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TABLE IV (continued)

ac

No. of
levels

No. of
parameters

Largest
deviation

Pr III

40

74 cm

Pr III

317 +105
-1.0 + 0.7

11 cm

40

27

17 cm

Pr III

340 + 95
-1.1+0.7

11 cm

40

18 cm

Nd+ in
LaC13

355 + 240
103

7 CDl

9cm

Er3+ in
LaC13

E0]

t0]
18 cm

20

14

23 CIIl
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A perturbation-theoretic procedure is developed for obtaining the spatial function 4
p for the

many-electron problem, from which the total wave function can be projected by the relation
4 =Q&Dto(r)DtO(a)40(r))(0(o). This function is expanded in a perturbation series in which the

4p contains a sufficient set of pair symmetries of @p itself, such as in the Hartree nonanti-
symmetrized wave function for closed-shell atoms. When the expansion converges, the re-
maining symmetries are introduced exactly. The energy eigenvalue does not contain the
usual "exchange" terms, since the zeroth-order Hamiltonian, unlike the Hartree-Fock Hp,
has no degeneracies. Applications to interaction energies in molecular crystals and asym-
metric wave functions are discussed briefly.

I. INTRODUCTION

The exact wave function for a many-electron sys-
tem can be written as the sum of products of spa-
tial functions with spin functions. ' In this paper a
perturbation expansion for a single one of these
spatial functions is derived. The remaining spa-
tial functions and hence the exact wave function

can be obtained directly from this single function
by utilizing the symmetry properties of these func-
tions under the operations of the permutation
group for the N electrons. '~' The spatial function
solved for here possesses complicated symmetry
properties except with respect to a small number
of permutations under which, for closed-shell sys-
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tems, it is symmetric. It is argued that the pro-
cedure can only be applied when the zeroth-order
spatial wave function is a nondegenerate eigenfunc-
tion of the zeroth-order Hamiltonian. This re-
quires that the zeroth-order Hamiltonian possess
only the simple symmetries of the spatial function,
i.e., for closed-shell systems it is symmetric un-
der a certain set of permutations but not symmet-
ric under any others. Such a condition is satisfied,
for example, by the Hartree Hamiltonian, in which
each electron "sees" the effective field of all other
electrons, but is not satisfied by the Hartree-Fock
Hamiltonian in which all electrons formally "see"
the same field even though the self-interaction is
subtracted off by the exchange term. The present
procedure has all the usual problems of conver-
gence; and in addition, it has the problem that the
higher-order corrections to the spatial function
have to correct for the fact that the zeroth-order
function does not have pll the necessary transfor-
mation properties, although it does have sufficient
symmetry so that there are no other functions be-
longing to the same representation to which it can
converge. Thus the likelihood of convergence to
an undesired solution, which must belong to a dif-
ferent representation and hence will give a null
antisymmetric wave function, is actually minimal.
For example, since Hartree orbitals are close to
Hartree-Fock orbitals, the first-order energies
and zeroth-order charge distributions are similar;
and the present Hartree procedure should have con-
vergence properties similar to those of Hartree-
Fock perturbation theory. ' ' The formulas which
are derived from the present theory are rather
simple, and we believe that the higher-order con-
tributions are easier to calculate than the corre-
sponding terms for Hartree-Fock and other many-
electron perturbation theories.

The idea of calculating "spin-free" parts of the
wave function has been dealt with at length by Mat-
sen and co-workers, 7 and these studies, along with
recent work of Goddard, ' Hirschfelder and Silbey, '
Claverie, ' and Musher" can be considered as
precedents for the discussion given here.

In the next section we present the general argu-
ment and describe the application to two types of
problems: the calculation of atomic (and molecu-
lar) wave functions and the calculation of inter-
atomic interaction energies. In Sec. III we discuss
briefly the possibility of using a zeroth-order
wave function whii'. h does not have the sufficient
pair symmetry of the total spatial wave function;
and in the two appendices we present some details
of the group theory and the explicit application to
the lithium atom.

