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Several first-order methods for rearrangement collisions are compared by applying them
all to the saxne problem: electron-exchange scattering off the hydrogen atom. The methods
considered are Born-Oppenheimer (BO); Bates-Bassel-Gerjuoy-Mittleman (BBGM); and
Ochkur (0) with its modifications by Rudge and Bely. Whenever possible, they are compared
with close-coupling calculations or polarized-orbital calculations. The BO approximation
gives better results if the core term is retained, indicating that this inclusion helps to achieve
a cancellation of errors. The BBGM first-order method is found to give reasonable integral
and differential cross sections at intermediate energies but not at low energies. The methods
of Ochkur and Rudge give improved integral cross sections, but at low energies the differential
cross sections may be poor. The unitarization procedure of Seaton and Bely is extended to
calculate exchange scattering off neutral systems but only slightly improves the Ochkur-
Rudge (OR) results. None of the methods examined is sa, 'isfactory in all regards. Several
other improved methods are also reviewed.

1. INTRODUCTION

In 1950, Bates, Fundaminsky, Leech, and Mas-
sey' made an extensive study of the Born-Oppen-
heimer (BO) approximation'~'a for the scattering
of electrons by atomic systems. They concluded
that BO calculations on transitions requiring elec-
tron exchange are very poor both as regards shape
and absolute magnitude

'
and frequently lead to

cross sections mhich violate the conservation theo-
rem. 'b Further, for transitions not involving a
reversal of electron spin, the exchange contribu-
tion calculated by the BO method generaDy leads
to gross errors at low energies'"a' (where the
electron-exchange contribution is important).
These are indications that the BO approximation
is poor for rearrangement processes in general.

Many workers have felt that the inadequacy of
the BO approximation is due to the inclusion of
core terms in the scattering amplitude. Day, Rod-
berg, Snow, and Sucher4 have emphasized that, for
the case of an infinitely heavy core (which is an
excellent approximation for electron- exchange
scattering from an atom), the exact rearrange-
ment scattering amplitude can be written so that
the matrix element of the core interaction does
not contribute; i. e., if we use the exactly correct
scattering wave functions to calculate the scatter-
ing amplitude, equal results are obtained whether
the core is included or not. The only effect of the
core is then to distort the incoming and outgoing
particle waves from what they would be in the ab-
sence of particle-core interactions. Because of
this they argued that the core term should not be
included in the potential in the BO calculation;
however, since in this approximation the incident
and scattered waves are treated as undistorted,
this argument is not conclusive. In other words,
the plane-wave approximation can be made either
before or after the core-term integration is made
(in the latter case, the core interaction does not
explicitly appear in the transition matrix). These
are two different approximations, and it is not
possible to decide in an a priori way which will

furnish better (or more consistent) results. Some
workers have argued that including the core in the
BO amplitude compensates for not including dis-
tortion. 'a We have done calculations in both the
BO and the BO-minus-core (BOMC) approxima-
tions to help resolve this problem.

The prior core-interaction term would not con-
tribute to the scattering amplitude if the initial
and final wave functions of the scattered particle
(which for exchange scattering is initially bound)
mere orthogonal. In the Born-Oppenheimer ap-
proximation, the scattered particle is represented
by a plane wave. Then the necessary orthogonal-
ity holds only in the high-energy limit. Various
methods have been advanced for correcting this
nonorthogonality flaw in the BO approxima-
tion. ' ~' These methods explicitly or effectively
establish orthogonality of initial and final states
so that a constant potential will not make a con-
tribution to the approximate rearrangement scat-
tering amplitude. Another approach to correct-
ing the BO amplitude was suggested by Ochkur. "
He attempts to separate from the BO amplitude
those parts which might make erroneously large
contributions to the calculated scattering amplitude
at low and intermediate energies by expanding the
BO amplitude about its high-energy limiting form
and using only the first term at all energies.
Thus, those contributions that are small at high
energy (where first-order theories are expected
to be valid) are not allowed to become large and
dominate the approximate amplitude at low ener-
gies. The Ochkur theory has been corrected by
Rudge and these modified theories (0 for Ochkur
and OR for Ochkur-Rudge) lead to significant im-
provement of the calculated integral cross sections
for excitation processes. '~" " In all these theo-
ries, it is not clear how much of the diff erence from
the unmodified BO approximation is due to remov-
ing parts of the core interactions, how much is due
to introducing orthogonality, and, in the 0 and OR
theories, hom much is due tothe rest of the changes.
In this paper, we attempt to sort out some of these
details.
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None of these approximation schemes automati-
cally satisfies the conservation of particle flux re-
quirements which would be expressed by the uni-
tarity of the scattering matrix S." To satisfy the
unitarity requirements we employ a unitarization
technique" involving the reactance matrix R. Ap-
plication of this technique to the OR method was
first suggested by Bely." A detailed comparison
of the two methods is made in Secs. 3.4 and 3.7.

In this paper we will examine many first-order
methods, applying them all to the same problem.
We calculate cross sections differential in angle
as a function of incident energy. For computation-
al convenience, we consider a simple case:
electron-exchange scattering off the H atom. This
process is observable because it can change the
value of E (the total spin of the proton-bound elec-
tron two-particle system). This 1s-1s exchange
process can cause the 21-cm hyyerfine transition
important in radio astronomy. '4 (Spin-change
cross sections may be determined in the labora-
tory by observing the depolarization of electron-
spin-aligned atoms caused by collisions with elec-
trons. ") Elastic scattering includes the exchange
of identical particles if this is not accompanied by
net excitation or de-excitation. The energy separa-

tions of the hydrogen hyperfine levels are a million
times smaller than the translational energies of the
electrons so that we will consider collisions involv-
ing only a spin change to be elastic.

The role played by the core terms and nonorthog-
onality in the BO expression for the amplitude
will be examined. The removal of core terms in
the 0 and OR theories will thus be separated from
the other changes brought about by these theories.
This is important because in more complicated
cases (such as the treatment of chemical and nu-
clear rearrangements) it is not simple to make
the Ochkur and Rudge modifications completely.
We show numerically what kind of improvement
can be obtained using the unitarization procedure.
Although such a unitarization scheme could be ap-
plied to any approximation scheme which satisfies
detailed balance, we will consider only the result
of applying it to the 0 and Ochkur-Rudge-Bely
(ORB) results. We also compare our results with
the more complicated close coupling (c.c.) and po-
larized orbital (PO) calculations and with experi-
ment.

In an appendix we give, for the reader's conve-
nience, a glossary of abbreviations used for meth-
ods and approximations.

2. METHODS

2.1 Born-Oppenheimer Approximation With and Without the Core Term

(4)

Consider the exchange scattering amplitude for the process

e, + H(ls) -e, + H(ns). (1)
Let R, and kz denote the wave number vectors of the incident and scattered electrons, respectively. The
exchange scattering amplitude for this process can be written in the BO approximation as

1

g (8)=(me'/2mfi')(0 /0 )' fJV y (~)q *(x )e ' ' n 'dr dr (2)

where V = 1/x» —1/r„wO
(3)

and g„g~ are bound-state wave functions for the hydrogen atom electrons. Here 8 is the angle of scatter-
ing, i. e., 8 = arccos(k, 2„) and the other symbols have their usual meaning. Equations (2) and (3) are
written in the prior interaction form. When the BO amplitude is calculated using approximate bound state
wave functions, different results are obtained using the post and prior forms of the interaction potential. '
Since we know and use the exact wave functions for the H atom, the post-prior discrepancy does not appear
in, %his case. We can also do calculations in the Day, Rodberg, Sucher, and Snow first-order approximation4
(called BOMC), where VBO is replaced by

~BONG

i.e., we drop the core term. As explained in the Introduction, it is difficult to decide which of these two
approximations will furnish-better results in an a Priori manner. Neither of them includes distortion. In
the BOMC approximation there is no post-prior discrepancy even if approximate electronic wave functions
are used for the bound states.

