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Coulomb Interactions in an Atomic Dielectric*
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The Coulomb interaction between two impurity charges is evaluated for an atomic dielectric. The point-
dipole model is used to describe the model dielectric. The interaction potential between the two impurity
charges may be expressed as an asympotic series in 1/If, where If is the separation of the two charges. We
derive a method for systematically evaluating the coefBcients of this series, and explicitly calculate all
terms np to and lnchldlng those for 1/Z for the monatomic cubic lattices. The leading term fs 1/off.

I. INTRODUCTION
" "N j.837 Michael Faraday discovered that the diBer-
~ - ence between vacuum and an insulator can, for the
purposes of electrostatics, be characterized by a single
number, called by him the spectftc t'rtdttcft'se cttpttct'fy of
the insulator. Nowadays, it is more commonly called the
dielectric constant. ' As every schoolchild now knows,
the force between two charges in a medium is reduced
from that in vacuum by a factor 1/e, where e is the
dielectric constant.

A little reAection on modern views of the constitution
of rnatter led us to suspect that this is an asymptotic
law, valid for large distances between the charges com-

pared to distances characterizing the microscopic struc-
ture of the insulator. We therefore have investigated the
leading corrections to Coulomb's law (modified by 1/e)
in crystalline solids. Naturally, we did not expect, nor
did we find, effects which would cause any modi6cation
of conven't1orlRl mRci'oscopic electrostatics. Howevel
even in microscopic calculations in solid-state physics,
the macroscopic idea of a dielectric constant is used, and
corrections such as we discuss may be relevant. Such
problems might be, for example, %annier excitons in
solids, ' or the OB-center location of I.i+ impurities in
alk.ali-halide crystals. e In this paper, we do not consider
specidc applications, but address ourselves to the basic
question of the interaction of impurity charges in an
insulating crystal.

What we do is clearly equivalent, in some sense, to
computing the longitudinal nonlocal dielectric function
e (k), though we have not formulated the problem in this

way at all. Our method, we believe, keeps the physical
origins of the various terms well to the fore. The physical
picture is that the impurity charges induce polarization
clouds in the crystal, and these induced moments inter-
act in a manner also conditioned by the presence of the

*Research supported by National Science Foundation Grant
Nos. GP6002 and 669GP j646.

~ Henry Cavendish had anticipated this idea, but. this. remained
unknown until his papers were edited by J. C. Maxwell in 1879.
See E. T. Whittaker, A II'istory of the Theories of Aether anfg

Electricity (Thos. Nelson and Sons, London, 1951),Vol. 1.
~ For a recent review, see B. Segall and D. T. F. Marple, in

I'byes ued Chemistry of II-VI Compolrlds, edited by M. Aven
and J, S. Prener (North-Holland Pubhshing Co., Amsterdam,
1967).' See, for example, %.D. Wilson, R. D. Hatcher, G. J. Dienes,
and R. Smoluchowski, Phys. Rev. 161, 888 {196'I).

crystal. One can see, in our formalism, which terms are
due to the induction and which to the interaction.

The calculation proceeds from a purely microscopic
point of view. We put two impurity charges into the
dielectric, and calculate the interaction between them.
Each impurity atom may be anywhere within its unit
cell of the crystal. We assume that the positions of all
host atoms are unchanged by the presence of the
impurities; thus our impurities are interstitial rather
than substitutional. In order to make the calculation
tractable, we have adopted the point-dipole model for
the host dielectric. This model assumes that the induced
polarization moments of the host ions may be repre-
sented by point dipoles located at the atomic site. The
two impurity charges polarize these host atoms, thereby
RGecting the net interaction between them. One of us
has previously derived the formula describing this
interaction. 4 Now we wish to show how to evaluate this
1ntei Rctlon. Specl6cally this 1nterRct1on cRn be ex-
panded in an asymptotic series in powers of 1/R, where
R is the separation of the two impurities. We derive a
method for systematically evaluating the coeKcients of
this series, and explicitly calculate Rll terms up to and
including those for 1/R' for simple cubic sc, fcc, and
bcc lattices.

This problem has received only scant attention in the
literature. Most discussions of the corrections to the
1/eR potential have been concerned with dynamic
eftects caused by the motion of the charges: An example
is Haken's calculation for excitons. ' In contrast, our
impurity charges are axed, and the deviations from
1/eR arise merely from the atomicity of the dielectric.
The only work which appears directly related to ours is
Sham's derivation of the potential an electron feels near
a donor atom in a semiconductor. ' Sham's approach
diGers from ours in many respects. He gets dynamic
effects from 1etting the electron move, he only calculates
1/R' terms, while we go to higher order, he includes
correlation and exchange eGects, and he derives his
results by xnany-body theory. Although his approach is
more general than ours, it has the drawback that the

4G. D. Mahan, Phys. Rev. 153, 983 (196t|'); this article js
referred to as I.

