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Structure in photoelectric energy distributions is analyzed on the basis of a model which assumes that the
electrons are created in the volume by direct transitions, and ignores lifetime broadening and the distortion
of the distribution function due to the escape probability. In this model, the structure consists of square
edges and logarithmically infinite peaks due to two-dimensional critical points where the optical energy
surface is tangent to the electron energy surface. As the photon energy is varied the loci of these critical
points trace out "critical lines" in k space. A plot of the electron energy of the structure versus photon
energy is called the "E-co image" of the critical line. Simple properties of these lines and their images are
derived and illustrated by explicit calculations for the band structure of silicon. The critical lines pass
through the three-dimensional critical points of the electron energy function (ECP) and those of the optical
energy function (OCP). An ECP and an OCP will coincide when required to by symmetry, and are then
called symmetry critical points (SCP). ECP's are extrema of E(kcu} along critical lines, while OCP's are
extrema of Ary(E). E ru images wi-ll "kink" or intersect at SCP's. The "strength" of critical-point structure
varies rapidly along critical lines and tends to infinity as an SCP is approached. These properties should be
useful in inferring energy-band information from experimental plots of E-co images. They will also be helpful
in analyzing machine calculations of photoelectric energy distributions.

I. INTRODUCTION AND CONCLUSIONS
'
PHOTOELECTRIC energy distributions have been

extensively used as a means of studying the energy-
band structure of solids. ' 4 In some materials a model
of indirect transitions appears to be applicable, '' in
which case peaks in the one-electron density of states
in either the valence or conduction band are readily
inferred. In materials for which the model of direct
transitions is a good approximation, structure is also
to be expected. The interpretation in this case is more
complex but potentially richer in information content,
provided lifetime-broadening and energy-loss processes
are not too large.

In the "direct-transitions" model, with exciton ef-
fects ignored, the carriers created by the light lie on an
"optical energy shell" or surface in k space whose
equation is

5(o= h;(k) —8;(k), (1)

where h;(k) is the energy of the initial state and 8;(k)
is the energy of the final state. The photon energy is fico

and its momentum has been ignored. The electron
energy 8;(k) is a variable function over the two-
dimensional space of the optical energy shell and.

possesses van Hove singularities" or critical points in
its energy distribution. Geometrically, these critical
points occur where the electron energy surface and the
optical energy surface are tangent. The tangencies may
be of extremal type (the electron energy is a local
minimum or a maximum at such a point) or of saddle-
point type where the relative curvatures have opposite
signs in the two principal directions. Characteristic of

' W. E. Spicer, Phys. Rev. Letters 11, 243 {1963).' C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030
(1964); 136, A1044 {1964).' A. J. Blodgett and W. E. Spicer, Phys. Rev. 158, 514 (1967).' R. C. Eden and W. E. Spicer {tobe published).' L. van Hove, Phys. Rev. 89, 1189 (1953).' D. Brust, Phys. Rev. 134, A1337 (1964).

two dimensions, a van Hove singularity leads to a
"square-edge" discontinuity in the electron energy dis-
tribution function for an extremal critical point and to
a logarithmic singularity for the saddle-point case.
Ke use the subscripts s, n, I to denote saddle, upper
(maximal energy), and lower (minimal energy) critical
points.

As the photon energy varies, the locus of a two-
dimensional critical point traces out a line in k space
which we refer to as a "critical line. "In Sec. II we dis-
cuss some simple topological properties of critical lines.
We prove that critical lines cannot "kink" or terminate
at "ordinary points, "i.e., points of no special symmetry
in k space. Two critical lines will not intersect at an
ordinary point.

In addition to the critical lines or two-dimensional
critical points, the three-dimensional critical points of
the electron energy function 8;(k) and of the optical
energy function b;(k) —8;(k) are also of importance. '
We call these ECP and OCP, respectively. An ECP and
an OCP will only coincide when it is required by sym-
metry, in which case we call it a symmetry critical point
(SCP).

Ke prove that every ECP and OCP which is not an
SCP has one and only one critical line running through
it. We prove that an analytic SCP may have up to
three critical lines intersecting it. Nonanalytic SCP
appear to oGer the possibility of still larger numbers of
critical-line intersections but we have not studied this
case.

