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The Forster-Dexter (FD) theory of transfer of electronic energy by the resonance interaction between
an excitation localized at one impurity and an unexcited state at another is based on a model consisting of
an ensemble of inert continuous dielectric hosts in each of which are imbedded one sensitizer and one
activator at random positions; there are only two relevant electronic energy levels associated with each
impurity, and these levels are merely broadened by lattice vibrations. In spite of the apparently crude
approximations involved in the two-impurity model for resonance transfer, the FD theory has been vital to
the understanding of energy-transfer phenomena in solids, liquids, and biological systems, and most of the
predictions of the theory have been verified at least semiquantitatively. Clearly the two-impurity model
must not be so crude as it appears to be at first glance, and many of the complicated effects which one might
expect from a more elegant theory must be hidden in the parameters of the model. In this paper, the res-
onance-energy-transfer mechanism is treated from a many-particle viewpoint, and the collective nature
of the excitation migration is taken into account. Assuming a nonmagnetic monatomic crystal with two
substitutional impurities, the initial and final states of the energy-transfer process are taken to be localized
excitons, or excited states of the entire system of impurities plus host crystal. First, on a linear-chain
model it is found that the host states modify the bare interaction between impurities and also provide a
short-ranged virtual-exciton mechanism for energy transfer. Then the long-ranged part of the effective
interaction is treated for a three-dimensional model of a tight-binding crystal, with the effects of the impuri-
ties on the host treated within the framework of linear response theory. For long-ranged excitation migration,
the connection between the collective picture and the two-impurity picture is established by performing a
unitary transformation on the crystal Hamiltonian and showing that an effective two-atom Hamiltonian
consistent with the FD theory can be extracted from it. Therefore, the two-impurity picture of sensitized
luminescence is shown to be a suitable limit of a many-body treatment of migration of localized excitons;
and, in this limit, all the effects of the medium can be included in a simple frequency-dependent dielectric
response function. The approximations implicit in the FD theory are discussed, with particular attention
paid to the effects of low-lying host-crystal states on the rate of energy migration. It is argued that the usual
weak-coupling criterion is not sufficient to guarantee the validity of the FD theory and that multiple-
scattering effects not included in the theory become important at relatively low concentrations.

I. INTRODUCTION

q
XCITONIC energy migration in condensed media,

~ which is characterized by a net transfer of elec-
tronic energy without attendant charge transport, is
thought to be responsible for a variety of phenomena in

physics, chemistry, and biology ranging from sensitized
luminescence to photosynthesis. "Perhaps the simplest
systems in which exciton energy transfer can be in-
vestigated experimentally are crystalline insulators
lightly doped with two different kinds of impurities; in
such cases, a localized excited state can be prepared on
one impurity center and the excitation energy can hop to
a nearby impurity of the second species, using the
Coulomb interaction between the two centers as the

*Based in part on a thesis submitted to the faculty of the
University of Rochester in partial fulfillment of the requirements
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$ National Aeronautics and Space Administration Predoctoral
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University, Princeton, N. J. 08540.' Th. Forster, Ftztoreszenz Organischer Verbindztngen (Vanden-
hoeck"and Ruprecht, Gottingen, Germany, 1951).

'D. L. Dexter and R. S. Knox, Excitons (Interscience Pub-
lishers, Inc. , New York, 1965); R. S. Knox, Theory of Excitons
(Academic Press Inc. , New York, 1963). The mobile generalized
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jump-inducing perturbation. If the localized exciton
resides on the first center long enough for the sur-
rounding lattice to completely relax about it, the migra-
tion mechanism is referred to as "resonance energy
transfer" or "inductive resonance. '" '

The current theoretical understanding of resonance-
transfer phenomena in solids is due primarily to Forster
and Dexter, who provided a sound basis for the theories
of sensitized luminescence and concentration quenching
and depolarization of fluorescence. The basic difference
between the Forster-Dexter (FD) theory and earlier
unsuccessful attempts to explain sensitized luminescence
in solids and liquids' was that the effects of lattice relaxa-
tion around the excited impurities were adequately
accounted for, albeit somewhat phenomenologically. In
treating the phonons correctly, Forster and Dexter had
actually converted the earlier resonance theories into
a theory of energy transfer dominated by eoeresomumce

transitions between the vibrational energy levels of

'Th. Forster, Naturwiss, 33, 166 (1946); Ann. Physik 2, 55
(1948); Z. Naturforsch. 4A, 321 (1949).

4 D. L. Dexter, J. Chem. Phys. 21, 836 (1953).' D. L. Dexter and J. H. Schulman, J. Chem. Phys. 22, 1063
(1954).' J. Perrin, Delxieme Conseil de Ch&me Solmy (Gauthier-
Villars, Paris, 1925), p. 322; Compt. Rend. Acad. Sci. (C. R.
Hebd. Stances Acad. Sci.) 184, 1097 (1927);F. Perrin, Ann. Chim.
Phys. 17, 283 (1932); S. 1. Vavilov, J. Phys. (USSR) 7, 141
(1943).
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electronic states whose vibrational bands overlapped.
As a result of the misnomer "resonance energy transfer"
there was considerable confusion about the validity of
first-order perturbation theory in their analysis, a point
that has only recently been clarified by Robinson and
Frosch. '

Most of the efforts to refine and extend the original
FD theory have been based on the FD model of two
highly-localized molecule-like impurities imbedded in an
inert, continuous dielectric host in such a way that the
electronic energy levels are merely broadened by the
host's lattice vibrations. ' ' However, a proper theo-
retical model of the resonance-energy-transfer mecha-
nism should account for the collective nature of the
process, treating the initial and final states as localized
excitoms or excited states of the entire system of im-
purities p/us host crystal and allowing for the electronic
polarization of the medium. The connection between the
collective picture and the two-molecule picture is by
no means obvious. "The primary goal of this paper will

be to demonstrate that connection, and to account for
the effects of the host medium on resonance transfer
between two impurities. In particular, energy transfer
over short distances will be treated in terms of a linear-
chain model of a solid with two substitutional impurities,
and it will be shown that host electronic states sig-
ni6cantly enhance short-ranged energy migration be-
tween impurities. The resonance energy transfer over
large distances will be considered on the basis of a
realistic tight-binding model of a crystal; it will be
demonstrated that the FD theory of resonance transfer
can be obtained as a suitable limit of a many-body
treatment of migration of localized excitons, and that,
in this limit, all the sects of the medium can be in-
cluded in a simple dielectric response function. In
addition, the approximations implicit in the Forster-
Dexter theory will be formally discussed, with particular
attention paid to their experimental implications.

Section II will be.devoted to a brief review of the FD
theory, and Sec. III will deal with energy transfer over

r G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962
(1962);38, 1187 (1963).Because of the lattice vibrations, it is incor-
rect to diagonalize the electronic Hamiltonian (Ref. 6) and correct
to treat the interaction between impurities by perturbation theory.' J. D. Axe and P. F. Weller, J. Chem. Phys. 43, 1 (1965); M.
Inokuti and F. Hirayama, ibid 43, 1978 (19.65), and references
therein; K. B. Eisenthal and S. Siegel, ibid 41, 652 (19.64); Yu.
A. Kurskii and A. S. Selivanenko, Opt. i Spektroskopiya 8, 643
(1960) LEnglish transl. : Opt. Spectry. (USSR) 8, 340 (1960)j;
M. D. Galanin, Zh. Eksperim. i Teor. Fiz. 28, 485 (1955) /English
transl. :Soviet Phys. —JETP I, 317 (1955)g.' For a survey of the literature concerning resonance transfer,
see Luminescence of Inorganic Solids, edited by P. Goldberg
(Academic Press Inc. , New York, 1967); F. R. Lipsett, Energy
Transfer in Potyacene Solid Sotntions (National Research Council
of Canada, Ottawa, 1957 and 1961); Th. Forster, in Modern
Qnantnm Chemistry, edited by O. Sinanoglu (Academic Press Inc. ,
New York, 1965), Part III; L. N. M. Duysens, Progr. Biophys. 14,
1 (1964); and Refs. 10 and 15.

Luminescence of Organic and Inorganic Materials, edited by
H. P. Kallmann and G. M. Spruch (John Wiley & Sons, Inc. ,
New York, 1962), pp. 296 et seq ;ComParatiee sects. of Radiation,
edited by M. Burton, J. S. Kirby-Smith, and J. L. Magee (John
Wiley & Sons, Inc. , New York, 1960), p. 322.

short distances in a static lattice and includes a dis-
cussion of energy transfer in a model one-dimensional
system. Section IV is concerned with long-ranged
energy migration and contains the derivation of the
effective FD Hamiltonian. Section V summarizes our
findings.