~ H. Haken, in Polaris end Excitons, edited by C. G. Kuper and
G. D. Whit6eld (Plenum Press, Inc. , ¹wYork, 1963).

I L. J. Sham, Phys. Rev. 150, 720 (1966).
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constant parameters which arise are not readily calcu-
lated from a microscopic model. The advantage of the
point-dipole model is that all of the expansion constants
can be quickly calculated from the lattice constants and
atomic polarizabiHties. Furthermore, the point-dipole
system is a clean mathematical model well worth
investigating.

In Sec, II we describe and justify the method of
generating an expansion in 1/R The leading coeKcients
are evaluated in Sec. III, and the results are discussed
in Sec. IV. Many of the mathematical details are rele-
gated to the several Appendices.

V(ll, ls) = qlqs —4s.
E.

d'k
e'" Rf(k; ll, l,) . (2.1)

z 27rl

The notation BZ means the integration volume is con-
fined. to the Brillouin zone. Similarly, we shall use OBZ
for integrations which include all wave vector space
outside of the Brillouin zone. The function f is given by

f(k; lt, ls) = W„(il,k)G„„(k)W„(ls,—k), (2.2)

where the vector function 8'„ is given by

Vs (I—Il)„
W„(ll,k) =—Q e'" &'-"&

4x (I—ll)'
(2.3)

Wc usc thc summation convcntioIl for Indices. Thc suxIl

in (2.3) extends over all lattice sites I, and Vs is the
volume of a unit cell. The tensor G„„(k) is obtained by
erst evaluating a tensor T„,(k) which is also defined as
a lattlcc sull1:

Vo
T,„(k)=—P e'a'y„„(l),

4n &~ (2.4)

and then solving

Q. SURFACE IÃTEGRALS AND SUBTRACTIONS

A. Statement of the Problem

In a previous paper4 on the subject of local field
col'1'cctlolls (denoted by I), oIle of lls llas glvcll a fol'IllulR

for the potential energy of interaction of two impurities
with charges ql and qs at positions 11 and ls in a crystal,
the separation between them being denoted. by R
= ll —ls. Each of the positions 11 and ls could be any-
where in the unit cell, but we do assume that all of the
host ions are present. In this case it was shown in I that
the effective interaction between these two point
impurities is

follows that in cubic crystals

e; T e;=8;;T;(fr), (2.6)

B. Surface Xntegrals

Our aim is to evaluate (2.1) as a power series in E I. -
This will probably be an asymptotic series, and the 6rst
few terms will provide an accurate representation of
V(II,ls) as Z becomes large. We generate this series by
changing the volume integral in (2.1) to a surface
integral over the Brillouin zone.

The trick we use to generate surface integrals starts
with the identity

R.v'I,
sit R (esca R)i' (2.6 )

and this led to a simple expression for G„„(k). Un-
fortunately, (2.6) is incorrect for an arbitrary wave
vector k. This means that after evaluating T„„(k)one
must in general invert the matrix equation (2.5) to find

G„„(k).' The simple result (2.6) was mistakenly thought
to be correct because it is valid in cubic crystals at
k-+ 0 and also along the symmetry directions (100),
(110),and (111).Since (2.6) is valid as k -+ 0, then the
asymptotic results (R-+ac) derived in Ref. 1 are still
correct.

In I, Eq. (2.1) was evaluated by making the approxi-
mations of considering only the lowest-order contri-
bution to f, and carrying the integration over all space,
instead of the Brillouin zone. In the following we show
how these approximations may be improved.

Equations (2.1) to (2.5) just apply to lattices with
one atom per unit cell. When there are more than one
atom per unit cell, as in the diamond or NaCl structure,
one must solve a set of coupled equations in order to
obtain the effective interaction. As an example, the
solution for two atoms per unit cell is given in Appendix
A. For simplicity, we are going to restrict our present
discussion to just cubic lattice with one atom per unit
cell—i.e., sc, bcc, and fcc structures. This has already
been anticipated since we have assumed that the atomic
polarizability o. is isotropic in deriving (2.1) and (2.5).