The strength of a two-dimensional critical point may
be defined as the amplitude of discontinuity in the ex-
tremal case or as the coeflicient of the logarithmic singu-
larity in the saddle-point case. Expressions for the
strength are derived and it is shown that the strength
tends to infinity as an SCP is reached. It may also tend
to infinity at a general point with an attendant change
of type, from s to I or s to l or the reverse.
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function appears to provide considerable distortion of
dy/dE and even to introduce additional structure. ' Such
distortion will be most severe at low electron energies
where the phonon mean free path is short compared to
the mean free path for pair production. The recent
studies of Callcott" and Eden and Spicer' at higher
photon energies should be freer of distortion due to
P(E,E') and should provide more accurate band-
structure information. Theoretical calculations of the
energy distributions at higher photon energies currently
in progress" should aid in the interpretation of the
experimental results.

CRITICAL POINT~ CP2

FxG. 1. Optical energy shell, solid line, for 6xed photon energy
Any. The dashed lines are surfaces of constant electron energy.
Points of tangency between optical and electron energy surfaces
give critical points CP2 indicated by open dots.

To make contact with experiment, we discuss the
E-co images of critical lines. These are electron versus
photon energy plots along critical lines or, experi-
mentally, plots of peak or edge structure in electron
energy distributions versus photon energy. The inter-
section of two E-co lines does not imply the intersection
of the corresponding critical lines but an intersection
of three or more lines would give evidence of critical-line
intersections and hence imply that the intersection was
a symmetry critical point, SCP. ECP's and OCP's
imply extrema in the functions E(co) and re(E), respec-
tively. The converse need not be true. These properties
should be useful in using 8-~ plots either to interpret
theoretical energy-distribution calculations or to infer
band-structure information from experiment.

In Sec. III we calculate electron energy and optical
energy contours in the (110) plane for silicon. We also
calculate critical lines and critical points, ECP's and
OCP's. We compute the singularity strength along the
critical lines and plot the E-~ images of some of the
stronger critical lines.

Brust7 has used E-~ plots to analyze his theoretical
calculations of energy distributions and Gnds agreement
with several of the conspicuous critical lines we have
identified. Higher-resolution theoretical calculations
would undoubtedly turn up more structure and increase
the certainty of identification.

Our calculations all refer to the "internal yield"
dy/dE. The external yield dy/dE may be found by
convoluting dy/dE with an escape function P(E,E') ' ':

d3'
P (E,E') dE'. (2)

dE dE'

In the case of cesium-covered silicon in the photon
energy range studied by Allen and Gobeli' the escape

'I D. Brust, Phys. Rev. 139, A4&9 (1965).' K. 0. Kane, J. Phys. Soc. Japan Suppl. 21, 37 (1966).' F. G. Allen and G. W. Gobeli, Phys. Rev. 144, 558 (1966).

II. STRUCTURE IN PHOTOELECTRIC ENERGY
DISTRIBUTIONS DUE TO CRITICAL POINTS

AND CRITICAL LINES

We assume that we are dealing with photoelectrons
which are produced in the volume of a semiconductor
by direct optical excitation. The absorptive part of the
dielectric constant e& is given by'

es(ro) =A p did
I pr (It) I'b(AG7 —8 (It)+ h (It))

s,j (3)

A = e'/6s. ms'te'V

The sum is over all conduction bands i and valence
bands j. y;; is the momentum matrix element between
bands. The 8 function is for energy conservation. The
assumption of direct transitions and neglect of the
momentum of the light leads to the same value of It in
both bands i and j.The spin is supposed to be considered
in the sum ofi, j.

The 8 function in Eq. (3) leads to the result that the
electrons produced by direct transitions lie on an
"optical energy shell" whose equation is given in (1).
The optical energy shell is a "weighted" surface or
"shell" with a weighting factor

I p' (I ) I'I ~sI h'(I )—h (I )jl '.
When we refer to the "shell area" we mean the surface
area with this weighting factor.

W'e de6ne an internal quantum-differential yield
dy/dE by the equation

dg
dl Ip,,(I)I s( —a, (I)+h, (I))

sz
)&8(E—8;(k))/es. (4)

The internal yield dy/dE is just the energy distribution
of the electrons as they are created. Since we are
interested in the yield per absorbed quantum, we~have
divided by es. The use of Kqs. (3) and (4) shows that

' T. A. Callcott, Phys. Rev. 161, 746 (1967)."D. Brust (private communication).
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The geometric construction equivalent to Eq. (4) is
shown in Fig. 1. The solid curve is the optical energy
shell and the dashed curves are electron energy shells.
The quantity (dy/dE)BE is the weighted area of the
optical energy shell lying between the electron energy
surfaces 8;(k)=E and 8;(k)=E+hE. The electron
density of states p(E) is given by

Mi

p(E)= Q dkb(L: 8;(—k)).
(2~)' ' ss

FxG. 2. Structure in the optical density of states ~ versus energy
Aau resulting from optical critical points (OCP). The subscripts

(6) give the number oi negative mass coeScients.