II. THEORY

The total Hamiltonian & of a many-electron sys-
tem mu'st be symmetric under the permutation of
all pairs of electron indices, i.e.,

[H, P ..]=0 all i,j,v

where Pz& permutes the indices of electrons i and
j. If 8 is also independent of spin so that

[H, S,]=0 all i,

then it is well known that each eigenfunction + of

the Schrodinger equation

(H E-)4(r, e) = 0,

which is antisymmetric under the permutations
P~&, can be written in terms of a set of orthonor-
mal spin functions x;(o) as

4 (r, o) =Z,4, (r)X,(o).

The set of spin functions Xi(o) make up the mani-
fold of eigenfunctions of total 8' of appropriate ei-
genvalues S and Sz, and as they provide a basis
for an irreducible representation of the permuta-
tion group, there is an operation D&z which takes
the function y& into the function y&. Similarly, the
set of spatial functions 4i (r) provide a basis for
the conjugate irreducible representation of the
permutation group, and there is an operator D&&

which takes the function 4» into C&, so that each
totally antisymmetric 4' (r, o) can be written as'

(4)

'k(r, o) =Q,D. (r)D. (v)4, (r)X,(o).

Because the D's assure that + is an antisymmetric
function of all the electrons, this expression can
also be written as (unnormalized)

4 (r, o) = &4'.(r)X.(o),

where 8 is the usual antisymmetrizing operator.
From this argument it is easy to see (and is per-

haps well-known) that each 4t, and hence 4 „ is an
eigenfunction of 8, satisfying

(H E)4o = 0, - (7)

so that this single function contains gll the neces-
sary information about the wave function. Thus
not only is the energy determined by the solution
to (7), but the expectation value of any symmetric
operator A, which commutes with S, reduces to

(4 IA I 4) g(4, IA I 4,)
(4 I4) Z(4. I4.)l

(8)

and the second-order spin-independent properties,
such as the electric polarizability, can be obtained
from a calculation of 4 p as

(0 I H, I 4,) g(4 . I H, I 4 . &»)

(4 14) Q(4. I4.)

(10)

= (40 I H~ l4O&»). (9)

Here 8, is the perturbation due to the electric
field, and 4p'" is the first-order perturbed func-
tion, the solution to

(H E)40'» = Hpo, --
assuming for simplicity that E,=O.

For each problem of interest, it is only neces-
sary to choose a X, suitable for the problem to de-
termine the symmetries of the 4p and then to
choose an approximation Cp' to act as the first
term in a perturbation expansion

4, (A.) = 4,'+ A.4,'+ ~ ~ ~, (11)

which should converge to 4p for ~= 1, and its eigen-
value Ep such that

E(X)=E,+PE + ~ ~ ~ (12)
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which should converge to E for & = 1. The 4p must
be a nondegenexate eigenfunction of some Hp so
that the perturbation theory equations for C p are

(Ho-Eo)C'Oo = 0, (13a)

(Ho-Eo)C 0~ = (E~-H~) C O. (13b)

Here H(X), which coincides with the true H at & = 1,
is given by

(14)H(X) = H, + AH, . .

The fact that C p must be nondegenerate in the
present treatment places an important restriction
on B„and in particular excludes the Hartree-
Fock or any separable' Hp with

Ho = +ho(i) (15)

from being used in this scheme. At the same time
it virtually obliges the Bp to be something like the
Hartree Hamiltonian —having, a different operator
for each orbital in an independent-particle scheme.
All of this will be further discussed below,

A. Atoms

Consider now an atom (or molecule) containing
N electrons of total spin S =0. It can be seen that
the spin function

y, = [o.'(1)P(2) -P(1)o.'(2)][&(3)P(4)-P(3)o.'(4)]

[o.'(N-1) P(N) -P(N-1) o.(N)], (18)

which is pairwise-antisymmetric, satisfying

P„„+)Xp yp, n odd, (17)

is an eigenfunction of S' and an allowed Xp, since
the remaining orthogonal X; can be generated by
the operations D;0. The corresponding C p must
have the symmetries

P &C p=Cp, n odd,
n, n+1 (18)

and in addition, must have the other, more com-
plex symmetries, which enable it to transform as
the appropriate row of the irreducible representa-
tion of the permutation group. Note that there will
be several eigenfunctions of H having the symme-
try of (18), only one of which has the desired re-
maining symmetry. The judicious choice of C p

will insure convergence to the desired C„pince
the other solutions, belonging to Young tableaux
of more than two columns, will be avoided by an
application of the noncrossing rule and a generali-
zation of Hund's rule.