We should emphasize that f(k; ll, ls) does not depend
significantly upon the separation E. This is because
W„(ll,k) is a periodic function of Il, and hence has the
same value in each atomic cell, The value of 8'„does
depend. upon the position of the impurity ql at Il within
the unit celL Thus the function f(k; ll, ls) depends upon
where each impurity at ll and Is are in their respective
unit cells, but it does not depend upon the separation of
these two unit cells. The separation of unit cells is
entirely expressed by the E factor in the exponent of
(2.1).

p„„+41rnT„„(k)gG„),(k) =8„1. (2.5) Whcll wc pll't (2.6 ) 111'to thc 11ltcgraIld of (2.1), and

In I it is stated that if el, es, and es ——k are a set of
appropriately chosen orthonormal unit vectors, then it

r That is, Eq. (13) of Ref. 4 is incorrect for an arbitrary wave
vector.
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0 no terms of order k ' are present, then no subtraction
is needed and C&"}=0.The relationship between C( '
and d~ } ls simply

iRVp"
C&"&(k; li,l2)= d &"&(k; li,l,), (2.21)

R2

D&"&(R li,l2)=
d'k

e'"'aC& &(k; li, l2) . (2.22)
2%2

It should be emphasized that C' & (k; 1&,4)
the important quantity. One never needs to deter-
mine d& &(k; li, lm) for m&1. The Fourier transforms
D'"'(R; li, l~) are found directly from C&"' in (2.22).
This transform will always exist since we always chose
C& } k '. In contrast, note that the direct transform
of d'"&(k; Ii,i~) may not exist, but that this is unim-

portant for our calculation. Since C& } is the important
quantity, then in evaluating (2.19) one really would use
the identity

iR v'g, " -& iR V&, &&"

Q d&"&(k li, l2)=
~

d&'&(k; Ii,lg)
Z2 -~ '

Z2 &

iRVg""
C&"&(k I I)

We hopefully can clarify how the C& ' are determined
by listing the lowest two:

iR v'g,

C('}=A ' parts of Lf—d&'&(k; li,l2)j,
E.2

iRv, 2 iR v'&,

C&'&=k ' parts of Pf—d&0&j C(&}

E.2 R2

We emphasize that by determining the C&"&(k; I&,I~)
rather than d&~& (k; Ii,l~), and by doing so in a step-by-

In writing (2.19) we have assumed that n&1. We
already noted that the Grst subtraction must be

d&'&(k li,lg) =Gk—'
D&0&(R; li, l2) =GR-'.

Some criteria must be agreed upon for deciding the
terms to be subtracted. We have used the standard of
subtracting out a0 terms in the volume integral for BZ
in (2.19) which have a wave-vector power of k '. By
this we mean wave-vector terms of dimension k '; the
term k,/k' thereby qualifies. For each value of n in
(2.19), the term to be subtracted is denoted C &"& (k; li 1~).

C'"'(k; li, lm) = terms of order (1/k') in

step method, vm do not alter the conclusion that these
subtractions do not contribute any net surface integral.

In summary, we generate the C& } by successively
integrating by parts and subtracting out the non
analytic terms. These are Fourier transformed using
(2.22) to obtain D& &(R; li, l~). These are added to give
D(R; li,l2) in (2.18), and this is the evaluation of the
111'tegl'al 111 (2.1) since (2.16) ls valid.

This method does produce the desired expansion in
powers of E '. Since we always chose C& }proportional
to k-', then from (2.20) we see that dependence of
C(m} is

C&"&(k I I )-k-'8-"
Therefore, the integral in (2.22) makes D&"&(R;li,i&)

R &~'& and the series (2.18) is a power series in R '.
We can obtain the 6rst few terms in the expansion for

'by evalua-ting first few of the D&~& (R; li, l2).
We conclude this section by emphasizing that these

results are quite general. They are valid for arbitrary
position li and 1~ of the two impurities in their unit cells.

III. EVALUATION OP THE POTENTIAL

A. Form of f{k)
In order to proceed with the actual calculations, it is

necessary to have an explicit expression for the leading
terms of f(k) in powers of k.' This can be obtained as
follows: W„(li,k) is given by

W„{l,k) ='iky/k'+A p(Ii)+ikicip(11)+, (3.1)

where A„and C),„are expressible in terms of lattice
sums, the exact forms of which are derived in Appendix
B. The constants A „and C„q are real.