We will conlne our analysis to analytic points of
energy versus k vector. We then write 8(k) as a power
series to second. order in k —kp where kp is some given
polllt Rlld k ls ln lts llelghborhood.

8;(k)=e;+n(') (k—k())+(k—kp) g('& (k—kp). (7)

or (8). All four types yield. square-root-type structure
in ~2 versus kco or p versus E. A simple graph of e2

versus Ace is given in Fig. 2 illustrating the appearance
of the four types of sin.gularity. ' Equation (7) may be
used to give bp, the contribution to p from the vicinity
of the critical points in the analytic form:

g is proportional to the reciprocal effective-mass tensor.
We also want to consider optical energy bands, 8;(k)—8;(k), which, of course, have expansions analogous
to Eq. (7) with the definitions

for extremal points Mo and M3'.

Bp=Ss(r(e(E e()j",—e(E—e,))0

e(E—e;) (0;
(9)

(1o)

8;(k)—8;(k)= e;)+(1('&) (k—kp)

+(k—kp) g(*'&') (k—kp),

e(&i)—~(&) 0 (i)

for saddle points M~ and M2.

bp= a Spic(E e—~)]I" e(—E—e;))0 (11)

bp= a+b(E—e;) e(E—e;) &0 (12)

g((I)= g(0 g(J)

A. Critical Points

p= (pII'pss'—pss'( '",
e—=p»'/I p»*l .

(14)

A critical point is dered as a point where 0,=0. In
the case (r('J)(kp)=0, we call kp an optical critical
point, OCP. If (I(') (kp) =0 kp is called an energy critical
p0111't ECP. If kp ls a pomt of hlgll sylllllletl'y . the
condition u=0 may be required by symmetry. In this
case (and, we assume, only in this case) kp will be
simultaneously an OCP and an ECP. We use the special
name, symmetry critical point, SCP, for this case. The
SCP's will have a special importance in the theory of
critical lines to be developed in Sec. II B.

The importance of the three-dimensional critical
points, OCP and ECP, in yielding structure in re-
Aectivity and the density of states is very well known. ' "
In order to contrast with the two-dimensional results
we give a brief review.

There are four types of three-dimensional critical
points (or van Hove singularities) labeled M;, i=0, 1,
2, 3, where the index i is the number of negative P
coefficients (the tensor is assumed. diagonal) in Eq. (7)

"J.C. Phillips, J. Phys. Chem. Solids 12, 208 (1960); J. C.
Phillips, in SOHd Stere I'hysk s, edited by F. Seitz and D. Turnbull
(Academic Press Inc., Neve York, 1966), Vol. 18, p. 55.

The axes have been. deaned so that Pss and Pps have the
same sign. g is assumed diagonal. In the saddle-point
case, some cutoff must be assumed to limit the con-
tribution to bp to the vicinity of kp. The constants a
and b in (11) and. (12) depend on the choice of cutoff
but the strength S~ of the nonanalytic contribution
does not. The saddle points M~ and M2 appear to be
more prominent than the extremal points Mo and M3 in
Fig. 2. Equations (9) and (11) indicate that all four

types will be equally prominent in the energy deriva-
tive. This is one of the advantages of derivative methods
in studying critical points. '3

B. Critical Lines

We now discuss the structure of the internal di8eren-
tial yield dy/dE in Eq. (4), using Eqs. (7) and (8).

"B.O. Seraphin and R. B. Hess, Phys. Rev. Letters 14, 138
(1965);M. Cardona, K. L. Shaklee, and F. H. Pollak, Phys. Rev.
154, 696 i1967l; W. E. Kngeler, M. Garfinkel, J.J.Tiemann, an(i
H. Fritzsche, Phys. Rev. Letters 14, 1069 (1965); G. %. Gobeli
and E. O. Kane, ibid. 15, 142 (1965);I. Balslev, Phys. Rev. 143,
636 (1966).
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8g
dE

N$T.

1

dE ', ~ a1('»
dkpdkoi P;, (k) i'8 8 —()rro) —Arop)

0 (u)

+nr hp(kp kp'r) +|3(ko—kpo)'}, (21)

At a critical point we need to include quadratic
terms from Eqs. (7) and (8). We integrate over kr as
before, eliminating the "optical energy 5 function" and
installing Eq. (19).We then use Eqs. (19) and (16) to
eliminate the k~ degree of freedom and obtain

FIG. 3. Structure in the internal energy distribution function
dy™jdE versus E, for photoelectrons produced by light of frequency
Ace, is shown due to critical points CP2 or "critical lines. " l, s, u
denote the critical-point-type classi6cation as lower extremum,
saddle point, and upper extremum, respectively.

