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Equations of motion are derived for a shell model in which the shells are allowed to deform. Dispersion
curves are then calculated for NaF, NaCl, NaBr, and Nal from measured dielectric, infrared, and elastic
constants. A comparison with published phonon frequencies shows that a simple model with radial de-
formation gives some improvement over a rigid-shell model. A rather more general treatment with increased
radial deformation produces even better curves. However, the LO (0,0,1) zone-boundary phonons are not
well represented by either model. The eigenvectors from the rigid-shell model and from the best deformable-
shell models are then used to work out the ionic form-factor changes in NaCl when (0,0,7) phonon states
are excited, and the corresponding changes in the x-ray one-phonon cross sections along the (0,0,1) axis
are obtained. It is found that the rigid-shell model gives small variations in the cross sections resulting from
the displacements of the shells, and that the radial deformations give additional changes. The models predict
the occurrence of asymmetries in x-ray scattering, but the intensity differences are an order of magnitude
less than the effects which have been observed. Further calculations with the inclusion of deformation of the

inner electrons are required.

1. INTRODUCTION

ECENTLY a discussion has been given by Buyers,
Pirie, and Smith,! and by Smith,? of the x-ray
scattering by phonons in a lattice composed of deform-
able ions. It was shown how the one-phonon crosssection
depends on form-factor changes resulting from the dis-
placement of the ions from their equilibrium positions.
For such a lattice the x-ray thermal scattering has an in-
tensity variation in reciprocal space which can not be
given by a lattice of rigid ions, whatever their normal
mode characteristics. Such distributions have been
found for NaCl (Buyers and Smith3), KCl (Buyers,
Pirie, and Smith?) and for NaF (Pirie and Smith#), and
estimates have been obtained for the corresponding
changes in the form factors.

At the present time no published quantum-mechani-
cal calculations are available for the electronic deforma-
tion from phonon excitations. Therefore these form-
factor changes have been estimated using the distortions
given by various versions of the shell models which can
be used in discussing the dispersion curves. The form-
factor changes have been obtained for the usual rigid
core coupled to a rigid displaceable shell,>~! and also for
models including radial deformation of the shell.

Section 2 contains a restatement of the particular
combination of form-factor changes which can be ob-
tained from the experimental observations, and which
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must be calculated from the ionic distortions. The equa-
tions of motion for the deformable shell models are de-
rived in Sec. 3, and a discussion is given of their elastic
and dielectric properties. The dispersion curves are then
calculated from the measured elastic and dielectric
constants, and a comparison made with published fre-
quency measurements. Finally the eigenvectors from
the models are used in Sec. 4 to obtain the form-factor
changes for the (0,0,%) phonon states.

2. RAMAN EFFECT IN PHONON
SCATTERING OF X RAYS

The ionic x-ray form factors are the Fourier trans-
forms of the charge density, which depends on the posi-
tions of neighboring ions. In Ref. 1 the form factor fi,
of the u ion in the [ unit cell was taken as

I CED GRS SEICHO O

Here x(/,u") is the displacement of the u’ ion in the
unit cell from its equilibrium position, and K is the
scattering vector. It was shown that the one-phonon
scattering now contains extra terms which arise from
the first-order x-ray Raman effect for the vibrational
levels. The one-phonon cross section is given by

q7

> 3 fuexp(—M,) exp[iH-ro(0,u)]

pou

X [Kauu’ —ig((IyMMI7K):| ‘ U(:u,’qu) | 2 )

where
Ba(g,uu’,K)= LZT B.(—1V, uu', K)
Xexp{iq-[ro(V',u")—ro(l,p) 1}
K+q=H,

and w(q,7) and U(u,q,7) are the frequency and eigen-
vectors of the § mode, with wave vector q. The M, are
the Debye-Waller exponents, and ro(¥,u) is the equi-
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175 IONIC DEFORMATION
librium position of the /,u’ nucleus. In general B(I—7,
we'y K) and B(quu/,K) are complex. The one-phonon
cross sections at equivalent points (K=H=q) on either
side of a Bragg peak with reciprocal lattice vector H are
of particular interest. They will be changed in different
senses if B(q,up’,K) reverses sign when q is replaced by
—¢q. These changes will be equal in magnitude if
8(q,up’,K) is independent of K. Asymmetries in the in-
tensities of this character have been observed in the
alkali halides.~* If, on the other hand, 3(q,ux’,K) is an
even function of g, the shifts in the two intensities will
be in the same sense. The even or odd character of
B(q,uu’,K) is determined by the sign relation between
B(—7, w', K) and B(/—1I, up’, K) and so depends on
the character of the distortion. If the K dependence is
small, it can be shown that shell displacements lead to
shifts and radial distortions give asymmetries.

