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The orthogonalized-plane-wave method has been used to compute the energy bands of LiCl, NaCl, and
KCl. General results are obtained that are valid for any diatomic lattice. Computer programs (which con-
siderably reduce the labor of applying this method to a wide class of substances) have been developed and
are discussed. The results are compared with those of recent calculations and experiments. In general, there
seems to be a good correlation between the present results and those of experiment. It is suggested that the
peculiar optical absorption of LiCl may be due to transitions from the valence band to the conduction band
involving the line A and the point L in the Brillouin zone. The possibility of X excitons in NaCl and LiCl

is explored.

I. INTRODUCTION

N previous years, the orthogonalized-plane-wave

(OPW) method!2 has found its principal application

in studying the band structure of metals®* or semi-

conductors.® For tightly bound solids, such as the

alkali halides or the solid rare gases, its principal use
has been in calculations of the conduction states.”

This author has recently succeeded in applying the
OPW method to selected symmetry points in the first
Brillouin zone of sodium chloride for both the valence
and conduction bands.”® It is the intent of the author
in this paper to extend the OPW method to tightly
bound solids in general, to discuss some of the important
factors inherent to this method, and to relate the method
to others commonly used for these substances. Calcula-
tions have been performed for lithium chloride, sodium
chloride, and potassium chloride at selected symmetry
points in the first Brillouin zone. Some powerful numeri-
cal techniques that were developed to handle the labor
of this type of calculation are discussed. Computer
programs have been written that will greatly reduce
the labor of applying this method to a wide class of
solids.

There are some advantages inherent to the OPW
method as opposed to the tight-binding method™ or
the augmented-plane-wave (APW) method.’? These ad-
vantages lie in the ability of the OPW method to
include the lattice potential conveniently in a exact
manner. In the tight-binding method, it is usual to
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include only certain terms in the lattice potential, and
this may lead to difficulties as to the accuracy of the
bands considered.”® In the APW method, one usually
assumes the potential about a given lattice site to be
spherically symmetric, and the potential in the region
between the spherical regions about each lattice site
to be a constant.!5 It is possible, however difficult, to
overcome these assumptions in the APW method by a
perturbation approach.

The results obtained in this calculation for KCl are
compared with those of previous calculations using
other techniques. The results are, in general, compared
with recent and not-so-recent experiments, and a fair
amount of agreement is obtained between theory and
experiment. There also seems to be a reasonable amount
of correlation between the results of the several theoret-
ical calculations available for comparison.

II. THEORETICAL DEVELOPMENT

As in previous calculations, it is assumed that the
lattice potential may be given as a superposition of the
potentials of the free ions that constitute that lat-
tice.10:13:16 Tt is desired to solve the usual nonrelativistic
Schrédinger equation for the lattice subject to the
usual one-electron approximation. The method of
solution to be used is the OPW method.”? The core
states are formed from the core-state solutions to the
free-ion problem. These core states are then formed
into Bloch functions, and linear combinations of the
Bloch functions are formed to transform according to
the Ith row of the ath irreducible representation of the
symmetry group of the wave vector k, for the point in
the first Brillouin zone for which a solution is de-
sired.””!8 The states used as core states were those
states for which E(k) was a constant. The core states
and the free-ion potentials were obtained by using
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modified Herman and Skillman computer codes for
several choices of potential.’?

In the usage of Herman and Skillman,”® one de-
fines the potential of a free ion to be

22 2" * dr'
V(r)=—-~——/ o(r’)dr'——Z/ a(r')—
0 r 7

¥ 7,
—6[—3/(8x) (4rr*) o (r)]2, 7<Ro (la)
V()=—2(Z—~N+1)/r, (1b)

In Egs. (1), Z is the atomic number, &V is the number
of electrons centered on the ion, and R is defined as
that radius at which the value of ¥ (r) given by Eq. (1a)
equals the value of V() given by Eq. (1b).

If P,i(r) is the radial part of the solution to the %l
orbital of the free ion multiplied by 7, and W is the
number of electrons in the %l subshell, then o(r) is
defined by

r>R,.

a(r)=—Zl W 1| Por(r) | 2. (2)

The summation is over all filled levels in the free
ion. In the cases considered here, the value of R, for
the several free ions is such that the exchange parts
of the potentials do not overlap when one forms the
lattice potential by a summation of the free-ion po-
tentials of the lattice. For example, R, for Nat was
1.5 Bohr units and R, for C1~ was 3.2 Bohr units.

The use of this potentials deserves some discussion.
This potential resembles that which the author has
found most useful for studying the valence bands by
tight-binding theory.1® It is assumed that the valence-
electron wave function is that which arises chiefly
from a Cl~ 3p orbital. To form the potential, one has
an electron in a given unit cell associated with a Cl~
ion at the center of that cell. This cell center is con-
sidered to be the origin. There are five other valence
electrons in that unit cell. In the other unit cells, there
are six valence electrons. The Cl~ core electrons and the
electrons associated with the alkali are the same in
all unit cells. Thus, the valence electron in question
sees a potential formed from three types of contribu-
tions. These are (i) the halogen ion at the origin, (ii)
the short-range parts of the other alkali and halogen
ions, and (iii) the long-range parts of the other alkali
and halogen ions.