The integrals necessary for the calculations implied by Eqs. (2)-(4) can be evaluated using the formulas
of Corinaldesi and Trainor. "

2.2 The Bates, Bassel-Gerjuoy, and Mittleman Methods

One method of improving the BO amplitude has been given by Bates. ' He noted that the ambiguity in the
choice of potential for the interaction matrix element is due to the nonorthogonality of the initial and final
particle wave functions in this approximation. If these wave functions were orthogonal, even though not
exact, the core would not contribute to the approximate scattering amplitude. Bates derived a result taking
explicit account of this nonorthogonality. Similar results were derived by Bassel and Gerjuoy27 and Mittle-
man. They noted that although the elastic-scattering system wave function is not orthogonal to the final
state system wave function, it contains no rearrangement. Hence they removed the elastic scattering
from the total wave function before calculating the rearrangement amplitude. In the usual first-order ap-
proximation2' their results agree"a with those of Bates. For the case of an infinitely heavy core, the core
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term does not contribute to the exact amplitude in their formulation. Mott and Massey, however, have
shown by a variational method that the usual BO approximation should be preferred to a first-order
approximation of the Bates, Bassel-Gerjuoy, and Mittleman formulation (denoted BBGM1).""

The BBGM1 theory may be understood by the two-potential formula derivations of the distorted wave
method. ~"~ The transition amplitude may be considered as due to the full interaction potential V acting
on an unperturbed initial state wave or as due to some part V- U of the potential acting on a wave scattered
off U. Then in the BBGM1 calculation the wave distorted by U is approximated by a plane wave. Thus the
BBGM1 amplitude is calculated from Eq. (2) with VBO replaced by VBBGM= VBO —Uav, where Uav is the
average interaction potential in the incident channel.

(6)

= 1/t„—'fg, (r,)(1/v„)g, (r,)dr, (6)

= (1/x») —(1/xm) [1—(r2/a + 1)exp(- 2x,/a )] . (7)

Etluation (7) shows that the BBGM treatment in this case essentially removes the singularity in the potential
at x, = 0. Note that in obtaining Eci. (6) we regard the proton as infinitely massive (therefore stationary) dur-
ing the interaction. The core term [which is of order (1/1836)] then vanishes completely. Putting (7) into
(2) we obtain (in Hartree atomic units)

g„=g„+96/(9+k,') (1+k,') +16/(9+k, ') (1+k,')8BGM1 BO a' 2 2
(8)

and

g» =g» P2/(k, ' 1) ](4/(q+k, ') 10/(q+k, ') —[4(q- k,')/(q+k, ') ]j. (9)

2.3 The Ochkur and Ochkur-Rudge Methods

Recently, new modifications of the BO formula
have been presented by Ochkur" and Rudge. ' As
mentioned above, Ochkur expanded the rearrange-
ment scattering amplitude in inverse powers of the
incident particle wave number k, . He then suggest-
ed that one drop all terms in the expansion except
the first. Thus the terms which are small at high
energy (where a first-order perturbation treatment
like the BO method would be expected to be valid)
are neglected at all energies. The core interaction
matrix element is entirely terms of this type and
thus is automatically neglected. Ochkur found the
first term g in the high energy expansion of the
exchange amplitude fur electron-atom scattering to
be&2

gl„(R„R )=(q'/kp)f (R„R ),

where j=kn —R, is the wave-number transfer vec-
tor so that

(10)

q=[k '~k ' —2k' co8s]'~'

and

f (R, % ) = (me'/2wFi )(k /k, )'~'

i(%, -% ) r,
x ff~

" (1/x»)(, (r, )g (x,)dr,dr, (12).
fin is the Born direct amplitude for n 01. For
elastic scattering it is only part of the Born direct
amplitude. The formula (10) was first derived by
Bonham. " The integral (12) has been evaluated for
the hydrogen atom by Bethe and Massey and Mohr
and is given by Corinaldesi and Trainor. "

An alternative derivation of Ochkur's result has
been presented by Vainshtein, Presnyakov, and
nobel'man. " Still another derivation has been
given by Vriens, "using a method originally sug-
gested by Ochkur. "

Budge' modified the 0 result so that the scattering

amplitude can be derived in a straightforward way
from a variational expression. In Rudge's treat-
ment the initial and final wave functions of the sys-
tem are explicitly orthogonal, and the scattered
wave has the correct normalization at all energies.
This change in normalization leads to the Ochkur-
Rudge exchange amplitude' "~

gl (R„R )=exP(i(fl )

x [(a q)'/(1+a k' )]fl (R„k ), (13)

where $1 = 2arctan(1/a k ). (14)
1n On'

2.4 The Ochkur-Rudle-Bely Method

The BO and 0 approximations satisfy the prin-
ciple of detailed balance. " This is manifest in
the symmetry of the 8 matrix. " Bely 3 has shown
that the OR result can be corrected to satisfy de-
tailed balance if the scattering amplitude is re-
placed by its absolute value. %e will call this the
ORB. I result, i.e.,

ORB. I
I

OR) (16)
None of these approximation schemes automatical-
ly satisfies the conservation of particle flux re-
quirement which would be expressed in the unitar-
ity of the scattering matrix S." Violation of the
conservation theorem can be avoided by using a
unitarization technique" ~~~ ' involving the reac-
tance matrix R, 3' This is a powerful technique
because the real and symmetric R matrix has the
property that the S matrix calculated from any set
of approximate R matrix elements is necessarily
unitary. f Percival Seaton and co-workers, 2~

and Somerville" have used this fact to correct the
Born approximation for direct scattering and Bern-
stein, Dalgarno, Massey, and Percival'+ have em-
ployed a similar correction. Bely ' has used the
reactance matrix technique to correct the ORB. I
result for rearrangement scattering. The correct-
ed version is called the ORB. II approximation.
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(We will also apply the correction to the 0 approx-
imation, which may also be called O. I, and call
the unitarized result the O. II method. )

To perform the unitarization we first expand '
g(8) in partial waves to obtain the weak coupling
T matrix. For s states,

g (8)= .
~

+ (2l+I)T ' ' P (cos8). (16)In 2ia,k, l
1n l

We do the required expansion integrals analytical-
ly" but in more complicated cases they can be
done numerically.

This weak coupling T matrix (called T ) should
be and is a pure imaginary number and is related
to the R matrix by

T =2iR .I
(IV)

From the R matrix we obtain a unitary S matrix

S = (1+m)/(I —iR) (16)
and finally a corrected T matrix T by

T =S—I . (»)
In order for TI to be pure imaginary we must have
g pure real. We obtain from the Ochkur approxi-
mation (O.I) a corrected O.II T matrix and ampli-
tude. From the ORB. I result we obtain the cor-
rected ORB. II T matrix and amplitude. Although
the ORB. I result at first appears worse than the
OR result (because it neglects the complex phase),
Bely" has shown that no real improvement is lost
in the procedure described by Eq (15).. [This last
statement applies only when there is no interfering
direct process occurring (see Eqs. (32) and Sec-
tion 3.4. )].

To make calculations according to (18) for the Is
-1s and Is- 2s processes, we need also to know
the 2s-2s amplitude. It can be shown that for
elastic scattering with spin flip from the 2s state
at incident wave number k, we have

g» — f g, '(~,)e'q 'dr, (20)
(k, —i/2)'

sidered here. The BSS c. c. calculations include
three states of the H atom: Is, 2s, and 2P. In gen-
eral,

gl (8) =-,' [A 1
(8)-A

1 '(8) ] (24)

where AI~ and AI~' are the singlet (S=O) and
triplet (S = 1) scattering amplitudes, respectively
(S is the total spin of the two-electron system). Ex-
panding in partial waves, we have (for s states)4'

(8) = 2. &
Q (2l+1)T '

P&(cos 8) . (25)ln 2i~o~~
l 0

In l

2.6 Integral Cross Sections

The methods outlined above all lead to the ex-
change differei. tial cross sections

I (8) = Ig(8) I' . (26)

We obtain the integral cross sections by a 49-point
Weddle' s Rule4' integration (unequal steps) over
the differential cross section using

For elastic scattering below the threshold for the
first excitation process (10.2 eV), the phase shifts
are real and we have

S
lS =8 —1 (26

where glS is the phase shift. In the other cases the
T matrix is calculated from the R matrix by

T =2iR /(1 —iR ) .
lS . lS

(27)

Equation (27) is, of course, equivalent to Eqs. (18)
and (19). We calculatedtheT matrix from published
phase shifts" and R matrix elements, '~ and then
used Eqs. (24) and (25) to obtain the exchage am-
plitudes.

For purposes of comparison, we also computed
exchange elastic cross sections from the phase
shifts of Temkin and Lamkin. ' These were ob-
tained using Eqs. (24)-(26) a.s above.

