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Ultrasonic Attenuation in Dirty Dielectric Crystals*

H. J. MAms

Physics Department, Broum University, Providence, Rhode Island

(Received 19 June 1968)

The attenuation of a sound wave by anharmonic interaction with the thermal phonons in a dielectric
crystal has been calculated using the Boltzmann-equation approach of Woodruff and Ehrenreich. Contribu-
tions to the thermal-phonon collision rate due to elastic scattering of phonons by crystal defects (relaxation
time r,) and due to intrinsic inelastic anharmonic processes (relaxation time r;) are considered separately
In the case of longitudinal waves the attenuation remains finite as v, -+ 0, whereas for transverse waves

propagating in high-symmetry directions the attenuation tends to zero in this limit. For Qr;«1, an estimate
is made of the ratio of the longitudinal-wave attenuation in a dirty crystal (Qr, ~ 0) to that in a clean

crystal (Qr, -+ op). This ratio is found to be a sensitive function of the Griineisen constants of the crystal
and of the temperature.

I. INTRODUCTION

(2)r—1 r.—1+r —1

Combining Eqs. (1) and (2) gives

n= (CTpgQg/3psg)[r;r, /(r;+r, )7. (3)
Hence as the number of defects increases the at-

tenuation should decrease and in the limit Qv, —+0,
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HK attenuation of a high-frequency ultrasonic
wave propagating in a dielectric crystal is due

to an interaction between the wave and the thermal
phonons. "The sound wave modulates the parameters
associated with the phonons resulting in a nonequilib-
rium distribution. Thermal equilibrium is restored by
collisions between the thermal phonons thus causing
an irreversible increase of entropy and an attenuation
of the wave. For Qr((1 (Q is the sound wave angular
frequency, r is the thermal phonon collision time)
KoodruG and Khrenreich' have derived the following
expression for the attenuation:

n= CTygQgr/3psg, (1)
where C is the specific heat per unit volume, y is an
average Gruneisen's constant, p is the density, and s
is the velocity of sound. Since r decreases with increas-
ing temperature the condition Qr&(1 holds at high
temperatures. Equation (1) has been tested experirnen-
tally' for a number of materials and qualitative agree-
ment is found provided p is treated as an adjustable
parameter. There are a number of approximations
involved in deriving Eq. (1), including the use of a
Debye model for the phonon frequency spectrum and
simplifying assumptions about the rate of collisions
between phonons.

According to Eq. (1) the attenuation should be
reduced if defects are added to the crystal since these
will reduce the thermal phonon lifetime. If the phonon
lifetime in a perfect crystal is r; and the phonon life-
time for elastic scattering by defects is v „then the total
~ is given by

o.—+0. Experimentally a reduction in attenuation is
observed but usually much smaller than would be
predicted by Eq. (3). Keller4 has made measurements
of the attenuation of 640-MHz longitudinal waves in

germanium-silicon alloys at 300'K. For propagation in
the [1007 direction the attenuation in Gep. pg Sip.g7 was

only 13%%uo less than in pure silicon. The change in r
may be determined independently by measuring the
thermal conductivity x and using the approximate
relation ~=-,'C~'7. The thermal conductivity of the
alloy was found to. be 8.5 times smaller than the con-
ductivity of pure silicon and thus the v deduced by
this method was in serious disagreement with the r
necessary to explain the ultrasonic results. A similar

discrepancy is found by analyzing Bommel and Drans-
feld's measurements of the attenuation in natural and
neutron irradiated quartz and using the thermal
conductivity as measured by Berman et al.'

In this paper we try to explain the origin of these
discrepancies by considering in detail the attenuation
in a crystal containing such a large number of defects
that the condition Q7,«Qv. ;«1 applies. Ke will show

that, contrary to the predictions of Eq. (3), the at-
tenuation in this limit becomes independent of Q7,.
The physical basis for this result is the observation
that the scattering of phonons at defects is generally
elastic and by itself is therefore incapable of bringing
a system of phonons to complete thermal equilibrium.
Thus when the condition given above applies we may
consider the relaxation of the phonons after they have
been disturbed by the sound wave to consist of two
steps:

(i) groups of phonons having equal frequency come
to mutual equilibrium in a time of the order of v„

(ii) these different groups then come to equilibrium
in a time r;, thus completing the equilibrium process.

