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Chloride, Sodiuxn Chloride, and Potassitun Chloride*

A. BARRv KUNG'

Department of Ptsysses, Letssgts Unsseresty, Bethlehem, Pennsyleansa 18025
(Received 30 January 1968; revised manuscript received 16 May 1968)

The orthogonalized-plane-wave method has been used to compute the energy bands of LiCl, NaCl, and
KCl. General results are obtained that are valid for any diatomic lattice. Computer programs (which con-
siderably reduce the labor of applying this method to a wide class of substances) have been developed and
are discussed. The results are compared with those of recent calculations and experiments. In general, there
seems to be a good correlation between the present results and those of experiment. It is suggested that the
peculiar optical absorption of LiC1 may be due to transitions from the valence band to the conduction band
involving the line A and the point I. in the Brillouin zone. The possibility of X excitons in NaCl and LiC1
is explored.

I. INTRODUCTIDN
' 'N previous years, thc orthogonalized-plane-wave

(OP W) method' s has found its principal application
in studying the band structure of metals'4 or semi-
conductors. '' For tightly bound solids, such as the
alkali halidcs or the solid rare gases, its principal use
has bein in calculations of the conduction states. '-9

This author has recently succeeded in applying the
OP% method to selected symmetry points in the hrst
Brillouin zone of sodium chloride for both the valence
and conduction bands. "It is the intent of the author
in this paper to extend the QPW method to tightly
bound solids in general, to discuss some of the important
factors inherent to this method, and to relate the method
to others commonly used for these substances. Calcula-
tions have been performed for lithium chloride, sodium
chloride, and potassium chloride at selected symxnetry
points in the erst Brillouin zone. Some powerful numeri-
cal techniques that werc developed to handle the labor
of this type of calculation are discussed. Computer
programs have been written that will greatly reduce
the labor of applying this method to a wide class of
solids.

There are some advantages inherent to the OP%
method as opposed to the tight-binding method" or
the augmented-plane-wave (APW) method. "These ad-
vantages lie in the ability of the OP% method to
include the lattice potential conveniently in a exact
manner. In the tight-binding method;, it is usual to
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include only certain terms in the lattice potential, and
this may lead to di6iculties as to the accuracy of the
bands considered. " In the AP% method, one usually
assumes the potential about a given lattice site to be
sphcricaQy sylnmetric, and the potential in the region
between the spherical regions about each lattice site
to be a constant. ' "It is possible, however dBBcult, to
overcome these assumptions in the AP% method by a
perturbation approach. "

Thc results obtalncd ln this calculation for KCl arc
compared with those of previous calculations using
other techniques. The results are, in general, compared
with recent and not-so-recent experiments, and a fair
amount of agreement is obtained between theory and
experiment. There also seems to be a reasonable amount
of correlation between the results of the several theoret-
ical calculations available for comparison.

As in previous calculations, it is assumed that the
lattice potential may be given as a superposition of the
potentials of the free ions that constitute that lat-
tlcc "s"s"It ls desired to solve thc usual. nonrclatlvlstlc
Schrodinger equation for the lattice subject to thc
usual one-electron approximation. The method of
solution to be used is the OPW method. ~ The core
states are formed from the core-state solutions to the
free-ion problem. These core states are then formed
into Bloch functions, and linear combinations of the
3loch functions are formed to transform according to
the 1th row of the 0.th irreducible representation of the
symmetry group of the wave vector it, for the point in
the irst Srillouin zone for which a solution is de-
sired. ' ' The states used as core states were those
states for which E(it) was a constant. The core states
and the free-ion potentials mere obtained by using
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modified Herman and Skilbnan computer codes for
several choices of potential. "

In the usage of Herman and Skillman, " one de-
lves the potential of a free ion to be

2Z 2
V (r) = ——— o (r')dr' —2

—6L—3/(8Ã)(47rr~) 'o (r))'~', r&Ro (1a)

V (r) = 2(Z-S—+1)/r, r) Ro. (1b)

In Eqs. (1),Z is the atomic number, S is the number
of electrons centered on the ion, and Eo is defined as
that radius at which the value of V (r) given by Eq. (1a)
equals the value of V(r) given by Eq. (1b).

If P„~(r) is the radial part of the solution to the el
orbital of the free ion multiplied by r, and 8'„~ is the
number of electrons in the Nl subshell, then o(r) is
defined by

o(r)= —Q W.()P ((r)('. (2)

The summation is over all 61led levels in the free
ion. In the cases considered here, the value of Ro for
the several free ions is such that the exchange parts
of thc potcn'tlRls do not ovcrlRp when onc forms thc
lattice potential by a summation of the free-ion po-
tentials of the lattice. For example, Jlo for Na+ was

j..5 Bohr units and Ro for Cl—was 3.2 Bohr units.
The use of this potentials deserves some discussion.