3. IONIC DISTORTION AND PHONON
DISPERSION

A. Rigid-Shell Model

The distortion considered in the shell models1! is
the displacement of a rigid shell of charge with respect to
a rigid core formed by the nucleus and the inner tightly
bound electrons. The derivation of the equations of mo-
tion will be indicated in this section because the intro-
duction of shell deformation (Sec. 3 B) forms an exten-
sion of the formalism.

In the harmonic approximation the equation of mo-
tion of the /u core or shell is

mﬁlji(lyﬂyco = _lzﬁ ¢a5(lllyﬂ/‘/)x(l’)#,)6) ) (2)
’”I

where —¢ap(/,uu’) is the Born-von Karman coefficient

giving the force in the o direction on the /,u shell or core

when 7,4’ is displaced in the 8 direction. For a particular

mode,
m.w?’U=NU+HY,
mw?’V=HU+EV,

where U and V are the core and shell eigenvectors, and
m, m, are diagonal matrices containing the core and
shell masses, respectively. The interactions have been
grouped so that the matrix N describes all core-core, H
all core-shell, and E all shell-shell suitably phased forces.
A typical element of one of these matrices is

Nog= ; Gas® (W uu’) exp{iq-[ro(V,u)—ro(lu) ]} .

The matrices N, H, and E can be further split to show
the different classes of force. Thus, the core-core matrix
N can be given in terms of the Kellerman coefficients
C for the long-range Coulomb forces, the core-shell
forces k, and the short-range coupling with any number
of neighboring cores I. The elements of I are functions
of q and combinations of the Born—von Karman coeffi-
cients of Eq. (2). I is shown schematically along with
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F16. 1. Schematic forces be-
tween neighboring ions in the
shell model.

the other similar force groupings L and J in Fig. 1. The
equations of motion in the adiabatic approximation can
then be written as

m U= I+ XCX+k) U+ (L+XCY—k)V,
0= (L+YC'X—K) U+ (J+ YCY+K)V,

where X, Y, and Z are diagonal matrices giving the
charges on the cores, shells, and ions, respectively. The
relative displacement of shell and core for each ion
W=V—U may be obtained from

mw?U= (I4-L4-L'4-J4+ZCZ) U+ (L+J+ZCY)W,
0=(L+J+ZCY)'U+J+YCY+ KW,

by first expressing W in terms of U to give an effective
dynamical force matrix between the cores, and diago-
nalizing to obtain the eigenvectors U.

The Born-von Karman coefficients of Eq. (2) can be
used to define 4, 4(1), A(2); B, B(1), B(2), and B” ina
similar way to Woods, Cochran, and Brockhouse.® With
these definitions 4 corresponds to a bond stretching
force for a nearest-neighbor pair, and 4(2), A(1) are
the stretching constants for next-nearest-neighbor
anion-anion and cation-cation pairs. B, B(2), and B(1)
are the corresponding parameters for the tangential
forces, and any noncentral force between nearest neigh-
bors is represented by the force constant B”. This
nomenclature is used in subsequent sections.

3)

B. Deformable-Shell Models

More general deformations than those described by
the displacement of a rigid shell may be introduced in
a number of different ways. Quadratic and higher terms
in the deformation can be considered!!; however, it is
not then possible to determine the coefficients from the
macroscopic data. Whenever extra degrees of freedom
are introduced into the dynamical system, the changes
in the equations of motion can be obtained from the
extra Born—von Karman coefficients. The specific modi-
fication considered here is that the radius of each shell
is variable. This can be regarded as giving some account
of quadrupole effects, because the quadrupole moments
of the shells change linearly with the radii (Zx). An
unmanageable number of extra parameters is not
required. \

Since the rigid-shell model is normally used with the
short-range interactions between nearest-neighbor and
next-nearest-neighbor ions, acting only between the
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shells, the inclusion of radial deformation will be dis-
cussed with the same limitation. The more general ex-
pressions can be easily obtained. The extra coupling
which results from the radial degrees of freedom are
specified by extra Born-von Karman coefficients. In
this way the equations of motion and the relations to
the macroscopic constants can be obtained without any
discussion of the relation of the coefficients to a particu-
lar model.