Generally, however, we have an idea of the type
of solution desired. Thus in a ground-state sin-
glet atom or molecule we know that the wave func-
tion can be approximately described as containing
pairs of electrons in individual atomic or molecu-
lar orbitals. Thus a zeroth-order function for a
perturbative solution to Cp can be taken as

C o' = a (1)a(2)b (3)b (4) ~ v (N-1)v(N). (18)

Although this 40' possesses the symmetries of (18),
it does not possess the remaining symmetries as
indicated in Appendix A. If, however, the pertur-
bation expansion for 4, converges, then it converg-
es to an exact solution which possesses all the
symmetries or transformation properties and for

which, of necessity, the C; also possess the appro-
priate symmetries and are solutions to the Schro-
dinger equation. Perturbation theory, if it con-
verges, must converge to an exact solution, since
there are (from the rules for constructing Young
tableaux), in general, no degenerate solutions pos-
sessing all the same pair symmetry. Notice that,
of course, the symmetries of Cp can never be lost
in this perturbation scheme, which requires that
the solution to which C,' convergespossess one of
a limited number of symmetries. The solution
obtained actually possesses the symmetry neces-
sary to give a wave function by (4), as discussed
below.

The approximate energy of Cp' is given schemat-
ically, in terms of the total Hamiltonian H and its
one- and two-electron parts, f andy, by

E,+E,= (4,'IHI 4,O)

=Q(i If Ii)+ Q (ij IgIij) (20)
Z&j

using notation parallel to Slater's. " Thus the usu-
al "exchange energy" does not appear explicitly in
the expectation value of H, and will not appear lin-
early in higher orders of perturbation theory, so
that the present procedure provides accurate wave
functions and energies without "exchange" effects.
Notice, however, that it is not consistent with the
present procedure to calculate a +p by antisymme-
trizing @p'yp and then take the expectation value of
8, which would introduce exchange integrals. In
fact, the only reason (O'OOIHI Coo) differ from
(@oIH I+o) is that the 4 io do not have the correct
symmetry of C; itself, This is discussed explicit-
ly in Appendix B for the case of the Li atom so
that the behavior of these approximate functions
can be better appreciated.

The function Cp' can be guessed at, and the ap-
propriate Hp constructed from it, for example, by
using the Sternheimer procedure, ' or conversely
one can choose Hp and compute the functions C p'.
In either case, the operator H, must possess the
symmetry

P .Hp Hp~ n odd;p p' (21)

P Hp =Hp all n m.HF HF
n, m (22)

This is so because, if H, were totally symmetric,
then there would be an eigenfunction of 8, degen-
erate with C p, such as

a (1)b (2)a (3)b (4) v (N- 1)v(N),

which would mix with C p in zeroth order so that
the perturbation theoretic procedure (13) could not
be applied without modification. If the C p are
chosen first —the orbitals could even be the Har-
tree-Fock orbitals —and the resulting Bp assumed
to contain no integral operators, then such a con-
dition is automatically satisfied except for states
of different m~ that are exact eigenfunctions of lz,
which can be taken care of in a variety of ways,
including actually symmetrizing them. On the oth-
er hand, the unrestricted Hartree Hamiltonian,

and it is allowed no other —such as, for example,
exists in the totally symmetric Hartree-Fock Ham-
iltonian, for which



174 ACCURATE ATOMIC AND MOLECULAR ~AyE FUNCTIONS S7

and

h = ——,'V'- -+ 2[-b I b] + [-a I--a]
a

h = -2V'- —+ 2[-a I -a] + [ bl b-]. -4
b

- -r-

(25a)

(25b)

Thus 4 00 is the Hartree or wave function (self-con-
sistent field without exchange), and is an eigenfunc-
tion of the zeroth-order Hamiltonian

H, =h (1}+h (2)+hb(3)+hb(4) (25)

which possesses the symmetry of (21) above and
no other. The zeroth-order energy eigenvalue is

Ep = 2&~ + 2&2 (27)

and the first-order correction to the energy, E„
is given by

E,=(C IH I4 ) = (4 Dig —-QV(i)14,0)

i (j ij i
=- (4.'IZg(ij) I C.').

