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The problem of impurity-induced absorption of light due to a localized mode is studied on the basis of the
Kubo linear-response theory. The equation of motion for the dipole-moment correlation function with re-
spect to the localized mode is derived using Zwanzig s projection-operator method, and solved with the
assumption that the anharmonic coupling between the localized mode and the remaining modes (the bath)
is of the form QF and weak enough to allow a perturbation treatment. The variables Q and I' represent
the localized-mode normal coordinate and an arbitrary function of the bath coordinates, respectively. The
first nonvanishing contribution is shown to be of second order in the coupling and to give an absorption band
of Lorentzian shape whose width and shift are given by the real and imaginary parts of the half-interval
Fourier transform of the correlation function ([I',I'(t) j)e, where (" ) denotes an average over the canonical
ensemble which represents the uncoupled bath. It follows directly from this result that the width and shift
functions satisfy the Kramers-Kronig relations. In an Appendix, the width and shift expressions for the
special case of an anharmonic crystal having up to quartic terms in the potential are derived and shown to be
equivalent to Maradudin's calculation based on many-body diagram techniques.

1. INTRODUCTION

RANSPORT properties depend upon the inter-
action or coupling between the constituent par-

ticles of the system and the manner in which energy is
exchanged between them. In linear-response theory
(LRT)' the transport coefficients are expressed in terms
of correlation functions the calculation of which is often
made dificult by the complicated nature in which ex-

change processes occur and the lack of sufhcient data
on molecular interaction.

Many workers have performed model calculations for
lattice systems based on the LRT of Kubo' using an
assumed form for the potential energy of the coupled
system. ' Further progress in the LRT of transport
processes is expected to come from an analysis of the
structure of correlation function formulas rather than
from model calculations as pointed out by Zwanzig. '

The temperature dependence of the shape of an
impurity-induced absorption band is a valuable source
of information for molecular coupling. The impurity
serves as a probe for studying the dynamical properties
of the system when the band lies in an absorption-free
region of the pure system.

The main goal of this paper is to provide a better
understanding of molecular coupling by studying the
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optical absorption due to an impurity mode coupled
linearly to the surrounding or bath. The system con-
sists of a set of coupled oscillators to allow for energy
exchange between bath and impurity. The coupling
determines the absorption band shape.

Specifically, we consider the Hamiltonian of the
system to be

@=a,+a,+)rQ„

where H~ is the Hamiltonian for an harmonic oscillator
which represents the impurity mode, B& is the Hamil-
tonian for the bath modes, and ) I'Qr is the linear cou-

pling term, assumed small. Here I' is a function of
the bath coordinates alone which are of quadratic or
higher order and Qr is the impurity mode normal
coordinate.

According to the LRT of Kubo, ' the electric sus-

ceptibility which describes light absorption is given by
the Fourier transform of the autocorrelation function
of the dipole moment of the system. For the calculation
of the correlation function we find that Zwanzig's
projection-operator technique4 seems most effective. It
is shown that the absorption band shape of an impurity
mode coupled linearly to a heat bath is Lorentzian. This
is true under mild assumptions: that the impurity
absorption band does not overlap with other bands such
as the restrahl band and that the coupling is weak. The
width and shift of the absorption band are given by the
real and imaginary parts of the half-interval Fourier
transform of the autocorrelation function of I' Lsee Eq.
(6.10)) and thus it is a simple matter to see that the
Kramers-Kronig relation holds between the width and
shift as it should due to the linear approximation.

' R. Zwanzig, J. Chem. Phys. BB, 1338 (1960); in Lectures in
Theoretical Physics, edited by W. E. Britten, B. W. Downs,
and J. Downs (Interscience Publishers, Inc. , New York, 1961),
Vol. 3.
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This is a considerable simplification over the previous
proof."