The three types of contribution are considered
separately. The potential due to the halogen ions at
the origin is evaluated using Eqs. (1) and (2), with
N=_Z+1. This contribution goes to zero rapidly as r
goes to infinity. The effect of the remainder of the
lattice is less simple. In the other halogen ions, one has
N=Z, and for the alkali ions, one has N=Z+2. Thus,
the electron sees potentials due to the other halogen
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ions, which go as +2/r Ry at large distances, and po-
tentials due to the alkali ions, which go as —2/r Ry at
large distances. In order to evaluate the Fourier
coefficients of this potential contribution it is necessary
to separate the potential into long-range and short-
range parts. The long-range parts are those that go
as £=2/r Ry.

The contribution of the halogen ion at the origin and
of the short-range parts of the potentials to the Fourier
coefficients can be evaluated in the usual ways with
no difficulty.!?” However, the Fourier coefficients of
the long-range potential are more troublesome. In this
case, one evaluates the Fourier coefficient for the entire
potential by integrating over the unit cell at the origin.?
In this case, the total long-range part of the potential
in the unit cell about the origin converges and its
contribution to v(0) is simply the Madelung energy. All
potential contributions to the Fourier coefficients may
be evaluated in this way if one desires.

The author believes that the effect of this potential
is to have the electron in question see a potential which
is due to all the remainder of the electrons in the lat-
tice and the nuclei. Thus, this potential is different from
the one usually used in which the electron in question
is considered to be an extra electron in the lattice. The
type of potential used in this calculation seems to be
especially suited to consideration of the valence levels.

In the usual OPW practice, the solution is found by
solving the equation

Det(M pj,pj1)=0, (3)

where

Mm‘.p'f’=/‘/’pau(k;r)*gipp'alj’ (k,r)dr
_E/\bpalj(kyr)*"pp'a”/ (k,l')dT. 4

In Eq. (4), ¥,*(k,r) is the function formed by symme-
trizing a linear combination of plane waves to transform
according to the jth column, the /th row of the ath
irreducible representation of the group of the vector k,
and it is orthogonalized to the core states which are
similarly symmetrized. H is the one-electron Hamil-
tonian and ¢,%4 (k,r) is defined in a way similar to
the other function. The integration is over the volume
of the crystal. These equations reduce to a simpler
form, which, if the crystal were a zinc-blende structure,
would be the same as those of Bassani and Yoshimine.?

III. DETAILS OF THE CALCULATION

Calculations have been performed for sodium
chloride, lithium chloride, and potassium chloride. In
order to perform this calculation, the ionic potentials
and the core states for the free ions were obtained by
solving the Hartree-Fock-Slater equations subject to

2 F, Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963).
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the modification given by Herman and Skillman.? To
do this work, a computer program was prepared which
computed the potentials and wave functions for the
free ions and then performed the necessary group theory
automatically for states of interest. The program then
formed the determinant M ,;,,;» as defined in Egs. (3)
and (4), computed the roots of this determinant, and
obtained the eigenvectors. The necessary group-
theoretical data were obtained from standard sources?!2
and the results were seen to agree with those of Luehr-
mann.?® The numerical techniques used are discussed
in Appendix A.

These results neglect spin-orbit effects. These, how-
ever, may be included by a perturbation method.24:2
It is assumed that the spin-orbit effects are important
only for the p-like valence band. This would be con-
sistent with recent calculations on KI.26:?7 It seems
reasonable to expect that spin-orbit splittings in the
conduction band will be even smaller in the chlorides
than in the iodides.

In performing the computations, those states for
which energy as a function of wave vector was essent-
ially a constant were chosen as core states. For NaCl,
an attempt was made to construct the valence band
from tight-binding functions!® and then by orthogonaliz-
ing to them, to construct only the conduction states
from OPW’s. However, the lowest value of energy
rather rapidly converged to the valence energy, and
the next value converged to the conduction states.

Thus, one concludes that the tight-binding functions
are not adequate to represent the valence states of NaCl
and possibly the other alkali halides, at least not when
these functions are used in their normal form.

One may discuss the implications of the convergence
of the energies to the valence states when one attempted
to use the Cl~ tight-binding functions for the valence
bands. This implies that for purposes of orthogonaliza-
tion, the tight-binding valence states are not adequately
close to being eigenstates of the crystal Hamiltonian.
One may ask, at what point are the tight-binding
orbitals such poor eigenstates of the crystal Hamiltonian
that they are unusable in an OPW calculation? It is
not possible to give a definitive answer to this question
at present; however, it is possible to begin to answer
this question. In the case of KCl, calculations were
made in which the 3p K+ band was computed by OPW
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Fi16. 1. The Brillouin zone
for a fcc crystal. Points and
lines of symmetry are given.

techniques and other calculations in which this band
was assumed known from tight-binding theory. There
was no significant deviation in the valence or conduction
levels of KCI when the results of these two calculations
were compared.