This expression contains no exchange integrals.
The V(i), which are divided up symmetrically to
give the

g(ij) = 1/r "--'[V(i) + V(j) llj

(29)

(29a)

different for each (i,j}, are defined as

V(i) =2[-b I -b]+[-a I -a] i = 1, 2 (30a)

and

V(i)=2[-a I-a]+[ bl b] i =3, 4.--(30b)
A definition of a pair function g'(ij) more closely
analogous to the pair functions in the usual Har-
tree-Fock description' is

g'(ij) = 1ir. .-V.(i)-V.(j),ij j i

where V (i) = [-a I -.a] j= 1, 2,

V.(i}=[-b I b] j=3, 4. -
(30c)

(30d)

i.e., that is not restricted to be centrosymmetric
for atoms, and for which each orbital is an eigen-
function of a different Hamiltonian, is ideally suit-
ed for this procedure. Although the Hartree Ham-
iltonian is by no means the unique Hamiltonian that
can be utilized in the present scheme, it is suffi-
ciently well-known to prompt us to give the specif-
ic example of the Be atom, based on the Hartree
function 4p, and then compare it with the Hartree-
Fock solution.

Let@ Pbe

4 0'= a(1)a(2)b (1)b (2), (23)

where the orbital a and b are the lowest and sec-
ond-lowest normalized eigenfunctions, respective-
ly, (a =a~ or 1s, and b —= b~ or 2s) of the equations

h (i)ak(i) =
eh ak(i) (24a)

and hb(i)bk(i) =eh bk(i)
b

(24b)

with the operators defined by'4

The solution 40' of (13b) can be written as

@ '= Q u. .(ij)m(m)n(n),
i(j (31)

where the orbitals m and n are the orbitals of 4 p
which are not i and j; the sum runs over the six
distinct ij pairs, and each uij(ij) is the solution to
a two-electron inhomogeneous partial differential
equation. Thus, e.g.

[h (1)+hb(3)-e, e,-]u b(13)

with

= [k -g (»)]a (1)b (3) (32a)

in which again there are no exchange integrals of
the usual type, but only sums and products of two-
and three-electron terms.

It can be demonstrated that there are no contri-
butions to E, due to single excitations, the analog
of the Brillouin-MI|Iller-Plesset theorem. " While
the u,&

calculated from (32) with the g(ij) of (29a)
contain single excitations, their net effect vanish-
es identically. If the g'(ij) of (29b) is used, the
corresponding u,j' does not contain single excita-
tion s.

An "exact pair" in the sense of Sinanoglu'b can
be calculated from the implicit equation of the
form

[h (1)+hb(3)-e, -~, ]u b (13)

= [k -g(13)][a(1)b(3)+u
b (13)],

where

k = Q(1)b(3) Ig(13) la(1)b(3)+u
b

(13))

(34a)

x(1+ (a(1)b (3) lu (13))) (34b)

if higher-order corrections are desired.
The perturbation-theoretic expansion can be ex-

pected to converge, since the "Hartree energy""
Ep +Ej is a good approximation to the total energy-a recent calculation shows this to give 99% of the
experimental nonrelativistic energy for the argon
atom' —and since the orbitals and the orbital ener-
gies are very close to the Hartree-Fock orbitals
and energies. " These latter are generally accept-
ed as being the "best possible" orbitals, although-
the convergence of the Hartree-Fock perturbation
procedure has only recently been considered for
the first time '

In order to appreciate this point further, the sim-
ilarity of the Hartree perturbation-theoretic pro-
cedure to the Hartree-Fock procedure should be

k = (a(1)b (3) Ig(13) la(1)b (3)). (32b)

