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Accurate Numerical Method for Calculating Frequency Distribution
Functions in Solids. III. Extension to Tetragonal Crystals
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The extrapolation method, initially developed by Gilat, Dolling, and Raubenheimer, has proved to be an
accurate, rapid, and eKcient method of calculating phonon densities of states in solids. In the present paper
it is extended to tetragonal crystals and applied to white tin. The computation employs a Born-von K6,rm6, n
model following Brovman and Eagan, and is based on recent experimental data by Rowe. The singularities
appearing in the phonon density of states g(s) are correlated to critical points predicted by the dispersion
relations. It is found that six conspicuous singularities originate from off-symmetry directions. The re-
sultant g(r) is correlated to the tunneling data, and is employed for the calculation of specitic-heat Debye
temperature O, (T).

I. INTRODUCTION
' "N a preliminary paper by Gilat and. Boiling, ' an
~ - eKcient method for calculating phonon densities of
states was described. This method was further perfected,
in a later paper by Gilat and Raubenheimer' (hereafter
referred to as I), and. was applied to cubic crystals. In
a more recent paper by Raubenheimer and Gilata

(hereafter referred to as II), this method was extended.
to hexagonal crystals and was applied to three hcp
metals (namely, Be, Mg, and Zn). In the present paper,
this method is extended to tetragonal crystals and is
applied to P-Sn, which assumes this structure.

This calculation method is customarily referred to as
the extrapolation method. It has already been ad-
equately described. in I and II, and only a brief summary
is presented here. According to this method, the dynami-
cal matrix' elements are calculated. for a relatively small
number of diGerent wave vectors q.. At each of these

q, one computes the Br eigenfrequencies o;(q,), where

j=1, 2, ~ ~, 3r, and r is the number of atoms in the
primitive unit cell. In addition to the z;(q,) the gra-
dients' Vs;(q, ) are also calculated in order to perform a
linear extrapolation for all the eigenfrequencies that
can be obtained from a small voluIne AV located at

' G. Gilat and G. Dolling, Phys. Letters 8, 304 (1964).
~ G. Gilat and L.J.Raubenheimer, Phys. Rev. 144, 390 (1966).A

descri tion of the FoRTRAN procedure performing the computation
of g(u is given by L. J. Raubenheimer. and G. Gilat, Oak Ridge
National Laboratory Report No. ORNL TM-1425, 1966 (un-
published),' L. J. Raubenheimer and G. Gilat, Phys. Rev. 157, 586 (196'1).
A descriptive report including the FoRTRAN program for calculat-
ing g(~) in hcp crystals is under preparation.

4 Although the extrapolation method has so far been mainly
applied to lattice-dynamical problems, it can be also applied in
a straightforward manner to the calculation of other densities of
states {e.g., electronic densities of states) as long as they are
obtainable as distribution of eigenvalues of some energy matrix,
which is a function of q.' A convenient method of obtaining the frequency gradients is
a erst-order perturbation calculation as described in I and II.
There is, however, one case where the gradients are obtainable
directly, and this is in the k y method of electronic-energy-band
calculation. This property speeds up considerably the calculation
of N(E) and was employed recently by C. K. Higginbotham,
F. H. Pollack, and M. Cardona, Solid State Commun. 8, 513
(i967).

q, . This extrapolation can be performed analytically by
approximating the set of constant-frequency surfaces
inside each of the volumes AV by a set of parallel planes
which are perpendicular to Vr;(q, ). This gives rise to
a partial frequency distribution g(j,q.,s) (see I and II),
which when summed over a31 j and g, yields the final

g(z). It should be noted, however, that the volumes hV
must fill the irreducible part of the first Brillouin zone
in an exhaustive manner. On the other hand, in order
to simplify the logic of the calculation, it is desirable
to set the shapes of AV so that they be as simple as
possible. For the hexagonal lattice it is shown in II
that it is possible to fill the irreducible zone by only two
shapes, namely, rectangular and triangular prisms,
respectively. Fortunately, the same procedure is also
possible for the tetragonal lattice, and this greatly
simplifies the calculations since all the analytical ex-
pressions required for the present case are already
worked out in II.

The practical application of the method to P-Sn is
described in Sec. II. In Sec. III we describe the force
model employed for the calculation, and present the
resultant dispersion relations for the high-symmetry
directions, as well as fo1 some othe1 d1rectlons. In Sec.
IV we bring the computed g(o) and attempt a correla-
tion between special points of the dispersion relations
and singularities in g(r). In addition, these singularities
are compared to those observed in the superconducting
tunneling data, A computation of the specific-heat
Debye temperature is performed as well. The paper
is summarized in Sec. V.