We shall briefly outline the procedure to be followed
in this paper. After a brief discussion of the Hamil-
tonian of the system, we proceed with a calculation of
the electric susceptibility X(o)) making full use of the
symmetry relations satisfied by the correlation func-
tions appearing in X(o)), thereby simplifying the calcula-
tion. In fact, to get X(o)) we need the Fourier transform
of only one function, namely, G(t) = (a(sr(t)), where (bt

and u are the creation and annihilation operators with
respect to the localized mode, and ( ) represents the
canonical ensemble average for the natural motion of
the system. Next we transform an exact integro-
differential equation derived for G(t) into a form suitable
for the weak-coupling approximation, i.e., exact up to
the order of X' in the coupling parameter X. At this
point we apply Van Hove's very elegant weak-coupling
method' which involves the double limit, X~O as
t —+~, with X t kept finite. We also justify this pro-
cedure by solving the exact integro-differential equation
for G(t) directly. Comparison is also made with the
work of I.ax' in which he obtained a result similar to
ours based on a zeroth-order Hartree approximation.
We show that his result does not seem to prevail for
arbitrary field strengths according to his supposition. '

2. HAMILTONIAH

annihilation operators a;t, a; given by"

where 8;&' are the orthonormalized eigenvectors of the
following eigenvalue problem:

f
D B,(s) o.)P, B, (e- ,

j=l

The matrix D is defined by

D's= 4'si(m'ms)"'

and m, is the mass of the ith particle. By definition the
matrix D is a fXf real, symmetric matrix with f
eigenvalues {(0,r). The quantities o), are the normal
mode frequencies of the system. The operators a;t, u;
satisfy the commutation relations

L(s;,a; j=b;;,
[(s;,a;]= (a;t,a,tj=0. (2.3)

Since we are interested in the absorption due to the
impurity mode whose frequency cv& is larger than any
other frequencies o)b of the remaining modes (referred
to as the bath), we shall write the Hamiltonian in the
form

Here we present the Hamiltonian in a form which
determines the absorption band shape in the vicinity
of the impurity mode frequency. The potential energy

p of an anharmonic crystal containing a substitutional
point defect can be expanded in powers of the atomic
displacements of g;:

H =Hb+ 7tH' =Hs+ Hs+ XH',

Hs= 2 h~s(as'as+i'),
I

2 tso)b((sb (sb+ 2) t

H'=Z I'sQs+.
I

(2.4)

(2.5)

(2.6)

(2.7)

+—P q4sbr(t((ts(tb(t(+ ' '

4 t;;g, ~

(i, J, k, t=1, 2, , f), (2.1)

where f is the total number of degrees of freedom of the
system. The coefficients p;, , @;;&,@;,«, , are the quad-
ratic, cubic, quartic, etc., atomic force constants.

In order to define the quantities involved in the
present calculation we shall sketch a normal coordinate
transformation which leads to the so-called creation and

A. A. Maradudin, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc. , New York, 1966), Vol.
19, p. 1.

'A. A. Maradudin, A. E. Fein, and G. H. Vineyard, Phys.
Status Solidi 2, 1479 (1962).

7 L. Van Hove, Physica 21, 517 (1955).' M. Lax, J. Phys. Chem. Solids 25, 487 (1964).
b P. T. Landaberg and E. A. B. Cole, Physica 37, 309 (1967).

Ps —I) (&)+r(b)+. . . (2.8)

I'(")= (+1) Z' C'ss, s,.".s.Qs,Qs, Qs.„. (2.9)
SIMP ~ ~ S~

' A. A. Maradudin, Rept. Progr. Phys. 28, 331 (1965).
n J. B. Page, Jr., and B. G. Dick, Phys. Rev. 163, 910 (1967).

where 5 equals Planck's constant divided by 2x and
Qs ——(bst+(ss. The Perturbation term H' describes the
coupling between various modes, and the first sum in
H' arises from the terms which are linear in the im-
purity normal coordinates. In the following calculation
we keep only this term and neglect the rest, which lead
either to side-band structure" or to higher-order eGects.
The F& depend upon the bath variables quadratically
in the lowest order. The explicit expression is easily
obtained by using the normal coordinate transformation
given in Eq. (2.2) and using the orthonormal properties
of the eigenvectors 8;&'). Then for I'g we have
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Here the prime on the sumxnation denotes the condition
s I/I, ~, s„/I and the factor @+1 accounts for
this. The coefBcients Cqa, ...a„are linear combinations
of the P's given in Eq. (2.1).For completeness we have
given the explicit dependence of I' on the bath phonon
coordinates. However, we may not need these expres-
sions until wc. compare the present result with that of
previous calculations, which we have done in the
Appendix.

