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We continue by calculating C(q, w), which is

.4 &k
C= lim == {Z JC,‘I,‘*(q, w) /WﬂkBQ(_K,’ k)

q,w->0 VA K,k

X D Zn exp(—ix+Xa) | tn-[+q]
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With the help of Eq. (17), this can be rewritten as

.4
C=— lim — > ZnZnr D, expi(x X —xXn) ]

q,00 VA n,n/ K,x!

X Sex(q, @) (tne[[g+x]) (ua*-[q+T),

so that we obtain Eq. (18) of the main text, and
w?—0 in the q—0 limit for those modes (i.e., the
acoustic modes) for which u, becomes independent
of # in this limit.
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Infrared reflection and transmission data are analyzed to give the transverse and longitudinal phonons
in mixed KNiF;-KMgF; crystals for seven concentrations ranging from 0 to 100% Ni. Both one- and
two-mode behavior are observed. A point-ion model is developed patterned on earlier work on simpler
mixed-crystal systems. The model assumes randomly distributed impurity ions and nearest-neighbor
forces. The model gives good agreement with the observed mode frequencies, and in particular it fits the
observed splitting of one of the reststrahlen bands at intermediate compositions.

I. INTRODUCTION

ELL-DEFINED infrared- and Raman-active
phonon modes have been seen in several mixed-
crystal systems of the type 4,Bi,.""* Near the ends of
the composition range of a mixed crystal one ion can be
viewed as an impurity and connections can be made with
the theories of local modes and impurity resonance
modes,! but for intermediate compositions no first-
principles theories exist. The extra degrees of freedom
resulting from the presence of the impurity can lead to
two extremes of behavior that have been observed
experimentally. These have been called one- and two-
mode behavior.! A mixed crystal 4¢.5Bo.5 that shows
one-mode behavior typically has one strong phonon
mode in its infrared spectrum occurring at a frequency
intermediate to the relevant mode frequencies w4 and
wp of the pure crystals 4 and B. If 4,B1, exhibits two-
mode behavior, then AosBos Will have two strong
modes whose frequencies are close to wa and wp. The
present study of KNi,Mg; ,F; examines the infrared
modes in a mixed perovskite that has three infrared-
active modes at y=0 and at y=1. For intermediate y

11, W. Verleur and A. S. Barker, Jr., Phys. Rev. 164, 1169
1967).
( 2 I.)F. Chang and S. S. Mitra, Phys. Rev. 172, 924 (1968).
3In addition to Refs. 1 and 2, review papers on mixed crystals
appear in Proceedings of International Conference on Localized
Excitation in Solids, edited by R. F. Wallis (Plenum Press, Inc.,
New York, 1968).

two of these show one-mode behavior and one of these
shows two-mode behavior. This is the first report of a
systematic study of a system that simultaneously
exhibits both kinds of behavior.

A simple model that includes effective charges and
inter-ion force constants but neglects local-field effects
is used to analyze the results. This model leads quite
naturally to the behavior observed experimentally with
a minimum number of special assumptions.

In Sec. II, the experimental methods and results are
described. Section III presents the model of the long-
wavelength lattice vibrations in the mixed crystal and
the method for calculating the corresponding dielectric
function for analysis of the optical properties. In Sec. IV,
the model is compared with experiment and a discussion
is given of the model parameters and normal modes.

II. EXPERIMENTAL METHODS AND RESULTS
A. Sample Preparation

The crystals were grown by a modified Stockbarger
method in sealed platinum systems.* Single crystals of
KNiF; and KMgF; were used as starting material.
These materials form solid solutions at all con-
centrations and single crystals 12X12X5 mm were
easily obtained.

4H. J. Guggenheim, J. Phys. Chem. 64, 938 (1960).
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B. Measurements

Room-temperature reflectivity and transmission mea-
surements in the region 280-10 000 cm™ were made,
using a double-pass prism spectrometer.’ For measure-
ments in the region 140-280 cm™ a far-infrared grating
spectrometer was used, employing a helium-cooled
germanium bolometer as the detector. Reflectivity
measurements were made by comparing the reflected
signal from a freshly aluminized front-surface mirror
with that from the polished surface of the crystal being
examined. The mirror and crystal were mounted side by
side on a traveling sample holder. Transmission mea-
surements were made using a Dewar with CsBr or
polyethylene windows, depending on the wavelength.
In this case the crystal was mounted to a copper cold
finger by means of conducting silver cement. The
entire cold finger was enclosed in a low-temperature
heat shield containing ports that allow only the radia-
tion from the spectrometer to enter and leave the ex-
perimental sample region. For transmission measure-
ments the amount of radiation passing through the
crystal was compared with that passing through a
masked-down port of the same dimension. The sample
temperature could be held at 300, 80, or 25°K.
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Surface preparation of the crystals used for both
reflectivity and transmission measurements include
lapping on AO 3033 (11 u size) and AO 305 (3 u size)
abrasive with the final polish on 1 u diamond compound.

C. Results and Analysis

In Fig. 1, the reflectivity results are shown for the
pure and mixed crystals. Most measurements were
carried up to 10 000 cm™; however, no structure was
observed above 600 cm™. The limiting value of the
reflectivity as it flattens out near 10 000 cm™ was used
to calculate the high-frequency dielectric constant e,,.
Values of e, are given in each figure. From Fig. 1 we
see that there are three fundamental transverse and
three fundamental longitudinal lattice modes in the
two pure crystals. Additional weak modes are also
detected superimposed on the highest-frequency rest-
strahlen bands. Such weak modes are marked with an
asterisk wherever they occur. For the mixed crystals
there is an additional transverse and longitudinal mode
pair that gives quite pronounced structure to the
intermediate reststrahlen band.