2 I —3q'+ 2@4

(k, —i/2)' (1+q')

g» = [ (k, —i/2)'/y, ]g»

(21)

(22)

=2m fI (8) sin&d8 (29)

This was checked by a 61-point quadrature and also
by the formula

and

ORB. I 2(1 —3q'+ 2q')

(k,'+' )(1+q')'
(23)

where g, (x,) is the bound-state wave function of
electron I bound to the proton in a 2s state. Again,
the results are given in Hartree atomic units. Q =, Z (2E+1) T (31)

Q„=—,Z (2l+1)sin'(7i '- q ')
k~ l

for elastic scattering below the first threshold and
by the formulates

2.5 'the Close-Coupling Method

Whenever possible, we compare our results
with the exchange scattering amplitude from the
close- coupling approximation calculations of Burke
and Schey ' and Burke, Schey, and Smith4~ (BSS).
Calculations by the more accurate correlation
method are not yet available for all the cases con-

in the other cases. The integral cross sections
computed by the two methods in general agreed to
six decimal places.

2.7 Direct Scattering

Because the rearrangement we are considering
is an exchange of identical particles, the ampli-
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tude can interfere wave mechanically with the cor-
responding direct scattering process. We must
take the correct linear combination of amplitudes
to exchange degenerate states in order to obtain
the total probability for the process

e +H(m)-e +H(n),

where now the electrons are treated as indistin-
guishable. We find that the total differential cross
section is

t(8)=I „(8)+f „'"(8)+I „(8), (32)

where I (8) = I f(8)l' (32a)

is the direct differential cross section, f(8) is the
direct scattering amplitude, & ex(8) is the exchange
differential cross section, and

&'" (8) = - &eL'f(8)g'(8)l (32b)

is the interference contribution. The exchange
scattering is sometimes called spin-flip scattering.

2.8 Experimental Cross Sections

Three sets of experimental spin-flip cross
sections for the 1s-2s excitation were obtained as
follows. Lichten and Schulz4' measured the ratio
of Q to Q . (The tota]. cross section Q
includes both direct and exchange scattering. )
They claim for their ratio an accuracy of 5% for
energies within a few eV of threshold and 8% else-
where. Since there is still no universal agree-
ment on the absolute magnitude of Q»t t, the
Lichten-Schulz (LS) ratio was combined with
three different sets of data. Stebbings, Fite,
Hummer, and Brackman (SFHB)" normalized
their data for Q» o by using their experimental
Qls-2s ~(Qls-2s + Qls-2P) and the Born aPProxi-
mation at 200 eV to normalize their experimental
Qls 2p. The Qlq 2s' so obtained is the total
cross section for production of 2s atoms, includ-
ing the contribution due to radiative decay from
higher levels excited by electron impact. We re-
tained their normalization procedure but use the

TABLE I. The scattering amplitude for 1s-1s exchange scattering (in ap).

BO BOMC BBGM1 0 ~OR BS

15 4 eV
8

12
16
20
28
36
44
60
80

100
150
300
500

-1.815
-0.389

0.166
0.3 94
0.484
0.5.08

.0.470
0.422
0.335
0.257
0.204
0.127
0.048
0.021

5.570
3.606
2.566
1.947
1.545
1.068
0.801
0.633
0.436
0.306
0.231
0.136
0.050
0.021

-0.123
0.686
0.901
0.922
0..878
0.747
0.627
0.530
0.3.94
0.289
0.223
0.134
0.049
0.021

6.735
3.334
2.201
1.634
1.295
0.907
0.692
0.556
0.392
0.281
0.215
0.129
0.047
0.021

1.530
1.235
1.031
0.883
0.771
0.610
0.502
0.424
0.320
0.240
0.189
0.118
0.046
0.020

123
105

94
85
79
70
63
58
51
45
40
34
24
19

18'

85'

0.01 Ry
0.1
0.3
0.5
0.7
1.0
1.44
2.25
4.00
4.00 Ry

-5.761
-4.011
-1.782
- 0.699
-0.137
0.261
0.455
0.476
0.340

-0.021

9.769
8.010
5.501
4.402
3.119
2.261
1.557
0.942
0.468
0.107

-2.861
-1.600
-0.107
0.522
0.787
0.901
0.861
0.682
0.412
0.051

199.902
19.902
6.570
3.904
2.762
1.906
1.296
0.799
0.415
0.063

1.979
1.809
1.516
1.301
1.137
0.953
0.765
0.553
0.332
0.050

169
145
123
109
100

90
80
67
53
53

2.185
0.982
0.276
0.629
0.583
0..550
0.641
0.588
0.369
0.072

140' 4.00 Ry -0;070 0.058 0.002 0.024 0.019 0.059

18' 11 eV 0.049 2.754 0.853 2.379 1.063 96

60' 11 eV -0.450 2.255 0.354 1.712 0.765

120'

170

11 eV

ll eV

-1.076

-1,260

1.629

1.445

-0.272

-0.456

0.959

0.761

0.429

0.340
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TABLE II. The scattering amplitude for 1s-2s exchange scattering at 45 (in ap)

E (eV)
BO BOMC BBGM1 0 OR, OR

12
16
20
24
28
36
44
52
60
80

100
150
300
500

-0.5950
-0.3489
-0.1660
-0.0633
0.0074
0.0384
0.0487
0.0476
0.0430
0.0304
0.0211
0.0095
0.0018
0.0005

0.7592
0.6339
0.4936
0.3899
0.3144
0.2157
0.1560
0.1172
0.0906
0.0522
0.0329
0.0132
0.0023
0.0006

-0,4558
-0.2218
-0.0622
0,0209
0.0615
0.0858
0.0827
0.0728
0.0622
0.0410
0.0277
0.0120
0.0022
0.0006

0.1970
0.1936
0.1779
0.1604
0.1434
0.1136
0.0902
0.0723
0.0586
0.0364
0.0240
0.0103
0.0019
0.0005

0.1535
0.1596
0.1521
0.1405
0.1279
0.1038
0.0837
0.0679
0.0555
0.0349
0.0232
0.0100
0.0019
0.0005

140
114

99
90
82
72
65
59
55
48
43
35
24
19

recent calculations of Morrison and Rudge" to re-
correct for the cascade. The corrected result is
called Q, B. Hils, Kleinpoppen, and Kosch-
meider (HKK)" normalized their data to the Born
approximation:for Q»tot at 200 eV. Their result
is called Q»H~. Burke, Taylor, and Ormande
(BTO)" suggested that the Lichten-Schulz Q»tot
measurements be normalized to correlation meth-
od calculations of Taylor and Burke" in the region
10-11eV. This gves a third experimental curve
(called Q LS BTU). There have been no experi-
ments on the elastic exchange scattering from the
hydrogen atom.

3. RESULTS AND DISCUSSION

3.1 Contribution of the Core to the BO Amplitude

Although the spin-flip differential and integral
cross sections depend only on Igl', the sign, or
complex phase factor, of g is important in calcu-
lating total cross sections [see Eqs. (32)]. Also,
since contributions to g from the rearrangement
term 1/x» and the core term. —1/r, are of oppo-
site sign, a study of g including the sign can be
informative in discerning the effect of the core

term. Tables I-III give values of g computed in
the various nonunitarized approximations at vari-
ous energies and angles. These are typical
results —the results for other angles are qualita-
tively similar. The values of lgl for exchange
elastic scattering which we computed from three-
state close- coupling approximation results" ~'~

are also presented where available. At energies
below 0.85 Ry these are very accurate~ and serve
as a standard for comparison. Comparing the BO
and BOMC amplitudes we see that the core term
dominates the BO scattering amplitude at low en-
ergies. This fact had been previously conjectured
for electron scattering. '~" However, merely
dropping the core term (as suggested by Day et al. )
leads to even worse numerical agreement with the
accurate calculations. Bates, Fundaminsky, and
Massey'a and Massey and Burhop"'a have cautioned
that keeping the core term was probably necessary
for a partial cancellation of errors in the approxi-
mate BO theory, and Bates" pointed out that the
BOMC approximation is especially bad at low en-
ergies; but we have not found any examples in the
literature (other than the ones given here) where
this has been shown by a direct comparison of the

TABLE III. The scattering amplitude for 1s-2s exchange scattering at 120' (in ap).

E t,'eV) BOMC OR OR

12
16
22
24
28
36
40
50

100
250
500

-0.5499
-0.3817
-0.2562
-0:1783
-0.1289
-0.0737
-0.0577
-0.0339
-0.0059
-0.0005
-0.00007

0.8043
0.6010
0.4035
0.2749
0.1929
0.1036
0.0788
0.0432
0.0059
0.0004
0.00004

0.1798
0.1500
0.1038
0.0780
0.0573
0.0331
0.0259
0.0151
0.0024
0.0002
0.00002

140
114

99
90
82
72
68
61
43
27
19
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TABLE IV. Total differential cross section I ls(e) calculated using the Born approximation for f (e) . E= 1.0 Ry.
Cross sections in ao .

