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A quantum theory of the phonon excitation spectrum of a general crystal in the harmonic approximation
is presented. Many-body perturbation theory is used to (i) generalize a result obtained by Baym relating
the dielectric and lattice dynamical properties of a monoatomic metal to a general crystal, and (ii) show that
Phillips’s recent doubts regarding the applicability of linear screening theory to covalent crystals can be
allayed. It is shown that a correct, “dressed” inverse screening tensor can be defined so as to make the
linear-screening approach rigorous in the harmonic approximation and for wavelengths short enough so
that relativisitic effects are not important. An identity is also derived which allows the elimination of
divergent self-interaction terms and provides an explicit demonstration that the acoustic-mode frequencies

vanish in the long-wavelength limit.

I. INTRODUCTION

‘HE present theory of the lattice dynamics of metals

is substantially different from the corresponding
theory for nonmetallic crystals. A common and fruit-
ful approach! to metals is afforded by means of a
pseudopotential tensor involving the inverse dielectric-
screening function of the Hartree approximation and
a factor to correct this approximation. In nonmetals,
however, the usual approach is via phenomenological
interatomic force constants.? Recently, however, Phil-
lips* has applied some of his results, obtained from
the application of the pseudopotential approach to
covalent crystals, to the lattice dynamics of these
crystals. Phillips® finds contributions to the strain
energy from changes in the screening due to changes
in the energy gap and casts doubts on the applicability
of linear-screening theory to the (harmonic) lattice
dynamics of covalent crystals. In this article, we
establish this applicability to all types of crystal by
means of many-body perturbation theory. We shall
thereby create a unified approach to the lattice dy-
namics of all types of crystal, metallic and non-
metallic, and find a simple and elegant general rela-
tion, which is a generalization of a result obtained
by Baym* for monatomic metals, between the phonon
excitation spectrum and a “dressed” inverse dielectric-
screening function. The connection between this for-
mal expression and the current pseudopotential ap-
proach to the phonon spectra of metals is established,

* Submitted in partial fulfillment of the requirements for the
Ph.D. degree.

1 See, for example, S. H. Vosko, R. Taylor, and G. H. Keech,
ga?‘zj. Phys. 43, 1187 (1965), and references therein; see, also,

ef. 2.

2 See, for example, W. Cochran, in Phonons in Perfect Lattices
and in Lattices with Point Imperfections, edited by R. W. H.
Stevenson (Plenum Press, Inc., New York, 1966), and references
therein. An exception is the work of D. R. Fredkin and N. R.
Werthamer [Phys. Rev. 138, A1527 (1965)] and N. S. Gillis
and N. R. Werthamer [Phys. Rev. 167, 607 (1968) 7.

3 J. C. Phillips, Phys. Rev. 168, 917 (1968)

4 G. Baym, Ann. Phys. (N. Y) 14, 1 (1961).
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thus providing an alternative theoretical viewpoint
of the latter.

The approach to be used in this article can be
summarized as follows. We begin with a zero-order
one-electron Hamiltonian, describing the system of
an electron in a self-consistent field, and a zero-order
nuclear Hamiltonian for the nuclei moving in a uni-
form background of charge together with additional
forces analogous to a self-consistent field. The re-
maining interactions are treated as a perturbation
by means of one-particle Green’s functions and the
resulting perturbation series is summed to infinite
order by means of the Dyson procedure.

In the course of calculating the dressed phonon
spectrum in the harmonic approximation, we consider
the screening of a test charge by the electrons from
an external potential in order to relate some of the
diagrams which contribute to the phonon self-energy
to screening effects. The general formal expression
is finally considered in the approximation where the
core electrons are assumed to provide a tight, spher-
ically symmetric charge cloud which moves with the
nucleus in order to relate the present approach to
the pseudopotential type of calculation.

II. HAMILTONIAN AND PERTURBATION
THEORY

We begin with the nonrelativistic Hamiltonian for
the crystal:

H= Z 1pa+ Z (P2/2M)+ 2 rif™

>j

+ Z (ZZs/Rra)_ Z (Zs/! r,—R, D) (1)

>8

in atomic units, where p; and r; are electron mo-
mentum and position operators, P, and R, those for
the nuclei, and M,, Z, are the mass and charge
number of the sth nucleus in electron units. We re-
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write this as

H=H,+Hy+H;=Hyt+Hj,

where

Hy= 2. (3p2— 2. [Z/| t:—Ro(0) [T+ Vir (1)},
Hy= 2. (P¥/2M.)+3 ; [(Z:Zs/Res) +f(Re) ],
Hy= g rit— Z Z[| r:—R, 71— | r,—R,(0)[1]

— 2. Var(r:) =% 2 f(Rw), (2)

T8

where R;(0) is the equilibrium position of nucleus s.
To ensure that the different terms are finite, the
interaction with a uniform charge distribution is ad-
ded and subtracted in the manner given by Bardeen
and Pines.® The terms Vgr(r:), f(R,) are terms
added to and subtracted from the Hamiltonian to
ensure that the zero-order Hamiltonian is an accurate
one so that the zero-order eigenstates are close to
the dressed eigenstates.