The data shown in Fig. 1 have been analyzed by
fitting the reflectivity using classical oscillators for the
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Fic. 1. Reflection spectra of the mixed crystals. The points show the experimental measurements. The solid curves are
oscillator fits whose corresponding parameters are given in each figure.

5W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
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optic modes.> We assume that the dielectric function
e(w) can be represented by
dmpjorf

e(w)= et ————.

i wf—w?d-iery;

M

The reflectivity is calculated from Eq. (1), using trial
parameters for e, and w;, 4mp;, and v;. We proceed by
adjusting these parameters until a good fit is achieved.
This method has been discussed extensively by others.’
The solid curves in Fig. 1 show the best fits using this
method. The corresponding parameters are given in the
figures.

In preparation for the discussion of the modes in the
mixed crystals, we analyze Eq. (1) for the longitudinal
optic (LO) mode frequencies w;. It is worth emphasizing
that, once we have adopted Eq. (1), we can specify the
transverse frequencies and strengths as independent
parameters (as listed in Fig. 1) or we can just as easily
consider the transverse frequencies and longitudinal
frequencies as independent parameters. The longi-
tudinal phonon frequencies occur where ¢=0.% In
general, the solutions of e=0 are complex; however,
in all cases the imaginary part of the frequency is less
than 39, of the real part, allowing us to visualize these
modes as lightly damped longitudinal lattice vibra-
tions. In Table I, we list the absolute value of the longi-
tudinal phonon frequencies as well as the w; of Eq. (1).
We take w; as the transverse phonon frequencies and,
as mentioned above, we can take all the parameters in
Table I together with the imaginary parts of the w;
(not shown) to specify the optical behavior of the
crystals. In the table, we again denote weak modes
with an asterisk.

Tasie I. Experimental transverse and longitudinal infrared
phonon frequencies at 7'=300°K. An asterisk denotes weak mode
forbidden in first order.

KMgFa KNio.zMgo.sFa
®TO ®LO wTo wLO
164 192 165 188
296 360 253 258
446 490* 298 350
492% 522* 454 492%s
530* 550 495* 517%s

526* 557s

KNio.sMgo.sFs KNig.7sMgo,21Fs
159 178 152 168
248 266 248 271
280 330 275 315
449 495* 445 498*
506* 547 510* 536
KNiF;

151 165

242 306

439 491*

504* 527

a Data for this crystal were taken from Perry and Young (Ref. 7). They
did not analyze for the weak longitudinal components; therefore their
data have been reanalyzed to give new values for these modes and the
raising of their 547 mode to 557 cm™.

6 A. S. Barker, Jr., Phys. Rev. 136, 1290 (1964).

BARKER, DITZENBERGER, AND GUGGENHEIM

175

In Figs. 2 and 3, we show the transmission spectra of
two thin samples of the mixed crystal for y near zero.
The two major dips in transmission correspond to the
lowest and the intermediate reststrahlen modes of
KMgF;. The presence of Ni causes extra absorption.
Oscillator fits were carried out here also. The solid
curves in Figs. 2 and 3 show these fits. Equation (1)
is used to describe the dielectric function of the sample,
and standard film transmission formulas are used. One
additional weak mode is used in Eq. (1) to describe
mixed-crystal modes due to Ni. The oscillator param-
eters are given in Table II. Note that the best-fit param-
eters to the main modes differ somewhat from those
given in Fig. 1 for pure KMgF;. Real differences can
be expected for the cooled runs, since damping tends
to decrease, and restoring forces to increase, on cooling.

KMg Fy + 3% Ni
T=25°%

A EXPT
——=0SC FIT KMgF;

\ —— 0SC FIT WITH
\ EXTRA MODE AT
N 250 cm™!

TRANSMITTIVITY
FS
T
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200 250 300

FREQUENCY (cm™)

150

F16. 2. Transmission spectrum KMgF; with 3%, of Mg replaced
with Ni. Sample thickness is 0.13 mm. The solid curve corre-
sponds to an oscillator fit that includes an extra mode for the
vibrations caused by the presence of Ni.

Such differences are seen in Table II. In addition, even
at room temperature there are differences between the
mode parameters determined by transmission and by
reflection experiments. The differences noted in this
study are typical of this kind of discrepancy for
infrared-active phonons. They occur because Eq. (1)
for e(w) is not a perfect description of the optical
properties. Transmission measurements for thickness
~0.1 mm are more sensitive to the form of e several
linewidths away from w;, while reflection experiments
are sensitive to the shape of € very near w;. While the
discrepancy is barely larger than the intrinsic uncer-
tainties in measuring the mode parameters, in this
study we use wherever possible the reflectivity analysis
of mode parameters for consistency.

In general, throughout the concentration range the
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presence of Niin KMgF causes one extra mode that can
be seen in reflection for y>0.20 and in transmission
for y<0.05. For y=0.79 the extra (fourth) mode is
difficult to detect. Figure 4 shows a Kramers-Kronig
analysis of the reflectivity for y=0.79 and 1.0. The mode
for pure nickel (y=1.0) is shifted in Fig. 4 to be on top
of the mixed-crystal mode. The presence of Mg causes
the raised shoulder (dashed curve) 30 cm™ above the
main mixed-crystal mode. Rather than trying to resolve
the Kramers-Kronig value of ¢’ into two modes, we
fitted the reflectivity (Fig. 1) with an additional mode
about 30 cm™! above the main mode. This weak mode
is shown as an insert in Fig. 4 for comparison with the
over-all combined-mode shape.