The tensor T„„is of the form4

T„.=k„k„/k ——',i&„,+ (u/s. )'n)„„.pk.k&&+ ~ ~, (3.2)

which we denote as T&'&„,+ T&2& „+ .
, the superscript

denoting the order of the k dependence; the components
of m„„p are given in I for the various cubic structures.
Hence G„„,which is the inverse of 8„„+4nnT„„,is given
by

G„„=G&0&„„—4&rnG&0&„yTy„G&'&„,+0(k'), (3.3)

where G&'&„„is the inverse of 8„„14nnT&o&„„.Specifically,

G&&„„=P„„—4 k„k./k(1+8 /3)j(1—4 /3)-'.

We note that G&0& is diagonal in a coordinate system
with k one of the axes; the kk element of G"' we shall
call G. U we put together (3.1), (3.2), and (3.3), we get

f(k) =G/k'+iGk„E~ p(ls) ~„{I&)j/k2-
+2 „G&0&„„2„4&rnG'k„T &"„„k—„/k'

+G(k„k./k')LC„. (li)+C„„{lg)j+0(k). (3.4)

8 Henceforth we simplify our notation by dropping the explicit
reference to l» and 12 in function arguments. Thus f(k), C(~}(h),
d(k), and D(R) are the previously de6ned functions, and still
depend upon. the positions I» and 4 in the unit cells.
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The 6rst term is 0(k '), the second 0(k '), and the sentation. ' The potential must, of course, have this
remaining three 0(ke) by the conventions already syrnxnetry.
established. Now recall that

B. Integral Evaluation

We now return to (2.16). It is readily seen that
d&'&(k) =G/k', and hence

gyg2
V(R) = P1 4—sn Q D&"&(R)+0(R " ')j (3.11)

R tnM

D&'& (R)=G/R. (3.5)

The leading term in f—d&'&(k) is d&'&(k) =iGk„LA„{12)—A „(Ii)j/k'. Hence 4~nG= (e—1)/e.

(3.12)

2k„k, j. E„R„
$3$ haik

R

P2 P2 g3
(3.'I)

and therefore

C&'& (k) = — —G(A „(li)—A „(le)$(8„„—2k„k„/k')R„.
(kR)' (3.6)

Now

Putting all these results together, vie Gnd

—1 (e—1) A „(li)—A „(le)
V{R)=qiqe — R„

R3

(e—1)'
+ A „(li)4„„(R)A„(1,)

D&'~(R) =+GR„PA„(l,)—A„(l,)j/R . (3.g)

The next subtraction is d&'&(k), which consists of the
remaining terms on the right-hand side of (3.4). Con-
sider first A„(li)G&e'„„A,(12); evaluate this in the
coordinate sys'teill wlilcll dlagonallzes G. Using tile
representation (3.3), we 6nd A„G&e'„„A„=—(e—1)
X(e+2)A„A„k„k„/(k'3e) plus a term which is inde-
pendent of k„. The constant term does not contribute
to D"), because one must differentiate to get C"& from
d(2&. Carrying out the double gradient, and then inte-
grating over k space, one obtains for the contribution of
this term to D&'& (R)

—(e—1)(e+2)
A „(1,)4 „„(R)A„(IR).

The last term involving C„„clearly contains exactly the
same combination of k's, and hence yields

GLC"{li)+C"(le)34"(R).

(e—1)'
4 "(R)LC"{li)+C"(12)]

X (SR„'R„'/R4 3)/R'+0 (R—4) . (3.13)

C. SimyMcation

Although Eq. (3.13) looks fairly formidable, some
simpliGcation is possible if the impurities remain near
the centers of their respective cells. Let the displace-
ments from the centers be 8„'and 8,2, respectively. Then
(a) A„=-',8,+0(&ie) and (b) C„„=Cb„„+0(fie).Thus, to
order 8 vM have

—1 e—1R(V—V)
V(R) = qiqe

—— —+0(R ') . (3.14)
6R 3E E

E„c—'1 E„
&,=qiqi + —+0(R ')

-6R 36 E.
ki k.T'B."'/k'= (2~44—%11)—(2ui44 ,'w ii)k„'k—„'/—k',

The remaining contribution, involving 7&2&, is a bit The force at the center of the cell containing Particle 2,

more complicated. We have shown the form of T") in say, is

(3.2) for cubic crystals. Hence

(3.9)

where m&j
——zy, =~»» ——~„„, ~44—~ „

= ~ ~ ..4 Again, the constant term plays no role. We
carry out the double k-space gradient, integrate over k
space, and obtain for the contribution to D&'& (R)

2eR e(27ii44 g~gfii)47feiG pR R e/R —3j (3 10)

The polynomial in square brackets in (3.10) will be
recognized as a Kubic harmonic for the AI, repre-