The eigenstates of H, are Bloch functions, since
the potential in H, is periodic, and k is a good quan-
tum number. We thus expand the electron field in
terms of the wave-vector eigenstates of H.:

¥=_ cul,
k

where the i are the eigenstates of H, and the cx
are the corresponding field amplitudes, or destruction
operators. The ¢k, ¢k satisfy the usual equal-time
anticommutation relations for fermion operators. We

thus have
He= Z e(k)ck"ck, (3)
k

where the (k) are the eigenvalues of H,.
Within the harmonic approximation, Hy can be
written as

Hy= Z(PSZ/ZMS) +3 Z Ko™t 4)

and thence as

Hy= Z Qqj(@qitaqst3),

7,9

following the well-known normal-coordinate transfor-
mation and quantization of the resulting field.” The
a4, Gq;' satisfy” the usual equal-time commutation
relations appropriate to boson operators. The sum

¢ J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).

6 The Vgp term has been discussed in some detail by Vosko
et al. (Ref. 1) and J. Hubbard, Proc. Roy. Soc. (London) 244,
199 (1958). The f(R.s) term is analogous.

7 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of
Laitice. Dynamics in the Harmonic Approximation, (Academic
Press Inc., New York, 1963), Solid State Physics Suppl. No. 3.
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over j is a sum over branches, and the sum over q
is only over points in the first Brillouin Zone.®

The electron-electron Coulomb interaction [Eq. (2)]
can be written in the form

H.,=3 %: {%} 90*Barc* (%, K) o0y e

X { Z vQBQ+K' (K,; k,) Ck’+Q+K'fck'} ) (5)

k/x/

where Boix(¥, k)= (iraix | exp(4Q-1)| ¢i) and x is
a reciprocal-lattice vector. All quantities are normal-
ized to unit volume.

This is the general form for the unretarded electron-
electron Coulomb interaction for electrons in a peri-
odic potential and reduces to the form used in pre-
vious work®? in the case Bqy«(x, k) =040, appropriate
to the case of the electron gas. In the case of non-
metals, it is necessary to use the general form since
Bqx(x, k) for x#0 approaches the x=0 value in
magnitude when e(k) is near a band edge. The
coefficient vq is

9=4(27"%/| Q) or |ug['=4n/Q?

if we ignore retardation. We note that Eq. (5) in-
cludes self-interaction effects.

We now consider the electron-phonon interaction
term in Hr. To lowest order, this is

H,O=— 3 Zu,- V[| 1.~ R, (0)| T,

which can be written

Hep(1)= Z Z {Uq+x(k) aqck+q+xTCk+H°C'}7

ke aj

where
Ugpe(K) =1 Z, | 9qer [* Bayu(x—2', K)
X D Za(2M,V 494) e (q+%") exp(—ix’+X,)

if V4 is the cell volume, # ranges over the nuclei
in a unit cell, e, is the orthonormal polarization vector
for the nth species, x, is the equilibrium position of
this species in the unit cell, and we have suppressed
the label ; for notational convenience. It is convenient
to rewrite this as

U(H-"(k) = 2/: A (q7 K,) BQ-H (K_ k,; k) Vgx7y (6)

8 Tn this article, we use the extended zone scheme and Q, k are
summed always over all points in reciprocal space, whereas q
is always confined to the first zone. The vector « always denotes
a reciprocal-lattice vector.

9 See, for example, D. Pines, The Many Body Problem (W. A.
Benjamin, Inc., New York, 1962), and references and reprints
therein; and J. J. Quinn, in Phonons and Phonon Interactions,
edited by T. Bak (W. A. Benjamin, Inc., New York, 1964).
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where
A(q, ®') = (2r/VaQly) ™
X X Z.M, e [q+ k'] exp(—ix’ - X,)

if Ja+b]] represents the unit vector (a+b)/|a+b|.

It is usual®® to use H,, as the total electron-
phonon interaction but we shall find that it is ne-
cessary to include the next-order term in the general
case. For the electron-phonon gas, the second-order
contribution to the phonon self-energy is unimportant,
but for real crystals it is a necessary term. As we
shall see later, it actually subtracts out the ultra-
violet divergence due to H,,®. It can be written as

H,®= Z Loq' (%) Beygqr (=¥, K) Cryerq—qrox
X (aq'+a-y) (ag+aq?), (7)

where
qu (K )

VA(Q IR, 20 ZaM 7 (eg" [q—q'++T)

X (e [¥'+q—q'T) exp(ir’-x,).