Since the first step occurs very rapidly, the main
contribution to the attenuation is from the second step
and the attenuation is thus independent of ~,.

4 K. R. Keller, J. Appl. Phys. 38, 3777 (1967).'R. Berman, P. G. Klemens, F. E. Simon, and T. M. Fry,
Nature 166, 864 (1950).
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To calculate the attenuation we will follow the same
method as Koodruff and Ehrenreich but as described
above will treat the phonon coOlsions differently. Yhis
calculation is given in Secs. II and III. In Sec. IV we
calculate the attenuation in a "clean" crystal limit
Qv/&i+&Qv; and compare this result with the "dirty"
limit to estimate the maximum reduction in attenua-
tion that can be expected by adding defects to a crystal.

II. FORMAL EXPRESSION FOR THE
ATTENUATION

YVe will follow the method of %'oodruff and Khren-
reich' as adapted by Maris. ' According to this approach
the relation between the macroscopic stress tensor T
and the strain tensor 8 is assumed to be

2'-p= C-pcs"Bvs+ (&/V) 2 Q-pcs(ki )L&(&i)+s5Bvs

+(TI/V) Q Q p(kj)AN(kj), (4)

where (Cp»s~) are second derivatives of the crystal
potential energy with respect to strain and are ap-
proximately equa1. to the ordinary second-order elastic
constants, V is the volume, Q p(kj) and Q p„s(kj) are,
respectively, 6rst and second derivatives of the fre-
quency of the normal mode kj with respect to strain,
n(k j) is the thermal equilibrium number of phonons
in the mode kj, and ~(kj) is the number of phonons
in excess of the thermal equilibrium value. %'e adopt
the convention that repeated Greek subscripts are to
be summed over. The quantities involved in Eq. (4)
are dined more precisely in Ref. 6. For small strains
the equation of motion is

be complex. YVe may relate the real and imaginary
parts of Q(KJ) to the velocity s(1U) and the attenua-
tion a per unit length using the formulas

s (lU) = ReQ (KJ)/2', (9)

= —ZmQ(KJ)/s(KJ). (10)

The term in curly brackets in Eq. (8) corresponding to
the interaction of the wave with the thermal phonons
is very small compared with the other terms and may
thus be treated as a perturbation. If we calculate
lmQ (KJ) using standard fIrst-order perturbation theory,
we 6nd

n= LIrTIK ep(KJ)/pvQ(KJ)s(KJ)5

XQ Q p(kj) Re(ANs(kj)/ns). (11)

IIL ATTENUATION IN THE DIRTY LIMIT

The problem thus reduces to calculating ddV(kj),
the response of the thermal phonon system to the sound
wave. To do this we follow IVvoodruff and Khrenreich
and only sketch their method and indicate changes in
notation. The Hamiltonian of a phonon hj in the strain
field of the sound wave is

H(kj; Xt)=TIce(kj; Xt)=hta)(kj)
+Q p(k j)8 p'(Xt)+ 5, (12)

where &o(kj; Xt) is the frequency of a phonon kj at
position Xt in the presence of the sound wave and
B p'(Xt) is the strain due to the sound wave. The
Boltzmann equation may be written as LEq. (2.11) of
Woodruff and Ehrenreich5:

(BN(kj))
(5) ~

Bt

where II is the displacement at X and p is the density
at the temperature of interest. We try to find a solu-
tion of Eqs. (4) and (5) of the form

n =use (KJ) expi(2s-K X—Q(KJ)t5, (6)

BN(kj)

1(BN(kj) BH(kj; Xt)
+-I

hi BX Bk„

BN(kj) BH(kj; Xt))
l. (13)

Bk BX ]
AN(k j)= dies(k j) expiL2IrK X Q(KJ)t—5

Then Eq. (5) becomes

4r CIsp„s K K~es(KJ)

+ (4s'Ts/V) Q (Q p,s(kj)K K~es(1U)

XLn(k j)+-,'5+Q p(kj)(ANs(k j)/2wins)K )
—pQs(KJ)ep(KJ) =0. (8)

This equation must be solved to give Q(KJ) and e(KJ}.
Since LEVs(kj) will in general be complex, Q(KJ) will