Figure 1 shows the Brillouin zone for the fcc lattice
and points and lines of symmetry. The band structures
including spin-orbit effects in the valence bands are
given for LiCl, NaCl, and KCl in Figs. 2-4. In addi-
tion, the values of the energy are given in Tables I-TII.
The notation is that of Bouchaert, Smoluchowski, and
Wigner.2

The convergence of the energies was studied using
second-order perturbation theory. It was required
that the contributions of the last few sets of plane waves
be smaller than 10=* Ry. The second-order-perturba-
tion-theory result was computed with respect to the
dominant orthogonalized plane wave.

In addition, the convergence of the wave function was
studied and it was required that the coefficients of the
last few sets of plane waves be 10~2 or smaller. The nor-
mal convergence curves of energy as a function of the
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F16. 2. The band structure of LiCl. The notation is that of
Ref. 28. The points actually calculated are shown by a dot. The
bands have been drawn using the compatability relations and also
the result of other calculations.
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F16. 3. The band structure of NaCl. The notation is that of
Ref. 28. The points actually calculated are shown by a dot. The
bands have been using the compatability relations and also the
results of other calculations.

number of plane waves used were not obtained for all
states. The primary reason is that a rather large number
of plane waves were used (300-600) and this required
that rather large matrices (30X 30-50X 50) be diagonal-
ized. It was not economical to diagonalize a large num-
ber of these matrices in order to check on the conver-
gence of all states. However, for a few key levels such as
T'1s, Tia, Do’y Ly, and X5 this information was obtained
for the case of NaCl and for I';; and I'ys’ in KCl and
LiCl. These results indicated that the states were well
converged. Therefore, the author believes that the per-
turbation-theory results are an adequate indication of
convergence.
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F16. 4. The band structure of KCl. The notation is that of
Ref. 28. The points actually calculated are shown by a dot. The
bands have been drawn using the compatability relations and
also the results of other calculations.
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TaBLe I. The energy in rydbergs of selected symmetry points
for LiCl. The notation is that of Ref. 28. For the p-like valence
bands, energies with and without spin-orbit effects are given.
A= (xr/2a) (100), 4 =9.7 Bohr units, £=0.00321 Ry.

r X L A
s-like valence state
I —1.81150 Xi —1.76290 L. —1.77687 A1 —1,78923
p-like valence state without spin-orbit effects
T —0.82454 X¢ —0.98715 Lo —0.98764 A1 —0.89629
X' —0.87666 Li* —0.84134
p-like valence state with spin-orbit effects
T~ —0.83096 X¢~ —0.98687 Lg~ —0.98770
I's™ —0.82133 X~ —0.88015 Ls~ —0.84448
X7~  —0.87345 Ls -—0.83813
All computed conduction states without spin-orbit effects
I —0.18548 X1 0.05044 L: —0.15683 A1 —0.02574
Ty’ 0.29717 X3 —0.04599 L; 0.22063
Xy 0.53980 Lo 0.26342
Ty 0.48032 Ly 0.72668
A1z 0.54401 X4 0.22863 L3 0.76154 At 0.19055
X2 0.75345
T 0.71369 X1 0.93666 Li 0.82151 At 1.17949
X4 1.40991 Ly’ 0.84777
L 1.411757

Some Fourier coefficients of the potentials are given
in Table IV. It is due to the large number of plane
waves needed that additional points in the first Brillouin
zone such as K or some points along A have not been
calculated. Some attempts were made to do this.
However, to obtain good convergence, matrices greater
than 50X 50 needed to be diagonalized, and to do a
sufficient number of them to obtain more useful informa-
tion was not practical.

It is possible to compute the energy structure for
other points in the Brillouin zone using the results
presented here. To do this, the formalism of Slater
and Koster may be used. In the Slater-Koster method,
hypothetical tight-binding-type functions are assumed

TasiE II. The energy in rydbergs of selected symmetry points
for NaCl. The notation is that of Ref. 28. A= (x/2qa) (100),
A =10.6 Bohr units, £=0.00313 Ry.