Thus the total electron-phonon interaction termwith in
the harmonic approximation is

H,,= Z {Ugsx(K) aqtriqietact Hee } +Hep, @, (8)

where Ugy(k) is given by Eq. (6) and H,® is
given by Eq. (7). The total Hamiltonian to be used
is thus

H=H+H;,

where Ho=H,+Hy is given by Egs. (3) and (4),
respectively, and

HI= Hee+Hep'— VSF"‘f

is given by Egs. (5), (7), and (8). In lowest order,
the Vsr and f terms will automatically cancel with
the corresponding terms in H,.®

We intend to employ H,+Hy as the zero-order
Hamiltonian and use Hr as the interaction term in
a perturbation theory. It is well known that succes-
sive terms in the perturbation series for the electron-
electron interaction invariably get larger and it is
necessary to sum the perturbation series to infinite
order to get meaningful results. We shall, therefore,
necessarily carry out the perturbation theory to in-
finite order and will thus use diagrams to facilitate
the calculations. We shall carry out the perturbation
calculation by evaluating the diagrams according to
the following rules:

(1) Assign a different four-vector k= (k, ¢) to each
solid (bare-electron) line. For each such internal line
a factor iGo(k) enters, where Go(k) is the bare-

S, Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993
(1963) ; A. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
[Enghsh transl.: Soviet Phys.—JETP 7, 996 (1958)]
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electron propagator
Go(k, &) =[e—e(k)+dd: I

and where d; is greater or less than zero according
to whether e(k) is greater or less than the chemical
potential.

(2) Assign a different four-vector ¢=(q, w) to each
wavy (bare-phonon) line and enter a factor —2Do(q),
where Dy(g) is the bare-phonon propagator

Do(q, ) = (o—Qq-+88)—1— (co+-Qq— ) L.

(3) For each vertex (type A) involving a phonon
line and two electron lines, enter a factor

2,: g0 4 (q, ¥) Boye(x—%/, k)

or its Hermitian conjugate, according to whether the
phonon is annihilated or created at the vertex; the
two electron lines have four-vectors £ and %k+4-¢+4«
[where «=(x,0)].

(4) For each vertex (type B) involving two phonon
lines ¢, ¢’ and two electron lines %, k=¢F¢'+«, enter
a factor

3 Liaso () Berarar (v—¥'K),

where the signs on ¢, ¢’ are appropriate to whether

the phonons are created or annihilated at the vertex.

(5) For each dotted line, representing the electron-
electron Coulomb interaction, assign a four-vector
0= (q+x%, ») and enter a factor —i. For each vertex
(type C) involving a dotted line Q and two electron
lines %, k+Q+«, enter a factor

19Bq«(x, k)

or its conjugate, according to whether the dotted line
begins“or ends at the vertex.

(6) The four-vectors are to be conserved at each
vertex (modulo «) and there are summations over
all free reciprocal-lattice vectors « and integration
over all free variables %, g, and Q according to

g diq
d f 49
ot 2 ) )t

A factor 2 is introduced when a sum over spins is
necessary and a factor (—1) for each closed loop.

III. FORMAL DEVELOPMENT

We shall begin by calculating several important
subdiagrams which will arise frequently in the later
stages.

We begin with the diagram shown in Fig. 1(a),
which is a polarization part representing “scattering”
of the Coulomb interaction by electron-hole pair
production. Using the rules given, this is readily
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k
. c
q+x’ qti
k+q+x
(a)
k
C A
q+x’
q
k+q+k
{b)
k
A A
q q
k+q+r”

(c)
Fic. 1. Some low-order polarizationlike diagrams.

calculated as

—ig1 @ (g; &, k) =—1mP(g; &, &) Vgx* g0

d*k
= Vg1 Vg2 Z f

ar J (2m)t
X Go(k) Go(k+-g+«")
X Boyw™ (k"' — &, k) By (K" =K', k),

where the quasiparticles are considered as propagating
from right to left in the diagrams. Similarly, the
diagram of Fig. 1(b) is

—i® (g, k)= z,: A(g, &) Vg1 40

x2 3 [ 5 GGl 4
KX Borw* (K" —k, k) Boywr (k" — ', k)
and we readily note the relation
$2@ (g, ¥) = ; A(g, )@ (g; &, «').
Similarly, Fig. 1(c) gives
¢ (g) = 5_; A*(g, ©)A(g, )@ (g; &, &).

The three diagrams of Fig. 1 are merely low-order
terms in an infinite series of terms, but we can readily

P. N. KEATING
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generalize these results to diagrams in which the series
is summed, such as that given in Fig. 2(a). We have

d*k

. N — "
im(g, % ¢)=23 f mys OB Gollrtg-¢)
X Boysrr* (k" — &, k) By (k"' — ¥, k)

XT(k, k+q+"), (9)

where I'(k, k+q+«"") includes all those subdiagrams
which begin with a vertex of types A or C and end
with two external electron lines k, k+g-+«"'; those
subdiagrams which can be split into two parts by
cutting a single phonon or Coulomb interaction line
are to be excluded. Some low-order contributions
to I, including an exchange term, are shown in
Fig. 2(b). We can rewrite Eq. (9) in a convenient
form if we note that many of the terms in T, such
as the last two of Fig. 2(b), involve electron self-
energy contributions. Equation (9) then becomes

, , ik .,
—im(g x, ) =22 / G CWGU+gte)
XBg-i-x"*(K”— K, k) By ("”"' "Iy k) f(k; k+9+'<") ’

where the proper vertex part T' does not include the
self-energy contributions to the two propagators and
G(k), G(k+q-+«") are the dressed electron propa-
gators. We note that the very useful relations

¢2(q’ K) = Z’: A (q: K,)¢1(q; K, K'):
¢s(g) = Z,A*(q, ) A(g, K)r(g; &, &) (10)

remain valid when we consider the more general sub-
diagrams. We also note that

Tl(q; Ky K')=7f1*(9; K'7 K): ¢1(q; K, ",)=¢1*(q; K/) K)
if T is real.