The new coefficients transform under rotation as co-
varient tensors of rank 1; thus for a typical nearest-
neighbor pair only five are nonzero when each atomic
site has cubic symmetry. If //,u’ is the nearest-neighbor
ion in the x direction to the lu ion, then the new co-
efficients define e parameters for this ion pair

8%/ dx(Lu)or(l ') = e, A €*/ 20,
0%/ Ir(Lu)dr(l' ') = euw A€*/ 2v,
0%/ 0r*(lu) = euue?/v,

in which g, u’=1, 2; us#u’. A schematic representation
is given in Fig. 2. For the next-nearest-neighbor pairs,
the most important extra coefficient is the radial trans-
lational coupling between the ions. This can be ade-
quately specified by one parameter for each ion type:

9%/ 9 (lu)or(V) = e,/ A(n)e*/20.

The constants 4 and A(u) are obtained from the
Born-von Karman coefficients as in Sec. 2 A. The co-
efficients for all the symmetry related nearest neighbors
and next-nearest neighbors may now be obtained in the
usual way so that the new terms in the dynamical ma-
trix can be found. For example, the extra coefficients for
atoms related by the inversion operator are equal in
magnitude but opposite in sign. Thus the matrix element
coupling radial motion of the shell of type u to the
translational motion in the x direction of all the nearest-
neighbor shells is

(4)

e, A (e2/20)[exp(ig.a) — exp(—ig.a) ] =1e,4(€*/v) sing.a,

where @ is the nearest-neighbor distance.
By similar arguments it can be shown that the equa-
tions of motion for the deformable shell with both ions

DRS<1>=[
and

De(2)=|

A comparison with the rigid-shell equations [Eq. (3)]
shows that the effect of radial deformations on the
translational motion can be obtained by replacing J by
J+Dg5.

In the simple situation of only the negative ion
polarizable and with the extra short-range interaction
restricted to nearest neighbors, the effective dynamical
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BIS(DST(D)+BS()ST(1)  BiS(1)SH(2)+8:5(1)8"(2)7¢?
aS(2)8"1(1)+6:8(2)8'(1) azS’(Z)S*(2)+Bls(2)S’*(2)]_
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polarizable are
mw?U= (I+XCX+k) U+ (L+XCY—Kk)V, (5a)
0=(L+XCY—-K)U+J+YCY+Kk)V+Se", (5b)
0=S%(2)-V(2)+ST(1)- V(1)
+Q(1L,DR(M)+Q(1,2)R(2), (5¢)
0=S(1)-V(1)+S"1(2) -v(2)
+Q(1,2)R(D+0Q(2,2)R(2), (5d)
Qi) = eiidij+ er2d (catcy+c2) (1—855) (6)

with the radial self-force constants as the diagonal

where

elements,
S(1R(2) S’(DR(1)T7\é?
o s |2
S(2)R(1) S'(2)R(2)4/ v
where
{S(w)}e=1€4Ss,
{SI(#)} z= iéu,A (H)Sx(cy+cz) ’
and
Cr=cosq.0,
S=sing.a.

Equations (5c) and (5d) now give R(1) and R(2) in
terms of shell displacements:
R(1)="[a:S""(1)+8:8(1)]- V(1)

+[:ST(2)+8:81(2)1-V(2), (1)
R(2)=[as8"T(1)+8-S"(1)]- V(1)

+[2S7(2)+8:57(2)1-V(2)
where

Q1= Q(Z:Z)/deto a2=61: _Q(172)/detQ )
B2=0(1,1)/detQ.

In this situation the modified coupling between the
translational motion of the shells can be described by
a matrix Dz® defined by

Sr7=Dz5V=Dz5(1)+Dr5(2))V,

and

(®)

where

v

B:8'(2)81(2)+8:8"(2)8"(2)

v

matrix for the nuclei D(q) is related to the matrix for the
corresponding rigid-shell model Drsu(q) by

D(g)= Drsm(q)+vDz(@),
where Dz(g) =sing.o singge, with ¢,8<3,

=0 otherwise,
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Fic. 2. Schematic forces between neighboring ions
in the deformable-shell model.

and
( 61A )2 e?

€11 v

©)

Y=

Thus the changes in the dispersion curves due to radial
deformation depend not on the individual parameters,
but on v, which can be obtained from the elastic con-
stants (Sec. 3 C). When next-nearest-neighbor interac-
tions are included in their simplest form, that is, between
rigid ions, then the dispersion curves depend on 4,4(2),
B,B(2), B”, k(2), Y, and «. These cannot all be deter-
mined from the elastic and dielectric macroscopic data
(Sec. 3 C). However the values of the parameters, or
relations between the parameters, can be obtained if
specific model assumptions regarding the potential en-
ergy ¢ are made. For example, the potential energy for
the interaction between a pair of shells can be taken as
depending only on the shortest distance between the
shells;

o ") = (| x(V ") = x(Uu) =7 (V)= 7)), (10)

This would correspond to the shell-shell forces localized
in the bond regions. The short-range potential then con-
tains a contribution from a sum of such terms,

¢5=2 o(l,un');

V!