r X L A
s-like valence state
I —-1.72970 X1 —-1.71024 L, —1.71569 A1 —1.72106
p-like valence states without spin-orbit effects
1813 —0.78210 X¢ —-0.86747 Lo —0.88112 A: —0.81036
X5 —0.79929  Lsg’ —0.79141
p-like valence states with spin-orbit effects
T'e™ —0.78836 X¢~ —0.87076 Le¢~  —0.88437
s~ —0.77897 X¢~ —0.79914  Lg~ —0.79129
X7 —0.79616 Ls~  —0.78828
All calculated conduction states without spin-orbit effects
I —0.24356 X1 0.07541 L —-0.13777. A1 —0.10461
Tos’ 0.23533 X3 —0.05498 Lo 0.12194 AY 0.02325
Xy 0.48843 Ls 0.29163
T 035804 X3 1.31686 L' 0.63133 A2 0.73192
T2 047112 X! 0.12516 Lg’ 0.63853 A1 0.24984
X2 0.66258 Az 0.56679
T 0.8018¢ X1 0.67150 Li 0.67216
X' 1.42723 Ls 0.75117
T 1.32859 X/ 1.34732 La 1.17878 . A2 1.33698
Ly 1.27606
I 1.43441 Lo 1.39284
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and the values of the energies throughout the Brillouin
zone are given in terms of the energy parameters of
these hypothetical tight-binding functions and the
crystal potential. In this case, the two-center approxi-
mation need not be made. Using the energy values
computed by the OPW method and the equations of
Table II of Slater and Koster, it is possible to compute
the energy parameters needed to give the p-like valence
band, the lowest s-like conduction band, the two lowest
d-like conduction bands, and the p-like conduction
band using a halogen ion as the origin. The values of
the parameters needed have been obtained for LiCl,
NaCl, and KCl, and are given in Table V. In obtaining
these parameters, the interaction of the s, p, and d
conduction levels is neglected. Using these results and
the formulas of Slater and Koster, Table I, it is possible
to compute approximate energies for the valence bands

TasLe III. The energy in rydbergs of selected symmetry
points for KCI. The notation is that of Ref. 28. A= (7/2a) (100),
A =11.8 Bohr units, £=0.00303 Ry.

T X L A
s-like valence state
T —1.64038 X1 —1.63583 Li —1.64121 A1 —1,64238
p-like valence states without spin-orbit effects
T —0.71709 X« —0.74572 Lo -0.77369 A —0.70802
X5 —0.70756 Ly’ —0.72023
p-like valence states with spin-orbit effects
T~ —0.72317 X¢  —0.74611 L¢~  —0.77407
Ty~ —0.71405 Xo~ —-0.71020 L¢~ —0.72289
X~ —0.70452 L;~ -0.71719

All calculated conduction states without spin-orbit effects

&1 —0.24573 X4 0.06382 L1 —0.10755 A1 —0.13255
T’ 0.15366 X3 —0.08009 L' 0.02344
Xy 0.42196 L3 0.10539
Iy 0.24156 X3 1.03582 Li 0.51339
T2 0.34128 X 0.09704 Ls’ 0.43237 A 0.27889
X2 0.51174
T 0.83054 X1 0.47441 Ls 0.51807 A 0.70118
X5 1.27238 Lo 0.55834
T 0.99616 X4 1.16465 Lg’ 0.90085
Ly 0.95883
T1 122874 X1 138124 Lo 1.10965
T2 1.43415 L3 1.08464

and the lower conduction bands throughout the first
Brillouin zone.

IV. DISCUSSION OF RESULTS AND
COMPARISON WITH EXPERIMENT

It is found that the valence bands are 2.22, 1.35, and
0.77 eV in width for LiCl, NaCl, and KCl, respectively.
These widths are increased by about 0.1 eV when
spin-orbit effects are included. It is possible to compare
these results with other recent calculations. For NaCl,
the author®® has obtained a width of 1.4 eV using the
‘tight-binding method and certain three-center in-
tegrals. For LiCl, the author obtained a width of about
1.2 eV using the tight-binding method but neglecting
three-center effects.!® It is clear from the NaCl cal-
culation’ that three-center terms would substantially
widen the tight-binding LiCl results.

APPLICATION OF ORTHOGONALIZED-PLANE-WAVE METHOD

1151

T.:\BLE IV. The Fourier coefficients (in Ry) of the lattice po-
tential for LiCl, NaCl, and KCl. The potential employed con-
tained a modified Slater exchange.

Ka/2r)  o(K),LiCl  o(K), NaCl 9(K), KCl
0 —1.40016 —1.23921 —1.15154
3 —0.44420 —0.27855 ~0.10115
4 —0.40083 —0.39791 —0.41848
8 —0.26393 —0.29167 —0.32348

11 —0.19988 —0.11116 —0.02669
12 —0.19445 —0.22899 —0.25889
16 —0.15724 —0.19072 —0.21438
19 —0.13202 —0.06110 —0.00796
20 —0.13487 —0.16581 —0.18301
24 —0.11926 —0.14811 —0.16026
27 —0.10255 —0.04402 —0.00564
32 —0.09677 —0.12296 ~0.12982
35 —0.08320 —0.03527 —0.00602
36 —0.08817 —0.11311 —0.11904
40 —0.08097 —0.10449 —0.11009
43 —0.06970 —0.02925 —0.00568
4 —0.07500 —0.09693 —0.10249
48 —0.07006 —0.09032 —0.09594
51 —0.06051 —0.02467 —0.00458
56 —0.06246 —0.07958 —0.08524
59 —0.05399 —0.02235 —0.00332
64 —0.05663 —0.07143 —0.07696
68 ~0.05409 ~0.06806 —0.07350
72 —0.05172 —0.06504 —0.07040
76 —0.04948 ~0.06230 —0.06760

There are several recent calculations available for
KCl. DeCicco, using the APW method, obtained a
width of 0.82 eV for the KCl valence band." In a less

TasLE V. Tight-binding parameters (in Ry) are given for the
valence bands and the lowest conduction bands. The notation is
that of Table IT, Ref. 11. Using these parameters and the formulas
of Table IT of Ref. 11 as it applies to a fcc crystal, it is possible to
construct an energy-level diagram throughout the first Brillouin
zone for these substances.