In order to calculate the impurity-induced absorption
band shape we use the LRT of Kubo' in which the
absorption coeKcient n„{ro) for an isotropic system
interacting with light of frequency co and plane polarized
in the x direction is given by

~.*(~)= («~/~n(~))x*. "(~), (3.1)

x ."=—Imx..
and is given in terms of the Fourier transform of the
autocorrelation function of the dipole-moment operator
M, of the system in the x direction:

(] esse)
x„"(&v)=— e '~' '~'l(3E 3E,{t))dt. (3.2)

2It V

Re (ate(t))e '"'dt=e™Re (aitt{t))e'"'dt. (3.7)
0 0

This syQlmetly relation may be vellfied easily in
terms of the matrix representation which diagonalizes
H using the properties of the Dirac delta function. Sub-
stl'tlltlIlg Eq. (3.6) 111'to Eq. (3.2) and ilsillg Eq. (3.7),
we call wllte Xg~ ((d) 111 'tile forIll

&-"(~)=N.C(4 (~)—0(—~))

P((a) =2 (1-e-s"") ReG(a))

(3.8)

(3.9)

and G(sr) is the half-interval Fourier transform of G(t):

duced to account for a finite concentration of non-
interacting impurities. To obtain Eq. (3.6) we have
neglected the cross terms and the correlation functions
(alitl(t)) and (ill'al'(t)) which either lead to higher-
order effects" or absorption removed from that of
interest. "From general cubic-symmetry arguments we
picked out only one of the three degm. crate localized
modes to determine (M,M, (t)) and for convenience
dropped the subscript I on alt and uI. The constants in
these expansions, c;& ' and C, have been given for a rigid
ion model by Maradudin. 5

We can simplify Eq. (3.6) further by means of the
following symmetry relation:

(3.10)

Here V is the volume of the system, c is the velocity of OQ

light, It(io) is the index of refraction, and e is an in- G((a) = G(t)e '"'dt-
finitely small positive quantity. In the following we 0

shaH omit ~, it being understood that all infinite inte-
grals ale taken ln the above Abel llmlt.

The dipole moment 3f, of the system in the x direc- Accordingly the ca].culation of x,„"has been reduce
tion is defined by to the evaluation of one correlation function, namely,

sr =~a3f,=~~ e;q G(t) = (ititt {t)),which we shall consider in Sec. 4.

where the quantities e;, q, &'& are the effective charge
and displacement in the x direction of the ith particle
'of the system. The Heisenberg operator iV, (t) in Eq.
(3.2) is defined by

3II (t) &irlilli~ &
iIItlR— (3.4)

while ( ) denotes the canonical ensemble average for
the natural motion of the system which is described by
the Hamiltonian H, i.e.,

(X)=Tre ~~X/Tre ~~, P=1/kT. (3.5)

4. DERIVATION OF INTEGRO-DIFFERENTIAL
EQUATION FOR C{t}

We shaB now derive an integro-differential equation
for the correlation function G(t) using Zwanzig's pro-
jection-operator method, 4 which we have found to be
the simplest and most direct for our purposes. Applica-
tion of the method to our problem necessitates the choice
of an appropriate projection operator which projects
out that part of III (t) which contributes to G(t), i.e.,

(a Pat(t)) = (cat(t)) =G(t) . (4.1)

If we expand the dipole moment of the system in
terms of u;~, a; defined by the normal coordinate trans-
formation given in Eq. (2.2), then we 6nd

(M~, (t))=NI P t..;&*&((u;+a I)(u;(t)+u I (t)))

The relevant and irrelevant parts are defined by

apt�(t)

= Petit(t),

iIIIIIa(t) = (1—P)itt(t),

(4 2)

(4.3)

=NIC((ata(t) )+{aat(t))), (3.6)
Consequently, III(t) can be written as the sum of its
relevant and irrelevant parts,

where the number of impurity ions le has been intro- ut {t)= ititt {t)+ ill@st (t) . (4.4)



A suitable projection operator for our purposes is de-
6ned according to its action on any arbitrary operator
X as follows:

PX(t) =at &uX(t) &/(au') . {4.5)

This operator is certainly a projection operator since by
de6nition

PX(t) = PX(t). (4.6)

In order to obtain the equation of motion for G(t)
we shall make use of the I.iouville equation for at{t)
given by

a'(t) = {i/It)[H,a'{t)]=iLu'(t). {4.7)

