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A quantum theory of the phonon excitation spectrum of a general crystal in the harmonic approximation
is presented. Many-body perturbation theory is used to (i) generalize a result obtained by Baym relating
the dielectric and lattice dynamical properties of a monoatomic metal to a general crystal, and (ii} show that
Phillips's recent doubts regarding the applicability of linear screening theory to covalent crystals can be
allayed. It is shown that a correct, "dressed" inverse screening tensor can be defined so as to make the
linear-screening approach rigorous in the harmonic approximation and for wavelengths short enough so
that relativisitic effects are not important. An identity is also derived which allows the elimination of
divergent self-interaction terms and provides an explicit demonstration that the acoustic-mode frequencies
vanish in the long-wavelength limit.

I. INTRODUCTION

HE present theory of the lattice dynamics of metals
& - is substantially different from the corresponding

theory for nonmetallic crystals. A common and fruit-
ful approach' to metals is Recorded by means of a
pseudopotential tensor involving the inverse dielectric-
screening function of the Hartree approximation and
R fRctor to correct this RpproxiIQatlon. In nonI11etals,
however, the usual approach is via phenomenological
interatomic force constants. ~ Recently, however, Phil-
lips' has applied some of his results, obtained from
the application of the pseudopotential approach to
covalent crystals, to the lattice dynamics of these
crystals. Phillips' Qnds contributions to the strain
energy from changes in the screening due to changes
in the energy gap and casts doubts on the applicability
of linear-screening theory to the (harmonic) lattice
dynamics of covalent crystals. In this article, we
establish this applicability to all types of crystal by
means of many-body perturbation theory. We shall
thereby create a uni6ed approach to the lattice dy-
namics of all types of crystal, metallic and, non-
metallic, and 6nd a simple and elegant general rela-
tion, which is a generalization of a result, obtained
by Baym4 for monatomic metals, between the phonon
excitation spectrum and a "dressed" inverse dielectric-
screening function. The connection between this for-
mal expression and. the current pseudopotential ap-
proach to the phonon spectra of metals is established,

~ Submitted in partial fulfillment of the requirements for the
Ph.D; degree.' See, for example, S. H. Vosko, R. Taylor, and G. H. Keech,
Can. J. Phys. 43, 118/ (1965), and references therein; see, also,
Ref. 2.' See, for example, %. Cochran, in Ehoeows ~N Beefed Lattkes
sad ia Lattices toitk Poiat Imperfections, edited by R. W. H.
Stevenson (Plenum Press, Inc. , New York, 1966), and references
tlmreln. An except10Il ls the work of D. R. Fredkin RIll ¹ R.
Werthamer /Phys. Rev. 138, A1527 (1965)g and N. 8. Gillie
and ¹ R. Werthamer fPhys. Rev. 167, 607 (1968)g.' J. C. Phillips, Phys. Rev. 168, 917 (1968).

4 0, Saym, Ann. Phys. (¹Y.) 14, 1 (1961).

thus providing an alternative theoretical viewpoint
of the latter.

The approach to be used in this article can be
summarized as foQows. We begin with a zero-order
one-electron Hamiltonian, describing the system of
an electron in a self-consistent 6eM, and a zero-order
nuclear Hamiltonian for the nuclei moving in a uni-
form background of charge together with additional
forces analogous to a self-consistent 6eld. The re-
maining interactions are treated as a perturbation
by means of one-particle Green's functions and the
resulting perturbation series is summed to infinite
order by means of the Dyson procedure.

In the course of calculating the dressed phonon
spectrum in the harmonic approximation, we consider
the screening of a test charge by the electrons from
an external potential in order to relate some of the
diagrams which contribute to the phonon self-energy
to screening eGects. The general formal expression
is 6nally considered in the approximation where the
core electrons are assumed to provide a tight, spher-
ically symmetric charge cloud which moves with the
nucleus in order to relate the present approach to
the pseudopotential type of calculation.

Ke begin with the nonrelativistic Hamiltonian for
the crystal:

r)e

in atomic units, where y; and r; are electron mo-
mentum and position operators, P, and R, those for
the nuclei, and M„Z, are the mass and charge
number of the sth nucleus in electron units. We re-
iiji
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write this as

&=K+&++&I=IIo+&I,
wheI'e

&.= 2 fsP"—2 Lz./I r' —R.(o) ll+ V»(r;) I,

e = P (~s/m;)+-' , P L(Z„Z./Z„, )+f(R„)],

over j is a sum over branches, and the sum over q
is only over points in the Grst Brillouin Zone. '

The electron-electron Coulomb interaction
I Eq. (2))

ca,n be written in the form

&-=k Z I Z no*Bc+.*(~, k) c~'c~+o+.I
Q kx

X {Q eoBo~,.(x', k') cI +o~; cj, l, (5)