This potential resembles that which the author has
found most useful for studying the valence bands by
tight-binding theory. "It is assumed that the valence-

electron wave function is that which arises chieQy

from a Cl 3p orbital. To form the potential, one has

an electron in a given unit cell associated with a Cl
ion at the center of that cell. This cell center is con-

sidered to be the orj.gin. There are Ave other valence

electrons in that unit cell. In the other unit cells, there

are six valence electrons. The Cl core electrons and the
electrons associated with the alkali are the sam. e in

all unit cells. Thus, the valence electron in question

sees a potential formed from three types of contribu-

tions. These are (i) the halogen ion at the origin, (ii)
the short-range parts of the other alkali and halogen

ions, and (iii) the long-range parts of the other alkali

Rnd halogen ions.
The three types of contribution are considered

separately. The potential due to the halogen ions at
the origin is evaluated using Eqs. (1) and (2), with

X=Z+1. This contribution goes to zero rapidly as r
goes to in6nity. The cQcct of the remainder of the
lattice is less simple. In the other halogen ions, one has
Ã= Z, and for the alkali ions, one has X=Z+ 2. Thus,
the electron sees potentials due to the other halogen

» I. Herman and S. Skillman, Atomic Structlre Calculations
(Prentice-Hall, Inc. , Englewood CMs, N. J., 1963).

iona, which go as +2/r Ry at large distances, and po-
tentials due to the alkali iona, which go as —2/r Ry at
large distances. In order to evaluate the Fourier
coeS.cients of this potential contribution it is necessary
to separate the potential into long-range and short-
range parts. The long-range parts are those that go
as &2/r Ry.

The contribution of the halogen ion at the origin and
of the short-range parts of the potentials to the Fourier
coeSclents CRn bc cvRluRtcd in thc usuRl ways with
no di%culty. ' "However, the Fourier coeKcients of
the long-range potential are more troublesome. In this
case, one evaluates the Fourier codFicicnt for the entire
potential by integrating over the unit cell at the origin. ~

In this case, the total long-range part of the potential
in the unit cell about the origin converges and its
contribution to o(0) is simply the Madelung energy. Ail
potential contributions to thc Fourier coeScients may
be evaluated in this way if one desires.

The author believes that the CBect of this potential
is to have the electron in question see a potential which
is due to all the remainder of the electrons in the lat-
tice and the nuclei. Thus, this potential is di6erent from
the one usually used in which the electron in question
is considered to be an extra electron in the lattice. The
type of potential used in this calculation seems to be
especially suited to consideration of the valence levels.

In the usual OPW practice, the solution is found by
solving the equation

Det(Myj y j ) 0
where

P„"(k,r)*PQ„. '&'(k, r)dr

In Eq. (4) p '(k, r) ls the function formed by synune-
trizing a linear combination of plane waves to transform
according to the jth column, the 1th row of the nth
irreducible representation of the group of the vector k,
and it is orthogonalized to the core states which are
similarly synunetrized. IJ is the one-electron Hamil-
tonian and P~. '&'(k, r) is defined in a way similar to
the other function. The integration is over the volume
of the crystal. These equations reduce to a simpler
form, which, if the crystal were a zinc-blende structure,
would be the same as those of Bassani and Voshimine. '0

III. DETAILS OF THE CALCULATION

Calculations have been performed for sodium
chloride, lithium chloride, and potassium chloride. In
order to perform this calculation, the ionic potentials
and the core states for the free ions were obtained by
solving the Hartree-Pock-Slater equations subject to

~ I'. Bassani and M. Voshimine, Phys. Rev. 130, 20 (1963).
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the modification given by Herman and Skillman. "To
do this work, a computer program was prepared which
computed the potentials and wave functions for the
free ions and then performed the necessary group theory
automatically for states of interest. The program then
formed the determinant M», ~,' as defined in Eqs. (3)
and (4), computed the roots of this determinant, and
obtained the eigenvectors. The necessary group-
theoretical data were obtained from standard sources" "
and the results were seen to agree with those of Luehr-
mann. "The numerical techniques used are discussed
in Appendix A.

These results neglect spin-orbit effects. These, how-
ever, may be included by a perturbation method. """
It is assumed that the spin-orbit eft'ects are important
only for the p-like valence band. This would be con-
sistent with recent calculations on KI.26'~ It seems
reasonable to expect that spin-orbit splittings in the
conduction band will be even smaller in the chlorides
than in the iodides.

In performing the computations, those states for
which energy as a function of wave vector was essent-
ially a constant were chosen as core states. For NaC1,
an attempt was made to construct the valence band
from tight-binding functions" and then by orthogonaliz-
ing to them, to construct only the conduction states
from OP&'s. However, the lowest value of energy
rather rapidly converged to the valence energy, and
the next value converged to the conduction states.

Thus, one concludes that the tight-binding functions
are not adequate to represent the valence states of NaCl
and possibly the other alkali halides, at least not when
these functions are used in their normal form.

One may discuss the implications of the convergence
of the energies to the valence states when one attempted
to use the Cl- tight-binding functions for the valence
bands. This implies that for purposes of orthogonaliza-
tion, the tight-binding valence states are not adequately
close to being eigenstates of the crystal Hamiltonian.
One may ask, at what point are the tight-binding
orbitals such poor eigenstates of the crystal Hamiltonian
that they are unusable in an OPW calculation? It is
not possible to give a definitive answer to this question
at present; however, it is possible to begin to answer
this question. In the case of KCl, calculations were
made in which the 3P K+ band was computed by OPW

icky

FIG. 1.The Brillouin zone
for a fcc crystal. Points and
lines of symmetry are given.
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techniques and other calculations in which this band
was assumed known from tight-binding theory. There
was no significant deviation in the valence or conduction
levels of KC1 when the results of these two calculations
were compared.