E.
=qiqee(e+2) +o(R-').

6R
(3.15)

'F. C, Yon e'er Iage a,n(j H, A. Bethe, Phys. Rev. 71, 6I2
(&9Ã),

That is, we get immediately the well-known ie(e+2)
local Geld correction: The local electric Geld at a site of
cubic symmetry is is(e+2) times the average internal
field delned as —V'(1/eR).
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IV. DISCUSSION

We have calculated some of the important contri-
butions to the Coulomb interaction between two point
charges in an atomic dielectric. This Coulomb potential
has been shown to be a series —probably an asymptotic
series —in powers of 1/E. Furthermore, we have pre-
sented a method of evaluating the cocfEcients of the
leading terms in this series. This method is easy to usc
and hard to justify. Thus Sec. II, in which we justify
the method, is much longer than Sec. III, where we
calculate the results. These results consist of the 6rst
few terms in the series in 1/Jt.'for the sc, bcc, and fcc
lattices:

(o—1)'
+ A „(11)(p„„(R)A„(ls)

K"(lt)+C"(ls) j4 "(R)

This result is interesting because some o'f the terms
are intuitively reasonable, while others are apparently
not derivable by insight alone. For example, the
A R/R' terms are just a charge-dipole interaction. If the
impurities 11 are located at a position with inversion
symrr)etry, the coefficient A(l,) vanishes. However, if
the impurity is located at. an o6-center position within
the unit cell, then the impurity is nearer to some host
atoms than to others. The nearby ones get polarized
more. This gives the unit cell containing the impurity—
indeed, the entire crystal region surrounding the
impurity —a net polarization moment. This provides
the dipole moment for the charge-dipole interaction
with the other impurity charge. The cocKcient A„
= (e—1)A„is just the value of this dipole moment. We
can also see that the tcrxn

is just the dipole-dipole interaction between the two
polarization moments caused by the two charges. The
approximation A „=-', b„only applies when the impurity
is displaced a small distance 5 from a position of cubic
SQInmetry.

Similarly, most positions of the impurity within the
unit cell will cause the polarization 6eM around. the
impurity to have a quadrupole moment. This is the

origin of the term

P(e—1)/e jC„„y„„(R),
which is just the interaction of this quadrupole with the
0'tllcl' llllplll'1ty cllal'gc. Thc value of thc quadrupole
moment is 0„„=(o—1)C„„.However, if the impurity is
at a position of cubic symmetry, there is no quadrupole
moment, as was noted above; in this case C„„=Cb~„and
the entire term vanishes.

The polarization cloud surrounding the impurity may
also have higher moments, and these induce inter-
actions with higher powers of R. Note that for an
impurity at l1, all of these induced. polarization moments
are derivable from the wave-vector expansion of
W„(1&,k). It appears in the dehnition of

f(k) =W„(ir,k)G„„(k)W„(Is, —k)

that the 5"s describe the formation of the two polari-
zation clouds around each of these two impurities, while
G„„describes how these two polarization clouds interact.

The terms involving the dipole A„and the quadrupole
could perhaps have bccn dcr lvcd by lntultlon

without having to go through our complicated analysis.
On the other hand, we d.o not see how the term involving
m p, and its proportionality to a Kubic harmonic, could
have been derived except by starting as we did from Eq.
(2.1). These terms arise from spatial dispersion, i.e.,
from the wave-vector dependence of the dielectric
response function. This fact is easily demonstrated by
showing how G„„(k), and its wave-vector dependence,
enter into the dc6nition of the dielectric response func-
tion e (tl, to). Let us consider how an applied electric field

E(1 ()—E &i(tt 1-cut)

propagates through the lattice. At each lattice site I a
polal lzatlon

p(l ])—p si(tt I cot)-
will be induced. By considering the local electric 6eld
at each lattice site, one can show that the polarization
amplitude is obtained by solving the equation"

Po=e LEo—4 T(k) Poj.

From (2.5) we see that this has the solution

Po= G(k).e Eo.

This result, along with Maxwell's equation,

Re+4~ps ———(o/to)'kX (kXEo),

de6ncs the normal modes of the point-dipole solid, which
in turn give the dielectric response function. Only by
starting from (2.1) would one know how to properly
include the spatial dispersion characteristics of the
solid.