&I= Zr' '—Z~t:lr' —R
I

'—Ir*—R(o)I 'j

—Z V»(r') —s Zf(»'), (2)

wllcI'c R (0) 1s tlM cqulhbrlum posltlo11 of nucleus s.
To ensure that the diGerent terms are Gnite, the
interaction with a uniform charge distribution is ad-
ded and subtracted in the manner given by Bardeen
and Pines. ' The terms V»(r;), f(R„,) are terms
added to and subtracted from the Hamiltonian to
ensure that the zero-order Hamiltonian is an accurate
one so that the zero-order eigenstates are close to
the dressed eigenstates. '

The eigenstates of B, are Bloch functions, since
the potential in H, is periodic, and k is a good quan-
tum number. We thus expand the electron Geld in
terms of the wave-vector eigenstates of IJ,:

where Bo~.(Ic, k)=Q~+o+„I cxp(r', Q r)l Pg) and Ie is
a reciprocal-lattice vector. All quantities are normal-
ized to unit volume.

This is the general form for the unretarded electron-
electron Coulomb interaction for electrons in a peri-
odic potential and reduces to the form used in pre-
vious work" in the case Bo+.(I», k) =b„s, appropriate
to the case of the electron gas. In the case of non-
metals, it is necessary to use the general form since

Bo+,(x, k) for xg0 approaches the sr=0 value in
magnitude when s(k) is near a band edge. The
coe%cient eq is

no=s(2~11s/I Q I) or
I eo I'=4 /Q'

if we ignore retardation. We note that Eq. (5) in-

cludes self-interaction eKects.
We now consider the electron-phonon interaction

term ln BI. To lowest order, this ls

H,„&'&= —Q Z,u, Vt'I r;—R, (0) I] ',

&;"'= 2 Z I &.+.(k) o."+.+ '"+H c I

where the Q are the eigenstates of B, and the cI, t8

are the corresponding Geld amplitudes, or destruction
operators. The r~, c~t satisfy the usual equal-time which can be written

anticommutation relations for fermion operators. We
thus hRve

He= g a(k)cgtcg, (~)
where

where the s(k) are the eigenvalues of H, .
Wlthln the harIDonlc Rppl oxlIDatlon, IJ~ CRn be

written as

IIrr= g(E,s/2M, )+-', p E„,"&I,.N,J'

&&—Zffsi(real rra~+s)~

following the well-known normal-coordinate transfor-
mation and quantization of the resulting Geld. 7 The
u~;, u~;t satisfy~ the usual equal-time commutation
relations appropriate to boson operators. The sum

' J.Bardeen and D. Pines, Phys. Rev. 99, ii40 (1955).
6 The Va~ term has been discussed in some detail by Vosko

ef af. (Ref, t} and J. Hubbard, Proc. Roy. Soc. (London) 244,
199 I'1958). The f(R„) term is analogous.

~ A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of
I.attire. Dyriamics f'e the IIennorric ApproxirnatiorI, , (Academic
Press Inc. , New York, 1963), Solid State Physics Suppl. No. 3.

U'.+.(k) =e Z I n.+" I'B.+.(~—~', k)

)& QZ„(2M„VgQu)-'~'c " (q+x') exp( —ix' x )

if Vg is the cell volume, I ranges over the nuclei
in a unit cell, 8~" is the orthonormal polarization vector
for the nth species, x„ is the equilibrium position of
this species in the unit cell, and we have suppressed
the label j for notational convenience. It is convenient
to rewrite this as

Uu+. (k) = Q A(q, x')B,+.(Ie—x', k)It,+„., (6)

8 In this article, we use the extended zone scheme and Q, k are
summed always over all points in reciprocal space, whereas q
is always conGned to the 6rst zone. The vector g always denotes
a reciprocal-lattice vector.

e See, for example, D. Pines, The Mony Body ProMeta (W.'A.
Benjamin, Inc. , New York, 1962}, and references and reprints
therein; and J. J. Quinn, in EhoeorIs end Ehonol Iriteructions,
edited by T. Bak (W. A. Benjamin, Inc. , New York, 1964).



A(q x')=(2s/VgQ )'"
X g Z„M„'isa»" [[q+k') exp( —sic' x„)

if Ita+b) represents the unit vector (a+b)/~ a+b ~.

It is usuaP"0 to use B &o as the total electron-
phonon interaction but we shall 6nd that it is ne-
cessary to include the next-order term in the general
case. For the electron-phonon gas, the second-order
contribution to the phonon self-energy is unimportant,
but for real crystals it is a necessary term. As we
shall see later, it actually subtracts out the ultra-
violet divergence duc to H,„o&. It can be written as

H„' = Q L»» (x') 8„+»-» (~—x', k) ci+,+»-». ci

X (~,'+o )(u, +~ '), P)
where

L„(x')= „,g Z„M„—'(e»" [fq—q'+x']j)
Vg Q»Q». 'Is „

X (e, "'(x'+q —q')) exp(sx' x„).
Thus the total electron-phonon interaction termwith in
the harmonic approximation is

H,„= P I U»~, (k) a»ci+»+. c«+H.c.I +H,~'", (8)

where U»+„(k) is given by Eq. (6) and H,~&s& is
given by Eq. (7). The total Hamiltonian to be used
is thus

H= Ho+Hr,

where Hs H,+H~ is ——given by Eqs. (3) and (4),
respectively, and

electron propagator

Go(k, s) =Ls—s(k)+@i,l-'

and where bk is greater or less than zero according
to whether s(k) is greater or less than the chemical
potential.