Parameter
valence states\ Substance LiCl NaCl KCl

E..(000) —0.89067 —0.81667 —0.72877
E..(110) 0.01016 0.00533 0.00179
E..(011) —0.00364 —0.00318 —0.00298
E.,(200) —0.00239 —0.00361 —0.00585
E,, (200) 0.00105 0.00296  0.00524
E,,(110) 0.01219 0.00747 0.00445
Conduction states

E,,(000) —0.08268 —0.07105 —0.04810
E,,(110) —0.01475 —0.01994 —0.02142
E,4(200) 0.01235 0.01112 0.00991
Ey,4,(110) —-0.05177 —0.04978 —0.04815
E.y,24(011) 0.02144 0.01814  0.01461
Ly, 2.(011) —0.06110 —0.04786 —0.03550
Es,2 02 3.2_,2(000) 0.76979 0.61806  0.45512
Es2_,2 5,2,2(110) —0.00736 —0.01169 —0.01182
E.2_,2 ,2_,2(110) —0.030265 —0.01280 —0.00715
Eay,24(000) 033269  0.28930  0.22937
Ezy,3.2-,2(110) 0.1077 0.1838 0.05350
E..(000) 0.65298 0.46633 0.29606
E,.(110) 0.03032 0.04229 0.04792
E..(011) —0.04546 —0.07083 0.03778
E.y(110) 0.04869 0.04305 0.03407
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recent calculation, Howland, by a LCAO (linear
combination of atomic orbitals) tight-binding calcula-
tion, obtained a width of 1.5 eV.? It is noted that, when
only 3p Cl~ functions were included in the basis, the
width of the band according to Howland was 2.2 eV.
Using only the 3p CI~ functions as a basis, the author
has performed a tight-binding calculation for KCl, and
finds a width of 0.48 eV when three-center terms are
neglected. The author feels that a value of 0.8 eV
would be most reasonable for the width of the KCl
valence band when one considers the present results,
the results of DeCicco, and the author’s tight-binding
results.

Experimentally, Parratt and Jossem have found that
the valence band of KCl has a half-width of about 0.33
eV.3 This result is in disagreement with the experi-
mental interpretations given by Phillips,® which are
based on the optical data of Eby, Teegarden, and
Dutton.?® The results of Phillips rest heavily on the
work of Howland and also on the free-electron picture
for the conduction bands, and may be subject to error.
Using the results of Slater and Koster and the values
given in Table V, the author has computed the density
of states for the KCl valence band. The energies for
the valence bands were obtained at 512 nonequivalent
points in the first Brillouin zone and a density-of-states
curve obtained. The valence bands have a half-width
of 0.4-+0.1 eV. This result is similar to that of DeCicco
and does not compare unfavorably to the result of
Parratt and Jossem.®

Values for the band gaps [E(T'1)—E(T'5)] have
been obtained, and are 8.7, 7.4, and 6.5 eV for LiCl,
NaCl, and KClI, respectively. The value of 6.5 eV for
the KCl band gap compares favorably with the value
of 6.3 €V obtained by DeCicco. In many features the
present results compare well with the results of DeCicco,
at least for the valence states and the lowest conduction
levels. It is noted that the results of DeCicco are
presented using a different origin than that of the pre-
sent calculation and this causes a slight notational
difficulty. At the point L, a state given here as L;
would be given as Ly’ by DeCicco. One also has the
following interchanges: Ly’ — Li, Ls’— L;, and L,
—s Ly'. Keeping these identities in mind, the present
results compare favorably with those of DeCicco. It is
seen that the point X lies lower than X for all three
substances. Thus, there is a possibility of excitons
associated with X; for NaCl and LiCl as there is for
KCl However, since X3 lies not as far below X in
LiCl or NaCl as in KCl, it is possible that any X
exciton in these substances would be considerably
broadened by coupling to the continuum.

There is a wealth of optical data available for com-
parison. These data are of five types: the absorption

» 1, P. Howland, Phys. Rev. 109, 1927 (1958).

® L, G. Parratt and E. J. Jossem, Phys. Rev. 97, 916 (1955).
a17, C. Phillips, Phys. Rev. 136, 1705 (1964).

27, E. Eby, K. J. Teegarden, and D. B. Dutton, Phys. Rev.

116, 1099 (1959).
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of photons by thin films of the alkali halide,? the
reflectance spectra of alkali-halide crystals,3% two-
photon absorption processes,® the absorption of soft
x rays by alkali-halide films,?”:*® and electron energy-loss
experiments.®® The problem is to reduce the available
data to a form in which they are useful.