Following Zwanzig's procedure for the elimination of
the irrelevant part ulIIIII (t), we calculate the time de-
rivative of eg~ and elgg~ to obtain

dllt{t) =i PLas'{t)+i PLarIIII& {t), (4.8)

a,»t{t)=i{1—P)Ia,t{t)yi(1 P)La»—,t(t), (4.9)

wllcl'c wc llavc used Eqs. (4.4) alld (4.7). Solvlllg Eq.
(4.9) formally for aIIIIII(t) in terms of aIII(t) and sub-
stituting into Eq. (4.8), we arrive at

al&t{t)=iPLa~t{t)

PLe'&' PI~'Lallt (t t')dt', —(4.10)

where we have used the following initial condition
Lu»III(0) =0], which is obvious from the definition of
P. From Eqs. (4.1) and (4.10) we immediately obtain

G(t) = (a&41(t)&= igG(t) — K(t')G(t t')dt'. (4—.11)

Here the quantity g is a function of temperature alone
which is de6ned by

g= {&uLu')& (4.12)

the kernel E(t) is a function of time which is given by

&(t)=-«{L ) '"-""(1-P)(L"))& (4.13)

and the double-brackets notation

(&X)&=&X)/&aa'& (4.14)

has been introduced for convenience to make {(aat))= i.
With this notation we immediately observe the follow-
ing rules:

«XPI'»= «Xu'&)«ai'» (4 15)

« LX&)=—«(L )X&) (4 16)

which we have used in obtaining Eq. (4.13). It is im-
portant to note that the operators P and I.operate on
everything which foOows them unless otherwise speci-
6ed, as in the case of the erst I on the right-hand side
of Eqs. (4.13) and (4.16), which acts only on u as de-
noted by the parentheses.

5. EVALUATION OF KERNEL X(t) AND
FUNCTION g TO O(k')

As stated earlier, we are interested in evaluating the
correlation function G(t) in the weak-coupling limit.
In the following we shall calculate the kernel X(t) and
tllc fullctloll g lip to 0()& ), wlllcll fol' E(t) Is Indeed thc
6rst nonvanishing term as usual.

Kernel X(t)

We shall first calculate (La&) and (La) in the kernel.
For this purpose it is convenient to write the Liouville
operator in the form

LX=L'X-1-XL'X= (1/11)PP,X]+(X/11)[a',X], (5.1)

where EP and H' are de6ned by Eqs. (2.4) and (2.7)
and I-', L,' are the respective Liouville operators. Since
Bo describes the unperturbed motion of harmonic oscil-
lators, we immediately have

(5 2)

Substituting Eqs. (5.1) and (5.2) into Eq. (4.13), we
can eliminate I.o from I. contained in the parentheses
to obtain

E(t)= —)&'{{(L'u}e'&' ~I~'(1—P) (L'ut) }), (53)
where the foOowing identities for an arbitrary X are
used:

x(1—P)at=0, «a(1—P)x»=0.
Since we are interested in E(t) to 0()&'), and )&' appears
in front of the double brackets, we need to calculate the
double brackets only up to the zeroth order in ).Thus
we may replace I, P and (&

~ )) by the respective
zeroth-order quantities to obtain

E(t) = —)&l(&(L'a)e'&' ~'I "(1—P') (L'al) &&'

+O(~'), (5.4)

where P' and (( ))0 are def&ned by

POX= at{{aX&)'=atTr(e—e~'aX)/Tr{e —eII'au&). (5.5)

Next the formidable operator P' in the exponential
on the right-hand side of Eq. (5.4) is eliminated by
using the fact that the operators Lo and P commute,
i.e., L'PX= PL'X, since both sides are equal for an
arbitrary operator X. Wc scc this directly from thc
relations

L'PeX= 'Lu&{ta»X'=(orat&(uX)&'=(ol PeX,
PoI.oX= ut{(uL X))o=—at({(Loa)X» =~,P X

wllcl'e wc llavc llscd, Eq. (5.2). Accordingly, tile ex-
ponential appearing in Eq. (5.4) can be factorized to
give

e'&I-P'I"&(1—Po)X= e'~'~(1 —Po)X, (5.6)

where besides the fact that I.o and Po commute we have
used the identity P(1—P')=0. Thus we obtain for
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E(t) the form

E(h) = —X'({(I.'a)e'~" (1—P) (I.'a/)}}'+0(X'). (5 7).

satisfies the following useful symmetry relation:

S(iez) = e e""—zS( ioz—), (5.17)

For further simplication it is necessary to use the
linear-coupling assumption [Eq. (2.7)) which gives a
specific form for I.' defined by Eq. (5.1}.In this case
we have

where we have used the commutator relations for u and
a~, and accordingly we have

P'L'at=at((a))'((r)}'//th=0. (5.9)

which can be easily proven by changing integral vari-
Rblc fl'0111 t to Chloe

—t Rnd uslllg 'tile cyclic lllvRI'1RIicc of
the trace.