G. APPLICATION OF EXTRAPOLATION METHOD
TO TETRAGONAL CRYSTALS

White tin (P-Sn) crystallizes in a tetragonal lattice
with the space group D4~I9. Its crystal structure can be
represented by two interpenetrating body-centered.
Bravais lattices mutually displaced by a basis vector

(O, sra, &c), where a and c are the lattice parameters.
The primitive cell of P-Sn therefore contains two atoms,
and this implies that the dynamical matrix that de-
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Fio. 1. (a) First Briilouin zone oi tetragonal crystal for po=c/a(1. (b) Practical zone throughout which the
computation of g(v) is carried out, as explained in the text.

scribes its vibrational properties must be of the order
of 6)&6.

The shape of the erst Brillouin zone of tetragonal
crystals depends on whether the c/a ratio is smaller or
larger than 1. In this paper we treat only the case of
c/a(1, since for P-Sn we have c/a=0. 544 (at 110'K),
but the case c/a) 1 can be worked out along the same
lines. ln Fig. 1(a) we show the appropriate first Bril-
louin zone. The irreducible zone, which is —,'6 in volume
of the Brillouin zone, is included within the following
five planes: I'BH'M, I'BPX, I'MX, MH'P'X, and
HH'P. The shape of this irreducible zone is slightly
less convenient in comparison to the irreducible zone
of the hexagonal lattice. This is because, in contrast to
the hexagonal case, the planes F3fX and HH'P are not
parallel. It is possible, however, to get around this
complication by s]ightly increasing the irreducible zone,
so that it will take on a more convenient shape. This
new shape, which is similar to that of the irreducible zone
for the hexagonal case, is shown in Fig. 1(b). It is
constructed by passing a plane HAB parallel to FMX.
A little inspection reveals that the extra volume defined
by the corners HABPH' which is added to the irreduc-
ible zone is equivalent to the volume HA'B'PH'. This
means that when one extrapolates throughout the
volume delned by HABH'A'B', which is the sum of
these two equivalent volumes, one counts every point

twice, and hence one must compensate for this by apply-
ing a weighting factor 8'„=0.5 for all the points that
happen to lie inside HABH'A'B'.

The more convenient volume over which we actually
perform the linear extrapolation is now confined within
the following five planes: FHAM, FHBX, F3fX,
MABX, and HAB. This volume, being somewhat
larger than the irreducible zone, can. be ulled precisely
by rectangular and triangular prisms in the same manner
as the corresponding irreducible zone of the hexagonal
case (see Fig. 2 of II).We refer to the zone as the practical
zone. All the triangular prisms face the plane MABX,
and their corresponding gradients lie in this plane. The
rest of the volume is filled only with rectangular prisms.
Since a weighting factor of 8'q, =0.5 is used for part
of the volume, as explained above, care must be taken
to arrange the prisms in such a manner that the plane
H'A'B' does not intersect any of them. In the Appendix
a short description is given of the way in which the
practical zone is filled.

Having decided upon a certain simple procedure of
6lling the practical zone, it is now possible to proceed

' It is readily observed that the plane MABX, being a mirror
plane, allows for extending the triangular prisms into rectangular
prisms, so that half of their volume belongs to a neighboring
irreducible zone. One can again readily correct for this "over-
Qlling" by using a weighting factor W'q, =0.5. In the present work,
however, we used the triangular prisms.
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in the same manner as in II (see also Appendix A of
II) and to obtain the cross-section function S(to) for
the various prisms. The partial g(j,q„o) is now obtain-
able via Eq. (20) of I, where

W= 0.5 q,+HABH'A'B'
= 1.0 q.+MXB'A'B'.

on a paper by Brovman and Kagan (BK)."The force
model of BK includes interactions between neighbors
up to the sixth nearest neighbor. They list the dynamical
matrix elements at a general wave vector q. This
matrix element D tt(tttt', q), where tt, tt'=1, 2 label the
two atoms in the primitive cell, assumes the general
form

III. FORCE MODEL AND DISPERSION
RELATIONS

D-s(11)= D-e*(22),

D-s(12) =D.s*(21)
(2)