II. REVIEW OF FORSTER-DEXTER THEORY

A successful theory of resonance energy transfer and
impurity-sensitized luminescence in solids and liquids
was 6rst formulated by Forster, who was primarily
interested in excitation migration between organic
molecules whose electronic dipole transition moments
are large. ' Dexter subsequently extended Forster's
dipole-dipole theory to include the effects of dipole-
quadrupole, quadrupole-dipole, quadrupole-quadrupole,
and exchange interactions, all of which are important in
inorganic systems where the impurity transitions of
interest are often forbidden. 4 '

The model system on which the FD theory is based
consists of two impurities, "a sensitizer or donor (S) and
an activator or acceptor (A), imbedded in an inert in-
sulating isotropic host. The effects of finite concentra-
tions of impurities are accounted for by performing an
ensemble average over all possible positions of S and A.
Here it is assumed that the excited sensitizer has only
two possible channels for decay: radiative emission or
radiationless resonance transfer of its excitation to A
(single-center radiationless transitions, cascade proc-
esses, and mechanisms of energy transfer involving a
net transport of charge are neglected) "; likewise,
radiationless decay of S is assumed to occur with
negligible probability. "

The physical processes occurring during sensitized
luminescence have been discussed by Dexter. ' Here we
are interested in the resonance transfer, but it is im-
portant to remember that the initial and Anal excited
states are well-dined as a result of rapid lattice re-
laxation about S and 3, respectively, which localizes
the excitation at one impurity or the other. The reso-
nance transition may be treated by 6rst-order time-
dependent perturbation theory (Fermi's Golden Rule),
"In what follows, we restrict ourselves to the case of impurities

S and A randomly distributed throughout the host. Hence "high
concentration" is equivalent to "small S-A separation. "However,
in organic systems especially, the S's and A's are not necessarily
randomly distributed, but often occupy specific sites on a macro-
molecule, so that the average S-A separation is Axed; in fact, such
6xed-distance experiments provide the most conclusive verification
to date of the FD dipole-dipole transfer rate Pag=Rdq'/(rBR').
See L. Stryer and R, P. Haugland, Proc. Natl. Acad. Sci. (U. S.) 58
719 (1967); S. A. I att, H. T. Cheung, and E. R. Blout, J. Am.
Chem. Soc. 87:5, 995 (1965); K. H. Drexhage, M. M. Zwick, and
H. Kuhn, Ber. Bursenges. Phys. Chem. 67, 62 (1963)."See Ref. 15 for a discussion of these assumptions.

"The results can be generalized to the case of S's Ruorescence
efficiency less than unity simply by replacing z8 in Eq. (4) with
the observed lifetime divided by the fluorescence eKciency of an
isolated S. (We assume that S's radiationless relaxation time is
long compared with the S-A transfer time, and that the radiation-
less relaxation rate divided by the radiative rate is a constant
for all transition energies E.)
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provided that (a) the "weak-coupling" criterion" is
satisfied so that the time for transfer is very much longer
than typical phonon relaxation times; (b) the Stokes's
shifts of both impurities are su%ciently large that the
activator emission band has negligible energy overlap
with the sensitizer absorption, thereby rendering back-
transfer ineKcient4; and (c) ™purity concentrations
are suKciently weak that interactions (i) between
sensitizers, (ii) between activators, and (iii) between
sensitizers and activators —other than the excited S
and its nearest-neighboring activator —are all negli-
gible. "We shall discuss these conditions later and shall
find that they are often violated in even the "best"
resonance-transfer experiments.

Assuming that the Golden Rule is applicable, and
taking the effective Hamiltonian to be a sum of atomic
Hamiltonians for S and A plus an effective interaction
term H, the energy migration rate I~„ from an initial
state with excitation localized at S to a final state with
the energy residing on A is

PeA (2m/A) I——(s,a*,v„v'. IH'Is', as*„v.)l'
X3(w,+w*,—w*,—w.). (1)

Here the initial state lt)= Is*,—a, v*„v,) is specified by
the electronic and vibrational quantum numbers s* and
e*, of the excited sensitizer and the activator quantum
numbers a and e.; similar notation holds for the final

state
I f)=ls, a*, v„v*), andw*, andw, (w*, andw, )

denote the zero-order atomic plus vibrational energies
of the sensitizer (activator); and the Dirac 3 function
ensures conservation of energy. The perturbation
Hamiltonian Il' can be expanded in a multipole series
which is, neglecting terms of higher order than quadru-
pole-quadrupole,

H'={e'/eR'){Me MA —3(Me R)(MA R)}
+{e'/eR4){s(~ QA R)(Ms R)™sQA R}
+{e'/~4}{ss(R'Qs'R)(MA'R) —MA'Qs'R)
+{e'/eR'}{0 QA Qe R+4(R QA R)(R Qe R)

+sQA:Qe) (2)

Here MA and QA are the dipole and quadrupole mo-

ment operators, respectively, of the activator atom:

Z(A)
MA= Q rA, QA=3MAMA MA'MA~

v=1.

with similar notation for S. The vector R—=RR is the
internuclear separation, e is the electronic charge, and &

is the "dielectric constant of the host. "Averaging the

square of the perturbation Hamiltonian over all direc-

'4 W. Y. Simpson and D. L. Peterson, J. Chem. Phys. 26, 588
(1957);Th. Forster, in ComparativeE+ectsof Radiation, edited by
M. Burton, J. S. Kirby-Smith, and J. L. Magee (John Wiley R
Sons, Inc. , New York, 1960), pp. 300-319.

»J. D. Dow, Ph.D., thesis, University of Rochester, I967
(unpublished); available from University Microfilms, Ann Arbor,
Michigan.

tions R" and also over the relative orientation of Me
and MA, neglecting terms in H'other than the dipole-
dipole interaction, summing PeA LEq. (1)j over initial
states, and averaging over Gnal states, we obtain the
average dipole-dipole resonance transition rate

2'
PeA(dd)= — dE

t,2

IC'«I' Zg '(s*) dw*
~2@6 e', e

xp(v*,)ps(w*, —E) l(slMels*)lsl(s, v, ls*,v,*)
I

X E g '(a*) dw.p(v.)pA(w. +E)
4

xl(a*lwAla)l'I(a*, v*.la,v.)I' . (3)

where
P-(dd) =(1/")(R-/R),

9a'e' le..
l f,(E)PA(E)

O'A
8m e' g4

(4)

is the "critical transfer distance" at which spontaneous
emission and resonance transfer to A are equally
probable decay channels for S. Here Q'A is the area
under the activator absorption band I-i.e., in terms of
the cross section, Q'A =J'aA(E)dEj, FA(E) is th—e
activator absorption normalized to unity, fe(E) is the

"Normally this averaging procedure would occur later in the
calculation anyway.

» M. Lax, J. Chem. Phys. 2Q, 1752 (1952).

Here E is the energy of the transition (=—w*,—w,);
ICAAI'is the averaged angular factor (equal to —', ); g(se)
is the degeneracy of the atomic electronic state ls*);
p(v*,)dw*, is the probability that the excited sensitizer
is in the vibrational state le*,) with energy w'» pe(w)
is the density of sensitizer final states at energy m; and
(s,v, ls*,v*,) is a Franck-Condon overlap factor. Similar
notation holds for A. We have taken the initial- and
final-state wave functions to be products of non-over-
lapping single-atom functions centered on S and A, re-
spectively, with the lattice vibrations accounted for in
the Born-Oppenheimer approximation; furthermore, we
have assumed that the electronic parts of the matrix
elements are insensitive to the details of the vibrational
factors and so may be evaluated at the equilibrium
lattice configuration (Condon approximation). 'r

The angular averaging has allowed us to factor the
transition rate into two independent parts; if an isolated
excited S undergoes only radiative transitions, the
sensitizer factor is proportional to the S emission
intensity divided by its emission lifetime vz, likewise,
the activator factor is proportional to A's absorption
cross section. Thus, in the FD theory, the transition
elements are related to absorption and emission data,
and PsA (dd) is written
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normalized S emission, and c is the speed of light stt

~aclo. We emphasize that the averaging procedure can
only be valid if the distance R is so large that the
(exact) wave functions of the impurities (in the absence
of the direct interaction H') are uncorrelated and that,
even then, the averaging of

) (i ( Me M~ ( f) )
' is suspect.

The large-E. requirement is in effect an extremely meuk

couplirtg requirement which turns out to be considerably
more restrictive than the usual weak-coupling crite-
rion. '4 We shall return to this point later.

The observable quantity associated with a resonance
transfer of energy is eKciency of transfer from S or
transfer quantum yield g&..