For later use it is more convenient to switch the
integration in S(idz) from the imaginary time axis to
the real time axis by using Cauchy's integral theorem
Rnd tile fact tllaf, tllc correlation fulictloil (rr(t))0 ls
analytic in the domain 0(lmt(kP of the complex t
plane. Then

Here we have used the fact that the matrix e has di-
agonal elements which are all zero. Substitution of
Eqs. (5.8) and (5.9) into Eq. (5."/) along with the de6ni-
tion of I.' yields

S(io) = {I'I'(t))'e'"Ch—
iAP+ce

FF (t) )oe'"'dh
AP+Q

Thus for the linear-coupling approximation the kernel
in the lowest order becomes simply the autocorrelation
function of I", a function of bath variables only, aver-
aged over the unperturbed equilibrium ensembl.

Function g

%e shall not calculate the function g up to the
0(X ). Fol' tllls plllposc wc w11tc g glvcll by Ecl. (4.12)
in a more convenient form,

g= +~{(I' ')}= +Pl//'I)(( r)), (511)

where we have used Eqs. (4.12), (5.2), and (5.8). First
we shall write the explicit form for ((aF)):

((aF))=Tr(e—edgar)/(aat} (5.12)

and the well-known expansion formula for e &~:

since the contribution from the path at inhnity is zero
under the usual assumption' limi „(FF(t)}'=0.Straight-
forward calculation along with the use of the symmetry
relation given in Eq. (5.17) yields the desired forxn,

S(~)= e-e"- {rr(t))'e-'-'dh — (r(t)r)'e-'-'dt. (5.18)

F(x) =e-'"G(h) x=X'h, (6.1)

6. SOLUTION OF INTEGRO-DIFFERENTIAL
EQUATION FOR G(t)

We shall first solve the differential equation for G(t),
Eq. (4.11),in the Van Hove weak-coupling limitl which
is chosen for its elegance and easy application to our
problem. Later we shaO justify its validity by direct
calculation.

To begin with we shall introduce a function F(x)
defined by

where here we may give the explicit expression for
II'( t):— *»' E'(t')

e-'"'F(x—X't')dh'. (6.2)gp( t) e izzoi/e(a+at)rei—zzoi/A.
= (ate '"I'+ae'"")F( t) . (—5.14)

e t"~=e &~' 1 — H' —I, dh 0 A.', 5.13 where the variable x is introduced to take the Van Hove
0 limit, i.e., X —+0, 3 —+~, and x kept constant. Then,

in terms of F, Eq. (4.11) may be written as

Substituting Eqs. (5.12)—(5.14) into Eq. (5.11) and

using the relation

a{ta) /(
aa' =}e //""z+0(/1)—

and the fact that {a')'=0, (a}'=0, which are true since
both u' and u are matrices whose diagonal matrix ele-

ment are all zero, we have

dF (x)/dx = —{K(a)I)/X') F(x), (6.3)

where Z(coz) is the half-interval Fourier transform of
the kernel E(t),

Since {E(t)/X'} is of 0(1) from Eq. (5.10) and g=&ez

+0(M) from Eq. (5.15), the Van Hove limit of this
equation yields

g =iez+i (X/k)1S(iez)+0 (X1),

where the function S(rez), defined by

(5.15)
K(caz) = K(t)e 'z'dt. —(6 4)

S(~z) = (I'I'(t))'e'»'Ch (5.16)
Ke can write the solution immediately,

F(x)= e
—/klutz)/&2/&F (0) (6.5)
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or using Eq. (6.1) we have for G(h), Then by de6nition from Eq. (6.10) we have

G(h) =e~'g-«"r& ~'G(0) . (6.6)