The main source of information for the interatomic
force constants is the data of coherent inelastic scatter-
ing of neutrons. In the case of white tin a considerable
body of data exists. ~ The most recent data, taken at
110'K,are those of Rowe. 'P-Sn reveals quite an intricate
structure in the phonon data which suggests a strong
electron-phonon interaction. This interaction is ob-
served in the phonon spectrum as Kohn anomalies
whenever g connects two opposite points on the Fermi
surface. Now the Fermi surface of p-Sn extends to at
least the fifth Brillouin zone, ' and this is compatible
with the intricate structure of the phonon spectrum.
It seems that it would be quite hopeless to try to
represent the data adequately by a Born —von Karman
force model which does not include many neighbors.
This fact was observed by Rowe, ' who abandoned such
an attempt. Hopefully, a better approach might be
made by attempting a pseudopotential calculation,
based, for example, on a model potential, as suggested
by Heine, Abarenkov, and Animalu" and recently re-
formulated by Shaw and Harrison. "

Although we do not expect a very satisfactory repre-
sentation of the data by a Born—von Karman model,
we nevertheless proceed and work out a best Q.t to
such a model. Our motive for doing so is that the objec-
tive of this work is a specific one—the application of
the accurate numerical technique for obtaining the
phonon density of states. Ke believe that it is of con-
siderable interest and importance to obtain a better
understanding of the structure of the singularities in
the frequency distribution, and this can be achieved
by correlating it to some relatively simple force model, "
The Born-von Karman model employed by us is based

r D. Long-Price, in Ertetastie Scattering of Netttrorts (Inter-
national Atomic Energy Agency, Vienna, 1965), Vol. I, p. 109;
G. Borgonovi, G. Caglioti, and M. Antonini, ibid. , Vol. I, p. 117;
R. E. Schmunk and W. R. Gavin, Phys. Rev. Letters 14, 44
(1965);J. M. Rowe, B.N. Brockhonse, and E. C. Svenssori, ibid
14, 583 {1965).

~ J. M. Rowe, Phys. Rev. 163, 547 {1967).' G. Weisz, Phys. Rev. 149, 504 (1966)."I.V. Abarenkov and V. Heine, Phil. Mag. 12, 529 (1965);
V. Heine and I. V. Abarenkov, ibid. 9, 451 {1964);A. O. E.
Animalu, ibid. 11,379 {1965);and A. O. E.Animalu and V. Heine,
ibid. 12) 1249 {1965)."R.W. Shaw and W. A. Harrison, Phys. Rev. 165, 604 (1967).

"Since the present method of calculations is' by no means
restricted to Born—von K6rmin. models, vre hope to. apply it in
due time to a more physical model, as given, for example, in
Refs. 10 and 11.

D tt(11)=D tt(22). (3)

Because of this relation it is possible to transform
the whole of the dynamical matrix into a real and sym-
metric matrix M. This is achieved by applying a unitary
transformation V, given by

sl I
(4)

where I is a 3X3 unit matrix. M is then given by

D(11)—ImD(12) ReD(12)
M(q) = (5)

ReD(12) D(11)+ImD(12)

Unfortunately, it was impossible for us to make use
of the numerical values of the force constants given by
SK."The reason for this is evidently some calculation
error that exists in this paper and which shows up
on trying to compare the graph of the calculated
phonon dispersion relations (Fig. 3 of Ref. 13) to the
numerical. values of the force constants (Table II of
Ref. 13).Therefore we had to take the BK model as a
general basis for a best-Qt analysis. In doing so, . we
dispensed with its equilibrium conditions and employed
it as a best-fit formula to the experimental phonon
dispersion. relations of Rowe. ' Being aware that it

'3E. G. Brovman and Yu. Eagan, Fiz. Tverd. Tela 8, 1402
(1966) t English transl. : Soviet Phys. —Solid State 8, 1120
{1966)g.

In their practical calculation BK impose certain
restrictions on their set of force constants. Of the total
set of 24 force constants for a first- through sixth-
neighbor model, they use only 14 independent param-
eters. Two force constants can be eliminated by impos-
ing the Born-Huang equilibrium conditions. Eight
more parameters are deleted by assuming that inter-
actions with third through sixth neighbors assume
axial symmetry and can thus be described by six force
constants rather than 14. The force constants describ-
ing the interactions of the first through third neighbors
are of tensorial nature. This is so because of the pro-
nounced covalent nature of the binding in p-Sn. The
restrictions imposed on the force constants simplify to
some extent the nature of the dynamical matrix, and
under these conditions the elements of the submatrices
D e(11) and D p(22) become real, and hence
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TABLE L List of the force constants obtained from a best-fit calculation to the data of Rowe (Ref. 8).The notation is that of Brovman
and Kagan (Ref. 13).