Equations similar to (2.1) were given in I for the
charge-dipole and dipole-dipole interactions between

"G.D. Mahan, J. Chem. Phys. 43, 1569 (1965).
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impurities. Although we have not analyzed. the asymp-
totic cxpRnslons of thcsc intcractloIls ln Rny detail it ls
easy to see that they couM be evaluated by the same
method. For example, by examining the function which
ls cqllivRlcllt to f(k) for th'csc 'two types of 1Iltcl'Rctlolls,
onc secs immediately that the surfRcc 1ntcgI'Rls vRQ1sh

as they did for f(k) in Eq. (2.11).Thus it appears that
the asymptotic series for the charge-dipole and dipole-
dipole interactions between impurities could 'also be
found by just subtracting and courier-transforming the
nonanalytic parts of the interaction. .

Our calculation assumed that the host dielectric was
composed of point ions, which when polarized are point
dipoles. Vjjithin the framework of this point-dipole
model, wc have been able to calculate exactly the lead-
ing terms in the asymptotic expansion of the Coulomb
interaction between impurity charges. Although this
model is a highly idealized simpli6cation of a real
dielectric, it is employed widely to calculate thc proper-
ties of real materials. This is because point-dipole
calculations are relatively easy to perform, while com-
putations are very much harder for actual solids with
6nltc Rnd ovc11app1ng charge distributions. %c have
adopted the attitude that, as long as this model is going
to be employed so extensively, it is worthwhile to deduce
its properties as accurately as possible. Wc feel that our
calculation of the asymptotic properties of the Coulomb
potcIltlRl is R contlibution towards understanding this
model.

It is interesting to speculate how our results would be
altered in a real dielectric with 6nite charge distribu-
tions. It is reasonable to conclude that the main features
of oUI' rcsUlts would pcI'tR1Q to thc potcntlRl iQ Rn RctURl

dielectric. An impurity charge off center in the atomic
cell would still cause the induced polarization 6eld to
have a dipole, quadrupole, and higher moments. One
would still get the same type of interaction terms be-
tween these induced moments, and only the magnitude
of the moments are altered. by the properties of the real
diclectnc. Similarly, in a real insulator the wave-vector
dependence of the dielectric response function will be
di6erent than in the point-dipole model. The term
proportional to m p which arose from the wave-vector
dependence of G„„(k) will be different in the real di-
electric. On the other hand, since thc general form of
T„„(k) is fixed by group-theoretical arguments, then
Only the values of tllc parameters 'Ny 3 ~ Tv' o~ 7844 CRD

change. The basic form of the interaction term in (4.1)
should be the same, and only the coefEcicnt m p shouM
change. This discussion suggests that in a real insulator,
the asymptotic expansion for the Coulomb potential
should hRvc the sRme fo1IQ Rs we hRvc derlvcd fol thc
point-dipole model: Thc only chRngc is that, thc
parameters A„, C„„,and m p will have diferent values.
HowcvcI', ShaID s CRlcUlRtlone 1ndlcRtcs that RddltioDR1

terms may occur which arise from the c6ect of correla-
tioQ Rnd exchange.

Vo (I—lo).
W&»„(io,k) =—P e'"'&I-lo&

kr & (I-lp)'
(A1)

Similarly, the functions associated with the second sub-
lattice are designated by a superscript (2). Here the
R'tollls posltlolls Rl c Rt (I+c), wllclc c 18 R nonprlmltlvc
translation. Thus one has to de6nc an additional
transform

Vo (I+~—Io),
'fg(o) (I k) P eik (I+@ lo) (A2)

4' ~
3

where Vo is the volume of a unit cell, and 0.&'~ and e(2&

Rrc the atomic polRI'1zabllltlcs pcI' Unit ccB voluIQc.
One must also enlarge the number of wave-vector

transforms of the dipole-dipole interaction. I.et us
define

Vo
T(i i) (k) — P expLok. (I(i) 1(i))]y (1(i) I(J))

where I&'&=I, I(')=I+a. When we write out the four
possibilities (o, j=1, 2), there are only two different
transforms. In accord with our prior usage, "we de6ne
the equivalent T(o)(k) and unequivalent T&'&(k) sums

Vo
T&'& (k) = T&' '& (k) = T(o') (k) =—Q e'"'P (I)

4~ fp6j}

T&'& .(k)=T&''& „(k)=T&"& „(—k)

Vo
Q eik ()—|.)y (I ~)

4'
Since for all crystal structures the sgblatticc has in-
version symmetry, then T&'„.(k) = T&'„.(—k).
only for structures in which 2~=1 does T("„,{k)
= T&"„.(—k). Thus there are lattices where T&'„.(k)
18 lllval'1RIlt under k reversal) Rltl10ugll T po(k) 18 110'ti

for example] diamond.
The functions G„„(k) def(ne how polarization is

propagated through the lattice. For the case of two

"G. D. Mohan, J. Chem. Phys. 41, 2930 (1964).