Let us consider the band gap in KCl first. The band
gap in KCl is thought to occur at about 8.5 eV.3435 The
present result is too small by about 2.0 eV. This is
nearly the amount by which our value for the free-ion
3p CI~ energy differs from the experimental value.
It may be possible to shift our valence band downward
by about 2.0 eV and then to continue the comparison
to experiment. The justification of this is twofold.
First, the approximate position of the valence band with
respect to the vacuum is given by the sum of the Made-
lung energy and the energy of a 3p Cl~ electron. Thus
an error in the free CI~ electron would change the posi-
tion of the band with respect to the vacuum.® Secondly,
the position of the conduction band with respect to
the vacuum remains essentially the same for changes
of potential.

To investigate these effects, the band structure of
NaCl was recomputed for several potentials. An attempt
was made to use the Kohn and Sham potential®! but
was frustrated by the author’s inability to obtain con-
vergent solutions for the free Cl~ ion using modified
Herman-Skillman computer codes. The atomic Lind-
gren potential®? was used, and convergent results were
obtained for the free Nat and Cl~ ions. The band
structure of NaCl remained essentially unchanged for
two sets of Lindgren parameters, with one exception.
The position of the valence band with respect to the
vacuum changed by the amount which the CI~ 3p
energy changed in the free-ion calculations. In other
respects the valence bands seemed rigid. The conduction
bands remained unchanged to all practical purposes by
these changes of potential. For example, while the
valence band changed position by about 1.0 eV for
the various potentials, the lowest conduction band
shifted by less than 0.1 eV and other conduction-band
points by 0.2 eV or less. The change in valence-band
width was less than 0.05 eV. Thus, the author feels
justified in shifting the valence band downward in
order to bring the band-gap results into agreement with

3 K. Teegarden and G. Baldini, Phys. Rev. 155, 896 (1967).

# G, Baldini and B. Bosacchi, Phys. Rev. 166, 803 (1968).

13966?)' M. Roessler and W. C. Walker, Phys. Rev. 166, 599
( % D. Forhlich and B. Staginnus, Phys. Rev. Letters 19, 496
(1397617{).. Haensel, C. Kunz, and B. Sonntag, Phys. Rev. Letters
20, 262 (1968).

8 R. Haensel, C. Kunz, T. Sasaki, and B. Sonntag (to be
published).

®C. Gout and F. Pradal, J. Phys Chem. Solids 29, 581
(12‘6’%‘).'L. Gilbert, in Molecular Orbitals in Chemistry, Physics and
Biology, edited by P. O. Léwdin and B. Pullman (Academic Press
Inc., New York, 1964); see also an unpublished paper.

4'W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).
4], Lindgren, Arkiv Fysik 31, 59 (1965).



175

APPLICATION OF ORTHOGONALIZED-PLANE-WAVE METHOD

1153

TABLE VI. Transition energies are given for several critical points in the bands of KCI both experimentally and theoretically. These
energies are with respect to the transition I';s to I'1. The identification of the states responsible for these transitions given by the several

authors is given. Energies are in eV.

Experimental Theoretical
Ref. a Ref. b Ref. ¢ Ref. d Present work
Transition Energy Transition Energy Transition Energy Transition Energy Transition Energy
I'15, I 0.0 P15, I Y 0.0 Pls, I 0.0 Fls, I 0.0 P15, I 0.0
Ly, L, 0.3
Xs, Xs 14 X, X3 1.2 X, X5 1.2 Ly, L 1.8
X, Xy 2.2 Ly, Li* 2.5 X5, X 2.2
Ly, Ls 2.5 Tis, Tos’ 2.7
Ti5, Tas’ 2.9 X5, Xy 2.9
X, X3 3.2
X, X1 4.0 X5, X1 4.6
Tis, Tas’ 8.6 Ly, Ly 6.1 Ly, Ly 4.8
T15, Tas’ 54

s Reference 34. b Reference 35. ¢ Reference 39.
experiment before further testing his prediction. The
potential is discussed in Appendix B.

Certain features of the absorption spectra of the
alkali halides may be understood in terms of band-to-
band transitions, while others are explained best by an
exciton model. In terms of band-to-band transitions,
there are points of interest, called critical points,®
which are singularities in the joint density of states for
the valence and conduction bands. Some of these
critical points are a consequence of symmetry. In terms
of the fcc alkali chlorides, Roessler and Walker3s
identify several critical points that are symmetry-
required, and these include the transitions I'y;s to Ty,
Lg' to Ll, Xs, to X]_, X5’ to Xg, La’ to L3, and I‘15 to
T'ys’. Here, the notation at L has been changed to
conform to that of this paper. These critical points
are of the type M, according to Roessler and Walker?®
and should correspond to a shoulder in the absorption
spectrum. It is possible to identify some of these
shoulders, and in Tables VI and VII these shoulders
are given according to several experimental papers.
In doing this, the energy of the transition I';; to Ty
has been subtracted out so that it is possible to com-
pare the results of these measurements to the theoretical
results of this paper and those of DeCicco for KCL