A. Dielectric-Screening Tensor and Effective
Electron-Phonon Interaction

The inverse dielectric-screening tensor is defined by
the relation between the ‘bare” and “screened”

k

-~

qr’ q+k

k+q+k”

(a)

:>+D+\:\C>+AA
I

-+ eeesoce

&

b)

F16, 2. The full polarization part,
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Coulomb interaction between a test charge and an
“external” potential:

V0= E KM’(Q)"U&"(O)-
o

Now the full inverse dielectric-screening tensor &’ (q)
includes the effect of lattice polarization as well as
the effect of polarization of the electrons. In other
words, the diagrammatic equation for K.’'(g) includes
phonon lines as well as Coulomb lines. However, as
will become evident later, we shall actually be inter-
ested only in a “reduced” inverse screening function
K (g), where those diagrams which can be discon-
nected by cutting a single phonon line are excluded.!
If we put I'=1, this becomes the screening function
which has been considered by Falk® within the
Hartree approximation and by Penn® for semicon-
ductors. If the off-diagonal elements are negligible,
as in the electron-gas case, we have

Ku(@) =[e(g+r) T, Ve =0e®/e(Q),

which are familiar results. In the general case, how-

ever, we must consider the off-diagonal elements also.
The diagonal contribution K« (g)ve« is given by

the diagrammatic equation of Fig. 3(a), which is

Kx (9) Vg4e=Vgpe— Vg4 A,Y; K (q) | vgparr [2mi(g; &, k)

if only linear-response diagrams are retained.
The off-diagonal contribution is given by the equa-
tion of Fig. 3(b) or

Kr (‘I) Vg4«
= — g 57; R (@) | vorurr Pmig; &7, &) (k%K')

Thus, we have the set of equations
Ker = Our— Z Kewr () | v [Pmr(g; &y &)
W’

=au"— Z chx”(q) Ivﬁ" | ¢1(q; K", ",) (11)
7 | g4 |
for the reduced inverse screening tensor. These equa-
tions are a generalization of Eq. (29) of Falk’s ar-
ticle,”” where ¢:¥ is treated within the Hartree ap-
proximation. They are actually equivalent to a double
Fourier transform of Eq. (6.62) of Martin and
Schwinger™ in the case of a periodic structure.
If we rewrite | vge 2mi(g; k7, k') as Powe(q), we
note that the reduced screening tensor is

K= () =2(q) =1+P(g).

1 Such diagrams are excluded so that the phonon self-energy
(see Sec. ITI B) is proper; their exclusion corresponds to consider-
ing only the electron polarization.

2 D. S. Falk, Phys. Rev. 118, 105 (1960). The properties of
the inverse dielectric-screening function have also been discussed
in Ref. 14, below, and by S. L. Adler [Phys. Rev. 126, 413 (1962) ]
and N. Wiser [Phys. Rev. 129, 62 (1963)].

1 D. R. Penn, Phys. Rev. 128, 2093 (1963).

4 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
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C [+ C
+ +
lq+k ' q+k
- I + q+r”
lg+x |
| qtk
'q+K
1
(a)
Cc c
1g+k ¢|q+x
|q+K, - qtx
(k*x')
lq+x’
!

(b)

F16. 3. The screening equations.

In the case of the electron gas, the off-diagonal ele-
ments vanish and we have the familiar result

e(Q)=1+¢1(g; &, ¥) =14 vq [27'(Q),
where

Q=g+« = (Q)=mlg; x, ).

It is convenient for the remainder of this article
to define a new tensor

Sew (@) =Lla+xl/| g+« [T (g),  (12)
so that Eq. (11) becomes
Swer (g) = der— ; Swrr (@ r(g; &, ') (13)

This tensor has the advantage of being Hermitian
if T is real, whereas Xy (g) does not have this prop-
erty. Because of its Hermiticity, the treatment of
screening can be carried out in a more elegant manner
if we use Sw instead of HKur; we can readily rewrite
our results in terms of the more familiar XK. at
the end. It is readily seen that the diagonal elements
are equal:
Sw(g) =%u(q).

We now turn our attention to the effect of po-
larization on the electron-phonon interaction. As we
might expect, the problem of calculating the screened
electron-phonon interaction is very similar to the
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= + ¢q+x,,

q

F16. 4. The screened electron-phonon interaction,
without vertex corrections.

previous problem of the screened Coulomb interaction.
The screened electron-phonon interaction without the
vertex correction is given by the diagrammatic equa-
tion of Fig. 4, which is

Uq+n (k) = Uq+x
- Z $2(q, ) Sewrr(q) Bogx (k— &', B) Vg

]
On comparing this with Eq. (6) we have
Ugra(k) = Z A(g; ) Byre(k—K', k) Vg,

where

A(g;)=A(g; k) — Z,,: Serrra(g, K1)
= > Se(g)A(g; ©)

if we use Egs. (10) and (13).