Accordingly, the half-interval Fourier transform of
G(h) is

eo

Vg(co) = — (LF,F(h) j)' sin(ah Ch
N' 0

(6.12)

G(~) =G(0)/E~(~ —g)+&(~r)j. (6.'/) »(~)=
~

—
~

(LF,F(h)))o cos~h Zh.
ky/,

The validity of this result based on the Van Hove
limit can be veri6ed in the following manner. %'e take
the Fourier transform of Eq. (4.11) directly to obtain
the exact result

G( )=G(0)/t: ( —g)+e )j. (6.8)

Comparison of Eqs. (6./) and (6.8) shows that the sole
difference lies in the argument of the function X'(M). If
this function is a slowly varying function of co in the
neighborhood of ~1, so that we can write

X(a)=X (cur)+0(a) —(ar),

then the first term in the expansion gives the result of
the Van Hove limit. Because of the basic assumption of
scpRratlQg thc lmpuI'lty mode from thc I'cst which 18

valid only near the band center, the Van Hove limit
seems as good as the last expression.

Substituting the explicit forms for X'(~r) and g given
by Eqs. (5.10) and (5.15), we immediately obtain

G(~) =G(0)/L~(~ —~r)+v(~r) j (6.9)

2 oo

V (o)r) = — (LF,F (h) j)'e '" 'dh,
A 0

(6.10)

whcI'c Qo%' %'c have sct A. = jI.
The main result of our method, which clearly shows

all the approximations involved in the derivation, is
embodied in this simple and interesting form for v(cur).

Based on the zeroth-order Hartree approximation,
Lax' has obtained a siInilar expression as that given
above; however, his method does not seem to define
thc approximation 1Qvolvcd ln lils derivation. Tlius lils
supposition of the validity of the expression for the
case of high external field does not seem to prevail9
since thc present calculation shows that one probably
needs the linear approximation in the sense of the Kubo
LRT.

In order to express the 6nal results for the absorption
cocKcicnt in its simplest form wc shall define the real
and imaginary parts of v(M) by

v(~) =v~(~)-hv2(~) ~ (6.11)

where in going from the double- to single-brackets form
f» &(h) we used the relation (ae,t)'= (1—e-»"r)-'. The
function v(&ur) is the half-interval Fourier transform
of the ensemble average of the commutator LF,F(h) 1
with respect to the unperturbed bath,

Obviously the functions y~ and y2 satisfy the following
symmetry relations:

v~(—~)= —vi(~), v2( —~)=v2(~)

and the Kramers-Kronig relations'2 "
" v~(~')

v, ((g) =— d(u'.
~ 0)—OP

(6.13)

(6.14)

7. DISCUSSION

Rccentlyq Berne eI Gl. hRvc dcI'lvcd RQ cxRct lntcgI'o-
difkrential equation for classical correlation functions
in general, Their working equation is essentially identi-
cal to ours in the classical limit. Rice has m.ade the in-
teresting ansatz that the kernel in his equation is
exponential form. %C note that our results confirm
Rlcc 8 RQsatz Rnd ln Rddltlon plovldc RQ cxpllclt ex-
pression for the kernel in terms of the correlation func-
tion (LF,F(h)g)0; however, the present result is valid
for the classical or quantum domain and for any tem-
perature in the long-time and weak-coupling limits.

Finally, it would seem that the present method is also
suitable for the discussion of other impurity absorption

"H. A. Kramers, Att. Cong. Intern. Fis. Corno 2, 545 (1927)."R.de L. Kronig, J. Opt. Soc. Am. 12, 54'1 (1926)."B.J. Berne, J. P. Soon, and S. A. Rice, J. Chem. Phys. 45,
1086 (i966).

One simple way to see this last relation may be to
introduce the expression for v(&o) given in Eq. (6.10)
in the matrix representation vrhich diagonalizes the
HRmlltolllan IIg for thc bRth RDd thcD to usc thc prop-
erties of the Dirac delta function.