€ and e, for u7u’ depend only on this contribution.
From Eq. (4) it can be easily shown that for this
model e,=¢€u=1 for ps#u’. The parameters e,, also
occur in the equations of motion. They describe the self-
force appropriate to a radial expansion of shell type u,
so that ¢ contributes to these derivatives. The remain-
ing contributions come from the core-shell forces within
an ion and also from the intrashell forces. The deriva-
tives of this contribution will be called %7(u). Thus the
total model potential gives

enn=34+k"(u).

In special situations it may not be necessary to de-
termine e, separately from the macroscopic data, since
it may be related, through &7(u), to %(u) describing the
core-shell force. Thus if the intrashell forces are small,
and if the coupling is uniform between the shell surface
and the core, it can easily be shown that £7(u)=3%(yx).
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Different model assumptions regarding the core-shell
and intrashell forces will give different relations be-
tween k(u) and &7(u). In some circumstances these can
be separately fixed from the macroscopic data.

Schréder and co-workers'?:13 have discussed radial
deformation in a shell model. The equations of motion
obtained!® are similar in form to those in Eq. (5) with
e=¢€uw=1and e,=34+k().

The discussion in the rest of this paper will be re-
stricted to rigid positive ions and to short-range next-
nearest-neighbor interactions only between the negative
ions. Two sets of dispersion curves with one ion polari-
zable and with radial deformation are given in Sec. 3 D.
The first set uses the relation k7= 3k together with all
the nearest-neighbor values of € taken as unity and the
next-nearest-neighbor values taken as zero. This will be
called the simple deformable-shell model. The second
model will be called the deformable-shell model, and
here no relation is assumed between % and &, but the
same values of e are used.

‘Calculations with both ions polarizable have been
made in a similar way to those given in Sec. 3 D, but the
dispersion curves for both rigid and deformable shells
obtained from the macroscopic data give less satisfac-
tory agreement with phonon measurements.

C. Elastic and Dielectric Constants with
Radial Deformation

The dielectric and elastic properties with radial defor-
mation can be obtained from the solutions of the equa-
tions of motion for small wave vectors. The deformable-
shell equations for the optic modes in this limit are
identical with those for a rigid shell, so the Lyddane-
Sachs-Teller™ relation remains valid. Equations (11)-
(14) between wry the dielectric constants and the param-
eters are also unchanged for the same reasons.

dr [(ent2)(z—a) ]2 ¢

wre*=— , (11)
Ou €0— €x /]
with
Mty SV
M= =
ma+ms ’ Sot+k
and
So=A442(B+B").
3 e—1 V2
Qo= ———= (12)

dr eg+2 Sot+k’

a—a, (3—d)?
=, (13)
Soae—d?

B+2B(2)= —2a,,Z2.

127. Schroder, Solid State Commun. 4, 347 (1966).
(1;36 ;/) Niisslein and U. Schréder, Phys. Status Solidi 21, 309
(1;1 R) Lyddane, R. Sachs, and E. Teller, Phys. Rev. 59, 673
1).

Qe

(14)
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TasLE 1. Model parameters calculated from macroscopic data.
Nal NaBr NaCl NaF
Simple Simple Simple Simple
.. deform- Deform- deform- Deform- deform- Deform- deform- Deform-
Rigid able able Rigid able able Rigid able able Rigid mable able
shell shell shell shell shell shell shell shell shell shell shell shell
Y(e) 2.67 2.67 2.67 2.96 2.96 2.96 2.67 2.67 2.67 2.25 2.25 2.25
k(e?/v)  67.9 67.9 67.9 97.0 97.0 97.0 90.0 90.0 90.0 98.8 98.8 98.8
v(e?/v) 0 —0.582 —1.54 0 —0.380 -—1.10 0 —-0.38 —1.09 0 —0.349 —1.02
A(et/2v) 11.6 11.8 121 10.8 111 11.2 10.6 10.7 11.0 10.4 10.7 10.7
Al(e?/2v) O 0 0 0 0 0 0 0 0 0 0 0
A2(e2/2v) 0.063 0.55 141 —0.035 0.76 089 = —0.12 0.20 0.83 —0.44 0.28 0.41
Bi1(e?*/2v) O 0 0 0 0 0 0 0 0 0 0 0
B2(e?/2v) 0.052 —0.045 -—0.22 -0.12 -028 —031 —-0.071 —0.135 —0.26 —-0.03¢ —0.18 —0.20
B"”(e?/2v) 0017 —028 —0.79 —0.069 —-0.54 —0.63 0.0054 —0.184¢ —0.56 0.0025 —0.432 -—0.51
TastE II. Input data for model calculations.
Phonon . C11 C12 Ca4 wo