As we must expect, this result reduces to the elec-
tron-phonon gas result®® when S, is diagonal (and
thus Su=%u«):

A(g, ) =A(q, ) Kulg) =A(g, k) /e(g+5).

The inclusion of vertex corrections to the electron-
phonon interaction is trivially accomplished by re-
placing the simple vertices”at the top of each of
the diagrams of Fig. 4 by the proper vertex part T
In other words,

Ba(k—«', B)—> T (k, b+ g+ ) Bero(k— K, k)

and ~ ~
Ugs(k)—Uqi(B) T (%, k+g+x).

It is worth noting that the upper part of the last
diagram of Fig. 4 (if we cut across the loop) is just
the electron-hole scattering kernel, proper with respect
to phonon lines.

B. Dressed Phonon Spectrum

The calculation of the dressed phonon propagator
D(q), whose poles give the dressed phonon excita-
tion spectrum, requires the summation of all diagrams

P. N. KEATING
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which begin and end with the same bare-phonon
propagator Dy(g). This series is conveniently summed
by means of the Dyson procedure, whence we obtain
the diagrammatic equation shown in Fig. 5, where
the third and fourth terms arise from the H,,® inter-
action and the double wavy line represents the
dressed phonon propagator. The last term is just the
lowest-order contribution fy from the harmonic part
of f(R,s). The Dyson equation represented by Fig. 5 is

D(q) =Do(q) +Do(g)TI(q) D(9), (14)
where
1(q) = —da(g)+ 2 Sex(g)9s*(g, ) balg, ) +10'~fu
(135)
if
HI(Q) 2 Z qu(")""l(o K, k) Sy 'K“(O) ]7),‘: [ va"[

K,k k!

X/(Z )31%30(“"", k)

—2 ¥ L) [ (—;ij—rk“)snkBo(—K, ).

The quantity #; is unity for occupied states and zero
for unoccupied states. It will be noted that we have
neglected certain contributions to the proper self-
energy II which are of higher order in the phonon
field amplitudes and represent anharmonic contribu-
tions. Equation (15) can be simplified by the use
of Egs. (10), (11), and (13):

(g) = Z; A*(q, €) A (g, €') [ S (@) — 8o JH+T1'—fa,

while I/, the term which corrects for the action of
a nucleus on itself, reduces to

=2 3 L) %02 (0) [ 525 mBo(—, ),
with the help of Eqgs. (12) and (13).
It is worth noting that II(¢) may also be calcu-

lated by using the effective electron-phonon inter-
action evaluated earlier. In other words, we should

G

@ = o ot

o=
Q @
+ Nt + O

F1c. 5. The dressed phonon propagator.

AVAVAR §
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obtain II(q) if we drop the second term in Fig. 5
and replace the bare electron-phonon interaction vertex
on the right of the first diagram by the screened
interaction vertex [i.e., in which A(q, k)—A(q, ).
One can readily show that the same result for II is
obtained from this approach when Egs. (10), (11),
and (13) are used.
The Dyson equation (14) can be rearranged to

D(q)=D¢(g) —11(q)

and, since the dressed phonon propagator has poles
at the dressed phonon excitation frequencies, the
phonon spectrum is given by the solutions of

w?=0242Q,11(q). (16)
Now the zero-order phonon spectrum is given by
Q=20 Z | A(g, x) [2

—(4n/Va) D ZnZn | Une[[x]]|? exp (i Xpnr) +29q fa,
n,n’ &k

where u,=e,M, 2 and [[«]]=[[q]] when x=0 and
we have allowed the background to move so as to
cancel the macroscopic charge density of the nuclei.
Thus, Eq. (16) becomes

w?= (4n/V4) Z/ ZnZonr z:, exp[e(x’ X —x-X%,) ]
X (un-[q+x]) (ua*-[q+xT) Sex(q, ) +C(q, »),

where
C(q, 0)=2QIU'— 47/ V) D ZnZn

n,n/ ,x
X exp(ixXpn') | Upe[[x]] 2

This is actually the term which cancels out the
divergent self-interaction part and also ensures that
w? goes to zero for acoustic modes as q—0.5]In the
present article, we show explicitly that this cancella-
tion does in fact occur, a demonstration which has
so far been carried out only for”the special®case of

-

the diamond structure and the Hartree  approxima-
tion. In the Appendix, we derive a new identity

lim {Z Zy exp (i «Xa) [+ [ Sei (q, ) — 8 ]

q,w>0 (n,x

3k
+[x+q] Z,: Kere(q, w) f(—;—)g meBo(++/, k)} =0,
(17)

% This limit q—0 is not strictly valid in polyatomic crystals
for optical modes. We have used an unretarded Coulomb inter-
action which is only valid for | q [>wo/c, where w, is the optical
phonon frequency and ¢ is the velocity of light. Thus, the limit
¢—0 must be interpreted as ga<k1 but gc>ws, where a is the
lattice constant. Because woa/qc is very small (10~%-107%), the
inequalities are consistent and the limit g—0 is to be interpreted
in this way everywhere in this article. A rigorous calculation
would include retardation and thus use photon propagators;
however, the optical phonon quasiparticle concept breaks down
for | q | ~wo/c, as discussed classically by K. Huang [Proc. Roy.
Soc. (London) A208, 352 (1951)].