We may now write the absorption coefEcient a~ (co)
in its Anal form:

..( )=I:8 / ~(-)X'v (.){I ( - .+v.)'+v'3-'
+~(-+-,+v,)+v"j- & (6»)

=$8~(o/erh ((o))Cvg ((or)

XL(~—~r+v2)'+vi'$ ', (6 16)

where we have substituted Eq. (6.9) for the Fourier
transform G(&u) into Eq. (3.9), used the definition of
n„given by Eq. (3.1), and evaluated 'the coefficient
of P(a)) at (or. In going from Eq. (6.9) to Eq. (6.10) we
have as usual neglected the second term as small com-
pared to the first to give anally a Lorentzian line shape
for the absorption band when the frequency ~ is located
near the impurity frequency ~1.
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phenomena associated with lasers, '~ neutron scattering
ln liquids, ~6 and thermal conductivity ~7 At least the
correlation functions which appear in the various linear-
response theories are formally similar in structure to
those which appear in this paper. In fact the strong
formal resemblance between our width and shift func-
tions with the linear response formula for the thermal
conductivity itself suggests the eventual possibility of
correlating the optical properties to such other trans-
poI"t plopcltlcs as thcrInal conductivity for Unpurity
systems.

APPENDIX

%e shall show that the present integral forms for the
width and shift [Eq. (6.12)) are equivalent to those of
Maradudin's if we take the form for I' expressed in
terms of the bath phonon normal coordinates given by
Eq. (2.9). We outline the method only for those terms
which arise from two- and three-phonon processes,
namely, «sl and «s&. From Eq. (2.9) the Heisenberg
operator Fis& (/) can be written as

for yi" (&oz) which describes two-phonon processes:

(A4)
i8

=—P' Cz„,s( (I„+rz,+1)LO(a z—co,—eu.)
Q2 rzz

where

—8(o z+&o„+(o,)3+ 2 (I,—rz,)8 ((or+co,—a,)),

e(M) = e ' ~"dt=sb(er) iP(1—/oz).

As usual 6(&o) and P(1/&o) denote Dirac's delta function
and the principal part, respectively. Obviously the real

part of y"'(~z) describes the width and the imaginary
part describes the shift.

%hen two phonon processes do not contribute to the
band shape duc to thc condition 2com~gcol, then wc
must consider three-phonon processes and accordingly
the function

«'&(z) =4 Z'C.-.Q.(r)Q. (~)Q, (z). (A6)

Ke then have for the correlation function

&L«",«"(~)j&'=9 2' 2'I-c""
re t' 'rrr

&«LQ.Q.,Q" (z)Q" (&)1&'. (A2)

By straightforward calculation of the commutators on
the right-hand side of Eq. {A2) we can express them in
terms of thc following two quantities:

LQ. Q.(i)j=s'"'—s '""

&Q,Q,(t))'= (rz„+l)s'""'+N, s '""',

where rs = (er"""—1) ' Thus we obtam

{Ll'"'1'"'(~)j&'

=1SZ'C' '((+zs+1)Ls"" ""—s """'""3

+2(rz„—N, )s-'i"~"'l') . (A3)

We note that the cross terms from Eq. (A1) have been
removed since, as is readily verified, their contribution
to the ensemble average is zero. %C take the half-
interval Fouricr transform of the correlation function
according to Eq. (6.10) to arrive at the following result

'6 I. R. Scnitzky, Phys. Rev. 119, 670 {19M).
's L. Glass and S. A. Rice, Phys. Rev. 165, 186 (1968).
» R. A. Cowley, Advan. Phys. 12, 421 (1963).

A similar calculation as that presented above for the
two-phonon processes along with the usc of %ick's
theorem" gives, for the function y"' (s&z) defined by

y "l((oz) = (1/is') s '"z'&L«s', «s&(z)1&'«, (A7)
0

the following result for three-phonon processes:

96
y'sl (coz) =—Q' C z„,ss(L(zs,+1)(rz,+1)(zs„+1)—zs„r4rzsj

jp Tp

)& Le(az —co,—(o,—ces)—e(coz+a),+a&,+(o„)j (AS)

+3LI„(N.+1)(zss+1)—(n,+1)N.Nsj
XP(&z+&. czar &s) —(t(o—zz ~.—+~~+ ce)sJ} ~

where the terms corresponding to onc-phonon processes
arc neglected.

In summary, the results presented above which are
valid for a=col are in essential agreement with those of
Maradudin at this frequency except for the two small

frequency-independent quartic terms which hc included
in his shift expression. '

'8 G. C. Kick, Phys. Rev. 80, 268 (1950); C. Bloch and C.
de Dominicis, Nucl. Phys. 7, 459 (j.958).