As we have remarked previously, electrons created by
direct transitions lie on an optical energy surface in k
space given by Eq. (1) and illustrated in Fig. 1. dy/dE
is the energy-distribution function of the electrons as
they are created on this surface. In the first part of our
discussion, we think of k~ as fixed so that we concen-
trate on the two-dimensional space of the optical energy
surface. Just as before, we fmd that in this space there
are "ordinary points" and "critical points. " The
critical points lead to structure in dy/dE in the same

way that the OCP of Sec. IIA lead to structure in

plots of e2 versus ko.'~ We will sometimes call these
points CP2, the subscript 2 referring to the two-dimen-
sional energy surface on which they lie. When kco is
allowed to vary, the locus of the CP2 trace outlines in
k space. We will usually refer to the CP2 as "critical
lines. "

An "ordinary point" in this discussion is one where
n(') and 0.(&~ are sot parallel. Linear terms in the ex-
pansion of Eqs. (7) and (8) are then sufhcient. Axes

may be chosen such that

h;(k) —h;(k) =e;;+nr &'r) (kr —k ), (16)

1

dE ', ~ 0,1(' )O2('&&2

hp) = h, (k)—8;(k),
E= h;(k).

dkpip;;(k)i', (18)

(19)

Equations (19) an.d (20) de6ne an "optical energy sur-
face" and a "constant energy surface, " respectively.
The variable ko in Eq. (18) runs over the line of inter-
section of these two surfaces. When the two surfaces
are tangent, their normals are parallel, e('& parallel to
e('». 0.2(@ is then equal to zero by construction and we
have a critical point, CP2. These critical points are
shown as circles in Fig. 1.

h'(lr)=er+nr
'

(kr —kpr)+no ')(kp kpp). (17)

With the use of Eqs. (16) and (17) in Eq. (4) it is easy
to integrate'over the 8 functions and obtain

p p
(')

pr
('r)

2 yr(kr kor—)'= Z
l=2 l,~2 Q1(l) 0,1(il)

X(kr' —kor') (k '—ko ') (22)

The y's are related to the p/n's by a transformation of
axes to diagonal form indicated by Eq. (22). The y's
are the relative curvatures of the optical energy and
electron energy surfaces. Equation (21) is then inte-
grated to give for the extremal point

~=Sr„nrr')y, (E—Zp)) 0
EdZi

=0, nrr')yp(E —Ep)(0 (23)

and for the saddle point

(24)

Sr =~If&' (k,) )'/, &' ~)n&r' y)

V= (VpVo)'r'.

(25)

(26)

The constant u depends on the assumed cuto6'.
We note that again we have two types of critical

points depending on whether optical and electron
energy surfaces have an extremal or saddle type of
tangency. In the extremal case, the differential yield is
constant with energy and falls abruptly to zero at Eo
when the surfaces separate. The saddle-point case gives
a logarithmic in6nity at the critical point so that this

type of singularity tends to be more prominent. Figure
3 shows the structure in the energy-distribution curves
due to critical points CP2. l, u, and s denote lower- and
upper-extrema and saddle-type CP2, respectively. The
sharp corners and spikes will become rounded. when
lifetime broadening is considered.

The saddle-type CP2 are more prominent than the
extremal CP2, as was also the case for OCP and KCP.
To enhance the extremal structure, a further derivative

may be taken. In a plot of d'y/dz' the extremal points
would also give infinite peaks in the absence of lifetime
broadening.

It is worth noting that the strength coeKcient S~ in

Eq. (25) does not have a singularity for nr&') =0, or
nr"') =0 separately. This is easily seen using Eq. (22).
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This means that ECP's and OCP's do not strongly
enhance the structure in dy/dE. Of course, when nit'&

=0.&&'»=0 simultaneously, Sl, will be singular. This
occurs when an ECP and an OCP coincide, as they
must at certain points of high symmetry. We have
called such points SCP's. The enhancement of the
structure due to critical lines which occurs at an SCP
may be useful as a tool for identifying SCP's.

Using Eq. (21), we note that the type of CPs, l, n, or
s is determined by the signs of 0.~&"y2 and e~&')y3.