' H. J. Maris, Phil. Mag. 16, 831 (1967),

N(k j)=n(k j)+AN(k j) is the instantaneous number
of plloIloIls of type kj at X aIlcl the left-llaIlcl side of
this equation is the rate of change of N(kj) due to
collisions. To lowest order in the amplitude of the
sound wave this becomes

(BN (kj)/Bt) ..» = (—iM'p(k j)$Q—2z K v(k j)5
—4s'naBisn(kj)gn(kj)+15LK v(kj)5
)&Q p(kj)e (1U)Kp) expiL2IrK x—Qt5. (14)

Consider now the solution of this equation when there
are elastic and inelastic scattering processes. For
simplicity we will not distinguish between Ã and U
inelastic processes. The elastic scattering @rill relax the
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+fL~T(-(kj))-» ]!T)-(kj)

+~(kj)(~T /T)LQ —2~K v(kj)]r.}=0. (24)
E,(kj)= fexpPuo{k j;Xt)/kT(&o(k j);Xt)]—1)-'. (l5)

We expand T(~; Xt) as

T((o Xt) = T+BT(ro) expiI 2~K X Q—t] .(16)
Consider erst the solution of these equations vrhen

Qr, —& 0. Then we 6nd that Eqs. (23) and (24) become

If vie denote the clastic scattering relaxation time by v,
then we may approximate the rate of change of E(kj)
due to elastic collisions by

g fQr;$2rrloe (KJ)I"pQ.p(kj)+i~(b T(~)/T)]

-L(»( )-».)/T].»L-(kj)- ]=o, (25)

(BE(kj)/Bt).=-.;LE(kj)-E.(kj)]. (1~) p (kj) (kj)L- (kj)+1]

distrtibution function towards a distribution described r' '2 ~(kj)+(kj)j+(kj)+1]f1+(r./r')
by a local effective "temperature" T(co) which in
general wiH depend on frequency. We denote this iLQ 2s.K v(kj)]r, ) if2xQr, uoe (KJ)&pQ,p(kj)
distribution by

The inelastic scattering processes relax the distribution
function to a distribution E;(kj) identical to E.(kj)
except that novr the temperature no longer depends on
frequency. Kc write this temperature as

T(Xt) =T+aT, e~iL2~K X—Qt].

Then if the inelastic scattering time is r;,

(18)

(BE(kj)/Bt) = —r -'I E(kj)—E (kj)]. (19)

If we combine Eqs. (14)—(19) we find

AE0(kj)=pion (kj)Ln (kj)+1]
Xf1+(r,/r;) iI Q —2xK—v(kj)]r, )-'
Xf —2sigoe, (KJ)EpQ p(kj)
XP+(.,/. ,)+2~iK v(kj)..]
+I d T(a)(kj))/T](o(k j)

+(~TO/T)(r. /r')~(kj)). (2o)

To determine ET(&o) and ETO we note that elastic
scattering processes cannot change the total number of
phonons having frequency in any range cu to ~+CD.
Thus

XLAT((e(kj)) —ATO]=0. (26)

The solution of these equations may be most simply
expressed by introducing the frequency distribution
g(&o) defined such that g(~)~ is the fraction of normal-
mode frequencies in the frequency range ~ to ~+&.
Then

g(~)=(3rE) 'Z BL~—~(kj)]

where r and S are, respectively, the number of atoms
per unit cell and the number of unit cells in the crystal.
%e also introduce a generalized Griineisen constant
p p(kj)—=Q p(kj)/ce(kj). The average Griineisen con-
stant for all modes of frequency co is

v-p(~) =fZ ~-p(kj) BL~(kj)—~])/

fr. BL~(kj)—~]) (2't&

The solution of Eqs. (25) and (26) is then

ET(cu)/T= L(ATO/T)+2xuoe (KJ)X p p{o))Qr ]/
(1—iQr;), (28)

p (BE(kj)/Bt), BLa —i0(kj)]=0. (21) ATO/T=2migge (KJ)Kp{&v p)),

We also have the condition that inelastic scattering where«'r, p» isafurtheraverageofGriineisenconstants,

processes cannot change the total energy of the phonon
system. Then

Q (BE(kj)/Bt);hie(k j)=0. ( ) &6")&= &-() ' ()L~()+1]g()d

If we write out these conditions explicitly using Kq.
(20), we obtain

r. 'g f11(r./r~) —iI Q—2s.K v(kj)]r,)-'

co'e(a&)Le(M)+1]g(co)ku, (30)

with n(&o) =Lexp(Ph&u) —1] '. If we combine Eqs. (11),
(20), (28), and (29) we obtain finally

