2?) /8. (BY)
b#0

It is clear by inspection that A(l;) vanishes if I, lies as
the exact center of a cell. Cy,(l;) does not vanish in this
circumstance, but is a multiple of the unit tensor.

If we write the deviation of I; from the center of a cell
as 9, then for & small, the deviation of C,, from its
central value is O (8%). If we expand 4, in powers of 9,
however, we find

A, =45, (B10)
where
Vo"l3
A= (—X ¢1/2(?|1=10]?)
27r3/2 1
+ 3 Zl:(l“lo)ztzba/z(ﬂ2 |i—1|%)
1S bl (B11)

b0
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Here, lois a vector to a point at the center of a cell. This
rather complicated expression is actually equal to 3.
This can be shown by applying the general Ewald
transformation exactly as Cohen and Keffer applied the
simple Ewald transformation to dipole wave sums.
The other lattice sums which enter the present prob-
lem are those defining T,,. They are not discussed
further here, since they do not involve any interstitial
atoms, and have already been discussed in the literature.

APPENDIX C: EVALUATION OF SOME
INTEGRALS

Integrals of the type

F.(R)= / iR 1wtk (C1)

appear in the foregoing; the subscripts refer to crystal
axes which may have nothing to do with the direction
of R. Such integrals can be evaluated as follows. In
cylindrical coordinates, with the %, axis as z axis, and

K?=k*—F,2 we have

F.(R)= 2/ cos(k,R,)k,"dk,

0

»  KdK W
X/ m/ iezKpcosq5d¢’ (CZ)
0 (k"2+K2)n/2+l 0

where p?=R?—R,?, and here, repeated indices do not
mean a sum. The ¢ integral is a Bessel function, so that

Jo(Kp)
F.(R)=4r / cos(k Rk dk, | ——————KdK .
0 o (kM2+K2)"I2'H

<} 0

(C3)
Now the K integral yields!®

(0/2k)" K —nj2(kup)/T (Gn+1),

where K_,/s is the Bessel function of imaginary argu-
ment. Hence!®

47
—— ()"

F,R)=
® I'(Gn+1)

)

X [ 08 (kuR)K —nj2 (ko) dk,
0

. R“2>n/2 ,

— (C4)
R2

223 T (h-+4)
"R I‘(%n—{—l)(
which is the result we need.

18 Higher Transcendental Funmctions, edited by A. Erdelyi
(McGraw-Hill Book Co., New York, 1953), Vol. 2, p. 96.

18 Tgble of Integral Transforms, edited by A. Erdelyi (McGraw-
Hill Book Co., New York, 1954), Vol. 1, p. 49.