APPENMX A' TWO ATOMS PER CELL

Equations (2.1) Rlld (2.2) 011ly apply to soll(4 wltll
one Rtoxn per unit cell. In this Appendix we derive the
equivalent relations for solids with two atoms per unit
cd. This is a fairly important case, since it includes
lattice structures such as alkali halides, diamond, and
zinc blende.

Kc arbitrarily select one sublatticc and designate its
quantities by a superscript (1), e.g., its atoms have 8,

polarizabilit, y 0,~".The atoxnic positions of the sublattice
are at 1. The equivalent to (2.3), which is the wave-

vcctor tI'RnsfoI'IQ of thc charge-d1po1e lntcI'Rctlon be-
tween an impurity at Io and this sublattice, is



atoms per cell, we must evaluate four functions
G&'"„„(k), where i, j=1, 2. These are defined as the
probability that polarization starts on the (i) type of
atom and travels to the (j) type. Hence these functions
have the equations

G&"'(k)= I —4&rT&'&(k) «&'& 6&"&(k)
4&rT (~ & (k) .«(2) .6(2.&) (k)

G&'"(k)= —4»T('&(k) «&" G""(k)
—4&rT('&(k) «&" 6&"'(k)

G&' '&(k)= —4wT('&(k) «&'& G&"&(k)
—4&rT"&(k) «(2& G&"'(k)

6""(k)=l—4&(T'&(k) «&" G&"&(k)
—4&rT(')(k) «&'& G&"&(k).

(A5)

These equations can be solved to obtain the four tensors
G(' ') (k). After this has been done, one can evaluate the
Coulomb interaction between tw'o impurity charges
q„&i(, at I andi&„with R=l.—I». This result is

where

V(R)=q, q&,
—
R 2x' gg

&l'k e'"'"f(k), (A6)

f(k)=4&r P W('&(I k) «&'&

6('»(k) W(»(1&„—k). (A7)

We have denoted the above function by f, since it
differs in normalization from the f in (2.1) by a factor
of 4ma.

These equations can be simpli6ed if one just wishes to
evaluate the Coulomb interaction in (A6). One does not
need to evaluate the four tensor functions 6&''&(k).
Instead, let us define two vector functions V„('~ for
Z j, p

2

U(+&„=W(+&„—4~r(~&„~„,U(+~„

f= 2~[W &+&«U&+&+W&-&«U&
(A11)

In (A11),one just needs to solve a single vector equation
for U&+& and one for U& &; the pair of equations (A9)
become uncoupled when e('&= e('~.

We have not carried out any detailed calculations for
the two-atom-per-cell case.

APPENDIX 3: LATTICE SUMS

The technique we use for dealing with lattice sums is
due to Born and Bradburn" and some of the formulas
are given also by Cohen and KeGer."

W„(l&,k) is given by Eq. (2.3), and can be written

4x—W (I& k)=-- P e'"'&'-'»ll —
1&l

—'. (B1)
Vo i Bk„&

The sum in (B1) is like the 5(& of Cohen and Keffer,
except that I& is not a lattice vector. Nevertheless, the
Born-Bradburn techniques are still applicable; one must
merely use the generalized Ewald transformation
formula given by Born and Huang, '4 instead of the
simple one used by Born and Bradburn. We find that

4m 8—W (I& k) =i- — P e'" ('-"&y()g(»ll —lgl')
V0 Bk„ I'(-', )

A further simplification is possible in the case that all
of the atoms have the same polarizability, e("=e(2&.
Then it is convenient to introduce

U(+&„(l(„k)= U&'& +U(2)

IV(+&„(l„k)= W('&„+W('&„,

T'(+) —g(~) ~T(s)„
By adding and subtracting (A9), we get that

U('&„(l&„k)=g G„„&'&'&(k)W&&'&„(I», —k). (AS)

If we take the four equations (A5) and insert them into
(AS), we generate the equations

U&" (I(, k) = W&'& (lb —I&)—4n. T('& (k)«('& gU('»,

47( T&(„„—( )k«' (y&U'(

U('&„(I&„k)= W('&„(I(„—k)
47r T"(k)n(,'» ,U—('» , (1&„k)

—4&rT(o„„(k)«o)„~U(&)~

Furthermore, from (A7) and (AS) we see that

j=4 P W(&&(I. k) «&~& U(»(l&k). (A10}

One only needs to solve for the two vector functions in
(A9) in order to obtain (A10). This should be easier
than solving for the four tensor functions 6(' ~&.