¥ A. A. Maradudin (to be published).
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which allows the divergence to be subtracted out,
and thereby show that

wt=(4r/V4) D ZnZinr 2 exp[s(v* Xpr—x+Xy,) ]

X {Sex(q, @) (tn-[q+x]) (uar*-[q+xT)
= Sex(0) (wa[xe]]) (wa*-[xT}, (18)
where!” S (0) = lim Sy,(q, ») and [x]]= lim [x+qJ.
q,0-0 q-0

Thus, the phonon excitation spectrum, within the har-
monic approximation and for | g [3>wo/c, is given by Eq.
(18) and, because of the orthogonality of the e, is
also given as the solution of

w'eq= Z Dunr (q, w) -€4", (19)
!

where
Drn (‘L w) =Aunr (q> ‘*’) —Onn Z (Mm/Mn) I/ZAnm(O)

and

4 .
Ann’ (q: w) = % Z"Zn’ Z exp[z (K"X,,,/-—K‘Xn)]

&,/

[q+«Tlg+x]
( M, Mn’) 12 °

It is necessary to reemphasize that the tensor Sy,
appearing in these expressions is related to that in-
verse screening tensor which does not include direct
phonon contributions (i.e., lattice polarization) but
does include the phonon exchange contributions to
the electron self-energy. In other words, the calcula-
tion of .. must exclude those diagrams which can
be cut by cutting only a phonon line [otherwise II(g)
is not the proper phonon self-energy] but the elec-
tron propagators used must be the dressed propaga-
tors, i.e., dressed by phonon exchange effects as well
as the other interactions, and vertex corrections should
be included. In this case, the linear-screening ap-
proach to the lattice dynamics of covalent crystals
is rigorous and the additional terms noted by Phillips®
are included and his doubts? are no longer appropriate.

It should also be noted that «? will, in general,
be complex and Egs. (18) and (19) must be solved
for both real and imaginary parts. The Born-Oppen-
heimer adiabatic approximation corresponds to the

neglect of any « dependence in the real part of
SK'K(qJ OJ).

IV. DISCUSSION OF RESULTS

It is of interest to investigate the formal expres-
sion (18) for «? in the limit of the “monatomic”
electron-phonon gas, which is frequently used as
a first approximation to an alkali metal.5® For a mon-

171t should be noted that this limit does not strictly exist and
S (0) depends on g.

X Sx'x(q: "-’)
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atomic crystal, Eq. (18) reduces to

wi=

o 3 (e La+ol) (¢ Lok D) Seal,
— (o]} (e*-[¥T) Se(0)},

where, for k=0, e-[[x]] is understood to be e:[[q]]. If we
neglect the off-diagonal components of K. (i.e., the
umklapp contributions to the screening) and note
that, for an electron-phonon gas (and any normal
metal), €1(0)=0, we obtain

W= 22 {' e-[ql
MVA G((L w)

e |

This is to be contrasted with the existing expression®*
for an electron-phonon gas:

=0/ e(q, w) = (4rZ*/MV4)[e(q, w) I
X{|e-[q] "+ g Cle-Ix+ql >~ |e-[x] [*]},

which is obtained by ignoring the periodicity of the
lattice completely.5® This is not a physically meaning-
ful procedure because the periodic_structure is a nec-
essary consequence of thefpresence of nuclei, which
necessarily accompanies the existence of;phonons.

It is also interesting to compare our results (in the
special case of a monatomic metal) with the results
of Vosko ef al! In the case of a monatomic metal
in the adiabatic approximation, the real# part of
Eqg. (18) reduces to

o 2 AT
Rews’= MVa {|e-[q 2 Swo(q)

+ 2;’ [(e-[a+«D) (e*-[q++T) Sen® (@)
— (e*+[[x)) (e*-[T) S ™ (0) 1}

Vosko et al.! obtained an expression for a monatomic
metal of the form

wi= T {|e-Ta ol P L1-Flat)]
— oLl [1-F ()}

[where Z, is the charge on the ion with the valence
electrons removed and where F(0)=1] from a theory
based on the adiabatic approximation. Thus,

Zo{e*-[q+«x[][1—F(q-+x)]
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is to be identified with
2 3 e [a+T5e(o)

or, if one assumes that the off-diagonal contributions
from . can be neglected, as suggested by Phillips,’®
we have the identification

ZEF (q+1) = Zot— Z%%u(q)
=[Zle(q+x) —2%]/e(q+x).