Force
constant

Al
Pl

Bl

Ay

ps

P3
Y3

0!4
p4
p4
«T4

B4

64

0.'6
ps
')/'5

B6

Ct6

P6
'Y6

B6

Value
(in units

of 10'
dyn/cm)

28.78—6.26—1.76
16.64
22.08
0.00
2.28
3.88
3.60—7.48
0.82
0.34
0.67
0.67
0.37
0.37
0.39
0.58
0.23—0.26
2.53
0.94
0.94
0.00

Neighbor
number

Multi-
plicity

of
neighbors

Distance from
or lgln

$ (4oo+co)//o

l (4/oo+9co) I/4

$ (2/os+co)i/o

$ {4u'+25c')'"

Relations imposed
by axial symmetry

none

none

none

~ ~ ~

vo= (~4 Po)l(—I vo')—
a4=y4
&4 = V o(~4 Po)/(I —Vo')—
g4=B4

vo= (25/4) vd'(o o Po)+—Po
So= kvo(~o po)-

V6=p6
B6-—0

would be diKcult to obtain a good empirical representa-
tion of the data where they show considerable com-
plexity [i.e., for 0 4(l (.0 7along . the [00/1 direction,
/1, = (2or/c)i'], we gave up such an attempt and focused
our attention on those parts of the phonon spectrum
where the Gne structure is less pronouned. In Table I
we present the numerical results for our model. In
Fig. 2 we present the computed dispersion relations in
solid lines. The wave vector l' is given in reduced units,
1.e.)

(2~/&) &= (/1* /fv»ot. ) / (6)

where 7o
——c//r, and the units of tl are (2or//r, 2or/a,

2or/c).
The data are in good agreement (better than 5%)

with the model for most of the branches over all the
range where the experimental data exist. The notable
exception is, as expected, for the Ar and Ao modes (LA
and Lo) along the [00$$ direction in the range 0.4(t
(0.7. The classification of modes of vibration follows
Chen, '4 who analyzed the lattice dynamics of P-Sn
by group-theoretical methods. Apart from the customary
high-symmetry directions h., Z, and 6 we bring also in
Fig. 2 the branches along the directions F and H/'.

Along these directions we have only three separate
branches, each doubly degenerate. ' In addition to the
high-symmetry directions we present dispersion rela-
tions along the directions BX, XI', and I'H, which we
label by E, S, and T, respectively. Ke .have a few

'4S. H. Chen, Phys. Rev. 163, 532 (1967); also Ph.D. thesis,
McMaster University, 1964 (unpublished).

reasons for presenting these additional dispersion rela-
tions which are of lower symmetry. In, the first place,
it is interesting to have an idea of the behavior of
v;(q) in the vicinity of the point E, which is of high
symmetry. It is, for instance, a center of inversion for
the reciprocal lattice. As a result of this property, the
gradients of v;(tl) at 1V must vanish, and this fact should
show up in g(v) as Uan Hove singularities. Apart from
this, the same property makes the lines HSB' and I'E
(R and S, respectively) mirror lines in the plane BEB'.
In view of this last characteristic, the line I'S itself,
for which /I, =or/c, becomes an inversion line, so that
any extremum in the branches of its dispersion rela-
tions should be a genuine critical point, and hence show
up in g(v). In addition to these reasons we also find
that the highest frequency that appears in the total
irreducible zone happens to be along the T direction
(BE) and. it has the value v(0.38, 0.38, 0.53)=4.7I
&& 10l2 cps.

The branches in Figs. 2 and 3 are labeled according
to the group-theoretical classification. ' In the case that
more than one branch belongs to a representation, we
classify these branches with an additional label A or O
so that A labels the lowest branch and 0; labels higher
branches in a decreasing order: O~ marks the highest,
O2 the second highest, etc. The same mode of labeling
was adopted in II.

In the calculation of the best-Gt model we made use
only of the inelastic neutron scattering data of Rowe. '
As a result, the acoustic branches at I' tend to have
somewhat smaller slopes when compared, to the veloci-
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ties of sound measured by Rayne and Chandrasekhar. " required in order to obtain a good fit to the low-tem-
This discrepancy of about 5% might a(feet to some perature specific-heat data. This point is further
extent the Debye end of g(v), and corrective steps are treated in Sec. IV.