(2) Assign a different four-vector g= (q, oi) to each
wavy (bare-phonon) line and. enter a factor sDs—(q),
where Ds(q) is the bare-phonon propagator

Ds(q, o~) = ((g Q—»+s8) ' (o—i+Q» i8—) '

(3) For each vertex (type A) involving a phonon
linc and two electron lines, enter a factor

Q v»+„A(q, x')8»+„(x—x', k)

or its Hermitian conjugate, according to @whether the
phonon is annihilated or created at the vertex; the
two electron lines have four-vectors k and k+g+«
Lwhere «= (sc, 0)j.

{4) For each vertex (type 3) involving two phonon
lines q, q' and. two electron lines k, k+q~q'+«, enter
a factor

where the signs on q, q' arc appropriate to whether
the phonons are. created or annihilated at the vertex.

(5) For each dotted line, representing the electron-
electron Coulomb interaction, assign a four-vector
Q= (q+x, o~) and enter a factor —s. For each vertex
(type C) involving a dotted line Q and two electron
lines k, k+Q+«, enter a factor

is given by Eqs. (5), {7), and (8). In lowest order,
the Vss and f terms will automatically cancel with
the corresponding terms in Ho.'

We intend to employ H, +H~ as the zero-order
Harrultonian and use Pl as the interaction term in
a perturbation theory. It is well known that succes-
sive terms in the perturbation series for the electron-
electron interaction invariably get larger and it is
necessary to sum the perturbation series to in6nite
order to get meaningful results. We shall, therefore,
necessarily carry out the perturbation theory to in-
6nite order and will thus use diagrams to facilitate
the calculations. %e shall carry out the perturbation
calculation by evaluating the diagrams according to
the following rules:

(1) Assign a di8erent four-vector k= (k, s) to each
solid (bare-electron) line. For each such internal line
a factor sGs(k) enters, where Gs(k) is the bare-

'0 S. Engelsberg and J. R. SchrieGer, Phys. Rev. 131, 993
(1963};A. Migdal, Zh. Kksperim. i Teor. Fix. 34, I438 (1958)

I Enghsh trsns1. : Soviet Phys. —JETP 7, 996 (1958)$.

d'k

(2s.)'
dr'q

sone{2s')

A factor 2 is introduced when a sum over spins is
necessary and a factor (—1) for each closed loop.

IIL FORMAL DEVELOPMENT

Ke shall begin by calculating several important
subdiagrams which will arise frequently in the later
stages.

We begin with the diagram shown in Fig. 1(a),
which is a polarization part representing "scattering"
of the Coulomb interaction by electron-hole pair
production. Using the rules given, this is readily

or its conjugate, according to whether the dotted line
begins or ends at the vertex.

(6) The four-vectors are to be conserved at each
vertex (modulo «) and. there are summations over
all free reciprocal-lattice vectors ~ and integration
over all free variables k, q, and Q according to
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k+q+x"

k+q+g"

(C)

FJO. I. Some lour-order po1arizationHke diagrams.

-gl&'&{q; «, «') = I'Irl&OI(q;—«, «')v,+.*s,+.
dk

='4+~ I'e+~'2 Z (2'')

XGO(k) G0(k+q+«")

XB,+; *(«"—«, k)B,+„-(«" «', k), —
')/here the quaslpaltlcles are considered as propagating
from right to left in the diagrams. Similarly, the
diagram of Fig. 1(b) is

—4«" (q «) = 2 ~(q «')s~.*s.+*

generalize these results to diagrams in which the series
is summed, such as that given in Fig. 2(a). We have

d4k—krI(q, «, «') =2Q, GD(k) GD(k+q+«"}
gl I 2x'

XB,+; *(P—«, k) B~,* («"—«', k}

Xl"(k, k+q+«"), (9)

where F(k, k+q+«") includes all those subdiagrams
which begin with a vertex of types A or C and end
with two external electron lines k, k+q+«"; those
subdiagrams which can be spht into two parts by
cutting a single phonon or Coulomb interaction line
are to be excluded. Some low-order contributions
to I', including an exchange term, are shown in
Fig. 2(b). We can rewrite Eq. (9) in a convenient
form if we note that many of the terms in F, such
as the last two of Fig. 2(b), involve electron self-
energy contributions. Equation {9) then becomes

d'k—krl(q; «, «') =2Q, G(k)G(k+q+«")
gent

2x'

XB~;*(«"—«, k)B~„-{«"—«', k) I'(k, k+q+ «"),

where the pmper vertex part f does not include the
self-energy contributions to the two propagators and
G(k), G(k+q+«") are the dressed electron propa-
gators. Ke note that the very useful relations

y«(q, «) = Q A (q, «') yl(q; «, «'),

y, (q) = g a*(q, «) A(q, «')yI(q; «, «') (lo)

remain valid when we consider the more general sub-
diagrams. %e also note that

Irl(q; «, «') =III'(q; «', «), g(q; «, «') =@*(q;«', «)

if I' is real.