The appearance of an extra mode in the mixed
crystals has also been noted by Perry and Young? for

.8
KMgFy +0.3 % Ni
A T=25°K
o T=300°%K
6

— OSCILLATOR FIT
25°K

TRANSMITTIVITY

200
FREQUENCY (cm™)

250 300

F1c. 3. Transmission spectrum of KMgF; with 0.3%, of Mg
replaced with Ni. Sample thickness is 0.13 mm. The solid curve
is an oscillator fit that contains a weak mode (Table II) to repro-
duce the dip near 230 cm™.

two of the compositions studied by the present authors.
Data from their sample with y=0.2 will be included in
our analysis to give uniform coverage of the concen-
tration range y=0-1.0.

III. LATTICE-VIBRATION MODEL

A. Description of Model and Evaluation
for Pure Crystals

A pure perovskite crystal has five ions in the primitive
unit cell. The point group is O;. A consideration of the
group characters for ion motion along a principal axis
shows that for long-wavelength vibrations there are
four T1u (T'i5)-type and one Ty, (I'ss)-type modes.
The ion displacements for the T, mode and for one of

7 C. H. Perry and E. F. Young, J. Appl. Phys. 38, 4616 (1967).
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TasLE II. Oscillator parameters used to fit transmission
measurements at low nickel concentrations.

T=300°K T=25°K
wj 4rp; Vi wj 4rrp; v
KMgF;:Ni (y=0.003)
161 1.8 0.02 166 1.8 0.0025
300 1.45 0.017 300 145 0.005
Weak mode too broad 235 0.001 0.06
to be determined
KMgF;3:Ni (y=0.03)
161 1.8 0.02 166 1.9 0.003
300 1.45 0.017 300 1.45 0.005
Weak mode too broad 25012 0.08 0.12

to be determined

the Ty, modes (the acoustic mode) are easily written.
The displacements for the remaining three infrared-
active Ty, modes cannot be determined by group
theory, i.e., they are model-dependent. Several possible
mode-displacement vectors are given below.

The occurrence of five ions in the perovskite unit
cell allows the introduction of many more force, charge,
and polarizability parameters than are needed in a
model of an NaCl-type crystal. For these latter diatomic
crystals quite satisfactory shell models can be con-
structed that reproduce the sound-wave velocities and
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F16. 4. Comparison of Kramers-Kronig analysis of pure KNiF,
with KNio.7Mgo.21Fs. The mixed crystal shows a broad region of
extra absorption 30 cm™ above the main mode. The dashed curve
labeled Extra Osc. shows the fitted form of this extra absorption
from the fit of Fig. 1(c).
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the first-order infrared and neutron-phonon spectra.’
Cowley has fitted several shell models to the perovskite
SrTiO;.° Contrary to the satisfactory state of affairs
in the NaCl-type crystals, he has found that several
different models work fairly well, but no one model fits
all the experimental results ideally. Joseph and Silver-
man have also fitted certain SrTiO; phonon data using
a very simple model.® They also found that more than
one model (i.e., more than one set of force constants)
would fit the observed frequencies. We have followed
their approach, using a rigid-ion model with three
force constants, but have included charge effects to
evaluate the mode strengths (or, equivalently, the
LO mode frequencies) as well as the transverse optic
(TO) mode frequencies. We also obtain several solu-
tions; however, the ion charges are quite unreasonable
for some of the models, which allows a choice to be
made of the most realistic model. Axe has recently
described such reasonable models for several per-
ovskites and we make comparisons with his work where
appropriate.t!

Figure 5 shows a unit cell of KNi,Mg; ,F;. The
framework of K and F ions remains translationally in-
variant through the crystal except for small distortions
due to the slightly different ionic radii of Ni and Mg. At
the center of each cell either an Ni or Mg ion may occur.
We number the ions as shown in Fig. 5 and introduce
three independent force constants. For long-wave-
length vibrations seven independent ion coupling con-
stants can be defined.® The problem is overspecified,
of course, since there are only four optical-mode fre-
quencies. For long wavelengths the force constants are
best viewed as sublattice coupling constants. Of the
seven independent constants, it can be easily seen that
only four are associated with nearest-neighbor bonds.
Of these four, two are bond-bending-type force con-
stants and are expected to be somewhat weaker than
the other two bond-stretching force constants. For
simplicity, we set one of the nearest-neighbor bond-
bending force constants equal to zero and all second-

KNi Mg, \Fy

OOo

F1. 5. Unit cell of
KNi, Mg, Fs. The cen-
tral ion is Ni (or Mg)
With) probability y (or
1—y9).

8 A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and
W. Cochran, Phys. Rev. 131, 1025 (1963).

9 R. A. Cowley, Phys. Rev. 134, A981 (1964). .

1 R. I. Joseph and B. D. Silverman, J. Phys. Chem. Solids
24, 1349 (1963).

uJ, D, Axe, Phys. Rev, 157, 429 (1967).
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and higher-neighbor force constants equal to zero to
retain a three-parameter problem.® For pure KNiF;
the force constants are kis, k25, and k45, where the sub-
scripts indicate the ions being linked. The correspond-
ing constants for pure KMgF; are ki, kg, and k4. For a
mixed crystal both types of bond will occur. For
example, an F ion might be linked to an Mg on one
side (k26) and to an Ni ion (kg5) on the other side. In
addition to these force constants, we can include a third-
neighbor force constant or bond ks linking Ni and Mg
ions when they occupy adjacent cells in a mixed crystal.
There are four other force constants equivalent by
symmetry to those above, such as ki3= k1s, ks5= kas, etc.