IV. CALCULATIOH OP g[v) AND DERIVED
PROPERTIES

I

[l-« l t&r,']-

Having obtained a force model and the phonon dis-
persion relations, we proceed to compute g(v), the
phonon frequency distribution function. The method of
6lling the practical zone is described in Sec. I, where
the practical zone is shown in Fig. 1(b). The mesh of
points at which we solve the secular equation to obtain
g(j,q„' v) is schematically given in II. The points q.
are as evenly distributed as possible. Some care must
be taken, however, for the following reason: Through-
out the volume IIABH'A'B' we use a weighting factor
Wq z whereas the weighting factor is 1 for the rest
of the volume. Therefore, one must choose the points
q, on each side of the plane II'A'B' in such a manner
that the faces of the prisms (rectangular and triangular)
exactly touch this plane on both sides. This is important
in order to guarantee that only a single weighting

R&(01) L
— Ns(0) 71(0i)

Hs(0)

Tt(021

a Hi
R-i(03) N1(0) 7,(oy Ht

L

O ~) go) ~+ Mlil041~ H|
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&g(A1

Rl(05) W &( s) ~~ 7 (0 )

Hs(A]

~~ Ni(A) 7 (A)
$1(A) —Hs(A)

R, (A)

Hs(0)

Fro. 3. Phonon dispersion relations along three lower-symmetry
directions in the plane HI'H' (see Fig. 1). The classification of
modes is described in the text.

"J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 120,
1658 (1960).

Fxo. 2. Phonon dispersion relation along high-symmetry directions in white tin based on a first-through-sixth neighbor Born-von
K6rmkn model. The experimental points are taken from Rowe (Ref. 8l. The classification of modes follows Chen (Ref. 14l.
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FIG. 4. Frequency distribution
function for white tin derived from a
Born-von Kirm6. n model. Singulari-
ties that can be correlated to critical
points in the phonon dispersion rela-
tions are indicated according to their
classi6cation. Singularities which can-
not be predicted from dispersion rela-
tion are indicated by U.P. Critical
points observed by Rowell and Kopf
(Ref. 17) in the tunneling eBect are
denoted by arrows.
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factor is used for each prism. In the Appendix we
describe more quantitatively the way of choosing g, .
In our actual calculation we diagonalized the dynamical
matrix at 2565 different values of q, over the practical
zone LFig. 1(b)j.Then we computed g(v), as described"
in I and II. The resultant g(v) is shown in Fig. 4, and.
it is an exact copy of a computer plot. g(v) is sorted
into frequency intervals (v, v+dv) of the size dv=0. 0025
X10"cps, so that almost 2000 di(ferent values of g(v)
are used in the plot of Fig. 4. This provides for a resolu-
tion 50 times better than that given by BE."A few
striking features of g(v) are worth mentioning. Most
notable is the singularity observed at v&=0.44)&10"
cps, which originates from an oG-symmetry direction
at 1 = (0.78, 0.19, 0.15).This singularity limits the range
of the Debye approximation of g(v) to frequencies
smaller than vi, which is less than 10% of the total
range of frequencies. This critical point is probably the
reason for the very sharp drop in the characteristic
O, (2) of the specific heat Cv observed in P-Sn in the
range 0—10'K. The value of v~ in 'K is about 20'K, but
its effect should begin to show up at lower temperatures.
A similar feature is observed also for zinc. ' There is a
singularity there at v=1.37X10"cps which limits the
Debye approximation for a range which is roughly 20%
of the total range. The resultant 0', (T) for Zn shows a
similar drop, which reaches a deep minimum at 20'K.
This behavior has recently been reported experimentally
by Martin. "

As expected, the calculated g(v) for p-Sn as shown in
Fig. 4 has many more fine details than those given by
BK. Ke attempt to correlate the various singularities

"D.L. Martin, Phys. Rev. 167, 640 (1968).