BOMC BO 0 OR BBGM1

30'
60'
90'

120'

7.370
4.876
3.103
2.160

0.976
0.403
0.325
0.491

5.505
3.078
1.593
0.921

1.596
0.928
0.506
0.308

2.152
0.964
0.343
0.154

2g 30'
60
90'

120'

0.364
0.432
0.478
0.476

0.720
0.455
0.336
0.312

0.146
0.071
0.046
0.036

0.245
0.151
0.091
0.059

0.528
0.301
0.201
0.179

28—
t

t

t

t

24--
t

C4 0
Cf 20—

two methods for the same process. Clearly nei-
ther the BO nor the BOMC result is useful at low
energies. Similar considerations apply to the 1s-
2s amplitudes (Tables II, III) where the BO and
BOMC results are much larger than the approxi-
mately correct' OR results. To further empha-
size the unsuitability of the BOMC result we have
computed a few values of It(8) using Eqs. (32) and
the Born approximation" for f. These are pre-
sented in Table IV for the several methods of com-
puting g.

At very high energies, the contribution of the
core term is smaller. In the examples considered
here, the difference between the BOMC and the
BO integral cross sections is about 10' at 300 eV
and 1/o at 1000 eV.

The results discussed in this section indicate
that merely dropping the core term (as suggested by
Kang and Sucher4) worsens the results. The next
section discusses the BBGM1 method, which is a
more consistent way to correct the BO amplitude.

I t l

0.4 0.6
E(R )

I

0.8

FIG. 1. Integral exchange elastic cross sections (in

ao ) for electron-hydrogen scattering in several approxi-
mate theories and from the accurate calculations of
Burke and Schey (BS) and Gailitis (6). The small x' s
show results from the unitarized calculations dis-
cussed in Sec. 3.7. The two lowest x' s are ORB. II
results and the two higher &&' s are O. II results.

3.2 The ModiGed Born Approximation of Bates,
Bassel and Gerjuoy, and Mittleman

As seen in Tables I-IV, the BBGM1 results are
better than the BO and BOMC ones. This indi-
cates that the effective orthogonality

' of the ap-
proximation is partially successful in removing
spurious core contributions and in leading to a
more consistent treatment. Figure 1 compares
the BO, OR, and BBGM1 cross sections for the .
low-energy exchange elastic scattering with the
accurate results of Burke and Schey and the very
accurate variational results of Gailitis. " (The
BOMC and 0 results are much too high in this en-
ergy range. They are, respectively, 10-23 times
and 5-120 times larger than the OR result in the
range shown. ) Figure 2 compares the integral 1s-
2s exchange cross sections computed in the vari-
ous approximations with the BTO and SFHB exper-
imental results (the HKK experiment gives results
about 0.7 times the SFHB results). These figures
show that the BBGM1 result is a considerable im-
provement over the BO approximation but is not
accurate enough for useful quantitative predictions
in all cases.
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I2 l6 20 24

E(ev)
. 28 32 36 40

FIG. 2. Integral exchange cross sections (in ap ) for.
the ls-2s excitation of hydrogen by electrons in several
approximate theories and from experiment (LS and

SFHB). The rise of the BBGMl, BO, and BOMC ap-
proximate curves is not shown. The BO result is not
drawn for energies above 27 eV. In that region it drops
below the 0 and OR results. The failure of the BBGM1
theory at low energies here is similar to the failure of
the El approximation at low energies for He exchange
excitation (cf. Figs. 1 and 2 of Ref. 18).

Bell, Eissa, and Moiseiwitsch" noted that this
term is small in the case of atomic hydrogen exci-
tation to the 2s and 2p states except just above
threshold. "r" Consequently, they neglected this
term in their calculation of exchange scattering off
He. " Mittleman' has developed a whole series of
approximations in which some of the nonrearrange-
ment part of the wave function is projected out be-
fore the rearrangement scattering amplitude is
calculated. If only the direct elastic scattering is
removed the result is the BBGM approximation
used above. If the direct elastic scattering and
direct excitation to the state n are removed, and the
exchange excitation to state n is calculated in first-

There are other methods in use which are close-
ly related to the BBGM1 result. Feenberg" de-
rived an expression for the exchange amplitude
by successive approximations solution for the
scattered wave function using a wave scattered
off Uav as a first approximation. He then made
a first-order approximation and found that the
BO approximation did not include all terms first
order in the interaction potential. Bell and
Moiseiwitsch" rederived this result using the
method of Bates. ' They called their result the
first-order exchange (E1) method. For elastic
scattering

F 1 BBGM1
~nn ~nn

but for exchange excitation the F.1 result contains
one more term. This corresponds to using in Eq.
(2) the potential

V = P —f( (x,)P $,(x,)d7', (34).

order approximation,
'

the result is the E1 approxi-
mation.

The BBGM1 and El approximations are interest-
ing because their application to complicated prob-
lems involving general potentials is straightforward
Indeed the BBGM1 method has been very instruc-
tive in considerations of the charge-transfer
process

A +B-A+B . (35)

In the electron scattering case the core term is re-
placed by one similar in appearance [compare Eqs.
(3) and (7)] but different in origin. In the BBGMl
treatment of the electron-capture reaction

H +H H+H, (36)

3.3 The Modified Born Approximation
of Ochkur and Rudge

We have seen that while the BBGM1 and E1 ap-
proximations are a great improvement on the BO
approximation, they sometimes still overestimate
the cross sections at low energies. The methods of
Ochkur and Rudge are an attempt to correctly ex-
trapolate the BO amplitude to low energies by re-
taining at all energies only the term in an expan-
sion of the matrix element in powers of (I/O) which
is largest at high energies. The 0 approximation
may be considered just as an OR approximation
with improper normalization of the wave function.
Using a trial function whose high-energy limit is
suggested by the 0 result but which has the correct
asymptotic form at all energies, the OR result can
be derived either with' or Without'4 a variational
principle. Thus in the high-energy limit the GR,
0, and BO results are identical. For electron

the same is true of the term representing the inter-
action of the two positive nuclei (this is not a core
term in the sense of Day et al. '). The appearance
of these nuclear interaction terms in the BO inter-
action potential for reactions (1) and (36) was re-
garded as somewhat unphysical, and it was not com-
pletely understood why their inclusion improved
agreement with experiment. '6~"~ However, the
unphysical" term in the BO potential and the term

in the BBGM1 potential would not be so similar if
the nucleus involved had a larger charge [as in
(35) with B a hydrogenic atom of nuclear charge Z
greater than 1] or if the interactions were not both
of the same (here coulombic) form. " That the ap-
proximate correctness of the BO amplitude for (1)
and (36) is an accident related to the proton and
electron having the same charge is substantiated
by the worsening of the BO approximation for the
process"

He +H-He +H . (37)
In the final state of reaction (37) there is a proton
and a hydrogenic atom of charge Z greater than one.
Jackson showed that the unphysical term in the BO
approximation for (36) is canceled by an identical
term in the second Born approximation but that
this cancellation does not occur for (37). It is ex-
pected that the origin of terms in the BBGM1 ap-
proximation is essentially correct, and the BBGM1
approximation should be applicable not only to (1)
and (36) but also to (37) and a wide variety of other
reactions.
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Brattsev. '9 If one assumes only the s and p par-
tial waves can contribute this calculated cross
section violates the conservation theorem' by fac-
tors of 364 and 146 at 2 and 4 eV, respectively.
Another example is the 2'S- 2'S process in He, as
discussed by Morrison and Rudge" and Beigman
and Vainshtein. "

Figures 2 and 3 and previous calculations by
others'p "p"y' show that the OR approximation for
exchange-excitation processes gives a reliable in-
tegral cross-section curve with close to the cor-
rect magnitude and shape. For the elastic scat-
tering the agreement is worse. For elastic scat-
tering the Born approximation has long been con-
sidered inaccurate" and the new modifications may
not have completely corrected this. ' A possible
explanation of this failing is that a first-order per-
turbation approximation to the scattering amplitude
does not include all the important interactions in
the low-energy region. In this energy range, the
distortion effects of the long- range polarization
potential are important but are not included in the
usual first-order theory. This interaction may
affect the elastic scattering so strongly that first-
order methods which neglect it do not work well.