SCP

ECP

SCP

rn&=P&&xi, /=1, 2, 3. (28)

These equations aheays possess a nonzero solution for
some r. For all Pi&/0, the solutions form a single straight
line as r takes on all values. If one, and only one, P;;=0,
n;/0, we must take r=0 and the solutions are the
straight line x;~;=0, x; unrestricted. If P;;=n;= 0 or if
two or more P;; are zero the solutions will cover a plane
or all of three dimensions.

In studying the properties of critical lines we use
the Taylor-series expansion of Kqs. (7) and (8) for all
bands. We study three cases successively, namely,
where ko, the origin of the expansion, is a CP2, an OCP
or ECP, and an SCP.

I.

kodes

a CP2

The condition that a general point k be a CP2 is

Vsh;(k) =r V&,{b;(k) —8;(k)}, (29)

where r is any scalar. With the help of Kqs. (7) and (8)
we write (29) in the vicinity of ks.

n&'&+)&'& (k—ks)=r{n&'»+)&'" (k—ks)). (30)

We use the fact that ko is a CP2. Let ro be the value of
r in Eq. (30) for k= ke. Write r =re+ or. Treating k—ke
and Rr as first-order infinitesimals, we write Eq. (30)
to 6rst order as

drni' &= {y&'&—r,y&' &) (k—k,). (31)

Equation (31) is now of the form of Eq. (27). Using the
properties derived above, we can immediately write
down the theorem:

(i) A critical line cannot end on an analytic point.

This follows since Eq. (31) alwa, ys possesses solutions
along a line through ko.

C. Proyerties of Critica1 Lines

In deriving some simple but useful properties of
critical lines we first discuss solutions of the equation

rn=g x,
with n a nonzero vector, g a diagonalizable tensor, x an
unknown vector, and r a variable scalar. Without loss
of generality we choose the coordinate system for which

g is diagonal and rewrite Eq. (27):

Fro. 4. B-co images of critical lines. Electron energy is plotted
versus photon energy along critical lines. Critical points OCP,
ECP, and SCP are indicated by open dots.

Z. ko is an OCI' or an ECI'

We discuss the case for an ECP but the case for an
OCP is entirely analogous. At an KCP, Eq. (30) becomes

y&'& (k—k,)=r{nr*"&+y&'J& (k—k,)). (32)

Treating (k—ks) as a first-order infinitesimal, we see
that r is a 6rst-order in6nitesimal, hence we neglect the
second term on the right of Eq. (32) as being of higher
order and obtain

I1&'& (k—ks) =rn&'».

'4%e say "highly improbably" rather than "vanishingly im-
probable" since pre have not examined this point in the rigorous
manner of Herring. See C. Herring, Phys. Rev. 52, 363 (1937).

We can also state the following statement or theorem.

(ii) It is highly improbable for two critical lines to
intersect at a point of low symmetry.

This holds since we have seen that the solution of
Eq. (27) is generally only a single line. In order to have
two or more lines intersecting at ko we must satisfy at
least two conditions. Either P;;=n;=0 or P,;=P;;„;,=0.
(When these conditions are met a degenerate planar
solution results. The use of higher-order terms in the
power series would be required to resolve the de-
generacy. ) Since there is only one degree of freedom
along a critical line we cannot expect to satisfy two
conditions simultaneously unless one or more of them
is required by symmetry. "

To give an example where symmetry permits critical-
line intersections, consider the (100) line in a cubic
crystal. This is a critical line by symmetry. The com-
ponents of n normal to (100) are zero by symmetry.
Since we have one degree of freedom along the (100)
line, we can expect to satisfy P;;=0 for some point,
where i refers to a direction normal to (100). Another
critical line may intersect the (100) line at such a point,
and we have found instances in silicon where this occurs
in practice. (See Fig. 14.)
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4. E-(d Images of Cfitica/ Lines

In order to make contact with experiment we wish to
consider a plot of electron energy versus photon energy
along critical lines. If structure in experimental dy/dE
versus E plots is due to critical lines, then an experi-
mental plot of peak and edge energies versus photon
energy 4o should correspond to the theoretical plots of
E&' versus hen along critical lines. Ke now derive a few
simple properties of these plots which we call E-o&

images of critical lines.
I-et s be the length as measured along a critical line.

Since we have shown these lines to be "unkinked" ex-

T:- -0.2 -0.6 -1.4 -2.2 -3.0 -3.8

-3.0

0.2 0.5 0.8 1.0
1.0

FIG. 5. Highest positive-parity valence band V+. Contours of
constant electron energy for silicon in the (110) plane. Contour
lines are separated by 0.2 eV. The valence-band maximum is the
energy zero.