Substance frequencies a(A) (1072 dyn/cm?) (10712 dyn/cm?) (10712 dyn/cm?) (10712 radians/sec) e €,

Nal 16 3.218 0.359= 0.075» 0.0768 22.8% 6.18* 2918

NaBr 17 2.987> 0.401¢ 0.109¢ 0.099¢ 25.454 6.384 2.60°

NaCl 18 2.81b 0.488¢f 0.126f 0.127¢ 30.94 5.91d 2.314

NaF 19 2.312 0.971= 0.2432 0.2808 46.40 5.1t 1.739¢

a Reference 9.

b Reference 15.

d Reference 17.
¢ Reference 18.
t Reference 19.

& Reference 20.
h Reference 21.
i Reference 22.

o Reference 16.

Here o, is the Madelung constant and a., and aq are the
high- and low-frequency crystal polarizabilities. These
relations are used in fixing the parameters in Sec. 3D.
In a similar way, relations between the parameters and
the elastic constants can be obtained from the w/q ratio
for the acoustic modes at small values of ¢. The elastic
constants can always be expressed in terms of the ele-
ments of the dynamical matrix in a way which is inde-
pendent of the model. Thus Woods, Cochran, and
Brockhouse? show that to a scale factor

cu=Dy(1,1)+ Dx(4,4)+2Dx(1,4) 9= (92,0,0),
C44= D2(2,2)+D2(5 5)+2D2(2,5) fOI‘ q= (qx,0,0) ’
% (cui—c12)=D2(1,1)— Dy(1,2)+ D2(4,4) — Dx(4,5)
+2|:D2(1a4)_D2(175):| for = (qx:Qu,O) )
where D3(77) is the coefficient of ¢2 in a power-series ex-
pansion of the (4,7) element of the dynamical matrix.
Substitution of the coefficients for the deformable-shell
model gives
cn=—>5.11022+A+A(2)+B(2)+v,
ca=1.39122+1[4(2)— B(2)]+B",
c1=1.39122+1[4(2)— B(2)]—B"+7,
where the elastic constants are given in units of e?/4a*
and A4, A(2)B(2), B”, and v are as defined in Sec. 3 A.
Since the corresponding equations for a rigid shell are
obtained with y=0, it is clear that the relation between

the parameters and the elastic constants are changed if
radial deformation is allowed. With radial deformation

for

(15)

it also follows from these equations that even if the
forces are central in character (B””=0), then the v term
ensures that the Cauchy relation (Ci2= Cy4) will not be
obeyed.

It seems that some of the numerical values for the
parameters used by Schrdder and co-workers!*!? in
calculating dispersion curves with radial deformation
were obtained from the macroscopic data by the rela-
tions appropriate to a rigid shell, rather than by the
relations given above.

D. Model Calculations

The effect of incorporating radial deformation in Nal,
NaBr, NaCl, and NaF has been obtained by calculating
the phonon-dispersion curves along the principal sym-
metry directions for both the simple deformable shell
and for the deformable-shell models. The model pa-
rameters are given in Table I and the macroscopic data
from which they are determined are shown in Table
II.15—22

1R, W. G. Wyckoff, Crystal Structures (Interscience Publishers,
Inc., New York, 1964), Vol. 1.

18R, P. Lowndes, Phys. Letters 21, 26 (1966).

17D, H. Martin, Advan. Phys. 14, 39 (1965).

18 J.) Tessman, A. Kahn, and W. Schockley, Phys. Rev. 92, 890

1953).

( 19 J, T. Lewis, A. Lehoczky, and C. V. Briscoe, Bull. Am. Phys.
Soc. 10, 44 (1965).

20 K, 'Spangenberg and S. Haushaul, Z. Krist. 109, 436 (1957).

2L M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, Oxford, England, 1954).

22 S, Haushaul, Z. Naturforsch. 129, 445 (1957).
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Taste IIL. Values of the magnitude 8(q,xx’,K) for NaCl as calculated from a rigid-shell model using the three charge
distributions (a), (b), and (c). All quantities are in units of v/10a. (Cation u=1; anion u=2).