Figure 1 shows the Brillouin zone for the fcc lattice
and points and lines of symmetry. The band structures
including spin-orbit eGects in the valence bands are
given for LiC1, NaCl, and KC1 in Figs. 2—4. In addi-
tion, the values of the energy are given in Tables I—III.
The notation is that of Bouchaert, Smoluchowski, and
Wigner. 28

The convergence of the energies was studied using
second-order perturbation theory. It was required
that the contributions of the last few sets of plane waves
be smaller than 10 4 Ry. The second-order —perturba-
tion-theory result was computed with respect to the
dominant orthogonalized plane wave.

In addition, the convergence of the wave function was
studied and it was required that the coeKcients of the
last few sets of plane waves be 10 ' or smaller. The nor-
mal convergence curves of energy as a function of the

"G. F. Koster, Space Groups and Their Representations (Aca-
demic Press Inc. , New York, 1957).

~ G. F. Koster, I. O. Dimmock, R. G. Wheeler, and H. Statz,
Properties of the Thirty-Tmo Point Groups (The M. I. T. Press,
Cambridge, Mass. , 1963)."A. W. Luehrmann, thesis, University of Chicago, 1966
(unpublished).

~ L. Liu, Phys. Rev. 126, 1317 (1962)."A. Barry Kunz, Phys. Rev. 159, 738 (1967)."Y.Onodera, M. Okazaki, and T. Xnui, Technical Report of
the Institute for Solid State Physics, University of Tokyo, Tokyo,
Japan Ser. A, No. 209, 1966 (unpublished); J. Phys. Soc. Japan
21, 2229 (1966)."Y.Onodera and Y. Toyozawa, J. Phys. Soc. Japan 22, 833
(1967).
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Fxo. 2. The band structure of LiCl. The notation is that of
Ref. 28. The points actually calculated are shown by a dot. The
bands have been drawn using the compatability relations and also
the result of other calculations.

'8L. P. Bouchaert, R. Smoluchowski, and K. Wigner, Phys,
Rev. 50, 58 (1936).
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Fyo. 3. The band structure of NaCl. The notation is that of
Ref. 28. The points actually calculated are shown by a dot. The
bands have been using the compatability relations and also the
results of other calculations.
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number of plane waves used were not obtained for all
states. The primary reason is that a rather large number
of plane waves were used (300-600) and this required
that rather large matrices (30X30-50)&50)be diagonal-
ized. It was not econoxnical to diagonalize a large num-
ber of these matrices in order to check on the conver-
gence of all states. Ho~ever, for a few key levels such as
I'„, I'„, I' ', I. ', dl thi i f rm ti n sobt

'
d

for the case of NaCl and for I'12 and I"25' in KC1 and
LiCl. These results indicated that the states werc well

converged. Therefore, the author believes that the per-
turbation-theory results arc an adequate indication of
convergence.

TAM, E I.. The .energy in rydbergs of selected symmetry points
for LiCl. The notation is that of Ref. 28. For the p-like valence
bands, energies with and without spin-orbit effects are given.
+= (K/2G) (100) A =9.7 Bohr units (=0.00321 Ry.

rg
r»e'

s-like valence state
-1,81150 Xt -2.76290 Ls —1.77687 d, x -1,.78923

p-like valence state without spin-orbit effects
-0.82454 Xe' -0.98715 L»' -0.98764 5t -0.89629

Xs' -0.87666 I s' -0.84134
p-like valence state with spin-orbit dfects

-0.83096 Xe. —0.98687 Le -0.98770
—0.82133 Xe -0.88015 Le -0.84448

Xv- —0.87345 Ls —0.83813
All computed conduction states without spin-orbit effects—0.18548 Xx - 0.05044 Lx —0.15683 d, t —0.025 74
0.29717 Xs —0.04599 Ls 0.22063

Xs' 0,53980 I »' 0.26342
L»' 0.726680.48032

0.54401 X4'
X»

0.71369 Xt
X&'

0.76154 d, t 0, 290550.22863 L s

0.75345
0.93666 Li
1.40991 L s'

Ll

0.82151
0.84777
1.411757

2.17949

Tmx.E H. The energy in rydbergs of selected symmetry points
for NaCl. The notation is that of Ref. 28. h=(w/2g, ) (100),
A = 10.6 Bohr units, (=0.00313 Ry.

Some Fourl. cr coefEnents of the potcntIals are gIven
in Table IV. It is due to the large number of plane
waves needed that additional points in the 6rst Brillouin
zone such as E or some points along A. have not been
calculated. Some attempts werc made to do this. -

However, to obtain good convergence, matrices great, er
than 50&50 needed to be diagonalized, and to do. a
suKcient number of them to obtain more useful informa-
tion was not practical.