It is obvious from Table VI that there is no general
agreement either in experiment or theory as to the
features of the KCl spectrum. This is due in part to
the difficulty of identifying M critical points in absorp-
tion curves. In the reflectance data for KCl, there is a
broad strong absorption between 3 and 6 eV above the
onset of absorption, which would tend to mask out
any M edges in this range. In addition, DeCicco found
that his d-like conduction bands moved with respect to
his s-like conduction band when he altered the strength
of the constant term in the APW potential outisde the
spheres, so that there is several tenths of an eV un-
certainty in the location of critical points in his calcula-

4. C. Phillips, Phys. Rev. 133, A452 (1964).

d Reference 14.

tion involving the states X3, I'ss/, and L;. In this
calculation, there is about 0.2 eV uncertainty due to
the effects of altering the form of the exchange po-
tential. It is not possible to evaluate this effect for
DeCicco’s calculation. The identification of critical
points in the spectrum as being due to any given transi-
tion should be regarded skeptically when such identi-
fication is based upon purely speculative grounds.

The results for NaCl are much clearer. Here there
is a much better agreement between experiments and
also a much better agreement between theory and
experiment. It is noted that there may be other M,
critical points than those required by symmetry and
in the present theoretical calculation these would not be
observed. Insufficient information exists about the wave
functions throughout the zone to permit a calculation
of the absorption spectra of these substances. The
author feels there are some remarks possible about the
identifications of Roessler and Walker. They find that
L, is slightly higher than T, but the small energy
difference which they obtain (0.3 eV for KCl and 0.5

TasLE VII. Transition energies are given for several critical
points in the bands of NaCl both experimentally and theoretically.
These energies are with respect to the transition I'y;s to I';. The
identification of the states responsible for these transitions given
by the several authors is given. Energies are in eV.

Experimental Theoretical
Ref. a Ref. b Present work
Transition Energy  Transition Energy  Transition Energy
T, I't 0.0 Fls, I8 0.0 Pla, 1Y 0.0
Ly, L 0.5
X', X1 1.5 Ly, L, 1.5
Xi, X3 2.8 Xy X5 2.7
Ly, Ly 3.9 X, Xu 3.8
Tis, T'2s’ 4.2 X', Xy 4.3
I‘15, I‘zr,l 87 F15, P25, 6.5
Ly, Lg 7.3

» Reference 35, b Reference 39.
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eV for NaCl) seems to be unreasonable if the currently
available calculations are considered. In addition, the
lables given need not be unique, since at the present
level of experimental accuracy the identification of
transition symmetry is pure speculation. It is-also
observed that recent measurements by Frohlich and
Staginnus® indicate that the identification of the band
gap in the alkali halides may be in error, and may be
smaller than currently believed.

Because of the lack of well-defined structure in the
LiCl absorption spectrum, analyses of these theoretical
results are difficult. It is observed that, in this calcula-
tion, the conduction band is almost flat from T'y to L,
as is the valence band from I'is to Lj’. Because of this,
it seems likely that the strong absorption immediately
after the first exciton transition®® may be due to
band-to-band transitions involving quasicritical points
along the entire line from I' to L. As in previous calcula-
tions, the spin-orbit splitting at I' in the valence band
for the alkali chlorides is about 0.1 €V and is in good
agreement with experiment.136:25

The analysis may be continued by examining
Roessler’s statement that the various singularities are
of type M. In the case of KCl, the present calculation
indicates that the transitions I';s to I'y, X5’ to X3, X5’
to X3, and Ly’ to L3 are of the type M. Thus, in table
VI the theoretical transitions Ls’ to L; and Ty5 to a5’
should be discounted. When this is done, the present
results are in better agreement with experiment. It is
clear from the results of DeCicco that he finds the
transitions from Ly’ to L, I'ss’ to T'ss’, and X5’ to X
not of type M. In the case of NaCl, the present results
indicate that, of the transitions given in Table VII,
only the transitions I'y; to Ty, X' to X3, and X to X,
are of the type M.

Additional information which is obtained from these
calculations indicates that the half-width of the NaCl
valence band is 0.504-0.05 eV and that that of the LiCl
valence band is 0.554-0.05 eV.

The density of states for the LiCl p-like conduction
band was computed using the results in Table V and
one thousand nonequivalent points in the first Brillouin
zone, and was compared to the Lit K edge absorption
results for LiCl of Haensel, Kunz, and Sonntag.?” Since
these transitions are from the flat 1s Li* band to the
lowest p-type conduction band, there should be similari-
ties between the absorption spectrum and the density
of states for the p-like conduction band. The results here
indicate that if the first peak in the density of states is
lined up with the first peak in the absorption spectrum,
then the density of states has maxima where the absorp-
tion spectrum has maxima and the same is true of the
minima. However, there are discrepancies between the
magnitudes of the peaks. For example, in experiment
the first peak is highest by a factor of 2 compared to
the second peak. For the density of states the reverse
is true. The transition probabilities have not been
computed, due to a lack of information about the wave
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functions throughout the zone, so that more detailed
comparison is not possible.