I.O

0.8

0.6

v)r {dd)'

OA

0.2

10 s XA(dd) lo 4

Rage
'gr =

Ps~vs+1 ~ as+If'

For experiments on doped crystals, g& must be averaged
over all possible values of R to provide an expression
for gz as a function of activator concentration. The
appropriate weight for this average is the probability

q(R) =4trRsxgC~(1 —xg) '~"'c"t'

=4+Rsx~C~e 4~"&c»'-(6)
that the nearest activator is a distance R away from a
given sensitizer. 4 "Thus we have

re(dd) =yea" Ci(yz"') sinyz~ —y~e" Si(y~ "a) cosyz™
= srry~~+O((y~~)') = s~'I4a'x~c~, (&)

' A great deal of effort has been expended on the averaging
problem: R. A. Cellarius, Photochem. PhotobioL 6, 91 (1967);
M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965);
A. G. Tweet, W. D. Bellamy, and G. L. Gaines, Jr., ibid 41, 206.8
(1964); M. D. Galanin, Zh. Eksperim. i Teor. Fiz. 28, 485 (1955)
LEnglish transl. : Soviet Phys. —JETP 1, 317 (1955)]; A. Ore,
J. Chem. Phys. 31, 442 (1959);33, 31 (1960);B.Ya. Sveshnikov,
Dokl Akad N. auk S.SSR ill, 78 (1956) LEnglish transl. : Soviet
Phys. —Doklady 1, 633 (1957)); L. N. M. Duysens, Progr.
Biophys. 14, 1 (1964); M. Leibowitz, J. Chem. Phys. 69, 1061
(1965); M. Z. Maksimov and I. M. Rozman, Opt. i Spektro-
skopiya 12, 606 (1962) LEnglish transl :Opt Sp.ectry. .(USSR) 12,
337 (1962)g; I. M. Rozman, ibid. 10, 354 (1961) t English transl. :
Opt. Spectry. (USSR) 10, 178 (1961)g.A number of authors have
argued that the average over impurity distributions should not be
performed at this point of the calculation or in this manner. For
the most part, their arguments are meant to apply to impurity
concentrations such that two or more activators can compete for
the excitation of a single sensitizer. We understand the under-
lying assumptions of their arguments to be that (s) the FD theory
applies in this regime and (b) the net rate of transfer of energy
from a given S is the sum of transition rates to each A (with no
interference terms). However, the FD theory is based on a two-
impurity model and does not apply to systems with high impurity
concentrations; Grst-order perturbation theory may be used to
calculate a decay rate only if one decay channel is overwhelmingly
favored by the system (e.g., transfer to the nearest A); and inter-
ference and multiple-scattering effects become dominant at high
concentrations (e.g., ax=1). Therefore we feel quite content to
perform the average as Dexter did, fully realizing that the results
are only meaningful st low concentrations and that even then we
must allow for 33'%%uo tluctuations in the average nearest-neighbor
distance.

Forster and Dexter were both keenly aware of the limitations
of the theory at high impurity concentrations and they, as well
as others (Ore, Cellarius), attempted to overcome these problems,
which we can trace to two causes: (a) the failure of the two-
impurity model to adequately describe multiple scattering at high

0
o.ol O. I

ydd
A

I.O IO.O

FIG. 1. Quantum yield for dipole-dipole resonance transfer as a
function of reduced activator concentration y~"". The solid line is
obtained by assuming that an excited 5 donates its energy to the
nearest A only, while the dashed line represents the contribution to
re(dd) which is linear in yxo~. Where the two lines coincide, the
FD two-impurity model is applicable; at larger concentrations,
multiple-scattering effects are important, and the solid line should
be viewed as an interpolation formula which gives the correct
value of rtr(dd) in the high-concentration limit. Typical values of
zx(dd) are listed above the plot

where the reduced concentration for dipole-dipole trans-
fer yz is equal to 3~R&&'x&C&, Cz is the density of
sites available to activators, xz is the probability that a
particular one of these sites is occupied by an activator,
and Ci(y) and Si(y) are the cosine- and sine-integral
functions. "Since the two-atom model on which the FD
theory is based omits competition between activators
for the excitation of a given sensitizer, the average
quantum yield for transfer from S must be linear in the
actisetor colcerttratiort. The nonlinear terms in Eq. (7)
arise from the invalid assumption that energy is trans-
ferred to the nearest-neighbor activator owly and should
be regarded as providing merely an interpolation
formula for qp which is valid in the high-concentration
limit (x~-+ 1). Thus it is incorrect to interpret data
which are nonlinear in x~ (e.g., as in concentration
quenching experiments) in terms of the FD two-
impurity theory. An adequate theory of resonance
transfer in heavily doped crystals would have to treat
the multiple-scattering eRects which arise from inter-
actions between activators. Note that sensitizer con-
centrations must be small, since we have implicitly
assumed that the total number of transitions is pro-

concentrations (unless damping eKects are included, second-order
perturbation theory diverges for transfer from 8 to A by way of
an intermediate state localized at another activator); and (b) the
incorrectness of the effective Hamiltonian H' at short distances
R (hnear-response theory breaks down, the concept of an etfective
interaction becomes meaningless snd virtual-exciton transfer be-
comes important). We discuss (b below; clearly a satisfactory ex-
tension of the FD theory to overcome (a) or (b) must be a msny-
particle theory.

"Hartdbooh of Mathomatt'ca/ Fttrtctions totth Formgtas, Graphs,
amE Mathematical Tables, edited by M. Abramowitz and I. A.
Stegun (U. S. Department of Commerce, Washington, D. C.,
1964), Natl. Bur. Stds. Appl. Math. Ser. SS, 231.
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lo-»A(qd) Io-4 IO ~

Io-' X (dq) Io-4

A careful inspection of Eqs. (4) and (8) reveals that
the transition rates may be generally written

0.6
3T{

or
qd)0

0.2

0
O.OI O. l I.O

ydq or yqd
A A

lo.o

FIG. 2. Quantum yields for dipole-quadrupole and quadrupole-
dipole transfer as a function of reduced concentration yg.

1 Rg, '
Psg(dq) =

~S

7l Egg XgCg
ter(dq) = +0(xg'),

2 s1n8~

1 E.~q"
P»(qq) =

glp

27''E„'xgCg
ri (qq)= +0(a '),

5 sing 0&

where E«', E«', and R«" may be expressed in terms of
the absorption and emission spectra for the single im-

purities S and A, as in Eq. (4) for Eds'. Since

quadrupole absorption data are not always easily
measured, it is sometimes necessary to guess the absorp-
tion spectra from a knowledge of the more-easily
measured emission data. 4 The quantum yields for
dipole-quadrupole and quadrupole-quadrupole transfer
are presented in Figs. 2 and 3.

portional to the concentration of excited sensitizers. The
quantum yield for dipole-dipole transfer Eq. (7) is

graphed in Fig. 1 as a function of y~"~. The dotted line

represents the term linear in y~"", while the solid line

is the result for nearest-neighbor transfer only. Where
the two lines coincide, the two-atom model is applicable;
while at higher concentrations, the model fails and it is
necessary to hypothesize that only transfer to the
nearest activator is possible in order to get the inter-
polation formula provided by the solid line. For the
sake of easy reference, typical values of x& are indicated
in the abscissa above the plot.

The corresponding transition rates and quantum

yields for dipole-quadrupole (dq) and quadrupole-

quadrupole (qq) transfer are

where A, f~ is the effective electronic factor in the transi-
tion matrix element I h,it=A/e here, where 6 is the
bare electronic matrix element and e is the (high-
frequency) dielectric constant of the medium], and
pg is the vibrational overlap of the normalized activator
absorption spectrum with the normalized sensitizer
emission. Thus the electronic states determine the
strength of the bare interaction, polarization effects
reduce this interaction, and the lattice vibrations merely
provide an effective density-of-final-states factor in the
transition rate.

There are three effects of the medium which ap-
parently have not been included in Eq. (9): (a) local-
field corrections Le.g. , in the case of the interaction be-
tween point-dipole impurities in a static cubic crystal,
the perturbation H' of Eq. (2) is not cV&3E&Cd&/eE'
but ((e+2)/3)'M~MsCqq/eR', where —', (e+2) is the
Lorentz local-field factor" ") (b) the eGects of the
index of refraction; and (c) the possibility that the
medium could severely alter the radial dependence of
the interaction. In general, the local-field factor is a
complicated function of the dielectric constant, the
radii of the excited states of the impurities, and local
lattice distortion. In a quantum-mechanical treatment
of the full crystal Hamiltonian, the local-field correction
arises from distortion of the free-atom-like impurity
wave functions as a result of interactions between the
impurity and its neighbors. "Thus, if the unperturbed
initial and 6nal states are eigenstates of the crystal
Hamiltonian minus the sensitizer-activator interaction,
then the local field is included in matrix elements
evaluated experimentally. " Hence local-6eld correc-
tions are already included in Ps&.r4 Kith regard to (b),
in evaluating the transition matrix elements by relating
them to absorption and emission probabilities, there
appear factors of N(E), the index of refraction evaluated
at the transition energy. These factors account for re-
duced photon velocity in the crystal and the altered
density of photon states. For the dipole-diople inter-
action, it turns out that they cancel, so that no factors
of e(E) appear in Rqq. This cancellation does not
occur for higher-multipole interactions, however. '"""
Finally, with regard to (c), the medium could alter the
radial dependence of the interaction; e.g., an indirect

G. D. Mahan, Phys. Rev. 1&3, 983 (1967)
"Note that Dexter's original definition {Ref. 3) of local field

contains an extra factor ~ '; the more conventional definitions are
used in Refs. 15, 20, and 23.