Equation (33) is of the same form as Eq. (27), hence
wc may conclude:

(iii) Every critical point, ECP or OCP, has one, and
only one, critical line passing through it.

-2.6
-2.4
—2.2Jl

-1.8
-1.4
-1.0
-0,6

0.6

0,4

0 2

The question of two or more critical lines intersecting
at ko is the same as in Sec. II C 1. Since here ko is a
point, there are no degrees of freedom with which to
satisfy the conditions required for intersecting lines.

3. Rois ae Aeatytic SCI'

Here Eq. (30) becomes

g(') . (k—ko) = r I}('&'.(k—ko) . (34)

If g(") has all nonzero eigenvalues, it will possess
an inverse (g"&)} '. Multiplying Eq. (34) through by
th. ls Inverse~ wc have

I}'.(k—k()) = r(k —ko),

g—(g(o)—i. g(i)}
(35)

Although I}(') and g('» are always Hermitian, I}' is
Hermitian if, and only, if I}(') and g(") commute, i.e.,
if they have the same principal axes. Hermiticity of I}'
will be guaranteed if the symmetry of the point ko is
high enough. If I}' is Hermitian, there are three real
solutions and three corresponding orthogonal critical
lines intersecting at ko.

If ko is a nonanalytic SCP, the equation analogous
to Eq. (34) which determines the critical lines in the
vicinity of II 0 is of higher algebraic order. Hence a non-
analytic SCP will generally permit more than three
critical lines to intersect at ko.

-0.2

—0.2 -OA -0.8 -1.0 -1.4 -1.8 -2.2

FIG. 6. Highest negative-parity valence band V . Contours of
constant electron energy for silicon in the (1j.0) plane. Contour
lines are separated by 0.2 eV. The valence-band maximum is the
energy zero.

cept possibly at nonanalytic points of $(k) or at SCP's,
we expect h;(s) and ~(s)= b;(s)—h;(s) to be analytic
functions of the variable s. If dh, /ds/0, the parameter
s can be eliminated to give h&v(h;) as an analytic func-
tion. If de&/ds/0, we can write h;(h~) as an analytic
function. Because of the one-dimensional character of
the lines, we do not expect to simultaneously satisfy
dhro/ds= dh;/ds=0 except when symmetry requires it.
At such symmetry points we have

h;= e~+P;s,
ha) = e;;+Pcs'.

(36)

Hence we see that the E(h(0) contours actually termi-
nate (or kink) at E= e;, ~= e;; since s' cannot be nega-
tive. Hence the E-co image lines will terminate only at
points whose h counterimage has special symmetry.
Such points will frequently be SCP's. However, when
Rn ordinary clltlcR1 linc ln k spRcc lntcI'sects R sym"
metry critical line this will also cause the E-cv image of
the ordinary critical line to terminate.

If two critical lines intersect in k space their E-cv

images must also intersect but the reverse will usually
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not be true. However, if more than two E-co images
intersect simultaneously or if an E-co image terminates
or is kinked, this is an indication that the k counter-
image has some special symmetry, the most likely situa-
tion being that k is an SCP.

Another desirable aspect of an SCP is that it causes
the strength of the critical structure to tend to inanity,
as we have noted previously. (The singularity remains
integrable so that, with lifetime broadening, a Gnite
peak or edge results. ) This means that structure be-
comes more prominent just where peaks are coalescing
or kinking or otherwise indicating that the k counter-
image has special symmetry.

Other interesting features of the E-cv images are their
extrema. An ECP will lead to an extremum of E(M)
whereas an OCP will lead to an extremum of ha&(E).
The converse is not necessarily true.

These points are illustrated schematically in Fig. 4.
E-~ image lines are shown terminating or kinking at
SCP's. The extrema in E versus ~ are shown as ECP's
and the extremum in au versus E is shown as an OCP.

We have diagonalized exactly the interactions be-
tween all plane waves whose kinetic energy at the point
k was less than 35 eV. We treated by second-order
perturbation theory interactions with all bands of
energy greater than 35 eV whose kinetic energy at
4= 0 was less or equal 85 eV. These perturbation inter-
actions were incorporated in the Hamiltonian prior to
diagonalization in the manner of Brusts and Lowdin. "

We have not made a complete calculation of all
critical points and lines in the entire zone. Our investiga-
tion has been restricted to the (110) plane. We chose
this plane because it contains the important symmetry
directions L100], [111j,and L110). Also, the (110) is
itself a reAection plane. Because of reQection symmetry,
all energy surfaces intersect the (110) plane normally.
Thus one of the conditions for an OCP, ECP, or a criti-
cal line is automatically satisfied. We may then expect
that a great many critical points and critical lines will
lie in the (110) plane.