Scattering 8(4,21,K) 8(a,22,K)

vector K (a) (b) (c) (a) (b) (c)
0,0, 3.8) 0.10 —0.54 —0.23 —0.10 0.53 023
0,0, 4.2) 0015 ~0.63 ~0.14 ~0.01 0.63 0.14
0,0, 3.6) 0.14 —045 —0.26 —0.13 043 0.24
0,0, 4.4) —0.016 —0.64 —0.084 0.015 0.61 0.076
0,0, 3.4) 0.19 —0.34 —027 —0.18 0.32 022
©,0, 4.6) —0.035 —0.61 —0.02 0.031 0.56 0.018
©,0, 3.2) 0.31 —0.23 —0.27 —0.26 0.20 0.20
0,0, 4.8) —0.038 —0.56 0.043 0.032 0.48 —0.032
0,0, 3.0) 0.35 —0.11 —0.25 —0.30 0.093 0.17
0,0, 5.0) —0.038 ~0.47 0.12 0.032 0.39 —0.084

For the short-range interactions restricted to nearest
neighbors, the shell distortion is entirely determined by
v from (see Sec. 3 C).

v=(4a¢*/€?) (caatc12)—2.78222.

As expected from Eq. (9), all the crystals have nega-
tive values for ¢ (Table I). The dispersion curves give
some improvement over the corresponding rigid-shell
predictions. Thus for NaBr % the value of X2 decreases

cps)

12

(10

FREQUENCY

|
|
|
|
|
|
|
|
|
I
|

of . . ) ) .
[o00] z— [o03]=[110] [o00] z— [‘5,'5.%]
REDUCED WAVE VECTOR COORDINATE §

o

-~—1

Fic. 3. Dispersion curves for NaF. Shell model (dash), simple
deformable shell (dash-dot), deformable shell (solid), and experi-
mental frequency (dot) (Buyers, Ref. 24).

237, S. Reid, T. Smith, W. J. L. Buyers, and G. C. Peterson
(to be published).

from 18.4 to 17.3.
N (Vicalcz'_Vimeasz)z 1

X2= -,
=1 4vimens?o?(vi) N

where o(v;) is the standard deviation in the neutron
frequency measurement. However, since all nearest-
neighbor models give comparatively poor predictions,
the detailed dispersion curves are not shown here.
It may be noted that when the value of v is positive,
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F1g. 4. Dispersion curves for NaCl. Shell model (dash), simple
deformable shell (dash-dot), deformable shell (solid), and experi-
mental frequency (dot) (Shmunk, Ref. 25).
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F1c. 5. Dispersion curves for NaBr. Shell model (dash), simple

deformable shell (dash-dot), deformable shell (solid), and experi-
mental frequency (dot) (Reid ef al., Ref. 23).

as for LiF, then radial deformation in a nearest-
neighbor model would be expected to lead to a less
satisfactory account of the phonon frequencies than a
rigid shell. Also, when a particularly large negative value
of v is obtained, as with MgO, then the radial deforma-
tion gives a large improvement in the dispersion curves.

It is only when next-nearest-neighbor models are
used that good predictions can be obtained from the
macroscopic data. For all the materials considered here
it is found that better predictions are obtained with
radial deformation. For the simple deformable-shell
model the parameters can be determined from Egs.
(11)~(15). For the deformable-shell model one extra
datum is necessary to fix v. For Nal the measured pho-
non frequency for the LA phonon at the boundary
(1,1,1) was chosen because both the longitudinal modes
in this region are particularly sensitive to . The value
found in this way increases the importance of radial
deformation by increasing the ratio of % to &” from the
value of 3 characteristic of pure core-shell interaction.
The same procedure could be used for each of the ma-
terials considered. However, this same %/k" ratio has
been used for all of them, so that for NaF, NaCl, and
NaBr the same macroscopic data have been used in fix-
ing the parameters as were used for the simple deform-
able model.

MELVIN, PIRIE, AND SMITH

175

7 ——r— T

(10'2 cps)

FREQENCY

|
|
|
|
I
|
o . . | PR——
[000] z— [ooi]=[1a0] [oo] g— [3z3
REDUCED WAVE VECTOR COORDINATE

n

w1

3

Fic. 6. Dispersion curves for Nal. Shell model (dash), simple
deformable shell (dash-dot), deformable shell (solid), and experi-
mental frequency (dot) (Woods et al., Ref. 26).

It will be seen from Table I that the next-nearest-
neighbor forces are increased very significantly when
radial deformation is included. Also the parameters are
more reasonable. Thus 4(2) and B(2) must have oppo-
site signs if the short-range potential function is to
decrease as the separation between the next-nearest
neighbors increases. From Table I it can be seen that
A(2) and B(2) have opposite signs for both the deform-
able-shell models, but not for the rigid shell.