For the vibration direction shown in Fig. 5, F ion 4
is not equivalent to F ions 2 and 3. We thus assign ion
charges Z;, 1=1-5, with 2;=2;5%24 and _;2;,=0. We
consider in detail the derivation of only one equation
of motion. The methods used have been described pre-
viously.! When ion 5 is displaced along x (Fig. 5), it
experiences restoring forces from its bonds with ions 2,
3, 4, and 6. The equation of motion is

mels=— (x5_x2)k25_ (x5—'x3)k25_ (xs—x4)k45
—(1=y)(xs—xe)ksst2E, (2)

where y is the Ni concentration and E is the electric
field. The first three terms on the right side of Eq. (2)
come from ions that always surround an Ni ion. We
assume a random distribution of Mg ions; thus the
fourth term gives a probability-weighted force due to
the presence of Mg at the sites adjacent to an Ni ion.
We take E to be the macroscopic electric field, i.e.,
we assume that local-field effects can be included in the
force and charge parameters. Equation (2) is multiplied
through by ¥ (and the equation for x5 by 1—9) to give
the following matrix equation for the long-wavelength
lattice-vibration problem:

mi=kx-+zE, 3)
where m is the diagonal mass matrix

mi
Mme 0
m= mga (4)
my
0 Yy
(1—y)ms

and x and z are the displacement and charge vectors

X1 21
Xo 29
X3 23
X= x|, 2= 2 (5)
X5 (9)2s
¥g (1—9)z
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The dynamical matrix is
— (2k12) k12 ks 0 0
- [yk26+ (1~y)k2e] 0 ;szs (l*y)kze
—[ykas+ (1—3)kas] 0 yka5 (1—3)k2
k= —[vkas+ (1—3)kss] Yas (1—9)kas
kiy=Fji —y[2ks5+kas+ (1—9)kss ] Y(1—9)kse
— (1—23) (2kos+kas+ykse)
©

To discuss mode strength, we need the polarization
equation

P= (1/v)[ 2121+ 20%a+ 2525+ 2424+ Y2505
+(1=y)zwe]+[(e,—1)/4r]E, (7)

where e and v are the electron charge and unit-cell
volume. We have again used the random-probability
coefficients for ions 5 and 6 in the obvious way. ¢,—1
describes the frequency-independent part of the
polarization due to higher-frequency electronic effects.

Equation (7) may be solved to give the polarization
in terms of the driving electric field that we take to
have the form Ee*t. The dielectric function may be
evaluated from the definition

e=1+4rP/E. (8)

The simple harmonic theory outlined above gives a
dielectric function e(w) with modes or resonances of
simple classical oscillator form [Eq. (1)]. For each mode
we now introduce an ad hoc damping coefficient v;
to obtain Eq. (1) used earlier to fit the experimental
data. To reiterate: For a given set of force constants
and charges, and a particular concentration y, Egs.
(3)-(8) may be solved to yield the w; and 4wp;, i.e.,
the mode frequencies and strengths. It may be shown
fairly readily that the six equations of motion give one

zero-frequency (acoustic) mode and one infrared-
inactive (T3, type with 4wp;=0) optic mode. The re-
maining four modes are infrared-active. Equation (1)
for e(w) containing w; and 4mp;, j=1-4, may then be
compared with experiment. Our actual fitting procedure
will be discussed below. Table ITI gives the best-fit
model parameters at y=0 and 1, i.e., for the pure
fluoride crystals.

. Before proceeding to the mixed-crystal lattice vibra-
tions, we should note several features of the solutions
at y=0 and 1 that are given in Table III. Joseph and
Silverman have given a description of the inversion of
the dynamical matrix to obtain the force constants
from the experimental frequencies. Since we have a
sixth-order secular equation for the three infrared modes,
we can obtain as many as six sets of real force constants,
i.e., as many as six different models. At y=0 (KMgFs),
we find two models, i.e., two sets of force constants
that give the observed infrared transverse frequencies.
For KNiF; there are four models. KMgF; model 1 was
eliminated because, when combined with any of the
four KNiF; models to predict mixed-crystal behavior,
frequencies tried to cross as y was varied, contrary to
experiment. This model also had quite unreasonable
effective charges. The four KNiF; models were studied
in the mixed crystal and only two give reasonable

TasLE ITI. Model parameters and mode frequencies, strengths, and displacements for the pure crystals.

KMgF; (model 1)

Forces (10% dyn/cm) k12=0.670 k2s=0.632 k4=0.327
Charges (|e|) £ Z2 23 24 %
+0.009 —0.38 -0.38 —1.64 +2.391
Formal valence (|e|) +1.0 —-1.0 —-1.0 —-1.0 +2.0
Frequency
(cm™) Strength Type K F. Fs F, Mg
w1=0 0 Acoustic 0.070 0.070 0.070 0.070 0.070
wy=164 1.96 IR —0.054 —0.029 —0.029 0.154 0.012
w3=296 1.28 IR 0.078 —0.040 —0.040 0.051 —0.102
ws=340 0 Inactive 0.000 0.125 —0.125 0.000 0.000
ws=446 0.67 IR 0.038 —0.091 —0.091 —0.016 0.095
KNiF; (model B)
Forces k12=0.601 k25= 0.947 k45=0.242
Charges 21 %2 %3 24 25
—-0.49 —0.77 —0.77 —1.16 3.19
Frequency
(cm™) Strength Type K Fy F3 Fu Ni

w1=0 0 Acoustic 0.062 0.062 0.062 0.062 0.062
wy=149 1.24 IR —0.044 —0.025 —0.025 0.161 0.006
ws=240 1.79 IR —0.089 0.010 0.010 —0.039 0.066
wy=371 0 Inactive 0.000 —0.125 0.125 0.000 0.000
ws=439 0.56 IR 0.039 —0.106 —0.106 —0.006 0.044
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results. Of these two, one proved much better (model B)
than the other in fitting the experimental data, and it
is described in detail.