E (eV)

FIG. 3. Integral exchange cross sections (in ap ) for
the 1s-2s excitation of hydrogen by electrons in several
approximate theories. This semilog plot illustrates the
shapes of the cross sections; when two curves are
parallel, the cross section curves have the same shape.
Data are all normalized at 13.605 eV for this plot. At
the far left, the order of the cross sections (from top
down) is: BBGMl, BO, BOMC, 0, and OR. The initial
rise of each cross section is not shown. Four of the
shapes agree approximately with the shape of the experi-
mental curves (not shown). The BBGM1 shape is poor at
these energies.

scattering from atoms, the matrix element of the
core interaction vanishes very rapidly at high en-
ergy, and the BOMC and BBGM1 results also ap-
proach the BO approximation. It should be men-
tioned, however, that this is not always the case.
For Reaction (35) the term representing the inter-
action of the two nuclei contributes appreciably to
the BO amplitude at all energies' and the BO and
BBGM1 results are not identical at high energy.
In fact QBBGM1 tends to the Brinkman-Kramers"
result Q —which is obtained by omitting the nu-
cleus-nucleus interaction from the BO approxima-
tion. " In the high-energy limit for the Reaction
(36), QBK=-1.51QBO, but this limit is attained
very slowly. At 1 MeV '

Q K=2.70QBO and
BBGM1 = 1.98QBO,
Table I shows that the 0 approximation fails bad-

ly for low-energy elastic scattering. This was ex-
pected from the comments of Morrison and Rudge, "
who noted in comparing the 0 and OR amplitudes
that the former would not give reliable results for
any transition in which the energy separation is
small compared with the ionization energy. This
particular shortcoming of the 0 approximation is also
demonstrated in the cross section for the 2'8-2~&
excitation of He as calculated by Ochkur and

3.4 Complex Nature of the Scattering Amplitude

The exact scattering amplitude ge is a complex
number, i.e. , ge= l~lexp(ice). The phase Q of
the exchange scattering amplitude does not affect
the exchange cross section but does enter into the
term for the interference of direct and exchange
scattering [see Eqs. (32)j. The phase is also im-
portant in determining the interf erence between scat-.
tering from different centers as in high-energy
electron scattering from a molecule with two or
more nuclei. ".~" Further, a calculation predicts
zero spin polarization of the scattered electron un-
less at least one of f and g is complex. 's It is well
known that the scattering amplitude cannot be con-
sistent with conservation of particle flux unless it
is complex. '~ This complexity, however, is a
necessary but not a sufficient criterion. The com-
plex result of Bely (ORB. II) does, however, auto-
matically satisfy the conservation theorems. The
complex O.II expression or any other unitarized
expression is also satisfactory in this regard.
Table V illustrates the complex nature of some of
these amplitudes. There is no apparent correla-
tion between the phases of the close-coupling ex-
change amplitudes and the phases of the unitarized
first-order approximations. In general, though,
the OR result is closer to 180' wl~en the BO and
BBGM1 results are negative and closer to 0' when
they are positive. The phase of the OR result has
previously been criticized by Bely. 23 The compar-
ison in Table V, however, shows that none of the
first-order methods considered here gives the
phase of the exchange scattering amplitude in
agreement with BSS.

3.5 Angular Distrubution at Intermediate
Energies

The literature has very little discussion of angu-
lar distributions of scattered particles as predic-
ted by first-order theories of rearrangement.
This is because there is hardly any experimental
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data available. One case for which comparison
is possible is the electron impact exchange exci-
tation of the He 2'S state. The differential cross
sections predicted by the 0 and OR methods (the
O, OR, and ORB.I methods predict — except for
normalization — the same angular distributions)
are peaked off zero degrees at all energies up to
95 eV. "a This agreed with the experiments of
Ehrhardt and Willman" at 22-24 eV but disagreed
with the 56.5-eV experimental results at 5-50 of
Simpson, Menendez, and Mielczarek. " Vriens,
Simpson, and Mielczarek" studied experimentally '

the angular distribution from 5 to 15 in the energy
range 100-225 eV. They also found the differential
cross section predicted by the 0 approximation
disagreed strongly with experiment. They could
not test the validity of the 0 approximation at
larger angles. Miller and Krauss" calculated the
BOMC differential cross section from 0 to 60' for
comparison with these results. They found that
at these high energies and these angles the BOMC
and 0 results agreed and hence the BOMC also dis-
agreed with experiment. A second ease for which
comparison is possible is excitation of the b Z~
state of H, . The angular distribution for excitation
scattering to this state at 35-60 eV is peaked off 0'
and agrees with the OR result, but at lower ener-
gies it disagrees. " There has been no previous
report of the BBGM1 angular distributions.

The electron scattering off atomic hydrogen pre-
sents an opportunity to test the various methods
because they can be compared with close-coupling

' calculations. Although the OR integral cross sec-
tion for the 1s-2s excitation is much better than
the slowly converging close-coupling results, ' ""
we might hope that the close-coupling method
gives qualitatively correct differential cross sec-
tions. The reason is that the validity of the high-
energy approximations of first-order methods are
often effectively angle-dependent but the close-
coupling calculations make no obviously angle-de-
pendent approximation (of course the close-cou-
pling calculations are not equally valid for all
partial waves, and thus their predicted angular
distributions are not exactly correct). Figures
4—6 compare the 1s-1s exchange differential cross
sections at energies of 1.00, 1.44, and 4. 00 Ry. "
Figures 7—10 compare the 1s-2s exchange differ-
ential cross sections at energies of 1.00, 1.44,
2. 25, and 4. 00 Ry. These figures show that in
general the BBGM1 and BO angular distributions
are in qualitative agreement with the c.c. re-
sults. " At (a,k)' =2. 25 for the 1s-2s exchange
collisions, the OR prediction is in serious dis-
agreement with the BSS and BO results from 0 to
35' —this disagreement is the same type as found
for small angles in the 2'S excitation of He as
noted above. Figures 9 and 10 for the 1s-2s ex-
citation of the hydrogen atom show that the BSS
c.c. results have two peaks. The first-order
results omit the peak at O'. When the first-order
results give good values for the integral cross
sections they must do this by predicting an in-
creased size for the peak at larger angles. Note
that at higher energies the diferential cross sec-
tions predicted by all the first-order methods
become identical and are all peaked off zero
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shown. The I && I results are higher
but the same within 5%.

T.O

6.0 2.0
40

5.0
Oa

4.0
X

CC

CI 145

X

Ch
sc I Q

CV

0
O
X

3.0

2.0

2.0

I.O ORIM-
O.mHiss

J.5
at t804

BSS
O. II

ORB.II

1.0

135 1800 45 90
8{deg)

FIG. 21. Differential exchange cross
sections (ap ) for ls-Is scattering off
the hydrogen atom at E= 2.25 Ry. For
the O. II and ORB. II calculations, the
2 x2 is drawn. The I x I is the same
within 2%, but higher.

135 1800 90
8 {deg)

FIG. 22. Differential exchange cross
sections (ap ) for ls-ls scattering off
the hydrogen atom at E= 4.0 Ry. For
the O. II and ORB. II calculations, the
2 x2 cases are drawn. The I && I cal-
culations are the same within 2%.
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FIG. 23. Differential exchange cross
sections (ap ) for Is-2s excitation of the
hydrogen atom at E=1.00 Ry.
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degrees (Fo.r the exchange elastic scattering,
however, they are all peaked at 0'. ) This is il-
lustrated by Table VI which shows the peaks in
the differential 1s-2s exchange cross sections.
At high energies the BO approximation predicts
the angular distribution rises at large angles to
a rather flat section at about 140 to 180'. Even
at 1000 eV (where the integral cross sections dif-
fer by only 6') the differential cross sections ex-
hibit marked differences, especially at large
angles. This fact is illustrated by the ratios of
differential cross sections in Table VII. This table
also shows how the cross section is very much
shifted toward forward angles at high energies.