It is possible to compute the energy structure for
other points in the BriHouin zone using the results
presented here. To do this, the formalism of Slater
and Kostcr" may be used. In the Slatcr-Koster method,
hypothetical tight-binding-type functions are assumed
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F10. 4. The band structuxe of KCl. The notation is that of
Q.ef. 28, The points actually calculated are shown by a dot. The
bands have been drawn using the coInpatability relations and
also the results of other calculations.
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h»' 0.73192
ha 0.24984

0.56679

1.33698

1.43441

s-like valence state
-1.72970 X» —1.72024 L» —1.71569 h» —1.72106

p-Hke valence states without spin-orbit effects
—0.78210 Xe' -0.86747 L»' -0.88212 hx -0.82036

Xs' -0.79929 Ls' -0.79141
p-like valence states with spin-orbit effects

-0.78836 Xe -0,87076 Le —0.8843 7
—0./7897 Xe —0.79914 Le -0.79129

Xy —0.79616 Ls —0.78828
All calculated conduction states without spin-orbit e8ects

-0.24356 Xx 0.07541 I x -0.13777 hj, . -0.10461
0.23533 Xs -0.05498 L»' 0.12194 a»' 0.02325

Xs' 0.48843 Ls 0.29163
0.35804 Xs 1.31686 I »' 0,63133
0.47112 Xe' 0.12516 I s' 0.63853

X» 0.66258
0.80184 X» 0.67150 L.»

Xs 1.42723 Ls
1.32859 Xe' 1.34732 I x

Lst
I »'
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and the values of the energies throughout the Brillouin
zone are given in terms of the energy parameters of
these hypothetical tight-binding functions and the
crystal potential. In this case, the two-center approxi-
mation need not be made. Using the energy values
computed by the OP% method and the equations of
Table II of Slater and Koster, it is possible to compute
the energy parameters needed to give the p-like valence
band, the lowest s-like conduction band, the two lowest
d-like conduction bands, and the p-like conduction
band using a halogen ion as the origin. The values of
the parameters needed have been obtained. for LiC1,
NaCl, and KC1, and are given in Table V. In obtaining
these parameters, the interaction of the s, p, and d
conduction levels is neglected. Using these results and
the formulas of Slater and Koster, Table II, it is possible
to compute approximate energies for the valence bands

Tmz, E III. The energy in rydbergs of selected symmetry
points for KC1. The notation is that of Ref. 28. 6= (zr/2e) (100),
A =11.8 Bohr units, )=0.00303 Ry.

Fg
Fa

I'2'

F12

Fa
Fig

s-like valence state
-1.64038 X1 -1.63583 L1 -1.64121 b, 1 —1.64238

p-like valence states without spin-orbit effects
—0.71709 X4' -0.74572 L a' -0.77369 h1 -0.70802

Xg' -0.707S6 Lg' -0.72023

p-like valence states with spin-orbit e8ects
—0.!2317 Xg -0.74611 Le -0.77407
—0.71405 Xe -0.71020 Le -0,72289

Xz -0 70452 Lz" -0.71719
All calculated conduction states without spin-orbit e8ects

-0.24573 X4' 0.06382 L1 -0.1075$ h1 -0.13255
0.15366 Xg -0.08009 Lg' 0.02344

Xg' 0.42196 L,3 0,10539
0.24156 Xg 1.03582 Lg . 0.51339
0.34128 X1 0.09704 L»' 0.43237 d, i 0.27889

Xg 0.$1174
0.83054 X1 0.47441 Le 0.51807 d, 1 0./0118

X ' 1.27238 L ' 0.55834
0.99616 X ' 1.16465 L, ' 0.9008S

0.95883
1.22874 Xi 1.38124 Ls' 1.10965
1.4341$ L e 1.08464

and the lower conduction bands throughout the erst
Brillouin zone.

It is found that the valence bands are 2.22, 1.35, and
0.77 eV in width for LiC1, NaCl, and KCl, respectively.
These widths are increased by about O.i eV when
spin-orbit efkcts are included. It is possible to compare
these results with other recent calculations. For NaCl,
the author" has obtained a width of 1.4 eV using the
tight-binding method and certain three-center in-
tegrals. For LiCl, the author obtained a width of about
1.2 eV using the tight-binding method but neglecting

.three-center sects." It is. clear from the NaCl cal-
culation'3 that three-, center terms would substantially
widen the tight-binding LiCl i'esults. .

x'(s/2w)'

0
3

11
12
16
19
20
24
27
32
35
36
40
43
44
48
5i,
56
59
64
68
72
76

e(X), LiC1

—1.40016-0.44420-0.40083-0.26393
0.19988-0.19445-0.15724—0.13202—0.13487—0.11926—0.10255—0.09677-0.08320—0.08817-0.08097-0.06970