22 D. L. Dexter, Phys. Rev. 101, 48 (1956); R. F. Guertin and
F. Stern, ibid. 134, A427 {1964}.

23 W. B.Fowler and D. L. Dexter, Phys. Rev. 128, 2154 {1962);
J. Chem. Phys. 43, 1768 (1965);M. Lax and K. S.Burstein, Phys.
Rev. 97, 39 (1955)."It will become apparent later that this is only true if the im-
purities are suSciently separated that the long-wavelength com-
ponents of the interaction are dominant Le(g, co) = e(0,ca)).
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interaction between 5 and A exists in that both im-
purities couple to the host-exciton bands as a result of
interactions with their neighbors. On physical grounds,
we expect that such indirect coupling is small whenever
R is large or the excited impurity states lie far below the
host-exciton bands. In Sec. III, we shall demonstrate
the correctness of this expectation, but we shall show
that typical separations R and impurity-host energy
differences are suKciently small to make the in-
direct coupling important in most resonance-transfer
experiments.

I.O

0.8—
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qr(qq)
04-

0.2-
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III. ENERGY TRANSFER IN A
STATIC LATTICE

0'—"
O.OI O. l qq IO.O

In the preceding section, we saw that the primary
eGect of lattice vibrations on the resonance transfer
of energy is to determine a density-of-states factor.
Kith this in mind, we now consider the case of energy
transfer in a static lattice in order to determine the
effects of host-exciton states on the bare-interaction
matrix element. The indirect coupling of S and A
through the intermediate exciton states provides a
mechanism for energy transfer, as 6rst pointed out by
Agranovich. ' Such virtual-exciton migration is a
strong-coupling mechanism of energy transfer in the
sense that S and A are each strongly coupled to a
nearest-neighbor host atom and each host is strongly
coupled to another; it is a weak-coupling mechanism
in the sense that the effective indirect interaction be-
tween 5 and A is small compared with A/r„, where
v „, is a typical vibrational equilibration time. For S-A
separations less than the mean free path of a host ex-
citon immersed in a bath of lattice vibrations, it is a
satisfactory approximation to compute an effective
interaction matrix element A, g~ neglecting the phonons
and then to determine the energy migration rate using
the Golden Rule LEq. (9)].

The mathematical technique that we shall use to cal-
culate A, q~ is the method of classical Green's functions
developed by Lifshitz" and others" for the treatment of
localized perturbations. Thus we shall generalize
Agranovich's second-order calculation for impurities
near a polymer chain to the case of impurities in a
three-dimensional crystal, allowing for a direct inter-
action between impurities and including (at least
formally) the contributions to virtual-exciton migration
from all orders of perturbation theory. In order to get
a qualitative feeling for the effects of virtual-exciton
migration, we shall ultimately specialize to the case of a
one-dimensional crystal, in which case our calculation
becomes mathematically similar to the two vibrational

"V. M. Agranovich, Opt. i Spektroskopiya 9, 113 (1960);
9, 798 (1960) LEnglish transls. :Opt. Spectry. (USSR) 9, 59 (1960);
9, 421 (1960)j."I.M. Lifshitz, Nuovo Cimento Suppl. 10, 3, 716 (1963).

''7 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc. , New York, 1963), Suppl. 3, and references therein.

FIG. 3. Quantum yield for quadrupole-quadrupole resonance
transfer. The notation is the same as in Fig. 1, except that the
dotted line is added. The dotted line represents gy for dipole-
dipole nearest-neighbor transfer plotted as though yg""=yg«,
and illustrates how diKcult it is to discern among dd, dq, and qq
mechanisms (the dq and qd lines would lie even closer to the solid
line), even if transfer to nearest neighbors is the only kind to
occur.

mass defects treated by Montroll and Potts." We
emphasize that the formalism of this section can be
applied to real crystals, the most serious problem being
the calculation of a perfect-crystal Green's function;
such a calculation would not be appreciably more
diKcult than the many band-structure computations
that are now regarded as routine. Our choice of one-
dimensional Hamiltonian" is similar to those of a
number of authors' who have considered impurities in
a static lattice; but the interpretation of our results is
drastically different. The quantity of interest in all
energy-migration calculations is the probability that an
excitation initially localized at S may be found at site
3 at time t. In our calculations, we assert that this
probability is Ps&t Lwith Ps& given by Eq. (9)),
thereby including phonons u posteriori in accordance
with the weak-coupling nature of the FD theory; thus
we need only calculate the strength of the effective in-
teraction A, gg for a static lattice. On the other hand, it is
sometimes possible to calculate the desired transition
probability directly; however, many-phonon processes
must be included in order to obtain a probability which
increases linearly in time (as experimental data de-
mand); a static-lattice computation overlooks the

"E.W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955);
102, 72 (1956)."E.Bartholome and E. Teller, Zeit. Physik. Chem. B19, 3
(1931); K. F. Herzfeld, J. Chem. Phys. 10, 508 (1942); H. M.
McConnell, ibid. 35, 508 (1961); G. F. Koster and J. C. Slater,
Phys. Rev. 96, 1208 (1954); M. Lax, ibid 94, 1391 (1954); A. .
Morita and M. Azuma, J. Phys. Soc. Japan 18, 1273 (1963);E.I.
Rashba, Opt. i Spektroskopiya 2, 568 (1957) )English transl. :
AEC tr 5967j--"R.E. Merrifield, J. Chem. Phys. 38, 290 (1963); S. Takeno,
ibid. 44, 853 (1966); D. P. Craig and M. R. Philpott, Proc. Roy.
Soc. (London) A290, 602 (1966); A293, 213 (1966); K. Katsuura
and M. Inoknti, J. Chem. Phys. 41, 989 (1964).
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weak-coupling nature of resonance transfer and results
in a temporally oscillating probability.

We consider a static simple cubic crystal of E atoms
whose ground-state wave functions are S-like with
E-like excited states in the energy interval of interest
(all higher excited states being neglected) and assume
that the elementary excitations of the crystal are in
one-to-one correspondence with the excitations of the
same crystal with in6nite lattice constant. The perfect-
crystal Hamiltonian is taken to be

H p= P H&(n)+Q Q Hs(n, n)),

where —eZ(n) is the nuclear charge of the nth atom
and r„„ is the position operator of the electron e~.
Hs(ns, rn) is the interatomic coupling

z(» z(m) e z(m) Z(n)es
Hs(n, rn)= Q

ij=i 1 „1p,
IJ=j I p

z(~) Z(m)e' Z(n)Z(rn)es+, (11)'-) Ir„„—R
I

IR„—R„l

which may be written in the dipole-dipole approximation
as

M„M„3M„R„„R„„M„
(12)H, (n,ns) =

R„'
Here R„—=R„—R and M„=+„(z(")er„„.The Schro-
dinger equation for the perfect crystal is Hpl &=Epl ),
with solutions

where Hq(n) is the atomic Hamiltonian of the host
atom at lattice point R„:

z(» —O' Z(n) e'
H)(n)= Q

r„„—R
I

Z(e) g2

(1o)

Ep(k) =P ( n', pl Hpl np& expLik (R„—R„)g. (15)

Here k lies in the 6rst Brillouin zone, and we have im-
posed periodic boundary conditions. If we neglect con-
figuration interaction and consider only states with one
excited atomic function, then the elementary excita-
tion spectrum of the static crystal is determined by the
band-structure equation (15).

Assuming that we have found satisfactory solutions
for the pure crystal, we introduce two impurities, one
at the origin (n=S) and the other at n=A; we assume
that both impurities have S-like ground states and
P-like excited states. Thus we have a new Hamiltonian

H=Hp+ V, (16)

where V contains terms for the diGerences between im-
purity and host free-atom Hamiltonians and also
changes in interatomic coupling. In order to simplify
the mathematics, we restrict ourselves for the moment
to the case of two identical impurities, each with a
symmetrical ground (atomic) state and a low-lying
vector-like excited state. We wish to obtain the effective
interaction between an excited state of the crystal
localized at S and an unexcited state at A; that is (for
identical impurities), one-half the splitting between
the excited-state energies. Thus we look for the solu-
tions of the Schrodinger equation

HI )=~f &=Ho+VI & (17)

with energies below the lowest-lying host-crystal
energies. (We assume that the impurity levels lie in the
transparent region of the host's spectrum. ) Equation
(17) is more conveniently written

I )=(&—H.)-'vl &=gVI ), (lg)

and the impurity-state eigenvalues are the solutions of

combinations of the In, y& do effect the diagonalization:

I k,y&= X-'is P I n,y& exp(ik R„),

Ix), Ep(x) . (13) det(1 —gV) =0,
For a tight-binding crystal made up of atoms with

the second excited states energetically distant from the
6rst, it is often satisfactory to approximate the solu-
tions of Eq. (13) by appropriately antisymmetrized
linear combinations of products of atomic wave func-
tions. " The gound state is then formed from all the
atomic ground states, and the low-lying excited state
ln, y& localized at site n is formed from an atomic ex-
cited state y (y labels the three I' states) on site n and
all other atoms in the ground state. The set of states
In,y& do not diagonalize Hp, but the unperturbed ex-
citon wave functions'

I k,y) formed as coherent linear

» R. S. Knox, J. Phys. Chem. Solids 9, 238 (1959); A. Gold,
Phys. Rev. 124, 1740 (1961).

where 1 is the unit operator and we have introduced the
classical Green's function of the perfec& crystal

I~&(x I

g(E) = (E—Hp)-' =P
) &—Zp(X)

Equation (19) is easily solved if a set of basis functions
can be found in which V (and hence g V) has only a few
sizable matrix elements. In general, there will be two
sets of nearly threefold degenerate excited impurity
energies which solve Eq. (19); the degeneracy, which
results from the fact that cubic crystals do not split
P-like atomic states, being slightly removed by V. If
we consider the case of identical impurities, S and A,
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P+&P, P P p p p ap

II 1 t I

n&0 na2 n*5 na 4 n= 5 n=6=p

FIG. 4. Energy-level diagram showing a direct interaction (solid
line) and an indirect interaction (dashed line) between two im-
purities separated by six lattice spacings in a one-dimensional
crystal.

then the effective interaction between an excited S
atom and an unexcited A atom is half the splitting be-
tween the centers of gravity of the (now degenerate)
sets of impurity energies.

In order to gain a qualitative understanding of the
host crystal's effects on the net S-A interaction and how
the host states alter the resonance-transfer rate, we
specialize to the case of a one-dimensional nonmagnetic
crystal in which excited-state interatomic matrix ele-
ments are large only between nearest neighbors, "
(+I&el++1)—=p=&m+1[lxrs[ts); the diagonal elements
of the unperturbed Hamiltonian are &e[ Hs[N)= nand-
the ground-state energy is taken to be zero; aB other
matrix elements are taken to be zero. The perturbation
due to the two in1purities is determined by its matrix
elements between localized states of the unperturbed
crystal:

(s[v[s)—=&&= &A [ v[A),
&A[vis&—=~=&slv[A),

&s~1[v[s)—=ap, = &sl vis~1&,
and

&AI v[A+1)=—~P, =&A+1I v[A&

For simplicity S and A are assumed to have identical
matrix elements (bps=bp~= bp), and the —ground-state
energy of the perturbed crystal is assumed to be the
same as for the unperturbed crystal.

This model Hamiltonian provides (a) a direct inter-
action A between impurities and (b) an indirect inter-
action which results from coupling of both impurities
to intermediate exciton states of the host crystal. Thus
energy can migrate from S to A in a single hop or by a
succession of virtual hops from one atom to its neigh-
bor; these processes are represented on an energy-level
diagram in Fig. 4 and in terms of Feynman diagrams
in Figs. 5 and 6.

The perturbed-crystal eigenstates are solutions of

(1—gv) I )=0, (21)

n~o n&l n~2 n~5 n=4 n~5 n~6~p

FIG. 5. Feynman diagram for the direct interaction between im-
purities. An upward (downward) directed line denotes an electron
(hole); the dashed line represents the Coulomb interaction. The
lattice points of the one-dimensional model are denoted by n=0,
1, ~ ~, 6, with the sensitizer at n=0 and the activator at n=6—=P.

Since V is a localized perturbation, there are only six
sites, ms=A, S, A&1, S&1, which enter the product
matrix gV; thus, as long as we are interested in the
impurity states and not in the perturbed host-exciton
states, we may replace Eq. (22) with the set of six
equations

g'A„,„&m[ )=0, (23)

where

A, =8„, —(ts[gV[m& (24)

[ g ( 2 1)1/sj
&I [g[m&=—g([rs—m[) =

2P(~s —1)tis
(26)

where I'=—ll —m[, x=(E—n)/2P, and we have as-

and the prime on the summation restricts the sum to the
six sites of interest. Thus the determination of the im-
purity eigenstates and eigenvalues has been reduced to
the equivalent (but simpler) problem of finding the
eigenvectors and eigenvalues of the localized matrix
gV. The impurity energies which solve Eq. (23) are the
roots of the 6X6 determinantal factor of Eq. (22)

detA =0.
Since the perfect-crystal Hamiltonian is invariant

under the symmetry operations of the space group, the
Green's function is too. Hence, as a consequence of
crystal periodicity and inversion symmetry, &e I gl m) is
only a function of the distance between the two sites e
and m. A straightforward calculation yields

which may be written as a set of E linear equations in
the localized representation

n=0 nial n*2 n=5 n=4 n= S=p

g {b„, &w[gv[m&)&no[ —)=0. (22)

"Here we suppress the quantum number y and assume that
all relevant matrix elements are diagonal in it. The position of the
nth lattice site is R„=nul. , where ul, is the lattice constant.

Fro. 6. Feynman diagram contributing to the indirect (virtual-
exciton) interaction. A tightly bound localized excited state is
denoted by a bubble.
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sumed that E lies below the host-exciton band in the
transparent region of the crystal (x)1). A further
simpli6cation of the problem results from the assump-
tion that both impurities are identical, so that the
determinantal eigenvalue equation (25) can be factored
into parts corresponding to wave functions which are where

detL I —(Cia Cs)]=0, (27)

either odd or even under reQection through the plane
midway between 5 and A; thus the impurity energies
E+ are determined by

G+(1) II+G+(1)+G+(0)+G+(2) G~(1)
Cr&Cs= Gg(0) IIgG~(0)+Gg( —1)+Gg(1) Gg(0)

.G~(—1) &~G~(—1)+G~(—2)+G+(o) G~(—1).
(2S)

(29)

and
G+(~) =~PLY(l~l)~g(l~ —A I+~)j (30)

The resulting eigenvalue equations are

4(xg' —1)= 2(x~s 1)t "(A+D—y~ "+4y~BaDaAy~"
a2By~~'W2By~& ')+2B'(1—y~' —y~'&)

~B'(y+" '—2y+"—y+~'), (31)
where

A —= 8rr/P, B=8P/P, D=—6/P, —

y~ =—x~—(x~'—1)'"&1, and p=—IS—A
I
. (32)

LRecall x+=—(E~—rr)/2P. ) Rather than become in-

volved in unnecessarily tedious calculations, we set 8
equal to zero (nearest-neighbor coupling for impurity-
host is the same as for host-host), with the understand-

ing that we shall later generalize our results to the case
$/0, using arguments based on perturbation theory.
The simplified eigenvalue equation is

y+ '—y+=A+Dy+"~D~Ay+" (33)

and the effective interaction is

« .s(=&+ &—) -sP=8(1 'y—), (34)

the long-ranged part being tentatively identi6ed as
screened by the "dielectric constant" e. LThe quantity
in brackets premultiplying 6 in Eq. (35) is e ', note
that the last term in the denominator of e

—' represents
"spatial dispersion. "] In fact, both terms correspond
to polarization processes which enter the (internal) in-
verse longitudinal dielectric operator defined by Hub-
bard. '4 It can be shown" that Hubbard's internal
dielectric function is the same as the dielectric function
measured by coupling a weak external longitudinal held
to the many-particle system of interest —provided that
the imaginary part of e is small and local fields are negli-
gible. The matrix element which enters the transition-
rate Eq. (9) is A,«, which for large impurity separations
reduces to the form A/e used in the FD theory; for
smaller values of R, the short-ranged term" can seri-
ously modify the radial dependence of the effective inter-
action, even providing the dominant contribution. Thus
the FD resonance-transfer theory in its usual form is
valid only for distances so large that I'—=

I 6,., /(6/e) I«1.
This inequality is a semiquantitative statement of the
earlier assertion that the FD theory is only valid if the

where by=—y+—y is sufficiently small to be treated as
a differential and the minus subscript on y will

henceforth be omitted. Thus we have"

(1—y')

1.0

O.B

pe

jeff

(1-y')y"

1+y'+ (D+ A)py'+'

1+y'+(D+A)pyr '-

(35)

ps

ps
G.6

ps

Since y is approximately equal to P/8n, (E=rr+8n), and
is less than unity, the second term in the effective inter-
action decreases exponentially with the S-A separation
A= par„whereas the first term is proportional to the
bare interaction A which is long-ranged (e.g. , 6~2|! ').
Therefore we write h, ~q as a sum of long-ranged and
short-ranged parts

h, rr= ht. , +6,., =6/e+A. ... . (36)

"This result reduces to Agranovich's (Ref. 25) for 6=0,
lft/s~ I«1.

0.4
2 10

Fro. 7. The quantitye ' as a function of A
I see Eqs. (35) and (36)g.

'4 J.Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957);A243,
336 (1958); A244, 199 (1958).