3.6 Angular Distribution at Low Energies

The slow convergence of the close-coupling re-
sults for intermediate energy scattering off the

hydrogen atom does not imply that this approxima-
tion is always bad. " One important case where the
c.c. approximation is expected to be more reliable
is in energy ranges where the state expansion in-
cludes all open channels. ' Such a case is the one-
state calculation of low-energy elastic scattering.
When exchange of identical particles is possible
this is called the exchange approximation. " In the
perturbed stationary state approach'd to the ex-
change approximation, the atom eigenfunction is
replaced by an eigenfunction modified by the bound
system-incident particle interaction. For electron-
atom scattering one way to do this is called the po-
larized orbital method. ~~ " Numerical solutions
of the exchange (E) and polarized orbital (PO) equa-
tions have been carried out by Temkin and Lamkin. "
We compare elastic exchange differential cross
sections from their work at (a,k)' =0. 09 with the

TABLE VI. Positions of the peaks in the differential cross section for ls-2s exchange excitation off the H atom. Given
in degrees is the angle at which differential cross section is greatest among the angles 0(1)12(2)24(6)60(5)180. The
notation A(x}B means from A to B in steps of x. Highest peaks are listed first and all peaks are listed.

E (ev) BO BBGMl BOMC OR

12
15
20
25
30
35
40
50

100
150
200
250
300
350
400
500

1000

0, 180
0, 180
180, 0
180, 0
180, 0, 42
180, 0, 42
180,36, 0
30, 180, 0
22, 180
18, 180
16, 180
1$, 180
12, 180
12, 180
11,180
10, 180
7, 180

0, 180
0, 180
18&3, 0
180, 0
180,42, 0
42, 180, 0
36, 180
30, 180
22, 180
18, 180
16
14
12
12
11
10
7

100
75
54
48
42
42
36
30
22
18
16
14
12
12
11
10

7

100
75
60
48
48
42
36
36
22
18
16
14
14
12
11
10
7
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TABLE VII. Ratios of values of differential cross
sections for 1s-2s exchange scattering. HP= highest
peak unless HP would be 180'; then HP is next highest
peak. In this table, the number in parentheses is the
power of 10 by which the number is to be multiplied.

E (eV)
0 (180')
0 (eo')

cr (180') 0 (90')
0.{HP) ~(2')

20 BO 2.24(O)

BBGM1 4.o9(o)
OR 3.83 (-1)

1.09(0) 4.90(-1)
1.1S(0) 2.S2(-1)
2.80 (-3) 6.43 (0)

40 Bo 5.s2(o)
aSGM1 1.29{1)

OR 1.V1(-1)

2.O2(O) V.45(-1)
1.35(-1) 4.24(O)
3.28 (-2) 7.27 {0)

100 Bo 9.89(o)
BBGM1 5.42(-2)

OH 9.65(-2)

2.S6{-2) 3.OV {-1)
3.61(-2) 1.4V(-1)
1.22{-1) 1.83(O)

400 Bo v.1o(o)
BBGM1 4.4O(-a')

OR 6.vo(-2)

1.84 (-4) 1.14(-3)
4.9O(-6) 4.14(-3)
5.V4(-6) 6.26(-3)

1000 BO 5.35 (0)
BBC,M1 6.89(-2)

OR 6.54(-2)

5.SO(-6) 1.63(-5)
2.36(-V) 5.O5(-5)
1.52(-v) 3.96(-5)

BO, BBGM1, and OR results in Fig. 11. The good
agreement of the E and PO angular distribution is
consistent with our expectation of their reliability.
The BBGM1 and BO methods again appear to pre-
dict reliable angular distributions. The OR method
shows the opposite trend. Another calculation by
Temkin and I amkin, ' the exchange-adiabatic ap-
proximation" (not shown), also predicted a cross
section decreasing monotonically from 0, as the
OR does. Figures 12-15 compare the first-order
calculations of the exchange elastic process with
1s-2s-2P c.c. calculations of Burke and Schey. '
These c.c. calculations should be even more ac-
curate than the exchange approximation. They
agree with experiment" on the total differential
cross section at energies 3.8-9.4 eV. ' Again the
shapes of the BBGM1 and BO differential cross
sections are in better agreement with BSS one than
the OR and BOMC results.

3.7 Unital'ization and the ORB. II Results

According to Eq. (31) the Ith partial-wave cross
section is given by

o,"=(~/u')(2I+1)i r "i'. (38)

The requirement that the flux of scattered particles
in a particular partial wave cannot exceed the total
flux present in that oartial wave then requires'&

I
2' l»2,elas (39)

]z. l
inelas

The third and fourth columns of Table VIII show
some typical T elements in the 0 and OR approxi-
mations. As seen, the O approximation violates

IOO

40

No

IQ

Cf

I0 40

FIG. 16. Integral exchange elastic scattering cross
sections for the hydrogen atom.

the conservation theorem near zero energy for
both elastic processes, but the OR calculations do not
ever exceed these limits. Table VIII also shows uni-
tarized calculations obtained by truncating the A ma-
trix to 1 &&1 and 2 && 2 before using Eq. (18). These T
elements automatically satisfythe limits (39). Start-
ing with an N xNA matrix insures that, in any partial
wave, the sum of particles scattered both elastically
(in any channel) and by any of the N-1 inelastic pro-
cesses initiating in that channel does not exceed the
total flux of particles present in that partial wave.
The 1 &&1 case is often called allowance for back
coupling and the N&&N case (N) 1) is often called
allowance for strong coupling. Also shown in
Table VIII are 7 elements obtained from the phase
shifts of Burke and Schey ' and the 4 x4 R matrix
of Burke, Schey, and Smith. ~~ These also auto-
matically satisfy the limits (39).

Table VIII compares typical T elements before
(I) and after (II) unitarization. The comparison
shows that the unitarization procedure makes the
biggest difference when one of the partial cross
sections involved exceeds the conservation limits.
Figure 16 shows integral elastic exchange cross
sections ca.lculated in the close coupling and unitar-
ized first-order approximations (above threshold
we show the 2 x2 results for O. II and ORB. II al- ~

though the 1X1 results are very close to these).
This figure shows that the ORB. II cross sections
are quite good. Figure 17 shows the integral 1s- 2s exchange cross sections calculated in the
unitarized approximations and obtained from ex-
periment. It is interesting that near threshold the
O. II ls- 2s cross section is less than the ORB. II
curve. This is because the 0 approximation pre-
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0.5

ORB. Z

seen by comparison with Figs. 4-9, the shape of
the angu/ar distribution is not much affected by
the procedure for either the elastic or inelastic
processes. Thus the ORB. II angular distribution,
like the GR angular distribution, retains its high-
energy form down to low energies and becomes in
error there as the experimental angular distribu-
tion necessarily becomes more isotropic.

O. I—
4. FURTHER DISCUSSION

I6
I I I t I s I I . I I

24
E(ev)

40 4.1 Basic Limitation of the Born
Approximation at Intermediate Energies

FIG. 17. Integral ls-2s exchange excitation cross
sections for the hydrogen atom.

diets much too large cross sections for the 2s- 2s
scattering in this region. %'hen the 1s 2s and 2s

2s processes are coupled together, the 2s- 2s
then "steals" most of the transition probability.
Such drastic effects do not occur in the correctly
normalized ORB. II method. The ORB. II result
agrees with experiment near threshold.

Figures 18-25 show' differential cross sections
calculated in the unitarized approximation. As

The special difficulties of the BG approximation
for rea, rrangements (not shared by the Born ap-
proximation for direct scattering) appear to be
associated with core and orthogonality. problems.
The BBGM1 approximation and the E1 approxima-
tion correct these features. But a difficulty still
remains; neglect of polarization in the atom and
distortion in the scattered wave makes an impor-
tant difference at the low and intermediate ener-
gies where contributions from rearrangement are
appreciable. The nominal criterion for the valid-
ity of the Born approximation for electronic re-

TABLE VIII. T '

(Ry)