A. 91818ctH.O-SOI'eening Tensor Rnd EBectlve
Electron-Phonon Interaction

The inverse dielectric-screening tensor is dehned by
the relation between the "bare" and "screened"

dk
X2 Q;Go(k) G0(k+q+«")

g// 2Ã

XB,+; *(«" «, k)B~—;.(«"—«', k)

and we readily note the relation

y IOI(q «) = Q A(q «')yI&'&(q ««')

SIIIlllal ly Flg. 1(c) glvCS

P«I'&(q) = Q A*(q «)A(q «')g&OI(q ««')
I

The three diagrams of Fig. 1 are merely low-order
tcl'1118 In aI1 1n6nltc scl'lcs of terms( but we caII readily Fn, 2. The fuH polarizatioa part,

+
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Coulomb interaction between a test charge and an
"external" potential:

&~"—Z X- (q) Us+""' ~
t

Now the full inverse dielectric-screening tensor X„,'(q)
includes the eGect of lattice polarization as well as
the eGect of polarization of the electrons. In other
words, the diagrammatic equation for X '(q) includes
phonon lines as well as Coulomb lines. However, as
will become evident later, we shall actually be inter-
ested only in a "reduced" inverse screening function
X (q), where those diagrams which can be discon-
nected by cutting a single phonon line are excluded. "
If we put F=1, this becomes the screening function
which has been considered by Falk~ within the
Hartree approximation and by Penn" for semicon-
ductors. If the off-diagonal elements are negligible,
as in the electron-gas case, we have

x-(q) =I (q+ )3 ' '0 '"'='1) '"/ (Q),
which are familiar results. In the general case, how-
ever, we must consider the oG-diagonal elements also.

The diagonal contribution X„(q)s,+, is given by
the diagrammatic equation of Fig. 3(a), which is

X-(q)st+.=n~.—st+. 2 X--(q) I st+" Is~r(q' "' s)

T
Iq+K

f q+K
I

C

T
I q+K

~q+K
l

q+K

(a)

T q+K

tt

(K9 K )

if only linear-response diagrams are retained.
The oG-diagonal contribution is given by the equa-
tion of Fig. 3(b) or

X,. (q) s,+.
=—s,„„gX -(q) I s,+„- I'~, (q; s, «) (sos).

Thus, we have the set of equations

X..=8 —g X,.-(q) I s,+.- I'trr(q; s", s')

=8, —Q X,. (q)
'+"

P&(q; s", s') (11)
a// &g+a'

for the reduced inverse screening tensor. These equa-
tions are a generalization of Eq. (29) of Fail's ar-
ticle, " where p~& & is treated within the Hartree ap-
proximation. They are actually equivalent to a double
Fourier transform of Eq. (6.62) of Martin and
Schwinger' in the case of a periodic structure.

If we rewrite
I s,+, I'trr(q; s", s') as P;;(q), we

note that the reduced screening tensor is

& '(q) = s(q) =1+P(q).
~ Such diagrams are excluded so that the phonon self-energy

I'see Sec. DI B) is proper; their exclusion corresponds to consider-
ing only the electron polarization.

~ D. S. Fall, Phys. Rev. 11S, 105 (1960). The properties of
the inverse dielectric-screening function have also been discussed
in Ref. 14, below, and by S.L. Adler /Phys. Rev. 126, 413 (1962)g
and N. Wiser LPhys. Rev. 129, 62 {1963)g.~ D. R. Penn, Phys. Rev. 128, 2093 {1963)."P. C. Martin and J. Schminger, Phys. Rev. 115, 1342 (1959).

Fzo. 3. The screening equations.

In the case of the electron gas, the oG-diagonal ele-
ments vanish and we have the familiar result

where
s(Q) =1+y,(q; ...) =1+I n, I ~'(Q),

Q=q+s, s'(Q) =s&(q; s, «).

so that Eq. (11) becomes

S,„.(q) =3- —Z S„-(q)4,(q; s", .'). (13)

This tensor has the advantage of being Hermitian
if I' is real, whereas X.. (q) does not have this prop-
erty. Because of its Hermiticity, the treatment of
screening can be carried out in a more elegant manner
if we use 5 instead of X„„.; we can readily rewrite
our results in terms of the more familiar X„„. at
the end. It is readily seen that the diagonal elements
are equal:

S,(q)=X (q).
Ke now turn our attention to the eGect of po-

larization on the electron-phonon interaction. As we
might expect, . the problem of calculating the screened.
electron-phonon interaction is very similar to the

It is convenient for the remainder of this article
to de6ne a new tensor

S..(q) =I
I il+~ I/I ll+~'Ijx .(q), (12)
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FIo. 4. The screened electron-phonon interaction,
vrithout vertex corrections.