Most models gave a lowest-frequency optic-mode
vibrational pattern somewhat like the K-versus-MgF;
(or K-versus-NiF;) type suggested by Last*? and by
Perry et al.®; however, it was not exactly of this type,
nor should we expect it to be this simple. Axe has given
a discussion of the form of the displacement pattern
that can be expected in oxide and fluoride perovskites.!
From Table ITI we note also that the vibrational pattern
for any particular infrared mode is different in the two
pure crystals for the models presented. We expect,
therefore, that simple virtual-ion models! cannot be
applied individually to each mode to predict its con-
centration dependence in the mixed crystal.

For the pure crystals shown in Table III, and for
the mixed crystals (see below), we always obtain a
Ts,, inactive mode (w4 for the two models shown) at a
certain frequency, depending on the three force con-
stants. Since the T, mode is orthogonal to all the other
modes, at any time we can introduce an additional
constant ks3 (bond bending) that will affect the Ty,
mode but leave all other frequencies unchanged. Since
such forces may be significant in the crystal, high con-
fidence cannot be attached to the frequency predicted
for this mode in the present model. If data on this mode
became available, we could always fit it with one
additional parameter without changing the infrared
modes.

Finally, we should comment on the effective charges
for the pure crystals. In Table III, we show these

charges and the usual valence charge associated with.

the ions. Axe, in his treatment of several perovskites,
fixes the ratio zs/21 (or 25/21 for KMgF;) at 2.0, which
is the ratio of the formal valence charges.! With our
model we allow all the charges to vary, with the one
restriction that > 2;=0. We use a least-squares-fitting
procedure that is simple, since our model with no local
fields has phonon frequencies independent of the
charges. We thus vary z; to fit the three mode strengths.
The charges were similar to those of Axe; however,
for six of the eight models 25/2; was much greater than
2. Cowley’s models for SrTiOs have 25/2; ranging from
1.5 to 6.2 For the models chosen here 2; was quite small
and actually changed sign and became. negative in
KNiF;. We do not think that a negative effective charge
for the potassium ion necessarily invalidates the model,
but it may be the result of our somewhat restrictive
procedure of describing the dynamics with a few
effective parameters. We note that fairly reasonable
mode strengths can be obtained with the potassium
charge fixed at a positive value; however, for a best
fit to the data we allow it to be negative in model B.

2 J, T, Last, Phys. Rev. 105, 1740 (1957).
13C. H. Perry, B. N. Khanna, and G. Rupprecht, Phys, Rev,

135, A408 (1964).
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The average discrepancy of the mode strengths from
experiment was (4mp(model)— 4mp(expt))av<0.2. The
final charges and the mode strengths that they produce
are listed in Table IIT.

B. Model for Mixed Crystals

For mixed crystals we must evaluate Eq. (3) for
intermediate values of the concentration y. We note
immediately one inconsistency in the force matrix (6).
We must insert a value for the potassium-fluorine force
constant kj2. Table III shows that this force has a
different value in the two pure crystals. We expect this
behavior in general. There is no reason that forces
should remain the same while foreign atoms are added
to the system. When 1009, Ni replaces Mg in KMgFs,
it stretches the lattice parameter from 4.00 to 4.01 A.
We note that k2 drops about 109, (Table III), which
is a change in the direction that we would expect.

Without adding new parameters to the problem, it is
reasonable to take a concentration-dependent force
constant™

k12= yklz(KNlFa)'l- (1 —y)klz(KMgFa)
=9(0.601X 105+ (1—9)(0.67X10%).  (9)

Similarly, the polarization equation requires charges
for each of the ions. We use the above assumption for
the potassium and fluorine ion charges:

z;=3;(KNiF3)+ (1—9)z;(KMgF3), j=1,4. (10)

So far we have used only constants available from
the pure-crystal data and some reasonable assumptions
involving the interpolation of forces and charges be-
tween the pure-crystal values. A model based on these
parameters alone has been evaluated. It gives a good
fit at y=0 and 1 but a rather poor fit at y=0.5. The
reason is fairly obvious. We have not considered modifi-
cation of the fluorine-magnesium forces as nickel is
added. We cannot interpolate, since this force is absent
in pure KNiF;. One way of viewing this problem is to
ask whether we know what forces control the vibration
of an isolated Ni ion in KMgF;. The mass-defect model
often used to predict local modes would say that the
Ni force is the same as the Mg forces that existed
before the Mg was replaced. This model works poorly
here and for most cases that have been investigated.!s
We must actually deal with force and mass changes
when Ni is added to KMgF; (or Mg is added to
KNiFy).

We therefore must include additional parameters.

1Y, S. Chen, W. Shockley, and G. L. Pearson, Phys. Rev. 151,
648 (1966). These authors used concentration-dependent forces
for GaAs,P;_y. They note the relation to Griineisen’s law and
make an estimate of the expected bond changes from thermo-
dynamic data.