"A. Morita and Y. Osaka, Progr. Theoret. Phys. (Kyoto) 26,
799 (i96i).' We emphasize that the short-ranged term is rot due to ex-
change; since we assume that atomic wave functions on di6erent
sites do not overlap, the only way exchange could be incorporated
into this model is by adding a spin-spin interaction term to the
Hamiltonian.
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impurities are suf6ciently separated that their wave
functions are essentially uncorrelated; we shall see that
it is often a more restrictive weak-coupling condition
than the usual requirement that k/6 be small compared
with phonon equilibration times. The short-ranged term
is due to indirect coupling between impurities by means
of the virtual-exciton mechanism first discussed by
Agranovich"; the virtual exciton hops from site to site
until it arrives at the activator. Plots of e ' as a function
of A=—hn/P are given for p=2, 3, 4, and ao in Fig. 7;
likewise, P—=—1ny, the inverse damping length per
lattice constant for the short-ranged interaction, and
y& are plotted as functions of A for various values of p
in Figs. 8 and 9. The short-range to long-range ratio F
may be obtained by multiplying y& by (P+bPs)(P+8P~)
X(&rr)/(P'0); the factor (P+bPs)(P+8P„)P ' has been
included to make the results reduce Lin the limit

~(5n)/P~))ij to those obtained in lowest order of
perturbation theory (the diagram of Fig. 5) for the
case of non-identical S and A.

Of course, the virtual-exciton mechanism is intrinsi-
cally interesting and not just a troublesome process
which interferes with the FD mechanism of energy
transfer. Its range is typically about four lattice con-
stants, as may be seen from the following numerical
considerations. For interactions between nearest neigh-
bors in realistic monatomic molecular crystals, the
matrix element P is typically 0.1 eV, almost regardless of
the multipolar nature of the interaction. For more
distant neighbors, the bare direct matrix elements
and critical transfer distances for dipole-dipole (dd),
dipole-quadrupole (dq), quadrupole-dipole (gd), quad-
rupole-quadrupole (qq), and exchange (ex) are typi-
callysr (for inorganic systems)

24

2.0

( -Iny l.6

l.2

pe

ps 4
pg $~0.8

4 6 8
A~-

A

FIG. 8. g= —lny, the inverse damping length per
lattice spacing, as a function of A.

IO

I I I I I I I

interpretation of luminescence data may lead to
erroneous results, especially when high concentrations
of impurities are involved. In fact, virtual-exciton
energy transfer may have been observed by a number
of workers. For example, Nakazawa and Shionoya"
have investigated transfer from Tb'+ to Nd'+ in
calcium-metaphosphate glass, which they characterize
as dq or dq transfer, not specifying which impurity has
an allowed transition and which has a forbidden one. We
believe that both transitions are forbidden and that
virtual-exciton transfer is responsible for the observed
energy migration. Likewise, the system" CaFs(Ce, Mn)

A«= 0.1p-' eV,

hg, =0.02p—' eV,

8,„=0.003P s eV,

R«=35 A,

Rd, =13 A, R,s=30A)
R„=15A, (37)

O. I =

0.05-

6,., =0.1(0.05)" ' eV. (38)

Thus the virtual-exciton mechanism cannot compete
with direct dipole-dipole transfer, but it will provide
the dominant mechanism for dq and qq transitions over
distances less than four and seven lattice spacings, re-
spectively. Virtual-exciton transfer always dominates
the long-ranged energy migration by the exchange
mechanism.

These numbers indicate that for forbidden transitions,
the conventional application of the FD theory to the

"Observe that Rqp &Rpq since sensitizers with forbidden
transition have longer radiative lifetimes.

and

6, =10sp'e ' »' & eV, R,„=SA,

whereas the short-ranged interaction is typically
(taking ar, =6as and

~
8n~ =2 eV)

O,OI „-

y 0.005:

O.OOI =

0.0005-

O.OOOI
2 4 6

A
Sa

IO

FIG. 9. y& as a function of A.

"E. Nakazawa and S. Shionoya, Tech. Rept. Solid State
Phys. University Tokyo A236, 1967 (unpublished); J. Chem.
Phys. (to be published). We are grateful to Professor Nakpzawa
and Professor Shionoya for a copy of their paper.

'~ R. J. Ginther, J. Electrochem. Soc. 101,248 (1954);R. Leach,
ibid. 105, 27 (1958);B.L. Danielson, Phys. Rev. 142, 228 (1966).
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exhibits eKcient spin-Qip resonance transfer from Ce'+
to Mn'+ over distances of about 11 A. This distance is
probably a bit large for a direct exchange interaction,
but not so large that virtual excitons (8n 10 eV) could
n.ot transfer the excitation in a two- or three-hop
process.

A similar situation exists in organic systems. Sma11er
et ul. ,

"assuming a phenanthrene-naphtahlene exchange
transition rate' proportional to exp( —2R/I. ), obtained
1.=1.5A, which they interpreted as an average Bohr
radius or wave-function damping length. Calculations
of the exchange integral for hydrogenic 1s orbitals show
that the asymptotic behavior of the transition rate is
more nearly (R/as)s exP(—4R/as), where as is the
Bohr radius"; thus Dexter's L, should be interpreted as
half the average Bohr radius. A radius of 3 A is un-
acceptably large (almost by a factor of 2), and we con-
clude that the virtual-exciton mechanism probably
operates here too.

Finally, we note that Sternlicht, Niemann, and
Robinson ' have observed virtual-exciton migration by
way of exchange interactions in deuterated benzene.
Their basic technique is to vary bn by using heavy im-
purities. Similar techniques ought to be applied to the
study of energy transfer in inorganic solids; depending
on crystal symmetry, it should also be possible to
change 8n by applying a pressure to the crystal, pos-
sibly modulating it and observing the modulation of
luminescence.

To be sure, we have only given a semiquantitative
account of resonance transfer by virtual excitons in
one dimension. It can be shown" that the three-
dimensional analog of the model treated here has an
asymptotic effective interaction of the Yukawa type,
so that generalization to three dimensions does not
result in significantly different results. Of course, the
one-dimensional model is deficient in that it neglects
(a) the effects of virtual-exciton hops between non-
nearest neighbors, (b) higher-energy host bands, (c)
multiple scattering in the case of several sensitizers or
activators, and (d) scattering of the intermediate host-
exciton states by phonons. Deficiency (a) can be re-
moved by performing a numerical calculation of the
effective interaction using a realistic Hamiltonian; the
additional pathways for virtual-exciton migration will
enhance this mechanism of energy transfer in one
dimension and more so in three dimensions. The effects
of higher-energy host bands must be included in order
to have a. consistent theory of energy transfer, since
localized impurities necessarily couple strongly to high-
energy states of the host. These states are often best

S.Smaller, K. C. Avery, and J.R. Remko, J. Chem. Phys. 43,
922 (&965)

4 A factor exp( —4R/ao), where ao is the average Bohr radius
of the excited and unexcited states, will appear in the transition
rate regardless of the details of the orbitals.

4'H. Sternlicht, G. C. Nieman, and G. W. Robinson, J. Chem.
Phys. 38, 1326 (1963); G. C. Nieman and G. W. Robinson, ibid.
37, 2150 (1962); 39, 1296 (1963).

described in terms of a basis set of atomic functions
localized at the crystal-lattice sites, suitably sym-
metrized, si with implrity (rather than host) functions
at the impurity sites; it is then convenient to define a
pseudo-Hamiltonian which can be diagonalized by the
exciton transformation in this basis."Future attempts
to extend the FD theory will doubtless concentrate on
multiple-scattering e8ects and exciton-phonon inter-
actions; the latter seem to be the sole threat to the
virtual-exciton mechanism, since they may destroy the
coherence of the intermediate states. It is our belief
that for distances up to about five lattice spacings in
typical strong-coupling host crystals (e.g., CdS 4'), the
reduction of virtual-exciton migration by phonons is
compensated for by the increased number of paths for
that migration; thus our estimates of the strength of
the indirect interaction, based on our simplified one-
dimensional model, probably are about right for a
realistic crystal.

It should be emphasized that the virtual-exciton
mechanism described here is a strorlg couptirsg v-ersion of
a rtet weak coup-tiring -theory in the sense that nearest-
neighbor interactions are strong (compared with phonon
equilibration interactions), A/P«r~, while the net in-
direct and direct coupling is weak, is/h, ff))r„. Thus
the crystal spectrum consists of relatively broad im-

purity bands lying below narrow host-exciton bands.
The virtual-exciton mechanism certainly exists in
crystals where the nearest-neighbor coupling is inter-
mediate or meuk, but its eKciency is attenuated by the
exciton-phonon interaction.