which begin and end with the same bare-phonon
propagator Dp(q). This series is conveniently summed

by means of the Dyson procedure, whence we obtain
the diagrammatic equation shown in Fig. 5, where
the third and fourth terms arise from the H,„&@ inter-
action and the double wavy line represents the
dressed phonon propagator. The last term is just the
lowest-order contribution fir from the harmonic part
of f(E„,). The Dyson equation represented by Fig. 5 is

D(q) =Do(q) +Do(q) 11(q)D(q), (14)
where

11(q)= —4p(q)+ Z S."(q)4p'(q ")A(q K)+II' f~—

dk&&,NpBp( ~", k)—
2' 8Up+. (k) = Up+.

previous problem of the screened Coulomb interaction.
The screened electron-phonon interaction without the 11'(q) =2 g L,„(„)s,(0 ~, „')S,,„„{0)

~

z„,
~ ~

v,„~
vertex correction is given by the diagrammatic equa- K, K &K

tion of Fig. 4, which is

—Q yp(q, ~")S„„-(q) B,+„(a g', k) i,+„—,.

On comparing this with Eq. (6) we have

U,+„(k)= QA(q; «')B,+„(Ii x', k)e,+„—,

where

A (q; «') =A (q; z') —Q S„.„-yp(q, l~")

= Q S„.„(q)A(q; rc)

if we use Eqs. (10) and (13).
As we must expect, this result reduces to the elec-

tron-phonon gas result" when S„„is diagonal (and
thus S„.=X.,):

A(q, «) =A(q, ~)x„(q)=A(q, ~)/p(q+i~).

The inclusion of vertex corrections to the electron-
phonon interaction is trivially accomplished by re-
placing the simple vertices at the top of each of
the diagrams of Fig. 4 by the proper vertex part l'.
In other words,

B~„(a x', k)~f'(k, k+—q+ii)B~„(a ~', k)

and
U,+.(k)+U,+„(k)I'(k, k+q+«).

It is worth noting that the upper part of the last
diagram of Fig. 4 (if we cut across the loop) is just
the electron-hole scattering kernel, proper with respect
to phonon lines.

3.Dressed Phonon Spectrum

The calculation of the dressed phonon propagator
D(q), whose poles give the dressed phonon excita-
tion spectrum, requires the summation of all diagrams

d'k—2 Q L,„(«) ni,Bp( ii, k). —
(2pr)'

The quantity eI, is unity for occupied states and zero
for unoccupied states. It will be noted that we have
neglected certain contributions to the proper self-

energy II which are of higher order in the phonon
field amplitudes and represent anharmonic contribu-
tions. Equation (15) can be simplified by the use
of Eqs. (10), (11), and (13):

II(q) = Q A~(q, ii)A(q, 2) t'S„(q) 8.;]+II' fir—, —

while 0', the term which corrects for the action of
a nucleus on itself, reduces to

d'kII'= —2 Q L„(z)x, ,*(0),nI,Bp( K', k), —
«,K~ 2~ '

with the help of Eqs. (12) and (13).
It is worth noting that II(q) may also be calcu-

lated by using the effective electron-phonon inter-
action evaluated earlier. In other words, we shouM

+n =

Ptc. 5. The dressed phonon propagator.
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obtain II(q) if we drop the second term in Fig. 5
and replace the bare electron-phonon interaction vertex
on the right of the first diagram by the screened
interaction vertex Li.e., in which A(q, s)-+A. (q, s)].
One can readily show that the same result for II is
obtained from this approach when Eqs. (10), (11),
and (13) are used.

The Dyson equation (14) can be rearranged to

D '(q) =Do '(v) —D(v)

and. , since the dressed phonon propagator has poles
at the dressed phonon excitation frequencies, the
phonon spectrum is given by the solutions of

a)'= 0,'+20,II (q) . (16)

Now the zero-order phonon spectrum is given by

Du'=20, Q l
A (g, s) l'

—(4 /V&) g Z.Z. lu. [j~Ill'exp(s~ x...)+2(),f~,
'R~ts, C

where u =e "M-'I' and ljxIJ—=[jqIl when It=0 and
we have allowed the background to move so as to
cancel the macroscopic charge density of the nuclei.
Thus, Eq. (16) becomes

os= (kr/Vg) Q Z„Z„. Q expj's(x' x„. It —x)g.
e,n~ tr, a~

x (u. ljq+~II) (u"* ljq+~'Il) S."(q, )+(=(q, ~),
where

C(q, (o) =20,11'—(4s/Vz) Q Z Z ~

n, n~, c

X exp(irx„) .
l

u [jul l'.