We have not made a more complete survey of critical
lines partly because of the labor involved and partly
because we feel that a critical-linc analysis is not an
adequate substitute for a direct calculation of dy/dE
To be sure, the strengths of all the critical lines are
easily computed, but we 6nd that there are a large
number of critical lines and we have no accurate way
of adding them all together.

The critical-line analysis should be helpful in in-
terpreting a mole s'tlMgll'tfol'wald calculation of dp/dE
as to what parts of h space contribute to the more
important features. Since the calculated critical lines
suggest that a great deal of structure is actually present,
the straightforward calculation may have to be done
with considerable accuracy in order to resolve the
structure clearly.

3A 3.6 3.8 3A 3.0 2.6 2z 1.8
Z =-=

FIG. "j. Lowest positive-parity conduction band C1+. Contours
of constant electron energy for sihcon in the (I10) plane. Contour
lines are separated by 0.2 eV. The valence-band maximum is the
energy zero. Circles are critical points, ECP.

rn. AI ILICArION To SIL&CON
BAND STRUCTURE

In this section we illustrate some of the generalities
of the preceding sections with the use of a model band
calculation, namely, the empirical pseudopotential ap-
proximation to silicon as given by Brust, Cohen, and
Phillips, '" We follow their model and calculational
procedure exactly. We represent the potential by the
three parameters:
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4.6
4.8

4.2-

3.8-

0.2 K'o.4

3.8 4,2 4.6 5.0 5.8 ~6.0 5.8
2=- =

V111=—0.21, Vsse= 0.04, Vs11=0.08
& (37)

where the energies are in rydbergs.

"D.Brust, M. L. Cohen, and J, C. Phillips, Phys. Rev. Letters
9, 389 (1962).

Fro. 8. Second-lowest positive-parity conduction band C~.
Contours of constant electron energy for silicon in the (110)
plane. Contour lines are separated by 0.2 eV. The valence-band
maximum is the energy zero. Circles are critical points, KCP.

"P.Lewdin, J. Chem. Phys. 19, 1396 (1951).
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Ke have computed energy contours for all these
bands. The electron energy bands are shown in Figs.
5—9. The optical energy bands are shown in Figs.
10—15.

The energy interval between contour lines is 0.2 eV.
The zero of energy is the top of the valence band. For
a given band a total energy range of 3.8 eV was com-

3,4 3.5
l I i I

4.0 4.8 5.6 6.4 7.2
E—

0,6

FIG. 13.".Optical energy band; transition V to Cm+. Contours
of constant photon energy for silicon in the (110) plane. Contour
lines are separated by 0.2 eV. Dashed lines are critical lines de-
noted by Greek letters. Stars are critical points, OCP. Circles are
conduction-band ECP.

5.6-

4.8-
¹Q-

Q¹

and bypass the discontinuities introduced by an energy-
ordering de6nition.

The energy bands studied are the two upper valence
bands designated e+ and e and the three lowest con-
duction bands designated cI+, c2+, and c . The + sub-
script designates the reQection parity. Sands of the

FIG. 15. Optical energy band; transition V to C . Contours
of constant photon energy for silicon in the (110) plane. Contour
lines are separated by 0.2 ev. Dashed lines are critical lines de-
noted by Greek letters. Stars are critical points, OCP. Circles are
conduction-band ECP.

0,2 K' 0.4 0.6 0.8 1.0
1.0

0.8

puted; hence many bands have a high- or low-energy
cutoff beyond which calculations were not made.

Energies, matrix elements, and 6rst and second de-
rivatives of energy with respect to k were computed on
a rectangular grid. The line segment k=o to k=X
(Liooj direction) was suhdtvided into right equal in-
tervals; the line segment k=0 to k=E ($110j direc-
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3.4 3.6 4.4 5.2 6.0 6.8

FIG. 14. Optical energy band; transition V+ to C . Contours
of constant photon energy for silicon in the (110) plane. Contour
lines are separated by 0.2 eV. Dashed lines are critical lines de-
noted by Greek letters. Stars are critical points, OCP. Circles are
conduction-band ECP.