However, although the off-diagonal contributions are
likely to be small, their contribution may not be
negligible because of the sum over «’. Furthermore,
Phillips’s pseudopotential argument® for the small-
ness of the off-diagonal elements is reasonable for
the valence electrons but becomes less valid for the
core-electron contribution to the screening, of course.

We can, however, reduce the problem to the eval-
uation of the response of the valence electrons only,
by making the common approximation that the core
electrons form nonoverlapping spherically symmetric
charge clouds. In this case, the integral over [d3%/(27)3
which arises in calculating the screening tensor is
reduced to an integral only over k values correspond-
ing to the valence Brillouin zone. The remaining
Brillouin-zone contributions to the screening are ap-
proximated by assuming that the core charge clouds
move completely with the nucleus. In this approxi-
mation, Eq. (18) retains its form but Z is replaced
by Z, and the full screening tensor Ki(q) is re-
placed by the screening due only to the valence
electrons. This would normally be calculated by
means of a pseudopotential approach. In this ap-
proximation, the problem becomes exactly that con-
sidered by Vosko et al.,! for example, as discussed
above. The approximation might be improved, if
necessary, by the inclusion of small core-polarization
effects of a simple dipole nature to take account of
the fact that the core electrons will not follow the
nuclei completely.

In the case of nonmetallic crystals, where, invar-
iably, fiwy is very much less than A, the average
direct gap between conduction and valence bands,
the inverse screening tensor becomes essentially inde-
pendent of w and is real in the range of interest.
This is just a demonstration of the validity of the
Born-Oppenheimer approximation for nonmetallic crys-
tals. In this case, the solution of Eq. (18) for w?
becomes trivial. The reality of «? for nonmetallic
crystals in the phonon frequency range implies that
there is no ultrasonic attenuation in the absence of
anharmonic interactions and impurities. On the other
hand, in metals S« is complex and there is the pos-
sibility of ultrasonic attenuation via scattering from
the electrons near the Fermi surface.® We note from

18 7, C. Phillips, Phys. Rev. 123, 420 (1961).
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Eq. (18) the close relationship between the imaginary
part of «?* and the imaginary part of the screening
function, which has already been established from
a somewhat different point of view in Migdal’s work,?®
for example. In fact, as our results show, there is
a very close basic relationship between the lattice
dynamical and dielectric properties of a solid.

We have shown that linear-screening theory can be
applied to the problem of the harmonic phonon
spectra of nonmetallic crystals if the correct inverse
screening tensor is used. The arguments used by
Migdal® to show that I'~1 to within terms of order
(m/M)'2 for metals appear to be generalizable to
nonmetals also and, in this case, the phonon proper
vertex corrections may be dropped. However, the
self-energy part of T' cannot be dropped because there
can be an important contribution from that part of
the self-energy of the electrons due to the exchange
of phonons with frequency and wave vector close to
that of the phonon connecting the polarization bubbles.
This contribution is actually the contribution noted
by Phillips® as due to the change in energy gap pro-
duced by the lattice vibrations and which caused his
doubts? regarding linear-screening theory. We see that
these doubts can be put to rest by noting that dressed
electron propagators are to be used in calculating the
inverse screening tensor (i.e., dressed with phonon
exchange contributions, also).

Note added in proof. We have recently become aware
of work by R. Pick, M. H. Cohen, and R. M. Martin
(to be published), who have independently derived
essentially Eq. (18) of this work within the adiabatic
approximation.
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APPENDIX

We consider the potential in a crystal in which
an infinitesimally small, very-long-wavelength periodic
displacement of the nuclei is present. This device
allows us to avoid difficulties with translational in-
variance but gives an electron and nucleus distribu-
tion which is essentially undisturbed. The ‘bare”
potential due to the nuclei is

4rZ,
Vo(r, )= 1 —_— e
o )= lim 2

X exp(—ix-x,) exp{i[ (x+q) -r—wit]}.

If we subtract this from the screened potential it
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generates, we have

4rZ,
1 A
ot z Valetq)?

X exp(—ix-X,) exp{i[ (¥'+q) 'I"—wt]},

which is just the contribution provided by the elec-
trons, of course. The change from this value when
we consider the nuclei displaced by a finife amount
u exp{i[q-x,(}) —wt]}, where q, w are again small, is

. 4AmiZ, [v+q]]-u
SV (r, 1) = xTqj-u
V.(x, 1) qlgfo,.;,/ 7. Tra]
X exp(—ixeX,) [Sen(q, 0) —8erc |
X exp{i[ («'+q) -r—wt]},

where we have used Eq. (12).

We now calculate this electronic contribution ex-
plicitly. In the system with infinitesimally small
nuclear displacements, the electron density is

p(x, )= lim V. X explil (s+) —at]}

Vc(r: t) [:K'x'x(q: w) 5x'x]

(A1)

ok
X / Ty "B ),

which acts as an “external” source to set up the

potential

Vo(r,t)= lim >,

T K, 0)
Ir 7 1 e JWwix\{, @
q,w0->0 x,x/ VA( +(I)2 q

X / (2m)? mBy*(x, k) exp{i[ (¥'+q) -r—wt]}.