The dispersion curves for the three models are given
in Figs. 3-6.2+2 The simple deformable-shell model
leads to an over-all improvement for both the LA and
LO branches for all the materials; however, the predic-
tions are not as good as for a rigid shell in the region of
the (0,0,1) boundary. This feature can only be avoided
by using model parameters which are inconsistent with
the macroscopic data. Some further over-all improve-
ment is found with the deformable-shell model for Nal,
NaBr, and NaCl. For instance in NaBr, where the ex-
perimental errors in the experimental measurements are
known, the X2 values for the predicted rigid ion, rigid
shell, simple deformable shell, and deformable shells are

2 W, J. L. Buyers, Phys. Rev. 153, 923 (1967).

2% R. E. Schmunk, Bull. Am. Phys. Soc. 12, 281 (1967).

26 A, D. B. Woods, B. N. Brockhouse, R. A, Cowley, and W.
Cochran, Phys. Rev. 131, 1025 (1963).
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TaBtLE IV. Percentage changes in the one-phonon cross sections in NaCl as calculated from a rigid-shell model
using the three charge distributions (a), (b), and (c).

Scattering Asymmetry in percentage

vector Percentage changes changes

(@) (b) (© () (b) ©

(0,0, 3.8) 0.005 —0.026 —0.02 0.0044 0.024 —0.009
0,0, 4.2) 0.0006 —0.05 —0.011
(0,0, 3.6) 0.016 —0.11 —0.067 0.017 0.01 —0.052
0,0, 4.4) —0.0009 —0.12 —0.015
0,0, 3.4) —0.031 —0.04 —0.024 —0.041 —0.058 —0.025
(0,0, 4.6) 0.01 0.018 0.001
0,0, 3.2) —0.31 0.14 0.16 —0.35 —0.22 0.19
0,0, 4.8) 0.038 0.36 —0.028
0,0, 3.0) —0.59 0.13 0.28 —0.53 0.65 0.16
0,0, 5.0) —0.06 —0.52 0.12

118.6, 17.1, 11.7, and 8.9, respectively. However, the
increased radial deformation accentuates the discrep-
ancy at the (0,0,1) boundary. For NaF the best predic-
tions are obtained from the simple deformable-shell
model.

No significant change in the transverse branches is
produced by either deformable-shell model.

The feature in the dispersion curve in the LO (0,0,1)
boundary region seems to be an inescapable result of
introducing radial deformation with one ion polarizable.
It is not likely to result from the different anharmonic
contributions to the macroscopic constants and to the
measured frequencies in the zero-sound region.?” Thus
for Nal both frequency and elastic constants were mea-
sured at 100°K where the difference between the first-
and second-sound regions is certainly less than the 209,
changes in elastic constants which would be required to
remove the boundary feature. Radial deformation gives
a similar feature in the boundary curve for KBr but in
this material the same behavior is found in the experi-
mental measurements.

The general conclusion drawn from the results of this
section on the prediction of dispersion curves from
macroscopic constants, particularly for the more polari-
zable ions where neglect of the distortion of the sodium
ion is reasonable, is that classical models incorporating
radial deformation represent some important part of the
forces between the ions. In the absence of any alterna-
tive source of information, the distortions corresponding
to the eigenvectors W and R have therefore been used
in Sec. 4 to calculate the form-factor changes when
different normal modes are excited in NaCl.

4. FORM-FACTOR CHANGES

A. Form-Factor Changes Calculated from a
Rigid-Shell Model

The B(q,ux’,K) coefficients which occur in the one-
phonon cross sections (Sec. 2) can be calculated for any

27 R. A. Cowley, Proc. Phys. Soc. (London) 90, 1127 (1967).

deformation model from the ionic form-factor changes
when the different modes of a specific q are excited.
Thus it can easily be shown that the contribution to the
fractional change in form factor when the (q,7) mode is
excited is given by

Af(q,7,m)
fw)

If this change can be calculated from a model for each
pair of acoustic and optic modes of a given q, then as
the eigenvectors for the two modes are known, the
separate values B(quu,K) and B(quu’,K) can be
obtained.

For an undisplaced shell (W=0) the ionic form factor
can be written as the sum of the shell and core contri-

butions.
f(l-") = fc(ﬂ)'“l"fs(u) .

When the core-shell displacement is W, the fractional
change in the scattering factor is

Af(q}jnu') — fS(ﬂ)
W) fw)

The values of Af(q,ju)/ f(u) are therefore determined by
W and by the charge distribution carried by the shell.