-0.07500—0.07006—0.06051—0.06246—0.05399-0.05663—0.05409-0.05172—0.04948

v(Z), NaCI

—1.23921—0.27855—0.39791-0.29167-0.11116-0.22899-0.19072—0.06110-0.16581—0.14811—0.04402—0.12296—0.03527—0.11311—0.10449—0.02925—0.09693—0.09032—0.0246'/—0.07958—0.02235—0.0/143—0.06806—0.06504—0.06230

e(Z), KCI

—1.15154—0.10115—0.41848—0.32348—0.02669—0.25889—0.21438—0.00796—0.18301—0.16026—0.00564—0.12982—0.00602—0.11904—0.11009—0.00568—0.10249—0.09594-0.00458—0.08524—0.00332—0.07696—0.07350—0.07040—0.06760

There are several recent calculations available for
KC1. DeCicco, using the AP% method, obtained a
width of 0.82 eV for the KCI valence band. '4 In a less

TmLE V. Tight-binding parameters (in Ry) are given for the
valence bands and the lowest conduction bands. The notation is
that of Table II, Ref. 11.Using these parameters and the formulas
of Table II of Ref. 11 as it applies to a fcc crystal, it is possible to
construct an energy-level diagram throughout the 6rst Brillouin
zone for these substances.

Parameter
valence sta Substance I.iCl

E, (000)
E,(110)

(011)
E (200)
E~„(200)
E,„(110)
Conduction states
E„(000}
E„(110)
E„(200)
E,„, „(110)
E „, ~(011)
Z.„...(011)
E3 e „s 3 s „e(OOO)

&Iz'-~~ eg'-r'(110)
E 2 „2 2 a(110)
E,„,,„(000)
E,„,ep,g(110}
E..(OOO)

E, (110)
E,(011)
E „{110)

—0.89067
0.01016

—0.00364
—0.00239

0.00105
0,01219

—0.08268
—0.01475

0.01235
—0.05177

0.02144
—0.06110

0.76979
—0.00736
—0.030265

0.33269
0.1077
0.65298
0.03032

—0.04546
. 0.04869

—0.8166/
0.00533

—0.00318
—0.00361

0,00296
0.00747

—0.07105
—0.01994

0.01112
—0,04978

0.01814
—0.04786

0.61806
—0.01169
—0.01280

0.28930
0.1838
0.46633
0.04229

—0.07083
0.04305

-0.72877
O.OQ179

—O.OQ298
-0.00585

0.00524
0.00445

—0.04810
—0.02142

0.00991
—0.04815

0.01461
—0.03550

0.45512
—0.01182
—0.00715

0.22937
0.05350
0.29606
0.04792
0,03778
0.03407

Tmzx XV. The Fourier eoefBcients (in Ry) of the lattice po-
tential for LiQ, NaC1, and KCl. The potential) employed con-

-tained a modified Slatcr exchange.
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recent calculation, Howland, by a LCAO (hnear
combine, tion of atomic orbitals) tight-binding calcula-
tion, obtained a width of 1.5 eV."It is noted that, when
only Bp Cl- functions were included in the basis, the
width of the band according to Howland was 2.2 eV.
Using only the Bp Cl functions as a basis, the author
has performed a tight-binding calculation for KCl, and
finds a width of 0.48 eV when three-center terms are
neglected. The author feels that a value of 0.8 eV
would be most reasonable for the width of the KCl
valence band when one considers the present results,
the results of DeCicco, and the author's tight-binding
results.

Experimentally, Parratt and Jossem have found that
the valence band of KCl has a half-width of about 0.33
eV.'0 This result is in disagreement with the experi-
mental int. crpretations g ven by Phillips, " which are
based on the optical data of Eby, Teegarden, and
Dutton. "The results of Phillips rest heavily on the
work of Howland and also on the free-electron picture
for the conduction bands, and may be subject to error.
Using the results of Slater and Koster and the values
given in Table V, the author has computed the density
of states for the KCl valence band. The energies for
the valence bands were obtained at 512 nonequivalent
points in the 6rst Srillouin zone and a density-of-states
curve obtained. The valence bands have a half-width

of 0.4~0.1 eV. This result is similar to that of DeCicco
Rnd does not compare unfavorably to the result of
Parratt and Jossem. ss

Values for the band gaps LZ(i'q) —E(Frs)j have
been obtained, and are 8.7, 7.4, and 6.5 eV for LiCl,
NaCl, and KCl, respectively. The value of 6.5 cV for
the KCl band gap compares favorably with the value
of 6.3 eV obtained by DeCicco. In many features the
present results compare well with the results of DeCicco,
Rt least for the valence stRtcs Rnd the 10%'cst conduction
levels. It is noted that the results of DeCicco are
presented using a different origin than that of the pre-

sent calculation and this causes a slight notational
ddficulty. At the point L, a state given herc as L&

would bc given Rs L2 by DeC1cco. Onc also has thc
following interchanges: L2'~Lj, L3' —+La, and L&
—+ L3'. Keeping these identities in mind, the present
results compare favorably with those of DeCicco. It is

scen that thc point X3 lies lower than X~ for Rll three
substances. Thus, there is a possibility of excitons
associated with Xs for NaCl and LiCl as there is for
KCl. Howcve1, since Xs lies not as far below X1 in

LiC1 or NaC1 Rs in KCl, it is possible that any XI
cxciton in these substances would be considerably

broadened by coupling to the continuum,

There is a wealth of optical data available for com-

parison. These data are of 6ve types: the absorption

~ L. P. Holland, Phys. Rev. 109, 1927 (1958).
» L. G. Psrratt and E. J. Jossere, Phys. Rev. 97, 9M i1955).
"J.G. Phillips, Phys. Rev. 136, 1705 (1964).
g~ J. E. Eby, K. J. Teegarden, and. D. 3. Button, Phys. Rev.