This is actually the term which cancels out the
divergent self-interaction part and also ensures that
ce' goes to zero for acoustic modes as q~O.I/In the
present article, we show explicitly that this canceOa-
tion does in fact occur, a demonstration which has
so far been carried out only for,'the special case of
the diamond structure and the Hartree approxima-
tion." In the Appendix, we derive a new identity

hm g Z. exp(s~' x.)[j~'+qI]jS..(q, ~) —S.„)
q,AM n, tr~

d'k
+ljtt+Q Q X..(q, (o) ebs(+It', ir) =0,

(2s) s

@ This limit Q~O ls not strictly valid in polyatomlc crystals
for optical modes. We have used an unretarded Coulomb inter-
action which is only valid for

I q l)~o/c, where cps is the optical
phonon frequency and c is the velocity of light. Thus, the limitq~ must be interpreted as qadi but qc&&coo, where e is the
lattice constant. Because co~/c is very small |,'10-4-10-5), the
inequalities are consistent and the limit q—4 is to be interpreted
in this way everywhere in this article. A rigorous calculation
would include retardation and thus use photon propagators;
however, the optical phonon quasiparticle concept breaks down
for l q l ~auo/c, as discussed classically by K. Huang Lproc. Roy.
Soc. (London) A208, 352 (1951)g.

N A. A. Maradudin (to be published).

which allows the divergence to be subtracted out,
and thereby show that

~ =(4r/V, ) QZ~„. P expLs(x' x..—~ x„)]

X l S".(q, ~) (u. Kq+~D) (u- * ljq+~'Il)
—S,.(0) (u„[jttIl) (u * [jx'Il) l, (18)

where" S„„(0)= lim S, .(q, (o) and [jttIl= lim ljtt+qIl.

Thus, the phonon excitation spectrum, within the har-
rnonic approxtmat ton and for

I q l&)coo/c, ts is given by Eq.
(18) and, because of the orthogonality of the e~",I is
also given as the solution of

co'e,"= Q D (q, cv) e,"', (19)

where

D„..(q, ~) =A„„.(q, ~) —S„„.g (M./u„) I~so„„(0)

4x4 „(q, (o) = —Z„Z„.Q expLi(v. ' x„.—It.x„)1
«,a~

It is necessary to reemphasize that the tensor g„„
appearing in these expressions is related to that in-
verse screening tensor which does not include direct
phonon contributions (i.e., lattice polarization) but
does include the phonon exchange contributions to
the electron self-energy. In other words, the calcula-
tion of X„„must exclude those diagrams which can
be cut by cutting only a phonon line j otherwise II(q)
is not the proper phonon self-energy) but the elec-
tron propagators used must be the dressed propaga-
tors, i.e., dressed by phonon exchange eGects as well
as the other interactions, and vertex corrections should
be included. In this case, the linear-screening ap-
proach to the lattice dynamics of covalent crystals
is rigorous and the additional terms noted by Phillips'
are included and his doubts' are no longer appropriate.

It shouM also be noted that m~ will, in general,
be complex and Eqs. (18) and (19) must be solved
for both real and imaginary parts. The Born-Qppen-
heimer adiabatic approximation corresponds to the
neglect of any cv dependence in the real part of
S".(q, ~).

Iv. DISCUSSION OF RESULTS

It is of interest to investigate the formal expres-
slo11 (18) fol GP m tile llIIllt of the InoI1atoIIIIC
electron-phonon gas, which is frequently used as
a first approximation to an alkali metal. s ~ For a mon-

"It should be noted that this limit does not strictly exist and
8,;(0) depends on g.



atomic crystal, Eq. (18) reduces to

4n.Z' g {(e Kq+oo)) (e*.Kq+oo')) S„.(q, )
MVg „„r

—(e M) (e* K~'jl) S".(0) l,

where, for oo=—0, e Koojl is understood to be e.Kq]j. If we

neglect the off-diagonal components of X,. (i.e., the
umklapp contributions to the screening) and note
that, for an electron-phonon gas (and any normal

metal), « '(0) =0, we obtain

4orZ' Ie K@I'
3fVg «(q, ro)

le Kq+~III' le Kill'
«(q+x, co) «(oo, 0)

This ls to bc CODtlastcd with thc cx1stlng cxplcssloD '

for an electron-phonon gas:

co'=0,'/«(q, co) = (4orZ'/MV~)L«(q, (o)] '

&&{le Mll'+ Z Lle.K~+cLIII'—Ie Ml'll

which is obtained by ignoring the periodicity of the
lattice completely. s ' This is not a physically meaning-
ful procedure because the, 'periodic'. structure is a nec-
essary consequence of the~presence of 'nuclei, which

necessarily accompanies the existence of&phonons.
It is also interesting to compare our results (in the

special case of a monatomic metal) with the results
of Vosko et el.' In the case of a monatomic metal
in the adiabatic approximation, the real ~s part of
Eq. (18) reduces to

krZ2
Re,'= {I

e.KQ I' Soo(q)

+ Z't:(e Kq+ ll)(e* Kq+~Z)S".' '(q)

—(e* K~II) (e*-K~"j)S "'"'(0)ll.

Vosko et el.' obtained an expression for a monatomic
metal of the form

krZO' P {Ie Kq+oogl'l1 —F(q+oo)]
MVg .