Xh ra —s) kj 2riQr, loe KJ ZpQ p kj n= $2x'E E,ep(KJ)ei(KJ)CT/ps(KJ)]
-L(~T( )-».)/T%("/ ') XI: '/(1+Q"")]

+iQ(AT(co)/T)I Q—2w K v(k j)]r,)=0, (23) XE«v.pv ~)& &&v-p&)&&T.
—
~&&] (31&
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where we have introduced the specific heat C per unit
volume given by

It is straightforward to show that (v,)=((v,)) but

(v.')W(&v.'))

"'"(")[I(")+»«")~ (")

(&v-pv»))= v-p(~)v»(~)~'N(~)l ~(~)+»g(~)d

moog (oo)[B(oo)+ 1]g(oo) Cko . (33)

CT 0'r;
0!= L«v.'))—(&v.))'].

2pso(gg) 1+Qor.2
(33)

(&v,o)) and ((v,)) are defined analogously to ((v pv»))
and ((v.p)).

IV. ATTENUATION IN THE CLEAN LIMIT

To be able to estimate how large an attenuation

change is to be expected in going from a clean to a
dirty crystal we calculate here the attenuation when

Qr, —& ~. For simplicity we restrict attention to the
limit Qv,«1 and, as in the previous section, do not
distinguish between E and U processes. In this limit

Eq. (23) does not apply and Eq. (24) becomes

g sP(kj)tt(kj)[N(kj)+1](1 —i[Q—2vrK v(kj)]r;) '
kj

x (2~Q~oe. (KJ)Kpv. p (kj)
+o(ZT,/T)[Q —2~K v(kj)]) =O.

To first order in 07; this gives

(A To/T) = 27riuoe (KJ)Kp&v p)

X[1—(' '/Q)((2 I')')],
where we have introduced the notation that

(f)=2 f(kj) '(k j)N(k j)[~(kj)+1]/

(36)

p coo(kj)n (kj)[e(kj)+1]. (37)

Then using Eqs. (11) and (20) we find to first order

in Qv;

n = [CT/2pso(IU)]Q'r;[(v. ')—(v.)'

+(v )o((2gpK v)o)/Qo] (38)

Equation (31) may be put in a simpler form if we in-

troduce v, (kj), the effective Gruneisen constant de-

scribing the interaction of the sound wave and the
mode kj, defined as

v, (kj) = (K,/K)ep(kj)v p(kj). (34)

Then we obtain finally for the attenuation in the dirty
limit

V. DISCUSSION

The result obtained in the dirty limit is clearly of the
form expected from the discussion in the Introduction.
In the Qv;«1 regime the result in the clean limit differs
from the dirty limit in two ways. The averages of
Gruneisen constants occurring are different and there
is also an extra term. The different Gruneisen average
occurs because in the clean limit the effective tempera-
ture for each individual mode relaxes by inelastic
scattering towards a local average temperature. On the
other hand, in the dirty case the effective temperatures
of all modes with the same frequency are first averaged

by elastic scattering before the inelastic scattering
relaxation takes place. The last term inside the square
brackets in Eq. (38) may be identified with the classical
thermoelastic loss. When Qv;«1 the propagation of the
wave is nearly adiabatic. ' Then the classical attenuation
due to heat conduction between the compressed and
rarefied regions may be shown to be

n= 87r4T[e (IJ)KpC pg„P„„5'Ir,rK,Kr/
[ps(KJ)Q'C'], (39)

where g and v. are the thermal expansion and thermal

conductivity tensors, respectively. C p»are second-order

elastic constants and we need not distinguish between

isothermal and adiabatic elastic coefficients in lowest

order in this equation. To demonstrate the equivalence

of Eq. (39) to the "extra" term in Eq. (38) we note
that by a simple extension of the results of Maradudin'

it can be shown that

VC px„Px„= —(Ph'/T)

Xg v-p(kj) '( j)~( j)[~( j)+1]
kj

Using Eqs. (32) and (37) we find

C.p .~..= -C(v-p)

Equation (39) then becomes

n= 27r'T&v )2x„-K,Kr/ps'(KJ) .