IV. EFFECTIVE INTERACTION OF
FD THEORY

In Sec. III, it was shown that the FD theory is valid
only for energy transfer between widely separated im-
purities. We now turn to the problem of deriving the
effective two-atom Hamiltonian for the FD theory
from the full many-particle Hamiltonian of an idealized
crystal. In spirit, the calculation is similar to the
effective-mass theory for sha11ow donors in semiconduc-
tors as developed by Kohn and co-workers44 and by
others. 4' The underlying physical idea is that the effects
of intervening charges on two spatially separated im-

purities should be primarily medium-like, allowing the
intervening particles to be replaced with an electro-
magnetic field determined self-consistently and char-
acterized by a frequency- and wave-number-dependent
dielectric function. Using Kubo's theory of linear re-

"The existence of an observable magneto-Stark effect LD. G.
Thomas and J. J. Hopfield Phys. Rev. Letters 5, 505 (1960);
Phys. Rev. 124, 657 (1961) in CdS indicates that at least the
long-wavelength excitons have long mean-free-paths.

44 W. Kohn, Phys. Rev. 105, 509 (1957); 110, 857 (1958); V.
Ambegaokar, ibid. 121,91 (1961);L. J. Sham. ibid. 150, 720 (1966).

4' A. Morita, M. Azuma, and H. Nara, J. Phys. Soc. Japan 17,
1570 (19/2); Y. Abe, Y. Osaka, and A. Morita, ibid. 17, 1576
(1962).
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D;(k,co) = Q d k' e;;(k,k', co)E;(k',co),
7~1

(42)

or, equivalently, in r space,

D;(r,t)= g d'r'dt' e;;(r,r', t—t')E, (r', t'). (43)

The host dielectric function e relates the displacement
D to the total macroscopic Geld E in the crystal; in turn,
E is a superposition of externa/ plus induced (macro-
scopic) parts, the induced (longitudinal) Geld arising
from the polarization charge density V (E—D) (1/44r).
The quantity of immediate interest is X, the response
to just an external field. For transverse 6elds, ez is
determined by the induced (coarse-grained) microscopic
current and by Maxwell's equation (Ampere's law) for
the displacement current:

4mi
er(k, co) =1+ {Jr(k, co)}—=Xr(k,c»), (44)

co hEr(k, c»)

where the curly brackets denote averages over the host
crystal's perturbed ground state and we assume
homogeneity and isotropy of the host. For longitudinal

44 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
4'4 P. Nosieres and D. Pines, Nuovo Cimento 9, 47O (1958).
4' J. J. Hoptield, Phys. Rev. 112, 1555 (1958).

sponse ' and the dielectric formulation of the many-
body problem, 4' we show that in a suitable limit the
bare interaction between two widely separated im-

purities is reduced by the same dielectric function
which is measured optically, the relevant frequency
being the energy of the transition divided by Ig. Thus
we provide a definite answer to the questions' concern-
ing which dielectric function is to be inserted into the
FD theory. Finally, we discuss local-6eld corrections
and indicate to what extent they cancel in the usual FD
theory.

In homogenous isotropic media, there are three
relevant dielectric functions: (a) the square of the
index of refraction, de6ned in terms of the polariton '
dispersion relation

ns(k co)=csps/cos(k) .

(b) the longitudinal dielectric function ez relating the
displacement to the longitudinal 6eld

Dz(k, c»)=ez, (k,co)Ez,(k,co)4 ik Ez) = [k[ iEz, i; (40)

and (c) the transverse dielectric function ss

Dr(k4c») = sr(k, co)Er(k, c»), k Es =0. (41)

For the case of inhomogeneous anisotropic media (e.g.,
noncubic crystals), these deGnitions become integral
equations on k and the components of the dielectric
tensor, e.g.,

where we have neglected retardation of the Coulomb
interaction. Thus the longitudinal dielectric function is
de6ned by

1—ez(k, ~)
{p(k, co)}= ik E.„„(k,co),

44r ez(k, co)
(46)

which for a Geld due to a charge distribution, p,„& is
equivalent to

{p(k, co)}= fez-'(k, co) —1]p,„c(k,co)

—=Xz(k, co)p, ,(k,co) . (47)

Physically, an isotropic crystal cannot distinguish be-
tween longitudinal and transverse 6elds which are
spatially uniform; hence ez(0,co) = sr(0, co) —=e(c»). Mathe-
matically, this result follows from the continuity equa-
tion applied to the longitudinal and transverse response
functions.

From the theories of absorption and emission by
single impurities, "we know that the transverse dielec-
tric function evaluated at the photon wave-vector (i.e.,
effectively zero wave-vector) and the frequency of the
transition enters in the determination of the multipolar
matrix element in the FD theory; so does the index of
refraction, which in the transparent region of interest is
equal to e'"(co).We shall see that the tongitldknal dielec-
tric function, evaluated at Gnite k and the transition
frequency, enters into the effective impurity-impurity
interaction. For dipole-dipole resonance transfer, in the
absence of local-Geld corrections, the factors of n(E)
and e(E) cancel, and the factor ez, '(k,E) is the only
dielectric function which remains in Zoos LEq. (4)]; for
higher multipolar transfer, the transverse dielectric
functions appear in the expressions for the critical
transfer distances along with the factor ez, '(k,E).

In what has preceded, we have restricted ourselves
to isotropic media (e.g., cubic crystals) and have con-
sidered only the translationally invariant part of the
response function

e(r, r', t-t') -+ e(r-r', t—t'), (4g)

in which case everything is most conveniently written
in Fourier (k,co) space. It is well known that the devia-
tions from translational invariance are responsible for
the so-called Lorenz-Lorentz local-Geld effects which
generally depend on the detailed structure of the crystal
in the region of the impurity. ""For the case of a per-
fect static lattice,

s(k,k', co) =P 5s s+o e(k,k+G,co), (49)
G

where G is a reciprocal lattice vector. Adler has pre-
sented a general technique for solving the resulting

6elds, the induced charge density is

{p(k, co) }= (4s.)-'L1—ez(k, co)]ik.Ez(k, co)

= (4s-)—'f1 —ez(k, co)]ik LE, ,(k,co)-ik44rk-'{ p(k, co)}], (4&)
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integral equation in G, and in the dipole approximation
he obtains the Lorenz-Lorentz formula modified by a
self-polarization correction. "Wiser has considered the
same problem from the viewpoint of self-consistent
field theory, and has shown that the local field can be
incorporated into a calculation a posteriori simply by
performing a suitable average of the macroscopic field
over a unit cell." Even though the local-field cor-
rection depends on local-lattice deformation and
whether the impurity occupies an interstitial or sub-
stitutional site, it is the same for single-impurity absorp-
tion and emission experiments as it is for resonance
transfer between widely separated impurities. Therefore,
as we have already indicated, all local-field effects cancel
in the expressions for the FD critical transfer distances
(provided that the remaining spatial dispersion in the
longitudinal dielectric function can be neglected) and,
for our purposes, may be neglected.

Turning now to the derivation of an effective im-

purity-impurity interaction, we write the Hamiltonian
for a crystal plus two impurity atoms as a sum of (a)
host-crystal Hamiltonian plus terms for the free im-
purities, (b) host-impurity interactions, and (c) im-

purity-impurity interactions:

H =H,+H b+H„

Htt =P +n+ I s+ I2+ 2 Ptt ' Ptt+ s Pt Pi t

Hs= pt,
' p, =ps'P~+P. s Ps,

recast the Hamiltonian in a form more suitable for
studying the polarization of the host by the impurities.

Following Englert, " we perform a unitary trans-
formation on H to remove the interaction H~ in lowest
01del:

Hs+[H„F)=0,
so that, to lowest order, H is given by

II=H +H,+ ', [Hs,F],-
where

(53)

(54)

dt IIs(t) (55)

(t) —eiErttt lsH e iIrttt is— (56)

Satisfactory unperturbed wave functions for the trans-
formed Hamiltonian are products of host states and two
impurity functions; that is, we neglect exchange between
host and impurities. Averaging II over the unperturbed
host ground state provides us with an effective two-
impurity Hamiltonian with an interaction term

H=e ~He~

=H+ III)F3+s [[HtFjFj+ ' ' '

=H.+H,+H,+[H.,F]+[H,,Fj+[H,,F]
+ ', [[H.-,F],Fj+ . (52)

The requirement that terms linear in H~ disappear
determines F:

and
Hc p8 ~ pA y (50) H =Ps:Pz+

25 p

dt p, (0):(ps(0)ps(t)): p, (t)

pI
'.p~=

p.(r)p~(r')
d'rd'r', (51)

with the understanding that the interaction of a particle
with itself is to be omitted. As in Sec. III, we recognize
that the nuclear vibrations merely complicate the
analysis in an unessential way, and we omit them. The
strongest perturbation of the zero-order Hamiltonian
H is the host-impurity coupling H&, the inter-impurity
coupling H, is the very weak interaction responsible for
the resonance energy transfer from S to A. We wish
to eliminate the impurity-host interaction H& and re-
place it with an eGective impurity-impurity interaction
involving the host dielectric function. In lowest order,
we could simply average H over the unperturbed host
ground state, but this procedure fails to account for the
dielectric effects of the medium; thus it is desirable to

'9 S. L. Adler, Phys. Rev. 126, 413 (1962).
50 N. Wiser, Phys. Rev. 129, 62 (1963).