—
I
e K~II I'L1—~(~)3l

I where Zo is the charge on the ion with the valence
electrons removed and where F(0)= 1) from a theory
based on the adiabatic approximation. Thus,

Zo'Le*. Kq+~1ll L1—P(q+~) j

is to be identified with

Z' g e* Kq+oo'$S. .(q)

or, if one assumes that the. oG'-diagonal contributions
from X„„can be neglected, as suggested by Phillips '8

we have the identihcation

Zo'P(q+oo) —=Zo' —Z'X„„(q)

=LZo'«(q+oo) —Z'j/«(q+oo) .
However, although the OG-diagonal contributions Rre

Hkcly to bc small, their contribution may not bc
negligible because of the sum over x'. Furthermore,
Phillips's pseudopotential argument'8 for the small-
ness of the OB-diagonal elements is reasonable for
the valence electrons but becomes less valid for the
core-electron contribution to thc screening, of course.

%C can, however, reduce the problem to the eval-
uation of the response of the valence electrons only,
by making the common approximation that the core
electrons form nonovcrlapping spherically symmetric
charge clouds. In this case, the integral over 1'doff/(2or)'

which arises in calculating the screening tensor is
1cduccd to RD 1DtcgrRl only ovcl k VRlucs correspond-
ing to the valence arillouin zone. The remaining
Brillouin-zone contributions to the screening are ap-
proximated by assuming that the core charge clouds
move completely with the nucleus. In this approxi-
mation, Eq. (18) retains its form but Z is replaced
by Zo and the full screening tensor X„,(q) is re-
placed by the screening due only to the valence
electrons. This would normally be calculated by
means of R pscudopotcnt1al RpproRch. . In this Rp-

proximation, the problem becomes exactly that con-
sidered by Vosko et ul. ,' for example, as discussed
above. The approximation might be improved, if
necessary, by the inclusion of small core-polarization
CBects of a simple dipole nature to take account of
the fact that the core electrons will not follow the
nuclei completely.

In the case of nonmetallic crystals, where, invar-
iably, Acro is very much less than 5, the average
direct gap between conduction and valence bands,
the inverse screening tensor becomes essentially inde-
pendent of ~ and is real in the range of interest. "
This is just a demonstration of the validity of the
Born-Oppcnheimer approximation for nonmetallic crys-
tals. In this case, the solution of Eq. (18) for oo

becomes trivial. The reality of ~' for nonmetallic
crystals in the phonon frequency range implies that
there is no ultrasonic attenuation in the absence of
anharmonic interactions and impurities. On the other
hand, in metals 5„.„ is complex and there is the pos-
sibility of ultrasonic attenuation via scattering from
the electrons near the Fermi surface. m %c note from
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Eq. (18) the dose relationship between the imaginary
part of co' and the imaginary part of the screening
function, which has already been established from
a somewhat diBerent point of view in Migdal's work, '
for example. In fact, as our results show, there is
a very close basic relationship between the lattice
dynamical and, dielectric properties of a solid.

We have shown that linear-screening theory can be
applied to the problem of the harmonic phonon
spectra of nonmetallic crystals if the correct inverse
screening tensor is used. The arguments used by
Migdal" to show that f'~1 to within terms of order
(m/M)'I' for metals appear to be generalizable to
nonmetals also and, in this case, the phonon proper
vertex corrections may be dropped. However, the
self-energy part of F cannot be dropped because there
can be an important contribution from that part of
the self-energy of the electrons due to the exchange
of phonons with frequency and wave vector close to
that of the phonon connecting the polarization bubbles.
This contribution is actually the contribution noted
by Phillips' as due to the change in energy gap pro-
duced by the lattice vibrations and which caused his
doubts' regarding linear-screening theory. We see that
these doubts can be put to rest by noting that dressed
electron propagators are to be used in calculating the
inverse screening tensor (i.e., dressed with phonon
exchange contributions, also) .

1Vote added in proof. We have recently become aware
of work by R. Pick, M. H. Cohen, and R. M. Martin
(to be published. ), who have independently derived
essentially Eq. (18) of this work within the adiabatic
approximation.
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APPENDIX

We consider the potential in a crystal in which
an in6nitesimally small, very-long-wavelength periodic
displacement of the nuclei is present. This device
allows us to avoid difliculties with translational in-
variance but gives an electron and nucleus distribu-
tion which is essentially undisturbed. The "bare"
potential due to the nuclei is

4n.Z
Vo(r, t) = lim g,,.~ ... V~ «+q '

X exp( i«x„) ex—p{i}(«+q) r a)t]). —

If we subtract this from the screened potential it

generates, we have

4n.Z„
V, (r, t) = lim Q ",LX„.„(q, (g) —8„.„]

q, m~0 e,x,a~ A «+q

X exp( —i«x ) exp{iI («'+q) r a&t]—},
which is just the contribution provided by the elec-
trons, of course. The change from this value when
we consider the nuclei displaced by a finit amount
u exp{iLq x„(l) Mt]—}, where q, ~ are again small, is

47riZ II«+qj} u

g,cyM n, m~ vA.
I
«+q

I

X exp( —i«x ) I S..(q, co) b„,]—

X exp{il(«'+q) r—&A]}, (A1)

where we have used Eq. (12).
We now calculate this electronic contribution ex-

plicitly. In the system with in6nitesimally small
nuclear displacements, the electron density is

p(r, t)= lim V~-' g exp{iL(«+q) r—&A]}

d'k
X ngB, *(«, k),2s. '

which acts as an "external" source to set up the
potential

V, (r, I)= lim Q X„.,(q, +)
g,ca 0 s,d A «+q

Pk
X , NgB, *(«, k) exp{iI («'+q) r—(gi]}.