116, 1099 (1959).

of photons by thin 61ms of the alkali halide, '2" the
reRectance spectra of alkali-halide crystals, '4" two-
photon absorption processes, 36 the absorption of soft
x rays by alka, li-halide 61ms, '~ 38 and electron energy-loss
experiments. "The problem is to reduce the available
data to a form in which they are useful.

Let us consider the band gap in KCl 6rst. The band
gap in KCl is thought to occur at about 8.5 eV.~"Thc
present result is too small by about 2.0 eV. This is
nearly the amount by which our value for the free-ion
3p Cl- energy diifers from the experimental value.
It may be possible to shift our valence band downward
by about 2.0 eV and then to continue the comparison
to experiment. The justidcation of this is twofold.
First, the approximate position of the valence band with
respect to the vacuum is given by the sum of the Made-
lung energy and the energy of a 3p Cl- electron. Thus
an error in the free Cl electron mould change the posi-
tion of the band with respect to the vacuum. ~ Secondly,
the position of the conduction band with respect to
the vacuum remains essentially the same for changes
of potential.

To investigate these effects, the band structure of
NRC1 wRs recompUted fox' scverR1 potcntlRIS. An attempt
was made to use the Kohn and Sham potential" but
was frustrated by the author's inability to obtain con-
vergent solutions for the free Cl ion using modiled
Herman-Skillman computer codes. The atomic Lind-
gren potential~ was used, and convergent results were
obtained for the free Na+ and Cl ions. The band
structure of NaCl remained essentially unchanged for
two sets of Lindgren parameters, with one exception.
The position of the valence band with respect to the
vacuum changed by the amount which the Cl Bp
energy changed in the free-ion calculations. In other
respects the valence bands seemed rigid. The conduction
bands remained unchanged to all practical purposes by
these changes of potential. For example, while the
valence band changed, position by about 1.0 eV for
the various potentials, the lowest conduction band
shifted by less than 0.1 eV and other conduction-band
po1nts by 0.2 eV 01 less. The chRngc 1n vRlcnce-bRnd
width was less than 0.05 cV. Thus, the author feels
justi6cd in shifting the valence band downward in
order to bring the band-gap results into agreement with

"K.Teegarden and G. Saldini, Phys. Rev. ISS, 896 (1967).
34 G. Saldini and 3.Bosacchiq Phys. Rev. 166' 803 (1968).
»D. M. Roessler and %. C. Walker, Phys. Rev. 166, 599

(1968).
'fl D. Forhlich and B. Staginnus, Phys, Rev. Letters 19, 496

(1967).» R. Haensel, C. Kunz, and B. Sonntag, Phys. Rev. Letters
20, 262 (1968).

'8R. Haensel, C. Kunz, T. Sasaki, and B. Sonntag (to be
published).

»C. Gout and F. Pradal, J. Phys Chem. Solids 29, $81
(1968).

T. L. Gilbert, in Moleceler Orbital' ~N Chemis& y, I'kysks end
Biology, edited by P. O. Lovrdin and B.Pullman (Academic Press
Inc., New York, 1964); see also an unpublished paper.

1 W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).~ l. Lindgren, Ar4v FysHr. M, 59 (1M@.
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Tax VI. Transition energies are given for several critical points in the bands of KCl both experimentally and theoretically. These
energies are with respect to the transition I'y5 to I'~. The identi6cation of the states responsible for these transitions given by the several
authors is given. Energies are in eV.

Ref. a
Transition Energy

Experimental
Ref. c

Transition Energy

Ref. b
Transition Energy

Theoretical
Ref. d Present work

Transition Energy Transition Energy

1'y5, Fg 0.0 ~i5, I"j
L', L
X', X
Xg', Xj
L3' Le
115' IN

0.0
03
1.2
2.2
2.5
2.9

X5', X3
Xg', Xg
I 15) ~25

0.0

3.2
4.0
8.6

X5', X3
L3', Lg*

~15 I 95

X,.', X,

1,2
2.5
2.7
2.9

L3', Lj
Xg', Xg

1.8
2.2

L3', L3
X5', Xg
L3', Lg

~is, ~2S'

4.6
4.8
5.4

r», I', 0.0 r», r, 0.0

Reference 34. b Reference 3S. e Reference 39. & Reference 14,

experiment before further testing his prediction. The
potential is discussed in Appendix S.