+ 2 e "'"0-~(lb—kl'/4~) (B2)
V.~(S)" ~

Here g is the parameter which regulates the relative
contribution of the direct and reciprocal lattice sums.
The total sum is independent of ». The b vectors are 2s.
times reciprocal lattice vectors, Vo is the volume of a
unit cell, and the p functions are as given by Refs. 12
and j3. Thus

4m—W„(1&&k)= P e'"' o-&» (I—l,)„&t&,/, (»' I I
—I, I

~)
I'(5) '

1 s'&' (b—k)„+- 2 e "' 4o(lb —kl'/4n') (B3)
i Vol'(I b 2'

"M. Born and M. Bradburn, Proc. Camb. Phil. Soc. 39, 113
(1943).

"M. H. Cohen and F. Ke8er, Phys. Rev. 19, 1128 (1955).
'4 M. Born and K. Huang, Dylamkal Theory of Cf y5Ial I.a@ice

(Clarendon Press, Oxford, England, 1954), p. 251.



1200 G. D. MAIIAN AND R. M. M AZO

From the direct-lattice sum we get

If we now expand in powers of lr, we get, from the b=0 Here, le Is a vec'tol' to a point at the center of a cell. This
term of (83), rather complicated expression is actually equal to 3.

This can be shown by applying the general Kwald
transformation exactly as Cohen and. Keffer applied the

I'(-', ) Ve k'
—1—k' 4r/2 0 k'

simple Ewald transformation to dipole wave sums.
The other lattice sums which enter the present prob-

lem are those dining T„„.They are not discussed
further here, since they do not involve any interstitial
atoms, and have already been discussed in the literature.

+I'k„p(1—ll)„(1—»)„yI/s(r/sl I—Ill')+ ), (85)

while the reciprocal-lattice sum gives

APPENDIX C: EVALUATION OF SOME
IÃTEGRALS

Integrals of the type

F (R) esb Rk o/ko+2dsk

(86)

e—ib lI—52/4112

eVel'(-,') b

Vol'(-', ) b~
I
b—ill' appear in the foregoing; the subscripts refer to crystal

axes which may have nothing to do with the direction
If w««th«expand (86) In pow«s «kp we ohta'n of R. Such. integrals can be evaluated as follows. In

cylindrical coordinates, with the k„axis as s axis, and
E =k —k~ ) we have

b„k„2b„b k b„b„k
+0(k') . (87)

b' b' b' 2b'g'

Collecting powers of k„, we finally get Kq. (3.1), where

F„(R)= 2 cos(kpRp)kp"dkp

(k s+Qs) o/1+1
&eix pcose@ (( 2)

Vo
~,(») = n' Z(1-»)A I/s(~'ll-ill')

2x'/'

where p'=2' —E„', and here, repeated indices do not
mean a sum. The sb integral is a 8essel function, so that

sg e—""e ""s'b /—b' (88)
1+0 F„(R)=4sr cos(kpR„)k„"dk

Now the E integral yields"

J//(E p)
KdK.

(k a+Its)o/2+1

(C3)

(p/2k. )""&--/s(k.p)/I'(k~+ 1),

It is clear by inspection that A(ll) vanishes if 11 lies as
the exact center of a cell. C„,(ll) does not vanish 111 'tllls

circumstance, but is a multiple of the unit tensor.
If we write the deviation of ll from the center of a cell

as 8, then for 5 small, the deviation of C„„ from its
central value is 0 (b'). If we expand A„ in powers of 5,
however, we find

where E „/2 is the Bessel function of imaginary argu-
ment. Hence"

4'
F (R)=, (ap)""

I'(-', is+1)

cos(k„Rp)E „/, (k„p)k„"/'dk„

P' ~3(-2 4»s(~'ll-io I')
2m'/'

2 "'I'(-,'s+-', ) Z„')""
Z I (-',~+ 1) Z'

which is the result we need.

(C4)

4 M ~
—«b 1p -52/4'~e e

5+0

"H~gher TruesceedeNIa/ Iilecfjogs, edited by A. Erdclyi
(McGraw-Hill Book Co., ¹wYork, 1953},Vol. 2, p. 96.

(811) "Table of Irslegrai Trarpsforms, edited by A. Erdelyi (McGrew-
Hill Book 'Co., Neer York, 1954), Vol. 1, p. 49.