O. I OR O. II ORB. II O. D

2x2

ORB. II BSS

2x2

BSS

2X2

ls-1s 0.1

0.4

0.7

1.0

4.0

0
1
0

2
0
1
0
1
0

11.4992
0.3652
4.5175
0.5o4s
0.05OS

2.8123
0.4928
2.0000
0.4548
'0.4000
0.1976

1.0454
0.0332
1.2907
0.1442
0.0145
1.1580
0.2029
1.0000
0.22V4
0.3200
0.1581

1.9704
0.3593
1.8288
0.4894
0.0508
1.6299
0.4785
1.4142
0.4435
0.3922
0.1967

0.9265
0.0332-
1.0845
0.1438
0.0145
1.0021
0.2019
0.8944
0.2260
0.3160
0.1576

1.3764
0.4435
0.3906
0.1966

0.8668
0.2259
0.3148
0.1575

0.7966
0.0983
0.8319
0.3634
0.0034
0.3382
0.4489
0.6241
0.4069
0.2892
0.2188

0.8998
0.4155
0,2818
0.2140

ls-2s 0.7718

1.0

2.25

4.0

0
1
0
1
2
3
0
1
0

2

0.2931
0.0075
0.426V
0.0090
0.01VV

0.0056
0.2423
0.0471
0.1239
0.0455
O.OO91

0.2214
O.OO57

0.3413
0.0072
0.0141
0.0050
0.2181
0.0424
0.1166
0.0428
0.0086

0.0177
0.0051
0.2673
0.0081
0.0172
0.0056
0.2209
0.0465
0.1210
0.0453
0.0091

0.1495
0.0056
0.2906
0.0070
0.0140
0.0045
0.2071
0.0421
0.1147
0.0427
0.0086

0.2725
0.0767
0.1525
0.0426
0.1331
0.0865
0.0885
0.0679
0.0095

0.0399
0.1857
0.1348
0.0175
0.2062
0.1993
0.0990
0.0592
0.0103

2s-2s 0.0218

0.25

1.50

3.25

0

0
1
0

0
1

20.2606
2.0667
1.0000
0.8193
0;1523
0.0524
0.0639
0.0274

1.6233
0.1656
0.5000
0.4096
0.1306
0.0449
0.0593
0.0255

1.9903
1.4372
0.8944
0.7581
0.1519
0.0524
0.0638
0.0274

1.2604
0.1650
0.4851
0.4013
0.1303
0.0449
0.0593
0.0255

1.9902
1.4372
0.8467
0.7581
0.1421
0.0522
0.0626
0.0273

1.2485
0.1650
0.4559
0.4013
0.1247
0.0448
0.0584
0.0254

0.5762
0.5285
0.1619
0.1088
0.0604
0.0420

0.9939
0.8009
0.1636
0.2000
0.0557
0.0339
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arrangement is that the initial relative velocity must
exceed the orbital velocity of the electron " For
reaction (1) this implies an energy much greater
than 13.6 eV and for process (36}an energy much
greater than 25 keV. The region below these vel-
locities is called the low-energy region. " The
errors in the Born approximation for direct scat-
tering in the low and intermediate energy regions
provide a reasonable limit for what improvement
one can expect by eliminating the special rear-
rangement difficulties. Note that in the higher
energy region where the Born approximation for
direct scattering is truly valid, the exchange
scattering is negligible or very small.

The error that may be inherent in the first-order
treatment is shown by Tables IX and X. Table IX
compares approximations to the 8 matrix, and
Table X compares the same results after unitari-
sation on a four-state basis (1s, 2s, 2p 1, and
2p + 1). Part A of Table IX is adapted from Law-
son, Lawson, and Seaton. " Part A of Table X is
from Burke and Seaton. " These Born-approxima-
tion results are compared with results of the
close-coupling calculations of Burke, Schey, and
Smith. 44 As evident from these tables, the ac-
curacy of the Born approximation (relative to the
BSS c.c. results) improves as the relative kinetic
energy and angular momentum of the incident
particle increases. These calculations also illus-
trate the effect of unitarization and show again
that this is less important when the cross sections
are smaller.

In an effort to rn~prove the Born approximation,
Rudge has proposed' an extension of the OR method
to calculate direct scattering. This result was
subsequently modified by Morrison and Rudge"
(MR) to insure compatibility of the phases for
direct and exchange (OR) amplitudes. Table XI
compares the Born direct and BO exchange approx-
imations with the MR results for direct and ex-
change integral cross sections. In accordance
with the discussion of the previous paragraph, the
corresponding differences are much larger for the
exchange case than for the direct case. The MR
results show a substantial improvement over the
Born results. This subtle MR correction to the
Born approxime. ion for direct scattering deserves
further study and could be of great usefulness if it
generally provides improvement.

4.2 Improvements over the First-Order Model

The methods discussed in Secs. 2.1 to 4.1 are
derived from first-order approximations in
which the transition is calculated between two
undistorted wave functions for the incident and
scattered electrons and unpolarized basis sets
for the bound electrons but the interaction poten-
tial is refined. One possible improvement is to
modify these wave functions by the core inter-
action (here I/y2), the rearrangement term in the
interaction (here I/r») or both. One method
for doing this, the perturbed stationary state
approach, was already discussed in Sec. 3.6.
In this perturbed stationary state approach, the
bound-state wave functions are modified by the
interaction with the incident particle and the
scattering is calculated with these adiabatically

TABLE IX. Direct scattering. (T I =2IB ): (A) from
Born direct calculation of Lawson, Lawson, and Seaton
(1961) and (B) from BSS three-state c.c. calculations.

1s-1s 1s-2s 2s 2s

1.0

2.25

4.00

0
1
2

. 3
0
1
2

0
1
2
3

1.1932
0.1932
0.0342
0.0062
1.2474
0.3242
0.0938
0.0278
1.2048
0.4048
0.1530
0. 0596

0.4424
0.1264
0.0292
0.0060
0.3634
0.2226
0.1158
0.0550
0.2790
0.2118
0.1420
0.0884

5.1361
1.6362
0.5008
0.1406
3.5170
1.9602
1.2210
0.7674
2.8120
1.7346
1.2164
0.8832

1.0

2.25

4.00

0
1
2

0
1
2
3
0
1
2

6

7.4945
0.5544
0.2142
0.0730
1.7483
0.4571
0.1738
0.0754
2.0585
0.5038
0.1875
0.0798
0.0158

4.5473
0.9376
0.0369
0.0168
2.0067
0.6159
0.1432
0.0488
2.0716
0.3689
0.1851
0.0993
0.0108

16.7994
5.2885
1.4345
0.4722
6.2011
2.5863
1;5806
0.9750

12.7441
2.5853
1.4547
1.0047
0.3845

perturbed states. In another method, the distorted-
wave approximation [also called the distorted-
wa.ve Born approximation (DWBA)], the incident
particle wave function is modified by its interac-
tion with the bound system. One way in which the
DWBA can be applied to electron-atom scattering
is ig. the form of the Coulomb wave approximation
(CWA) in which the incident-particle wave function
is modified by the (unscreened) core of the bound
system and not by the rearrangement term. For
electron-atom collisions, this often leads to worse
results than the use of undistorted waves. 'b Such
a result is expected for general rearrangements
whenever the screened core (entire initia, l bound
system) is a much smaller perturbation of the
incident particle' s motion than the unscreened
core. In this case the exact scattering waves re-
semble plane waves more than they resemble
core- distorted waves. Oppenheimer himself'
pointed out this difficulty of the CWA for process
(1). Beigman and Vainshtein" have calculated the
1s —2s excitation cross section for e —H scatter-
ing in the CWA. They found the result was better
than the BO approximation but worse than the 0
approximation in the energy range 10.24 to 35 eV.
They also point out that the CWA predicts a large
cross section at the excitation threshold (in the ls
—2s case it gives a total integral cross section of
1.5ao' at threshold"}. Further, since the scat-
tering waves are not plane waves, the calculations
are more difficult than the first-order methods
considered here. The CWA does, however, have
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TABLE X. Direct scattering.
I

T:(A) from
II. 4x4'

Burke-Seaton Born II Calculation and (B) from BSS three-
state c.c. calculation.

Z (Ry) 1s-1s 1s-2s 2s-2s

1.0

2.25

4.00

A

1.0008
0.1597
0.0326
0.0093
1.0310
0.2920
0.0736
0.0337
1.0127
0.3769
0.1368
0.0518

0.1257
0.0406
0.0750
0.0485
0.1540

- 0.1501
0.0795
0.0484
0.1391
0.1543
0.1135
0.0719

1,7818
1.1318
0.8309
0.7407
1.7213
1,.3706
0.9873
0.6600
1.6177
1.2963
1.0222
0.7834

1,0

2.25

4.00

1.44O5
0.8822
0.1837

' 0.0622
1.2600
0.3836
0.1187
0.0658
1.2002
0.4361
0.1607
0.0669

0.2852
0.1763
0.1116
0.0558
0.2106
0.2359
0.0923
0.0511
0.1995
0.2230
0.1419
0.0781

0.9239
0.8905
1.1049
0.7166
1.5766
1.5681
1.2202
0.8287
1.8096
1.5065
1.1645
0.8822

4.3 Improved First-Order Methods

some formal advantages such as orthogonality of
initial and final states and automatic satisfaction
of the conservation theorems. "

For electron-atom collisions, the recent approx-
imation of Vainshtein, Presnyakov, and Sobel'-
man" y "~"puts the effect of the rearrangement
term 1/x» into the relative motion wave function
itself. However, the applications of this method
have involved computational approximations of
uncertain validity and the method has not been
tested sufficiently to ascertain its usefulness.