1 A, J. Sievers, in Proceedings of International Conference on
Localized Excitation in Solids, edited by R. F. Wallis (Plenum
Press, Inc., New York, 1968).
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We write
kos=[1+4 (1—y)A Jk2s(KNiF3),
kgs=[1+(1—y)\Jkss(KNiF3),
kas= (1+0)kas(KMgFy),
ksg= (1+y8)kss(KMgFs), (11)

i.e., introduce two parameters A and & that give the
fractional change in bond strength as impurity ions
are added. Chen ef al. have used the same approach in
mixed GaAs-GaP." Since the addition of Ni stretches
the lattice, we expect N to be positive and § to be
negative. This is found to be the case and both A and
6 have a magnitude of about 0.2. A and ¢ may both be
evaluated from the y=0.5 experimental data; thus we
are not over parametrized, since we have data for four
remaining concentrations to compare with the model.

In Fig. 6, we show the experimental results and model
calculations for all concentrations. Rather than showing
the transverse-mode frequencies and strengths, we plot
the transverse- and longitudinal-mode frequencies.
The points show the transverse and longitudinal modes
found experimentally. The weak forbidden modes near
500 cm™! are not included. The curves show the modes
predicted by model B1 which has the parameters given
in Table III plus the constants A=0.17, 6= —0.26, and
kse=—0.15X10° dyn/cm. The most obvious dis-
crepancy between the model and experiment appears
for the highest-frequency LO mode. This arises for
two reasons not related to the basic dynamics. First,
all crystals show weak forbidden modes near 500 cm™
that push the highest longitudinal mode up by 15-20
cm™t, We could add such modes to the model, improving
the agreement for all concentrations except y=0.0
and 0.03. Here the model is known to give too high an
LO mode frequency. This occurs simply because the
mode strength 4arp(ws) is too large (4mrp=0.67 for the
charges used). The actual mode strength measured
experimentally is 0.54 for KMgF; [Fig. 1(a)]. Thus our
fit to the charges that was arbitrarily halted when a
precision of 0.2 was obtained left the strength of mode
ws about as large as a composite mode that includes the
main mode and the two forbidden modes in KMgF;.
The general fit is quite good, considering the few
parameters used to predict the eight modes at all
concentrations.

In a situation like this, where there are four trans-
verse modes at intermediate concentrations but only
three for each pure crystal, one transverse-longitudinal
pair must become degenerate at y=0 and another
(possibly different pair) at y=1.0. We can view this as
a cancelling of a pole and a zero in the dielectric func-
tion, reducing the Lyddane-Sachs-Teller relation® from
four mode pairs to three mode pairs. For y—1 in
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F16. 6. Mode frequencies for model B-1. The four transverse
and four longitudinal infrared vibration modes are shown as solid
curves and the inactive mode as a dashed curve. The points give
the experimental results for the infrared modes. The closely spaced
transverse-longitudinal mode pair labeled ? may not be funda-
mental vibrations (see text).

KNi,-Mg;,F; we find!®

e wntwptol o wn? o wd
lim —=lim —— — — = |

e, 1w 0 0 0 0p? we? Wy

This behavior is completely equivalent to mode we
having its strength shrink to zero at this limiting con-
centration. Such a weak mode at low concentrations is
equivalent to a local or resonant impurity mode de-

16 For simplicity, we set all dam?ing constants equal to zero.

A slightly modified form of Eq. (12) must be used for finite
damping.
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pending on the density of phonon states at its fre-
quency. For the present mixed system, the impurity
mode near y=1 lies at 263 cm™, right under the
reststrahlen band (opaque region) of KNiFs. This mode
could not therefore be studied for low Mg concentra-
tions. Near y=0, the impurity mode near 258 cm™!
lies in a fairly transparent region between two rest-
strahlen bands of KMgF;. This mode was studied at
two low concentrations in transmission and fitted with
the mode parameters in Table II. At y=0.03 the modes
are close to those predicted by the model but appear
very broad. At y=0.003 a weak mode was found about
20 cm™ lower than the frequency predicted by the
model. Since we expect no strong concentration
dependence between y=0.003 and 0.03, this result may
indicate that the mode seen is not the impurity mode
but a second-order (combination) mode of the host.
The very weak mode predicted by the model at y=0.003
would be very hard to detect if it was broadened as
much as the y=0.03 impurity mode that was observed
unambiguously.

In addition to the infrared-active modes, we plot in
Fig. 6 the frequency of the triply degenerate inactive
optic mode. As explained earlier, the frequency of this
mode may be inaccurate, since it results from force
constants that were adjusted to fit all modes but this
one. No data (such as neutron spectra) are available
yet on the inactive modes.

Table IV shows the ion-displacement patterns for
the mixed-crystal infrared modes for several concen-
trations. The inactive mode has the same displace-
ments at all concentrations as given in Table III for
the pure crystals, and is not included. For y=0.001 we
find that three of the mode patterns are very close to
those of pure KMgF; (Table III), except that there is

TasiE IV. Eigenfrequencies and eigenvectors for the transverse
infrared modes in mixed KNi,Mg;_,F; model B1.

Ions K F F Ni Mg
Displacements X1 Xz = X3 X4 X5 Xs
Fre-

quency

(cm™1) Strength y=0.001
164 197 —0.054 -0.029 0.154 —0.014 0.011
258 0.003 —0.004 0.001 —0.002 3.192 —0.0004
296 1.28 —0.077 0.040 —0.051 -—0.077 0.102
446 0.67 —0.038 0.091 060(1)2 —047 —0.095

y=U.