Certain features of the absorption spectra of the
alkali halides may be understood in terms of band-to-
band transitions, while others are explained best by an
exciton model. In terms of band-to-band transitions,
there are points of interest, called critical points,
which are singularities in the joint density of states for
the valence and conduction bands. Some of these
critical points are a consequence of symmetry. In terms
of the fcc alkali chlorides, Roessler and %alker35
identify several critical points that are syn11netry-
required, and these include the transitions I'j5 to I'~,
LI3 to Llg X5 to Xj X5 to X3 L3 to LI3 Rnd r» to
I'25'. Here, the notation at I. has been changed to
conform to that of this paper. These critical points
are of the type Mo according to Roessler and %alker35
and should correspond to a shoulder in the absorption
spectrum. It is possible to identify some of these
shoulders, and in Tables VI and VII these shoulders
are given according to several experimental papers.
In doing this, the energy of the transition I"~5 to I'~

has been subtracted out so that it is possible to com-
pare the results of these measurements to the theoretical
results of this paper and those of DeCicco for KC1.

It is obvious from Table VI that there is no general
agreement either in experiment or theory as to the
features of the KCl spectrum. This is due in part to
the difhculty of identifying Mo critical points in absorp-
tion curves. In the reflectance data for KC1, there is a
broad strong absorption between 3 and 6 eV above the
onset of absorption, which would tend to mask out
any Mo edges in this range. In addition, DeCicco found
that his d-like conduction bands moved with respect to
his s-like conduction band when he altered the strength
of the constant term in the AP% potential outisde the
spheres, so that there is several tenths of an eV un-
certainty in the location of critical points in his calcula-

TmLE VII. Transition energies are given for several critical
points in the bands of Nacl both experimentally and theoretically.
These energies are vrith respect to the transition j.'q~ to F~. The
identi6cation of the states responsible for these transitions given
by the several authors is given. Energies are in eV.

Experimental
Ref. a

Transition Energy

0.0

Ref. b
Transition Energy

0.0

Theoretical
Present aport

Transition Energy

0.0
L', Lg

X5', Xg

Xg', Xl
L3', Ll

2.8

3.9 Xg', Xg 3.8

Lg', Lg

X5', Xp 2.7

I'~5, ~as' 8.7
Xs', Xg

6.5
L3' Ls 73

tion involving the states X3, I'25', and J3. In this
calculation, there is about 0.2 eV uncertainty due to
the eGects of altering the form of the exchange po-
tential. It ls not possible to evRhlRte this effect for
DeCicco's calculation. The identification of critical
points in the spectrum as being due to any given transi-
tion should be regarded skeptically when such identi-
6cation is based upon purely speculative grounds.

The results for NaCl are much clearer. Here there
is a much better agreement between experiments and
also a much better agreement between theory and
experiment. It is noted that there may be other ufo
critical points than those required by symmetry and
in the present theoretical calculation these would not be
observed. Insufhcient information exists about the wave
functions throughout the zone to permit a calculation
of the absorption spectra of these substances. The
author feels there are some remarks possible about the
identi6cations of Roessler and %alker. They And thatI I is slightly higher than Fg, but the small energy
difi'erence which they obtain (0.3 eV for KC1 and O.S

~,.J. G. Phillips, Phys. Rev. 1M, A452 (1964). a Reference 35. b Reference 39.



A. BARRY KUNZ

eV for NaC1) seems to be unreasonable if the currently
available calculations are considered. In addition, the
lables given need not be unique, since at the present
level of experimental accuracy the identification of
transition symmetry is pure speculation. It is-also
observed that recent measurements by Frohlich and
Staginnus" indicate that the identification of the band
gap in the alkali halides may be in error, and may be
smaller than currently believed.

Because of the lack of well-defined structure in the
LiCl absorption spectrum, analyses of these theoretical
results are dHBcult. It is observed that, in this calcula-
tion, the conduction band is almost Qat from I'» to L»,
as is the valence band from I'»5 to L3'. Because of this,
it seems likely that the strong absorption immediately
after the first exciton transition"" may be due to
band-to-band transitions involving quasicritical points
along the entire line from I' to L. As in previous calcula-
tions, the spin-orbit splitting at I' in the valence band
for the alkali chlorides is about 0.1 eV and is in good
agreement with experiment. """

The analysis may be continued by examining
Roessler's statement that the various singularities are
of type Mo. In the case of KC1, the present calculation
indicates that the transitions I"»5 to I'», X5' to X3, X5'
to X», and L3' to L3 are of the type 3fo. Thus, in table
VI the theoretical transitions L3' to L» and I'»5 to I'25'

should be discounted. When this is done, the present
results are in better agreement with experiment. It is
clear from the results of DeCicco that he finds the
transitions from L3' to L», I'»5' to I'25', and X5' to X»
not of type Mo. In the case of NaCl, the present results
indicate that, of the transitions given in Table VII,
only the transitions 1»~ to F», X5' to X3, and X5' to X»
are of the type Mo.

Additional information which is obtained from these
calculations indicates that the half-width of the NaC1
valence band is 0.50&0.05 eV and that that of the LiC1
valence band is 0.55&0.05 eV.