where T„ is the kinetic-energy operator of the mth

atom, p&, pz, and pz are the charge-density operators
for the host, the sensitizer, and the activator, respec-
tively, and the scalar product denoted by a colon is
defined by, e.g.,

dt p'(t): (ptt(t)p. (o)):p'(o), (5&)
25

where the angular brackets denote host-ground-state
averages. This already bears a resemblance to a bare
interaction screened by a dielectric function, since ~ is
intimately related to the charge-density correlation
function. Performing the time integrations and those
implicit in the scalar products, and assuming transla-
tional invariance, we obtain the matrix elements of H'
between unperturbed impurity states

l
m):

2x
(~IH'I ~)=&,(~l p'(q)1~)( I p'( —q) l~)

q, P Qg2

X{1—S,[q, (&.—&.)/a3+S [q,(&.—&,)lah I, (»)
where

S~(q,ot) = 8(t) (ps( —q) pt, (q, +t))e'"'dt, (59)
A,Qg'

0 is the volume of the crystal, and tt(t) is the unit step
function. The particular matrix element which enters

"F. Englert, J. Phys. Chem. Solids 11, 78 (1959l.
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~1.-'(k,a) —1= g(t)([p(k, t), p( k)])e'"—'dt
AQk'

=S (—k, (o)—S+(k,~o). (61)

Substituting (61) into (60), invoking time-reversal
symmetry of the host ground state, and realizing that
causality implies that Reez, '(k, bi) is an even function
of co, while the imaginary part is odd, we have

~.« =—(s*,slH'. «I s,s*)

=Q (s*,s~H'b, .(q) ~s,s*)«ez '(q, E), (62)

where
H'b-. (q) = (4~/fir') p~(q) ps(—q) .

The traditional approximations used in the FD theory
amount to neglect of spatial dispersion ez(q, E)= ez, (O,E)
=e(E) and absorption ~Ime(q, E) ~&&~ e(q,E) ~. The first
of these is valid only if the sensitizer and activator are
distant from one another, as may be seen by spatially
Fourier-transforming Eq. (62) to obtain a convolution of
the inverse dielectric constant with the bare potential:

into the FD theory is (a*,s~H'~a, s*), so that the two
possible intermediate states are

~
i ) =

~
a*,s*) and

~v)= ~a,s). Thus we have

2'
(s*,s IH'I s,s*)=2 —(a*Ip~ I

s)(s
I ps(q) I

S*)
q g

X9+S+(—q, —E/&)+S+(q, E/&)

—s (—q, E/a) —s (q, —E/a)], (60)

where E is the transition energy Lsee Eq. (3)).This may
be compared with the longitudinal dielectric function
obtained from the linear response of the host to an
oscillating external charge distribution fEq. (47))

far as the range of the virtual-exciton mechanism; see
Eq. (35)). If the impurity separation R is large, the
spatial dispersion has little effect on the value of the
convolution integral, but for small R, it has a large
effect. However, for such small values of R, linear-
response theory becomes suspect, virtual excitons may
be important, and it may not be possible to dehne an
effective interaction in terms of a dynamically screened
bare interaction; hence Eq. (63) is likely to be invalid.
The requirement of negligible absorption at energy E
Lwhich allows us to replace Reez-' with ez ' in Eq. (63))
is usually fulfilled in low-impurity-concentration reso-
nance-transfer experiments, since the hosts best suited
for the study of transfer are transparent in the region
of interest. At high impurity concentrations the "host"
is really a dilute alloy and it is no longer correct to
neglect "host" absorption. This is just another way of
saying that multiple-scattering sects make the FD
theory inapplicable to high-concentration systems.

V. SUMMARY

We have shown that the effective interaction of the
FD theory may be written [Eq. (63)) as a bare inter-
action dynamically screened by a longitudinal dielectric
function

H ff(E) =Pe-'(E)]R-'(Mp Ms —3M~ RR Ms) (64)

for dipole-dipole transfer between impurities separated
by several lattice constants LR&10az,] in a nondisper-
sive fez, '(r, co) = e '(co)8(r)], isotropic host medium
(solid or liquid)" provided that local-field corrections
are small. Hence the FD average dipole-dipole reso-
nance transfer rate for an ensemble of single activators
(A), distributed at random angles R with randomly
oriented transition moments M~ a distance R from an
excited sensitizer (S), may be written

Reez '(r,E)p~(ri) ps(r2)H'.«(E)= d'rd'rid'r2
1' 1'y—1'g

which, for dipole-dipole transfer, is

(63) where
Psg(dd) = (1/rs) (Rgg'/R'), (65)

9A4C4
Ru'—= Q'~

Sx

) Ceo~
' fs(E)F~(E)

dE. (66). (E) E

Reez '(r, E)
H'.«(E) = d'r

[r+Ri'
X(Mz'Ms —3M' RR Ms) ~ (63')

Here we have assumed that ez '(r, E) is negligible except
for those r much smaller than R. The convolution (63)
can be trivially integrated if ez, '(r,E)= e '(E)b(r),
whereas ez, '(r,E) is usually peaked near r= 0 but has
dispersion extending a few lattice spacings" t about as

"J.L. I'ry, Ph.D. thesis, University of California at Riverside,
1966 (unpublished); H. Nara, J. Phys. Soc. Japan 20, 778 (1965);
20, 1097 (1965), and references therein; also Refs. 227—249 of
Ref. 15.

If spatial dispersion of the optical dielectric function is
negligible, Eqs. (65) and (66) apply even, though local-
field effects may be large.

In addition to the usual weak-coupling criterion for
each S-A pair, that the direct interaction 6 be much
smaller than the overlap of impurity linewidths, it has

"Although we have as yet made no reference to condensed
media other than solids, for the most part the theory presented
here applies equally well to dilute concentrations of impurities
imbedded in disordered solids and liquids —provided that ul, is
interpreted as an average lattice spacing. In the case of the virtual-
exciton mechanism, a liquid host's Green's function is not diag-
onalized by the exciton transformation equation (14), but the
mechanism still exists and can be evaluated in a localized-excita-
tion picture by summing contributions to the migration rate from
the various orders of perturbation theory.
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been found that two further conditions must be satisfied
for the FD theory to be applicable. First, virtual exci-
tons must not provide an eS.cient transfer mechanism,

( I'(«1, where

(6'7)

p being the host-nearest-neighbor coupling, (P+8P0)
and (P+bP~) being the coupling of sensitizer and
activator, respectively, to the nearest host atom; bo,

is the energy difference between the lowest host-exciton
band and the excited impurity level, E. is the average
impurity separation, and aJ. is the lattice constant of
the host. Second, it must be impossible, on the average,
for two A's or two S's to be near enough to each other
that one could provide a coherently coupled inter-
mediate state inQuencing the rate of energy migration to
or from the other. Both these requirements restrict the
domain of validity of the FD theory to very low im-

purity concentrations. In this domain, the dependence
of the transition rate on R can be unambiguously con-
converted into a dependence on activator concentra-
tion, regardless of whether a particular S gives its
energy to the nearest A or a more distant one. At high
impurity concentrations (greater than 0.001, 0.1,
0.003, 0.03, and 1.0% for dd, dq, qd, gg, and ex transfer,
respectively), the FD theory fails and multiple scatter-
ing must be taken into account. For transfer over short
distances, the virtual-exciton mechanism often provides
the dominant mechanism of energy transfer; it has been
observed in energy transfer by exchange and may have
been seen in multipolar-transfer experiments. Virtual-
exciton energy transfer between inorganic impurities
should be observable in hosts with weak exciton-
phonon coupling. Virtual excitons are especially eScient
for transferring energy when the impurities both have
forbidden transitions, but one impurity may have an
allowed transition and the mechanism will still be
efficient for distances as large as four lattice spacings.

The mechanism can be identified by monitoring sen-
sitized luminescence intensity at 6xed impurity con-
centrations as a function of bn, the energy difference
between the center of the lowest host-exciton band and
the impurity states. Variation of bn can be accomplished
by the isotopic means or by suitably modulating the
pressure on the crystal.

The following extensions on the FD theory can and
should be made: (a) inclusion of multiple-scattering
effects; (b) investigation of the effects of exciton-phonon
interactions on the virtual-exciton migration rate; (c)
determination of corrections for medium anisotropy;
(d) accounting for spatial dispersion in the local-field
corrections; and (e) evaluation of the resonance transi-
tion rate for a realistic three-dimensional crystal with
impurities. In all the cases but (a) and (b), improve-
ment on the FD theory would require foregoing the
advantages of measuring the transition matrix element
and would demand calculation of correction terms. Thus
the outstanding advantages of the theory in its present
form would to some extent disappear.

Note added ie proof. Since the preparation of this
manuscript, White and Hogan have published an analy-
sis of energy transfer by virtual excitons (via exchange
coupling) in magnetic crystals LPhys. Rev. 167, 480
(1968)).
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