163 1.94 —0.053 -—0.029 0.154 —0.014 0.012
257 0.075 —0.023 0.003 —0.010 0.572 —0.003
296 123  —0.075 0.039 —0.050 —0.073 0.106
445 0.67 —0.038 0.092 ObO%g —0.048 —0.095
160 1.8 —0.051 —0.028 ? 0.155 —0.013 0.014
253 041 —0.052 0.007 —0.022 0.202  —0.009
296 1.00 —0.060 0.033 —0.044 —0.054 0.133
440 0.63 —0.040 0.095 060}53 —0.049 —0.091
155 1.56 —0.048 —0.027 Y 0.158 —0.010 0.019
247 0.86 —0.072 0.008 —0.029 0.112 —0.020
289 0.75 —0.042 0.022 —0.037 —0.029 0.195
435 0.57 —0.041 0.101 0.010 —0.049 —0.079
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an Ni ion present in every thousandth cell that is
moving also. The impurity mode (wz=258 cm™) has
the Ni ion moving with very large amplitude relative
to its neighbors. By the time we reach y=0.50 there is
no distinct impurity mode, though there is definitely
more motion of the heavy Niion in the lower (247-cm™)
peak and more motion of Mg in the higher (289-cm™)
peak of the central split reststrahlen band.

IV. DISCUSSION

Before discussing the mixed-crystal model developed
above, it is worth presenting some essentially different
approaches to mixed-crystal vibrations. We first note
that the long-wavelength vibrations may be discussed
macroscopically.’” An almost trivial model is to suppose
that the mixed crystal is badly segregated, so that,
even when y=0.5, some regions vibrate like pure
KMgF; and some like pure KNiF; If these regions
are large compared with the wavelength of light, we
merely average the reflectivity R:

R(y)=yR(KNiFy)+ (1—y)R(KMgFs).  (13)

Such a crystal is rather uninteresting and hardly
deserves the name “mixed crystal.” This type of crystal
would show x-ray lines characteristic of both parent
crystals. The present crystal system showed no such
x-ray behavior. Note that one characteristic of this
average-reflectivity model is that many reflectivity
dips should appear, since even with averaging it is
hard to eliminate the very sharp dips near the LO
modes. No such dips appear in the present system,
except that on the top of the center reststrahlen band.
It has the wrong frequency, however, to be caused by
either of the pure crystals using Eq. (13). A slightly more
subtle model that could result from a mixed crystal
occurs when there are segregated regions whose dimen-
sion is much smaller than a wavelength of the infrared
radiation used to detect lattice vibrations. Now the
infrared electric field induces currents that flow through
several different regions whose responses must be added
in a special way. Suppose that both pure materials 4
and B have the same high-frequency dielectric constant
¢, but different phonon parts: e4 for the y=1 pure
crystal and eg for the y=0 pure crystal. In adding small
regions of crystal A, the topology of the situation
matters considerably, since small threadlike regions of
material 4 right through material B can “short out”
es behavior at a resonance of e4. Assuming small islands
of material 4 in material B, a simple calculation gives

e(y)=(1-»")es
+y*Peaen/[(1=y"epty Peal+e,. (14)
Remembering that y gives essentially the volume of
impurity type 4, then 3*? represents the impurity
“area” and y/? its “length.” The first term comes from

17 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London, 1954).
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the host material directly, while the second term comes
from a parallel region of materials 4 and B in series.
Equation (14) has resonances where eg has poles and
where the weighted sum of e4 and e has zeros. While
Eq. (14) is somewhat suspect because its derivation
depends on the shape of the regions of the low-concen-
tration constituent, we find that an evaluation at y=0.5
for regions of KMgF; and KNiF; near 300 cm™ gives
three strong modes rather than the two actually ob-
served. Again we might expect x rays to show lines
characteristic of both materials. This model is therefore
also inapplicable to the present mixed crystals.

A third model that explains the gross features of some
mixed crystals of the one-mode type is the virtual-
or mean-ion model.1'*® For the infrared reflectivity we
take the dielectric function as given by Eq. (1) but
substitute average values for each resonance parameter:

e~ (dmp;)/ (o) —w*+iw(ys)), (15)

where the brackets denote concentration averaging.
For the lowest-frequency mode in the KNi,Mg;, ,F;
system we would take

() =y (1514 (1—y)(164)?,

using frequency units of cm™. Similar averages are
formed for 4mp; and ;. This model gives quite good
agreement with experiment for the lowest- and highest-
frequency optic modes. Fits to other crystals using this
model have been discussed previously.! This virtual-
ion model fails for the central modes in KNi,Mg;_,F3,
however, giving one reststrahlen band instead of two.
We note also that even for the lowest and highest modes
that experimentally have concentration dependences
that are ‘“virtual-ion-like,” our model (Table IV) shows
that the Mg and Ni ions do not necessarily move
together as implied by a microscopic virtual-ion model.
Our own view is that virtual-ion models artificially
suppress degrees of freedom that are present in a mixed
crystal. The models may correctly predict the strongest
features in first-order infrared or neutron spectra for
some crystals but cannot give weaker modes or fine
structure and should be regarded with reservation until
all possible lattice-vibration data have been measured.

We now consider microscopic models of the long-
wavelength lattice vibrations in mixed crystals. Some
calculations have been carried out for linear chains of
mixed diatomic crystals by Dean.® He considers
typically a chain of 30 000 ions, and thus has 30 000
degrees of freedom and must diagonalize rather large
matrices. Among the many modes for such a chain are
some that can be recognized to have long-wavelength
displacement patterns and large dipole strength. We
have studied much shorter chains (20 ions) in some

18 W. J. L. Buyers and R. A. Cowley, The Inelastic Scattering of
Slow Neutrons in Solids and Liquids (International Atomic
Energy Agency, Vienna, 1968).