Table III gives the magnitudes of B(q,uu’,K) coeffi-
cients determined in this way. The values of W were
obtained from the rigid-shell model used in Sec. 3 D.
The total charge on the shell was taken as the shell
charge (V) given by the model, and the three sets of
results given in Table III are for the following three
different shell charge distributions: (a) the 3s distribu-
tion for Cl~ (James?®), (b) a thin spherical annulus of
charge with a radius of 1.5 A, and (c) the distribution
corresponding to the outer ¥ electrons in the CI- elec-
tron distribution. The changes in the one-phonon inten-
sities along the (0,0,1) axis corresponding to Table III

= 2; @(qnu'“,’K) * U(q)j’”,) .

[expGK-W)—17.

%R, W. James, Phil. Mag. 12, 81 (1931).
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TasLE V. Values of the magnitude B(q,ux’,K) for NaCl using
the radial deformation given by the deformable-shell model and
the charge distributions (b) and (c). All quantities are in units of
7/10a (cation u=1; anion u=2).
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TasLE VI. Percentage changes in the one-phonon cross sections

in NaCl from radial deformations for the deformable-shell model

using the change distributions (b) and (c).

Asymmetry in

i i Percentage ercentage

SC:;giglrng B(q,21,K) 6(q,22,K) ch;t;(te(r)xrng cha,ngesg pchangesg
(b) (© (b) (© (b) (© (b) ()

0,0, 3.8) 0.08 —0.055 0 0 0,0, 3.8) —0.26 0.17 —0.14 037
0,0, 4.2) 0.042 0.072 0 0 0,0, 4.2) —0.12 —0.20 ’ ’
(0,0, 3.6) 0.18 —0.06 0 0 (0,0, 3.6) —0.60 0.191 024 0.52
0,0, 4.4) 0.13 0.13 0 0 0,0, 4.4) —0.36 —0.33 ' '
0,0, 3.4) 0.22 —0.02 0 0 0,0, 3.4) —0.70 0.061 025 035
0,0, 4.6) 0.20 0.13 0 0 0,0, 4.6) —0.45 —0.29 : ’
0,0, 3.2) 0.15 0.0077 0 0 0,0, 3.2) —0.4 —0.021 —~0.14 011
0,0, 4.8) 0.16 0.077 0 0 0,0, 4.8) —0.26 —0.13 ' ’
0,0, 3.0) 0 0 0 0 0,0, 3.0) 0 0 0 0
0,0, 5.0 0 0 0 0 (0,0, 5.0) 0 0

are given in Table IV. The intensity changes are never
more than 19, and the changes produced at equivalent
points (K=Hz=q) on either side of the Bragg peak are
similar, so that any asymmetry in the cross sections at
these points (Table IV) is an order of magnitude less
than the measured value.? One can conclude that rigid-
shell displacements do not adequately represent the
ionic distortions that occur.

B. Form-Factor Changes Calculated for a
Deformable Shell

For both the simple deformable and the deformable
shells, the form-factor changes can be obtained for the
core-shell displacements in a similar way to that de-
scribed in Sec. 4 A. Since the displacement eigenvectors
(U;) and (W,) are almost identical (5%) with the rigid-
shell values, the changes in the one-phonon cross section
are essentially the same as those given in Table IV.
However, the radial changes now lead to additional
form-factor effects which can be computed from the
radial eigenvectors R(%). The values of 3(q,ux’,K) and
the percentage changes in the one-phonon cross sections
have been estimated using the shell distributions (b)

and (c) of Sec. 4 A, and the results are given in Tables
V and VI. The radial distortions are due to nearest-
neighbor interactions, so that 3(q,22,K) is always zero.
It is clear (Table VI) that the predicted intensity
changes are very different for the two charge distribu-
tions. Also the K dependence of 3(q,uu’,K) for K=H=tq
gives intensity changes at these equivalent points which
are not of similar magnitude and opposite sense, and
the asymmetries are generally less than the shifts
(Table VI). The intensity changes are rather greater
than those due to the relative displacement of core and
shell, but are still an order of magnitude less than the
observed asymmetries. It seems certain that no change
in the assumed shell distribution would lead to the
required increase.

We therefore conclude that a classical shell model
with radial deformation is a useful description of the
forces between ions, and may give a reasonable account
of the outer electrons deformation. However, it cannot
give any account of the total ionic distortions which
occur during lattice vibrations. Quantum-mechanical
calculations for both metals and ionic crystals are now
in progress.