may be erroneous. Recent calculations on process
(36) have shown that second-order methods often
differ significantly at high energy from these first-
order treatments. " ' . Further, the whole struc-
ture of these approximate treatments is questioned
by the possible divergence of the Born" and dis-
torted-wave Born~ series for rearrangement col-
lisions. Another possibility is that the Born series
converges but not to its first term, even at high
energy. ~ Dodd and Greider" point out that the
usual approximations (such as BO and DWBA) are

intuitive models based primarily on semiclassical
concepts of direct reactions" and that such models
may be inadequate for rearrangements. This in-
adequacy and the divergences mentioned above are
due to the pathological nature of the kernel of the
nonhomogeneous Lippmann- Schwinger integral
equation for rearrangements when the Born term
or distorted-wave Born term is used ag the non-
homogeneous term. " In principle, these difficul-
ties might be avoided by using the Fadet:v equa-
tions. " Dodd and Greider~ developed a consistent
first- order approximation to the Fadeev equations
and found their results were similar to the results
of the variational calculations for rearrangements
of Lippmann' ' and Joachain. " The Fadeev-Dodd-
Greider method and the Joachain variational method
do not begin by assuming that either the BO approx-
imation or the DWBA is correct or nearly correct
at any energy. Such an assumption is, however,
contained in the ORB.II, BBGM1, and other first-
order results discussed above. Furthex' theoreti-
cal work will be necessary to resolve these incon-
sistencies. Calculations by the Fadeev- Dodd-
Greider first-order method (FDG1) are appreciably
harder than the first-order calculations reported
here. McCarroll and Salin'" made an investiga-
tion of process (36) by the FDG1 method and con-
cluded that QFDG1 tends to the second Born-
approximation value at high ent. rgies. However,
their analysis is not rigorous'" and, as a result,
the problem of the exact high-energy limit re-
mains unresolved xo'~~

TABLE XI. 1s-2s integral cross sections (cro ). In
this table, the number in parentheses is the power of
10 by which the number is to be multiplied. The MR
results are from Ref. 15.

Another improved method for electron exchange
collisions has been proposed by Beigman and Vain-
shtein. " In it, the initial and final particle wave
functions are approximated using plane-wave scat-
tering functions and then orthogonalized to the cor-
responding final- and initial bound- state particle
wave functions, respectively. This method appears
to give reasonably accurate integral exchange cross
sections for electron-atom collisions" and deserves
further study. It is not difficult to apply if the ap-
proximate bound state wave functions are Hartree
wave functions, i.e. , not antisymmetrized.

All the modified BO methods discussed above are
essentially first order in that they assume the BO
or BBGM1 approximation is correct or nearly cor-
rect at large energy. However, this assumption

E (Ry)

0.76
0.80
0.90
1.00
1.30
2.00
3.00
4.00

20.00
50.00

Born
1.00
4.00

d q

Born MR

2.49(-1) 1.12(-1)
5.09(-1) 2.38 (-1)
V.21(-1) 3.64(-1)
V.8O(-1) 4.21(-1)
V.53(-1) 4.68(-1)
5.75 (-1) 4.21 (-1)
4.13(-1) 3.36(-1)
3.20(-1) 2.74 (-1)
6.86 (-2) 6.66 (-2)
2.VV (-2) 2.V4(-2)

II for direct
2.23 (-1)
2.32 (-1)

BO

2.1v(o)
3.88(O)
3,e1(0)
3.o2(o)
1,11(O)
1.36(-1)
2.46 (-2)
1.14(-2)
1.59(-4)
9.9V (-6)

OR

1.4O(-1)
2.81(-1)
3.73(-1)
3.vo(-1)
2.64(-1)
1.O3(-1)
3.56(-2}
1.6O(-2)
1.43(-4)
9.32 (-6)
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TABLE XII. Rearrangement collision amplitudes.

BO BOMC BBGM1 O O.II . OR ORB.I ORB,II CWA BV c.c.

Includes core
Orthogonal waves
Variational principle
Post-prior discrepancy
Detailed balance
Conserves flux

Yes
No2

Y 3(h)

Yes3(d)
Yes
N i(c), iO

No

No

N 3(e)

No

Yes
No

No
Effectively
N 3(e),i05

Yes
Yes
No

No
Yes23

No

Yes
Yes 23

No

No

Yes
No

No

Yes
Yes

No

Yes 8~23

Yes8,23

Yes64
NOi6~23 s 6

No

No
Yes
Yes
No
Yes23

No

No
Yes
Yes
No

Yes
Y~.3(f)

No
Yes"
~ ~ ~

No
Yes
Yesii

No

Yes
~ ~ ~

No

Yes
No

~ ~ ~

Yesi06

Yes i0?
No

Yes
Yes

Note added in Proof: McDowell pointed out the
significant new work done by Dettman and Leib-
fried, Z. Physik 210, 43 (1968). They show that,
for a linear model of process (35) with quite gen-
eral potentials, the Born rearrangement series
converges at high energy to the second Born ap-
proximation with cross section/ Q K. See also
Corbett, J. Math. Phys. 9, 891 (1968) for a rec-
onciliation of the two articles in footnote 95.

TABLE XIII. Glossary of abbreviations.

BO
BOMC
BV
C. C.
CWA
DWBA
E1
MR
0
O.II
OR
ORB.I
ORB.II

PO

Bates, Bassel, Qerjuoy, and Mittleman
first-order method
Born-Qppenheimer approximation
BO approximation without the core term
Method of Beigman and Vainshtein
Close coupling method
Coulomb wave approximation
Distorted wave approximation
First-order exchange method
Method of Morrison and Budge
Ochkur method
Unitarized Ochkur approximation
Ochkur-Budge method
Ochkur-Rudge-Bely method I
Unitarized Ochkur-Budge-Bely
approximation
Polarized orbital method

Several approximations for rearrangement col-
lisions have been applied to the electron exchange
scattering off the H atom. It is found that the BO
amplitude is dominated by the core term at low en-
erg1'es but cori"ection for this defect 18 not simple.
A delicate balance of forces dictates the scattering,
and, hence, if allowance for distortion is intro-
duced it must be done consistently. The ORB.II
method predicts excellently the shape and height
at maximum of the exchange excitation integral
cross section curve versus energy and also pre-
dicts very well the exchange elastic scattering.
The BBGM1 method and the c.c. method give simi-
lar angular distributions for elastic and inelastic
processes. However, the BBGM1 method predicts
integral cross sections poorly at low energy and,

if the c.c. results are taken as accurate, the OR
.and ORB. II methods predict angular distributions
poorly. The OR and BOMC methods predict simi-
lar angular distributions for the excitation process,
rising with angle at small angles where the differ-
ential cross sections predicted by the BO and c.c.
methods are falling,

.6. ADDENDUM

After the present paper was completed, a letter
by Rudge'" was published in which he argued on
theoretical grounds against the Day, Sucher, and
Kmg, et al. 4 suggestion of always dropping the
core term from the BQ amplitude. Our results
show numerically that the core term should not be
dropped f rom the BO amplitude (except possibly at
high energies if it is small there). Together with
Rudge's analysis, our results thus offer a convinc-
ing argument against the BOMC ayproximation for
electron-atom scattering.

APPENDIX
Table XII summarizes some of the properties of

ayyroximate methods discussed in this yaper and
gives some references where further comments may
be found. The table answers these questions: (1)
Does the approximate scattering amylitude contain
a contribution from the matrix element of the core
term? .(2) Are the initial and final system wave
functions orthogonal? (3) Can the method be de-
rived from a variational pricicple'P The answers
to this question depend somewhat on the point of
view adopted and how the class of admissable
functions is limited. We have not used a consistent
approach in answering this question. The most sig-
nificant point is that the Ochkur amplitude can be
derived from an improperly normalized function. '~
(4) Is there a discrepancy between post and prior
formulations if approximate bound-state wave
functions are used? (5) Do the results satisfy de-
tailed balance for exact bound-state wave functions
and a proper choice among post and prior forms for
each direction of reaction? (6) Does the method
conserve particle flux automatically?

Table XIII is a glossary of abbreviations used in
Table XII and elsewhere in the text.

Discussions of other aspects of rearrangement
collisions may be found in recent reviews by
Bransden, '08 Peterkop and Veldre, ' and
Moiseiwitsch and Smith. "
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