18 P, Dean, Proc. Roy. Soc. (London) A260, 263 (1961); Proc.
Phys. Soc. (London) 84, 727 (1964).
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detail and find the same result. There are modes with
large dipole strength that have similar ions moving in
unison. This observation is the basis of the model pre-
sented here for KNiF;-KMgF; and used earlier for
GaAs-GaP, BaF»-SrFy,! and other mixed crystals.? For
pure KNiF; we obviously need five coordinates for
long-wavelength vibrations. When some Mg is added,
it requires an additional coordinate as a first approxi-
mation. This is as far as we have gone in the present
paper. Unlike GaAs-GaP studied earlier, there is no
measurable fine structure in the KNiF;-KMgF; system
that could be compared with a model possessing more
than six coordinates. It is worth outlining the next step,
however, to provide a parallel comparison with the
GaAs-GaP and BaFy-SrF, models developed earlier.!
Because of the crystal structure of KNi,Mg;_,F3, we ex-
pect that the three types of F ion do not vibrate as rigid
sublattices as suggested by our three sublattice coordi-
nates «, 3, and x4. For example, near an isolated Ni ion
(y=0), the neighboring F ions should move differently
than those farther away. The next step towards a more
complete description is to introduce three x, coordinates
xol, x?, and x.% x5! would represent an F, ion with an
Mg ion on each side of it, x,* an F; ion with an Mg ion
on one side and an Ni ion on the other, and %23 an F,
ion with Ni ions on both sides. Similarly, there would be
three w;%-type and three x4%-type fluorine-ion coordi-
nates. The model would now have 12 coordinates, and
therefore 11 optic modes would result. In setting up the
restoring forces [e.g., row one of matrix (6)] there
would be more complex probability coefficients. For
example, the restoring force on a displaced potassium
(ion 1) would have the three components

(1=3)%k1a! (02! — 1) 42y (1 — y)rs? (wP—21)
+ () k1 (P — 1) ,

instead of the one component

(16)

km(xz— x1) .

k1g' represents the force on a K ion when two Mg are
adjacent, and so on. As in the BaF.-SrF; work,! it is
no longer necessary to include a Griineisen effect (Eq. 9)
on the %32 bond, since we can use a lower value for k18
(pure-Ni situation) compared with ;5! (pure-Mg situa-
tion). The probability coefficients (shown as random
probabilities here) in Eq. (16) will smoothly interpolate
this K-jon force between the pure-crystal values. We
have progressed-from representing the F displacement
around an Mg (or Ni) ion as one average value to a
cluster situation with some account taken of possible
real nearest-neighbor displacements. The perovskite
structure has the divalent cation caged, i.e., isolated by
the six nearest-neighbor fluorine ions from adjacent
divalent-cation sites. This relative isolation of the ion
sites on which we are performing substitutions may be
the reason that the lowest level of cluster theory works
so well. The Mg and Ni ions are different enough in
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F16. 7. Mode frequencies for a hypothetical mixed crystal of
KMgF; with substitutions of Mg by an ion “X” with mass 35
amu but with Ni-like force constants. The 250-350-cm™ region
now has one strong and one weak mode for all y.

mass and bond forces, however, that we get pro-
nounced two-mode behavior of one of the reststrahlen
bands, making a virtual-ion model inapplicable. We
may use our model to show the simplification in spectra
that results from Mg being replaced with an ion much
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lighter than Ni. To illustrate, we choose a hypothetical
ion X that has mass 35 (am bond u) and strengths to
the F ions the same as those of Ni. For simplicity, we
set the Griineisen force-constant changes & and ¥
equal to zero. Figure 7 shows the modes that result.
There are now three main reststrahlen bands at all
concentrations, i.e., three TO modes with large strength.
The model has four infrared-active TO modes, of
course—but the fourth is insignificant in the optical
spectra. This weak fourth mode has its TO and LO
frequencies almost equal and causes a slight dip in the
center reststrahlen band. Comparison of Fig. 7 with
Fig. 6 shows that we no longer have a weak impurity
mode at y=~0 growing in strength (i.e., increasing its
transverse-longitudinal splitting) and becoming a main
mode at y=1. By reducing the “Ni-ion” mass to 35
amu, we have passed from the two-mode situation to
the one-mode situation for the central reststrahlen
band of these mixed fluoride perovskites. As has been
discussed before, this happens when the two pure-
crystal modes are fairly close in frequency.’® By going
to the X-ion of mass 35 amu, we have reduced the fre-
quency difference between the pure crystals from 54
cm™ to 29 cm™. It is important to note, however, that
we cannot predict whether a mixed-crystal system has
one- or two-mode behavior from the pure-crystal spectra
alone. For example, we can change the model shown in
Fig. 7 to two-mode behavior by introducing small but
finite values of & and A. This change leaves the pure-
crystal modes unchanged. It is therefore apparent that
we need at least the spectra of y=0.001 and 0.999
crystals and not y=0 and 1 spectra to predict mixed-
crystal behavior. That is, we must know something
about the impurity-mode frequencies (i.e., about &
and ) to make even semireliable predictions about say
a y=0.50 crystal.

In conclusion, we have developed a model that
predicts the long-wavelength transverse and longi-
tudinal optic modes in KNi,Mg;_,F;. A study of the
model eigenvectors at y=0.50 shows that the central
reststrahlen band is split into two separate modes
primarily because Ni is much heavier than Mg. Study
of a hypothetical crystal with lighter Ni mass shows
that one-mode behavior is possible within the model.
For this case the main modes follow virtual-ion behavior.
The additional weak mode has the “Ni” vibrating
against the Mg, giving weak dipole strength similar to
certain weak modes observed experimentally in the
one-mode system Ba,Sr;_,Fy.!