The density of states for the LiC1 p-like conduction
band was computed using the results in Tab1.e V and
one thousand nonequivalent points in the first Brillouin
zone, and was compared to the Li+ E edge absorption
results for LiCl of Haensel, Kunz, and Sonntag. '~ Since
these transitions are from the Qat 1s Li+ band to the
lowest p-type conduction band, there should be similari-

ties between the absorption spectrum and the density
of states for the p-like conduction band. The results here
indicate that if the first peak in the density of states is
lined up with the first peak in the absorption spectrum,
then the density of states has maxima where the absorp-
tion spectrum has maxima and the same is true of the
minima. However, there are discrepancies between the
magnitudes of the peaks. For example, in experiment
the first peak is highest by a factor of 2 compared to
the second peak. For the density of states the reverse
is true. The transition probabilities have not been
computed, due to a lack of information about the wave

functions throughout the zone, so that more detailed
comparison is not possible.

The density-of-states. calculation for the conduction
band is highly speculative and of qualitative interest
chieQy. That is, the mixing of the different conduction
levels has been neglected, terms other than those
involving nearest neighbors have been neglected, and
only Wannier functions about a halogen ion site are
included in this approximate tight-binding analysis. It
is felt that for certain qualitative uses these parameters
are of some value.

V. CONCLUSIONS

The OPW method has produced results for the
valence and conduction bands of NaCl, KC1, and LiC1
that are consistent with other recent calculations and
are also consistent with recent experiment, except in
the matter of the band gaps, which are too narrow.
These calculations make it seem likely that X excitons
are important in NaC1, and possibly in LiC1, just as
they are important in KCl. The band shapes and
splittings, except for the band gap, are seen to be in-
sensitive to the choice of exchange potential. Possibly
a better choice of exchange potential would improve the
band-gap calculation. It has also been seen that tight-
binding functions of the most common type are not
good eigenfunctions of the Hamiltonian for the NaC1
valence band. It seems reasonable that this will be
true for other alkali halides as well. This technique
produces useful results for the valence and conduction
states of the alkali halides, and seems to be limited
only by the size of matrices that one is able to afford
to diagonalize.
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APPENDIX A

A brief discussion of the numerical techniques in-
volved is presented here. All single integrations were
performed using Simpson's rule. Both 111and 441 mesh
points were used in the interval with a negligible
difference in the final energies. The energies were
evaluated using a matrix diagonalizer, pioneered by
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Fowler, which looks for changes of sign in the value of
the determinant M», „.p as a function of energy. This
technique extracts roots accurate to +0.0 and —0.00001
Ry. This also produces the eigenvectors corresponding
to the eigenvalue found. The piogram used; to con-
struct the potentials and core functions is basically
due to Herman and Skillman, although it has been
extensively modihed for the present application.

The basic computer used was the Control Data 6600
at the Courant Institute. This mechine has a 60-bit
word length (about 14.5 slgn16cant 6gUles) ' this was a
real advantage. Using a short form of the OP% program
which needs potentials and. core functions as data (hence
avoiding any iterative calculation), energies and eigen-
vectors were obtained using the IBM 360-65 at the
UQlverslty of Pennsylvania. In this case~ the word
length is 32 bits P.5 significant 6gures), and energies
were produced with no better than four-6gure agree-
ment to the CDC 6600 results. The eigenvectors agreed
only to about two figures. It was felt that the disagree-
ment was due to round-o6 error in the IBM 360-65. It
is also felt that the full progr'am, which does iterative
calculations as well as the usual OP% calculations,
should be used only on a machine having a 60-bit word
length or on smaller machines by using double pre-
cision, or the results would be worthless because of
excess round-off error. -

APPENDIX 3
The choice of the form of the exchange potential is

discussed in this Appendix. In all cases, the 6nal ionic
potential is subjected to the modi6cation. as discussed
by Herman and Skillman. " The principal exchange
potential used. is the Slater exchange potential given as'9

In Eq. (31), rydberg energy units are used, and p(r)
is the radial charge density. This potential term is

derived from a free-electron approximation. Using some
slightly di8eient assumptions, Kohn and Sham" have
obtained. the following form for

In Eq. (32), V Ks(r) is the Kohn-Sham exchange
potential and, V, (r) is the Slater exchange potential
given by Eq. (31).

Another form for this potential term has been de-
veloped by Lindgren, 4' This is a more empirical type
of po'tential, and has the form

The quantities C, e, and m are to be considered as
disposable parameters. Lindgren adjusts these param-
eters so that the total system energy evaluated by
solving the Hartree-Fock equation with the Lindgren
form of exchange is as close as possible to the total
system energy obtained solving the Hartree-Fock
equation. For the systems on which Lindgren worked
the, range of parameters was not very great for optimiz-
ing results. It is found that C=0.80&0.10, n= j..15
&0.15, and m=1.0. In the present calculation for
NaC1, C=0.80 and C=0,90, and e= j, .15 and as=1.0
are used. The results for the ionization potential of
the Na+ ion and the electron amenity for the Cl ion
were found to be in poorer agreement with experiment
than for the Slater potential. However, most band
features are seen to be insensitive to the change of ex-
change potential. The only quantity which changes is
the position of the valence bar&.d with respect to the
vacuum. This is approximately given as the sum of the
binding energy of a 3p electron on a Cl free ion and
the depth of the Madelung well which that ion 6nd. s
itself in. Other band features are insensitive to the
choice of exchange potential. This is not unreasonable, as
is seen from recent theoretical results due to Gilbert. ~