The change from this value when the electron dis-
tribution suffers a finite displacement r—r4

uexp[i(q-r—wt)] is
—4ri [¥'+q]-u

8Vo(r, )= lim >, Py

q,w->0 x,x/ VA

lex(q, w)

X / (27)3 mBq* (%, k) exp{i[ (¥'+q) -r—wt]},

since changes in Bq(x, k) are of higher order in q.
If we recall the Hermitian nature of Se, and use
Eq. (12) again, we obtain
—4ri[W’+qf-u
l%'+q]

8Vo(r,8)= lim >, Ku*(q, w)

q,0->0 &,/ VA

k
X /'(*(Zi:_—)s%kBq*(‘K, k) exp{i[(xl+q).r_wt]}. (A2)

We now equate expressions (A1) and (A2) for the
electron contribution, make an interchange x«/, and
take the complex conjugate to obtain the identity
given as Eq. (17) in the main text.
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We continue by calculating C(q, w), which is

.4 &k
C= lim == {Z JC,‘I,‘*(q, w) /WﬂkBQ(_K,’ k)

q,w->0 VA K,k

X D Zn exp(—ix+Xa) | tn-[+q]

— 2 ZnZo €xp(—ik+Xunr) | Une[[x+q]] |2} .

n,n/
3
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With the help of Eq. (17), this can be rewritten as

.4
C=— lim — > ZnZnr D, expi(x X —xXn) ]

q,00 VA n,n/ K,x!

X Sex(q, @) (tne[[g+x]) (ua*-[q+T),

so that we obtain Eq. (18) of the main text, and
w?—0 in the q—0 limit for those modes (i.e., the
acoustic modes) for which u, becomes independent
of # in this limit.
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Long-Wavelength Optical Lattice Vibrations in Mixed
KMgF;-KNiF; Crystals
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Infrared reflection and transmission data are analyzed to give the transverse and longitudinal phonons
in mixed KNiF;-KMgF; crystals for seven concentrations ranging from 0 to 100% Ni. Both one- and
two-mode behavior are observed. A point-ion model is developed patterned on earlier work on simpler
mixed-crystal systems. The model assumes randomly distributed impurity ions and nearest-neighbor
forces. The model gives good agreement with the observed mode frequencies, and in particular it fits the
observed splitting of one of the reststrahlen bands at intermediate compositions.

I. INTRODUCTION

ELL-DEFINED infrared- and Raman-active
phonon modes have been seen in several mixed-
crystal systems of the type 4,Bi,.""* Near the ends of
the composition range of a mixed crystal one ion can be
viewed as an impurity and connections can be made with
the theories of local modes and impurity resonance
modes,! but for intermediate compositions no first-
principles theories exist. The extra degrees of freedom
resulting from the presence of the impurity can lead to
two extremes of behavior that have been observed
experimentally. These have been called one- and two-
mode behavior.! A mixed crystal 4¢.5Bo.5 that shows
one-mode behavior typically has one strong phonon
mode in its infrared spectrum occurring at a frequency
intermediate to the relevant mode frequencies w4 and
wp of the pure crystals 4 and B. If 4,B1, exhibits two-
mode behavior, then AosBos Will have two strong
modes whose frequencies are close to wa and wp. The
present study of KNi,Mg; ,F; examines the infrared
modes in a mixed perovskite that has three infrared-
active modes at y=0 and at y=1. For intermediate y

11, W. Verleur and A. S. Barker, Jr., Phys. Rev. 164, 1169
1967).
( 2 I.)F. Chang and S. S. Mitra, Phys. Rev. 172, 924 (1968).
3In addition to Refs. 1 and 2, review papers on mixed crystals
appear in Proceedings of International Conference on Localized
Excitation in Solids, edited by R. F. Wallis (Plenum Press, Inc.,
New York, 1968).

two of these show one-mode behavior and one of these
shows two-mode behavior. This is the first report of a
systematic study of a system that simultaneously
exhibits both kinds of behavior.

A simple model that includes effective charges and
inter-ion force constants but neglects local-field effects
is used to analyze the results. This model leads quite
naturally to the behavior observed experimentally with
a minimum number of special assumptions.

In Sec. II, the experimental methods and results are
described. Section III presents the model of the long-
wavelength lattice vibrations in the mixed crystal and
the method for calculating the corresponding dielectric
function for analysis of the optical properties. In Sec. IV,
the model is compared with experiment and a discussion
is given of the model parameters and normal modes.

II. EXPERIMENTAL METHODS AND RESULTS
A. Sample Preparation

The crystals were grown by a modified Stockbarger
method in sealed platinum systems.* Single crystals of
KNiF; and KMgF; were used as starting material.
These materials form solid solutions at all con-
centrations and single crystals 12X12X5 mm were
easily obtained.

4H. J. Guggenheim, J. Phys. Chem. 64, 938 (1960).