2Ã 3

The change from this value when the electron dis-
tribution suffers a 6nite displacement r—+r+
u expLi(q r—cut)] is

d'k
X epB,*(«, k) exp{iI («'+q) r—~t]},

2m '

since changes in B~(«, k) are of higher order in q.
If we recall the Hermitian nature of 5, , and use
Eq. (12) again, we obtain

—4nz{t«+Q u
BV,(r, t) = lim Q, X.e*(q, ~)

I «+q I

d'k
X NqB~~(«, k) exp{iL(«'+q) r—~&]}. (A2)

We now equate expressions (Ai) and. (A2) for the
electron contribution, make an interchange x~', and
take the complex conjugate to obtain the identity
given as Eq. (17) in the main text.
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We continue by calculat:ing C(q, ~), which is With the help of Eq. (17), this can be rewritten as

4xC= —lim —QZ„Z„g expLi(tt' x„—~ x„)$
q, ce-+0 I A e, n~ g,gI

X Q Z„exp( —ix x ) ~
u [fte+qjj ~

—Pz.z. exp( —~» x, ) ~

u. [[x+q1 ~'I .
n, n/

X S..(q &u) (u [[q+x)) (u„e (q+tt'g)

so that we obtain Eq. (18) of the main text, and
~'—&0 in the q~o limit for those modes (i.e., the
acoustic modes) for which u„becomes independent
of e in this limit.
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Infrared reaction and transmission data are analyzed to give the transverse and longitudinal phonons

in mixed KNiFS-KMgFq crystals for seven concentrations ranging from 0 to 100% Ni. Both one- and

two-mode behavior are observed. A point-ion model is developed patterned on earlier work on simpler

mixed-crystal systems. The model assumes randomly distributed impurity ions and nearest-neighbor

forces. The model gives good agreement with the observed mode frequencies, and in particular it 6ts the

observed splitting of one of the reststrahlen bands at intermediate compositions.

I. INTRODUCTIOH

ELL-DEFINED infrared- and Raman-active

phonon modes have been seen in several mixed. -

crystal systems of the type A„B1 „.' ' Near the ends of

the composition range of a mixed crystal one ion can be

viewed as an impurity and connections can be made with

the theories of local modes and impurity reson, ance

modes, ' but for intermediate compositions no 6rst-

principles theories exist. The extra degrees of freedom

resulting from the presence of the impurity can lead, to
two extremes of behavior that have been observed

experimentally. These have been called one- and two-

mod. e behavior. ' A mixed crystal A0.580.g that shows

one-mode behavior typically has one strong phonon

mode in its infrared spectrum occurring at a frequency

intermediate to the relevant mode frequencies coA and

co@ of the pure crystals 2 and 8.U A„B1 ~ exhibits two-

mode behavior, then Ae.sf4.s will have two strong

modes whose frequencies are close to cvA and. ~~. The

present study of KNi„Mg1 „F3 examines the infrared

modes in a Inixed perovskite that has three infrared. -

active modes at y= 0 and at y= 1. For intermediate y

~ H. %'. Verleur and A. S. Barker, Jr., Phys. Rev. 164, 1169
(t967).' I. F. Chang and S. S. Mitra, Phys. Rev. 172, 924 (1968).

' In addition to Refs. 1 and 2, review papers on mixed crystals

appear in Proceedings of International Conference on Localized

Excitation in SolQs, edited by R. I'. %allis (Plenum Press, Inc. ,
New York, 1968).

two of these show one-mod. e behavior an, d one of these
shows two-mode behavior. This is the first report of a
systematic study of a system that simultaneously
exhibits both kinds of behavior.

A simple model that includes effective charges and
inter-ion force constants but neglects local-6eld effects
is used to analyze the results. This model leads quite
naturally to the behavior observed. experimentally with
a minimum number of special assumptions.

In Sec. II, the experimental methods and results are
described. Section III presents the mod. el of the long-
wavelength lattice vibrations in the mixed crystal and
the method, for calculating the corresponding dielectric
function for analysis of the optical properties. In Sec. IV,
the model is coxnpared with experiment and a discussion
is given of the model parameters and normal modes.

II. EXPEMMEHTAL METHODS AND RESULTS

A. Samyle Preparation

The crystals were grown by a modified Stockbarger
method in sealed platinum systems. 4 Single crystals of
KNiF3 and. KMgF3 were used as starting material.
These materials form solid solutions at all con-
centrations and single crystals 12&12&5 mm were

easily obtained.

4 H. J. Guggenheim, J. Phys. Chem. 54, 938 (&9&@).