same parity are energy-ordered and the subscripts in-
crease with increasing energy. %e have also studied the
six optical energy bands corresponding to transitions
between the two upper valence bands and the three
lowest conduction bands.
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FIG. 16.8-ce images of critical lines in the (110)plane in silicon.
Only the "strongest" lines have been selected. (Greek letter
denotes critical lines as labeled in Figs. 10-15.) Final band indi-
cated by code. Initial band indicated by subscript + or —on
critical line designation. I" and I SCP s indicated by heavy dots.
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'tloll) was subd1vldcd 111'to twelve cqllal 111'tcrvRls. Fol
energy interpolations and other computations, the en-

ergy was taken to be given by a Taylor series to second
order in dk, the distance to the closest mesh point.
This approximation is not adequate in the vicinity of a
nonanalytic point; e.g., F is nonanalytic for bands Cl+
and C2+ which are degenerate at F. On the other hand,
bands V and C are analytic in the (110) plane over
the entire range computed since they do not contact
other bands of the same reQection parity. However,
quantities such as strengths of critical points and
critical lines depend on the curvature normal to the
(110) plane. Here, the analytic character out of the
plane becomes important and our analytic approxima-
tion fails for many more points. For instance V and C
are nonanalytic along the entire L100) and L1111
directions when energies out of the (110) plane are
considered.

Energy contours are required by symmetry to inter-
sect perpendicularly the lines d, and Z. The same is
required for the line A (I' to I.) where the bands are
nondegenerate, as shown by band C~+ in Fig. 7. %hen
the bands are degenerate along A, the symmetry re-

quirement is that the slopes of the energy contours
degenerate at A. be equal and opposite relative to A.. In
short, reQection symmetry about A. is required for the
pair of bRIlds but not for each balld individually. Tllls
is shown by the degenerate pairs V+, V and C2+, C .
Critical points, OCP and ECP, are designated by stars
and circles, respectively.

The "fatness" of the "intermediate p band" C2+
shown ln Flg. 8 ls speclRlly noteworthy. The Qatness ls
most pronounced in the vicinity of the t111)direction.
Calculations by Brust~ and Kane'9 show a very strong

'9 E. 0, Kane, Phys. Rev. 146, 558 |,'1966).

3.0 3.5 4.0 4.5 5,0 5.5 6.0 6.5 70

PHOTON ENERGY, h~ (eV)

FIG. I7. Strength SI, versus photon energy of three of the
strongest critical lines shown in Fig. 16. u, l, s indicates upper or
lower extremum, or saddle-type critical point, CP2.

peak in the density of states associated with this rather
Rat band.

In tlM optlcR1 encl gy gl Rplis of Figs. 10—15 tlie
critical lines CP2 are shown dashed and are labeled with
Greek letters o., p, y. The symmetry lines 6, Z, and
X-E' are necessarily critical lines due to.symnmtry.
In Flg. 12 tllC 'till'CC cll'tlcRl-llllC SeglllCII'ts labClCd Q, p,
and P are actually three parts of one continuous curve.
This becomes apparent when the symmetry of the line
E'I-E is considered, Points along this line which are
related by inversion through I have equal energy. In
particular, points E and E' have equal energy. In this
case and elsewhere, parts n and P of the same line have
been given different designations in order that the
photon energy should be uniquely specified since we

display the strength of critical lines as a function of
photon energy.

The requirement that RH ECP and OCP be inter-
sected by one, and only one, critical line is seen to be
satisied in these 6gures. In addition the SCP are
intersected by two or more critical lines. The point I'
has the largest number of critical hnes because of its
nonanalytic character.

In Fig. 14 the critical lines e and d provide an ex-

ample of the fact that an ordinary critical line may
intersect a symmetry critical line at a point other
than an SCP.

In Fig. I6 we plot the E-cv images of some of the
stronger critical lines displayed in Figs. 10—15. These
are plots of electron energy versus photon energy taken
along the critical hnes. The SCP's 1' and I.are seen to
be important "foci" or "termini" for critical lines.
Plots of this kind may serve to identify SCP's. The I'
point is easily distinguished even without a plot. Since
I' is the valence-band. maximum, the 1 point lies on
the 45' line E=her.

The strength SJ of the crltlcRl points CP2 ln Eqs.
(23)-(25) have been calculated for three of the stronger
critical lines and are plotted versus photon energy in

Fig. I7. It is seen that the strength is a rapidly varying
function of the photon energy. This may produce
problems in plotting E-co images experimentally since
the structure may appear to fade into the background.
The strength is large near SCP's where it wiB tend to
infinity. The strength also tends to in6nity wherever a
change of type among s, 3, I occurs.

The results of this paper have been brieRy reported
by Brust. v He has analyzed his calculated distributions
in terms of "E-co"plots and 6nds lines corresponding to
V C2+Z and V+C2+P in Figs. 16 and 17.Higher resolu-

tion is required in the calculations in order to distinguish
the less prominent details.
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