To complete the equivalence we note that in the relaxa-

tion-time approximation we have used here it is straight-

forward to show that the thermal conductivity is

Ph'r,
P o, (kj)or(k j)co (kj)n(k j)[~(kj)+1]

VT»' =Cr, &o,o.) (42).
Thus Eq. (41) becomes

n= [CTr;/2ps'(KJ)]&v, )'((2vrK v)'), (43)

which is equal to the extra term in Eq. (38).The reason

that this term is present for the clean crystal and not

7 A. A. Maradudin, Phys. Status Solidi 2, 1493 (1962).
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for the dirty crystal is simply that as v, —& 0 the thermal
conductivity tends to zero and so this classical contri-
bution to the attenuation vanishes.

Hoer large a reduction in attenuationmaybeachieved
by introducing defects into a crystal appears to be
very dependent upon the crystal, the polarization of
the sound wave, and the temperature. For cubic
crystals the matrix y(a&) will be diagonal and so for
shear waves propagating in high symmetry directions
y, (ao) will be zero. In this case the attenuation will
tend to zero as Qr, -+0. Another situation in which
the attenuation will be very small in the dirty limit
is at such low temperatures that only acoustic phonons
near the center of the Brillouin zone are excited. In
this case y(ro) will be independent of &o for all frequencies
such that N(co) is appreciable and so from Eqs. (30)
and (33) we have

«v-s)&=v-s(0), (b-n v~&& =v-s(0)v.~(0),

where y p(0) is the low-frequency limit of y,s(co).
Then «y, )&'=((y,')) and so the attenuation is again
zero. Another example which is fairly simple to consider
is a Debye model in which we assume that y, (kj)=yp
for all transverse phonons and y, (kj)=» for longi-
tudinal phonons. If we denote the upper frequencies of
the transverse and longitudinal branches by sup and ceI„
respectively, then

g(M) =GP[2Mr +Mr, j, 0(N+(dr
=CO GDI, GO++(d + GATI,

=0, COI, +e.
On this model we find that at temperatures greater
than On

6")=&6"))= 3Vr+s»
b'& —h.)'= (2/9) (vr —»)'

«v.'&)-«~.)&'= (4/9)(v. -~.)'( "- ")/
(2roz, '+ ~r'),

((2s K s)')=4n'E'(asrs+-', »'),
where sp and sI, are the transverse and longitudinal
velocities, respectively. Then for a longitudinal sound
wave and Qz;&&1

~d.t = (&2'/9~»')II'r'(vr —»)'(I —~')/(I+kl ')
= (&2'/9~»')Il'r I (vr v~&'—

+6 (2vr+»)'(I+»') j

+DIRTY

+CLEAN

0
)T

FIG. i. Ratio of the attenuation in the dirty and clean limits as
a function of the Griineisen parameter yp of transverse thermal
phonons. yr, has been set equal to unity. For yp=y1, =1 the
attenuation in the dirty hmit is zero.

where A=sr/sr, =&or/a&I. The ra. tio of these two at-
tenuation expressions is shown as a function of yp
in Pig. 1 for ) =0.6 and yI.= i. The result is very sensi-
tive to the ratio of yp to yI,.

Finally we consider the experimental measurements
of the attenuation in germanium-silicon alloys4 and
in natural and neutron-irradiated quartzs which were
mentioned in the Introduction. It was pointed out
there that these measurements were not in agreement
with the simple theory [Eq. (3)j since on adding
defects to a clean crystal the thermal conductivity was
reduced far more than the attenuation. Quantitative
comparison of these experimental results with the theory
presented here is not possible because there is little
information available about the Gruneisen parameters
of the crystals involved and, as demonstrated in the
example of the Debye model considered above, the
reduction in attenuation produced by adding defects is
very dependent on the details of the Gruneisen param-
eters. In the absence of knowledge of the Gruneisen
parameters, all that can be said is that the theory does
provide an explanation for the lack of correlation be-
tween these thermal conductivity and ultransonic
attenuation measurements.