The solution to this equation is unique, since the
right-hand side is orthogonal to the single solution
of the homogeneous equation a(1)b(3) [there being
no other de enerate eigenfunctions of the operator
ha(1)+hb(3), and the second-order energy is giv-
en by the relatively simple expression

E2 = (4001[kg(ij ) E,] Ig-u . .(ij)m(m)n(n)), (33)
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noted. The Hartree-Pock orbitals aHF and bHF
are both eigenfunctions of'4

is = -z V 4/-r + 2([-a I -a ]

+[-b pl b -]s
-[[-aHp la -]+[ b-lb -]} (35)

with energies &HF and &HF, respectively. Thea b

first-order Hartree-Fock wave function is given
bye

-6

= 8 Q u . . (ij)m(m}n(n)$(ijmn),
HF HF . .

(36)

where $(ijmn) is a spin function. The second-
order energy is given by

z, =(e, I[kg (sj)-z,] legu. . mnt) (37)

with the pair functions the solutions to pair-equa-
tions such as

[k (1)+k (3)-& —z ]u
b

(13)

= [k -g'(13)]aHp(1)b Hp(3)

+k 'b Hp(1)a Hp(3), (38)

with k a Coulomb integral as in (32) and k' an ex-
change integral. ' It can thus be seen that since the
orbitals are similar, the pair functions uabH and
uab will also be similar, the principal difference
between Eqs. (38) and (32) being in the term
k'bHp(1)aHp(3) on the right-hand side of (38),
which term is necessary because of the existence
of two degenerate solutions of the inhomogeneous
equation. It is precisely this degeneracy which
serves to complicate the Hartree-Fock description
and requires a, perturbation treatment based on the
tota. l 4, instead of on the spatial function 4, treat-
ed here. Furthermore, it is only because of this
degeneracy that exchange integrals appear in the
Hartree-Fock procedure —not only complicating
the algebra, but being given a physical interpreta-
tion —whereas by (28) and (34) they never appear
linearly in the strict Hartree procedure for closed-
shell atoms and should therefore probably not be
interpreted physically.

It is interesting to note also that the leading con-
tributions to second-order properties, such as the
electric polarizability, are given by the identical
expressions" in both procedures

E„=g,(s lz li,). (39)

where the h, &,, and i refer to the Hartree-Fock
and Hartree orbitals, energies, and Hamiltonians,
respectively. Thus despite most of the literature
—which gives a term in the Har tree -Fock Eo~

(i Iz Ij)(j Ii,). (41)

Here the perturbed orbitals i, for the Hartree-
Fock and Hartree cases are solutions to the two
equations

(40)

which can be seen to vanish identically —there is
no "orthogonalization" or "exchange effect" in the
leading term in the Hartree-Pock polarizability,
and both the Hartree and Hartree-Fock polariza-
bilities are given as sums over independently per-
turbed orbitals.

There is, however, one condition for conver-
gence of the perturbation procedure for C„which,
although it is usually satisfied and the Hamiltonian
can probably always be modified to assure that it
is satisfied, must nevertheless be noted. In the
equation for uab(13), the presence of a solution to
the homogeneous equation which is nearly degen-
erate with a(1)b(3) could make the series

a(l)b (3) + Au (13)+A. 'u "'(l3) + ~ ~ ~ (42)ab ab

diverge. The major possibility for such a near de-
generacy is the state a, (1)b,(3) or the product of
the 2s function calculated in the effective potential
for determining the ls function and the 1s function
calculated in the effective potential for the 2s func-
tion. Substituting

" b(")=~kl krak(')'«') (43)

into (32), we get the coefficient

&zs = (zs + E2 -Ez Es )-a b a b

&& (a, (1)b,(3) I 1/r» la, (1)b,(3)), (44)

which must be less than 1 for the perturbation the-
ory to converge. Since the Hartree and Hartree-
Fock orbitals are very similar, we can assume
that the differences between the operators ha and
hb can be treated perturbatively, so that the orbit-
als a, and b, can be expanded as series whose lead-
ing terms are b, and a„respectively, i.e.,

a =b, +@2 ' +. (45a)

and b =a +b &') +" (45b)