in g(v) to the expected critical points, as predicted by
the dispersion relations given in Figs. 2 and 3. When-
ever such a correlation is found, it is indicated on the
plot of g(v). In Table II we list all the expected critical
points. The degree to which they show up in the curve
of g(v) is classi6ed in a somewhat subjective way into
three classes —s, m, and u. s stands for strong, m for
weak, and u for absent. In addition to these critical
points we list another six conspicuous singularities in
g(v) which arise from off-symmetry points. Among
these singularities is v~. These points are marked on
the graph by U. P. (unpredicted). We attempt also to
correlate the singularities found in g(v) to those ob-
served in the experimental graph of d V/dl versus V
in the tunneling experiment of P-Sn. These last singulari-
ties are marked by arrows in Fig. 4. The listing of these
singularities is given by Rowe, ' who too attempts such
a correlation. To this list we added one more frequency
a,t v= 0.39X10'2 cps (1.6 meV), which can be observed
in the structure of d'V/dim in the data of Rowell of
Kopf. '~ The fit of the structure of the tunneling data to
that of the calculated density of states is good in a few
cases, as can be observed in Fig. 4. It is not very sur-
prising that the fit is not better in view of the crudeness
of our model and the somewhat vague interpretation
of the tunneling data. Moreover, in a recent paper by
Dynes et al."a similar correlation of such data in the
case of lead is discussed. They deduce from their analysis
that critical points obtained from off-symmetry direc-
tions via the Born—von Ki,rman force model might be

"J.M. Rowell and L. Kopf, Phys. Rev. 137, A907 (1965).
1 R.. C. Dynes, J. P. Carbotte, and E. J. Woll, Jr., Solid Stat&

Commun. 6, 101 i1968).
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TARLE II. List of Van Hove critical points predicted from the
dispersion relations (Figs. 2 and 3). In column 3 the topological
nature of the point is given (3E means maximum, tg is minimum,
and I encompasses all other cases with zero gradient). In column 4
we specify the strength of the singularity Ls stands for strong, m
for weak, and o indicates the absence of the singularity in g(~)j.

Assignment

A5(A)
Mg
r,
A.I
Vg
h.g

~&(o)
Mg
Zs(A)
Ze
Zg(A)
r&

. x&(a)
NL(A)
Nj
Ny (A}
Ng(0)
Ng

(o)
Ei(oi)
s, (o,)
Sr(A)

unpredicted

v (10"cps)

1.130
0.867
1.459
3.288
1.255
3.855
3.851
4.224
0.965
0.906
1.380
3.904
1.064
1.492
1.745
2,620
3.957
3.971
4.509
4.670
4.670
1.167
0.443
0.800
1.785
2.800
3.915
4.178

Nature

3E

M

M

M'

M
M'

M
I
I
M
I
I
M

I
M

Strength

s
S
m (a)
s

s
s

s
s
a

s
s

S

s

s

wrong, and one must either look for a better model or
obtain these points experimentally by measuring v;(q)
at off-symmetry q vectors.

Knowing g(u), the calculation of 0', (T) is straight-
forward. In view of the lack of good fitting of our model
to the slopes of the acoustic modes given by the ap-
propriate velocities of sound, " we renormalized the
Debye end of g(v) to account for this. It is obvious
that 0",(0) is solely determined by the elastic constants.
The value of O~, (0) appropriate for the elastic constants
measured at 110'K can be obtained from the data of

)80- "

I60-
hC

I40"

120-

I

50

Temperature ('K j

I

100
I

I50

FrG. 5. Calculated speci6c-heat Debye temperature O, (T) for white
tin. Experimental points are taken from De Sorbo (Ref. 19).

Ray e snd Chandr~khar, ' and it is 0', (O) = 192+3'K
We used this value to renormalize g(v) in the range
0&v(0.3)&10"cps. This renormalization cannot aGect
significantly the rest of the spectrum, and as a matter of
fact it is too small to be observed on the graph of g(p).
The calculated 0'.(T) is shown in Fig. 5, together with
the experimental 0', (T) as reported by De Sorbo."As
expected, the calculated O, (T)

fits

wel the experimental
data at T=O'K. Both data show the deep drop in
0",(T) at T=9'K, but the calculated graph predicts a
somewhat deeper minimum. The over-all 6t is con-
sidered satisfactory in view of the crudeness of the
modeL We find the 0', (T) for the entropy to be 0', (T)
= 155'K at T= 110'K.