The density-of-states calculation for the conduction
band is highly speculative and of qualitative interest
chiefly. That is, the mixing of the different conduction
levels has been neglected, terms other than those
involving nearest neighbors have been neglected, and
only Wannier functions about a halogen ion site are
included in this approximate tight-binding analysis. It
is felt that for certain qualitative uses these parameters
are of some value.

V. CONCLUSIONS

The OPW method has produced results for the
valence and conduction bands of NaCl, KCl, and LiCl
that are consistent with other recent calculations and
are also consistent with recent experiment, except in
the matter of the band gaps, which are too narrow.
These calculations make it seem likely that X excitons
are important in NaCl, and possibly in LiCl, just as
they are important in KCl. The band shapes and
splittings, except for the band gap, are seen to be in-
sensitive to the choice of exchange potential. Possibly
a better choice of exchange potential would improve the

‘band-gap calculation. It has also been seen that tight-

binding functions of the most common type are not
good eigenfunctions of the Hamiltonian for the NaCl
valence band. It seems reasonable that this will be
true for other alkali halides as well. This technique
produces useful results for the valence and conduction
states of the alkali halides, and seems to be limited
only by the size of matrices that one is able to afford
to diagonalize.
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APPENDIX A

A brief discussion of the numerical techniques in-
volved is presented here. All single integrations were
performed using Simpson’s rule. Both 111 and 441 mesh
points were used in the interval with a negligible
difference in the final energies. The energies were
evaluated using a matrix diagonalizer, pioneered by
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Fowler, which looks for changes of sign in the value of
the determinant M ,; i as a function of energy. This
technique extracts roots accurate to +0.0 and —0.00001
Ry. This also produces the eigenvectors corresponding
to the eigenvalue found. The program used to con-
struct the potentials and core functions is basically
due to Herman and Skillman, although it has been
extensively modified for the present application.

The basic computer used was the Control Data 6600
at the Courant Institute. This mechine has a 60-bit
word length (about 14.5 significant figures); this was a
real advantage. Using a short form of the OPW program,
which needs potentials and core functions as data (hence
avoiding any iterative calculation), energies and eigen-
vectors were obtained using the IBM 360-65 at the
University of Pennsylvania. In this case, the word
length is 32 bits (7.5 significant figures), and energies
were produced with no better than four-figure agree-
ment to the CDC 6600 results. The eigenvectors agreed
only to about two figures. It was felt that the disagree-
ment was due to round-off error in the IBM 360-65. It
is also felt that the full program, which does iterative
calculations as well as the usual OPW calculations,
should be used only on a machine having a 60-bit word
length or on smaller machines by using double pre-
cision, or the results would be worthless because of
excess round-off error.

APPENDIX B

The choice of the form of the exchange potential is
discussed in this Appendix. In all cases, the final ionic
potential is subjected to the modification as discussed
by Herman and Skillman.’* The principal exchange
potential used is the Slater exchange potential given as®®

1Vex(r)=—{[81/ (4x%) Iro(r)}'. (B1)

In Eq. (B1), rydberg energy units are used, and p(r)
is the radial charge density. This potential term is
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derived from a free-electron approximation. Using some
slightly different assumptions, Kohn and Sham* have
obtained the following form for

Ve gs(r)=%Ve(r). (B2)

In Eq. (B2), Vexxs(r) is the Kohn-Sham exchange
potential and Ve(r) is the Slater exchange potential
given by Eq. (B1).

Another form for this potential term has been de-
veloped by Lindgren.#? This is a more empirical type
of potential, and has the form

rVex L(r)=C[81/ (4x®) JH3rI3p(r)mI3. (B3)

The quantities C, »#, and m are to be considered as
disposable parameters. Lindgren adjusts these param-
eters so that the total system energy evaluated by
solving the Hartree-Fock equation with the Lindgren
form of exchange is as close as possible to the total
system energy obtained solving the Hartree-Fock
equation. For the systems on which Lindgren worked
the range of parameters was not very great for optimiz-
ing results. It is found that C=0.8040.10, »=1.15
+0.15, and m=1.0." In the present calculation for
Na(Cl, C=0.80 and C=0.90, and #=1.15 and m=1.0
are used. The results for the ionization potential of
the Na* ion and the electron affinity for the Cl~ ion
were found to be in poorer agreement with experiment
than for the Slater potential. However, most band
features are seen to be insensitive to the change of ex-
change potential. The only quantity which changes is
the position of the valence band with respect to the
vacuum. This is approximately given as the sum of the
binding energy of a 3p electron on a Cl~ free ion and
the depth of the Madelung well which that ion finds
itself in. Other band features are insensitive to the
choice of exchange potential. This is not unreasonable, as
is seen from recent theoretical results due to Gilbert.#