V. SUMMARY

In the present paper we are mainly interested in the
extension and application of the extrapolation method
to tetragonal crystals. In view of this, the problem of
providing a satisfactory force model to P-Sn becomes
of secondary importance. In saying this we do not
mean to belittle the importance of this problem, which
deserves a thorough investigation. But we want to
focus attention on the specific objective of this work, as
indicated by its title. Because of this we have not at-
tempted to produce the best possible model, but rathei.
to find one which is able to represent the experimental
data reasonably well. We are quite aware of the short-
comings of our model, and in principle of any Born —von
Karman model, as indicated. by Rowe. ' Nevertheless,
we are positive that there is still wide room for a better
understanding of the correlation between a given force
model and the frequency distribution function derived
from it. Existing calculations of frequency distributions
for P-Sn are quite rare, and the few existing ones lack
the fine features of singularities that can be displayed
convincingly by the application of the present method.
Moreover, this method becomes potentially more
powerful for a more complicated crystal structure. This
is so in the sense of its capacity for displaying fine
features of the spectrum within a relatively short
numerical computation. It is believed that in its present
stage this method preserves all the information as-
sociated with a given force mode. In contrast, earlier
calculation methods could show only the coarser features
of the spectrum.

In the present paper no basic new developments are
added to those presented in I and II. The problem
of computing the phonon density of states for tetragonal
symmetry is conveniently solved by slightly enlarging
the irreducible zone, so that it resembles the shape of
the hexagonal irreducible zone already discussed in II.
We compensate for this enlargement by employing a
suitable weighting factor. Presumably the same tech-

~' W. De Sorbo, Acta Met. 2, 274 (1954).
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nique can be applied. in the case of lower symmetries,
so that the shape of their irreducible zone is enlarged
in order to make it similar to some irreducible zone of
an already solved case. This could save a considerable
amount of work in finding the cross-section area of
more complicated geometrical shapes.

In the special case of P-Sn a correlation of the critical
points predicted. from the dispersion relations to the
singularities in the phonon density of states is at-
tempted. Many singularities can be correlated in an
obvious manner. Some predicted. .critical points do not
show up in g(v). Moreover, we find six strong singulari-
ties in g(v) that originate from off-symmetry wave
vectors. A similar 6nding was reported in II for the
case of hexagonal crystals.

In view of the weaknesses of our force model we
refrain from emphasizing the physical conclusion deriv-
able from the present calculation. Nevertheless, the
results are compared to the superconducting tunneling
data as well as the speci6c-heat data with considerable
success. It is hoped that if a better model were em-

ployed, the 6t could be of more signi6cance.

APPENDIX

In this Appendix a short description of the method
of generating the mesh of points g, is given. As men-
tioned in Sec. II, care must be taken to ensure that the
plan. e Z'2'8' in Fig. 1(b) does not intersect any of the
prisms. We therefore choose two different integers, E»,
and E2„ to divide the practical zone along the s axis.
In the volume con6ned between the parallel planes
rMX and B'A'8' we have E», "layers" of prisms for
the weighting factor S'q = 1' In the remainder of the
volume con6ned. between the parallel planes B'A'B'

and NAB there are S2, such layers, and the weighting
factor attached to each of them is 8'~,=-', . The x axis
is divided into E segments, and so is the y axis. Let
n, and n„be positive integers satisfying 1 &~n„&&n, ~& E,
and let n», and n2, be other positive integers satisfying
1~&n», &~X», and 1~&n2, &&E2„then the coordinates of a
mesh point q, are given by

g. = (vr/aN, )(n,+n„—1), 1&~n„&&n &~N,

g,„=(pr/aN. )(n.—n„),
q,.= (s/cNg, ) (I/yp —yp) (ng, ——,'),

for 1~&n», &&E»„$'~,= 1

=(-/cN. )(1i/~.-~.)(N..—:)
+ (2s/cNp, )yp(np. --,'),

for 1~&n2, ~& E2„8'„=-,'.
Although there are no restrictions on the choice of
E, E»„and Ã2„we pre'fer to choose them in such a
manner that the practical zone is filled by mesh points
as evenly as possible. In order to achieve this, E, S»„
and E2, are so chosen that the ratio S,: X», . X2, is as
close as possible to the ratio v2: (1/yp —yp): 2yp, where
'r p =c/a. The total number of mesh points in the
practical zone is given by

N=-,'N. (N,+1)(Ng,+Np, ) .

Note added in proof It was . pointed out to us by
Dr. L. J. Raubenheimer that the practical zone could
be made smaller by passing a plane parallel to I'MX
through the point N in Fig. 1(b). By doing so the num-
ber of points at which one solves the dynamical matrix
becomes somewhat smaller, and the weighting factor
W'~, could be set equal to 1 throughout all the zone.