Thus it is found that the leading term of &» is giv-
en by

o.'» = ([aa laa]+ [bb Ibb]

—2[ab lab]j '[ba lab]; (46)

and because of the typical magnitudes of the inte-
grals involved, it can be seen that, except in un-
usual cases of accidental cancellation, &» should
indeed be small. Since any exact solution implicit-
ly includes such functions as a, (1)b,(3), and any
limited va.riational solution will explicitly include
them, these "exchange" integrals will appear in
the total energy, although only quadratically in sec-
ond order. It is precisely such terms which will
make the appropriate 40 have all the requisite sym-
metry [i.e. , transform properly under the D's and
not only satisfy (18)] even though Co' does not.

Finally it should be noted that, as with any per-
turbative scheme, this one is not guaranteed to
converge to the particular state desired, the actu-
al convergence being to some extent governed by
the closeness of E,+&, to the eigenvalue of any
state of the same symmetry. Here there is the
further problem that H, and hence 4,' does not have
all the symmetry of JJ itself but only of the subset
defined by (18) and (21). Thus there will be more
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than one eigenfunction of H possessing the sym-
metries of (18) with eigenvalue close to E,+E,.
However, all such eigenfunctions other than the
desired one, are degenerate with solutions con-
taining "higher" pair symmetry, such as the one
which is symmetric under all P~~. By a generali-
zation of Hund's rule, the spatial eigenfunctions«
higher symmetry mill be of higher energy than the
one of interest, so that a noncrossing rule assures
that we obtain the desired Cp. There will be cases
in which this argument: fails. However, the unde-
sired solutions are easily detected since the func-
tion 8 Cpyp will then vanish. For example, in
Be if the orbital & had significant overlap with the
orbital a, then the C,-p is not a good enough approx-
imation to 4p for a perturbative scheme to work,
and must be modified appropriately. It should be
noted that such convergence to an undesired state
is also possible in the Hartree-Fock perturbation
scheme of Eqs. (35)-(38), in which case the total
+ obtained goes to zero.

The discussion so far has dealt with systems of
N electrons of total spin ~ = 0 which can be de-
scribed in terms of a spatial- function 4'p for which
all electrons are paired, in the sense of there be-
ing two electrons per atomic orbital in the zeroth-
order function Cp'. Such is, of course, not the on-
ly possible singlet function; the next simplest is
one in which all but two electrons are paired, the
remaining two being in different spatial orbitals;
and the zeroth-order function 4'p can be given by

C,o= a(1)a(2)b (3)b (4) . [v(N-1)w(N)

+w(N-1)v(N)], (47)

with the perturbation procedure being the same as
for closed shells. Other singlet systems can be
constructed analogously.

Consider now the simplest doublet S=Sz = 2, in
which all but one of the electrons are paired. For
this doublet, suitable gp and 4p are

X,= [o'(I)p(2) -P (I)&(2)]

x [(y (3)P(4)-P (3)u (4)] ~ ~ u (N) (48)

C,'= a(1)a(2)b (3)b (4) ~ ~ v(N). (49)

An example of such a state is the ground state of
Li which is discussed in Appendix B.

As a last example, consider the simplest triplet
S = 1, Sz = 0 of an N-electron system for which all
but two electrons are paired. The functions X, and
4,' can be written as

X.= [~(l)p(2)-P(i)~(2) K~(3)p(4)-P(3)~(4)1" [p(N-I)p(N)+ P(N-1) ~(N)1 (»)
and

40'=a(1)a(2)b(3)b(4) [v(N-1)w(N)

-w(N-l)v(N)]. (51)

Notice that if the orbitals v and ~ are eigenfunc-
tions of the same one-electron operator, this @'p'

and the spatial singlet given by (19) have equal
zeroth-order energies whose degeneracy is only
split in first order. This corresponds to the well-
known fact that two electrons both in open shells

and

H, = V (1,... , N) + V (N+ 1, ..., 2N) + ~ ~ ~

+V (1, . ~ ., 2N)

+ VI 1~(1,..., N, 2N+ 1, ... , 3N} + ~ ~ ~

= H, (atomic) + H~(interatomic). (57)

This operation is similar to a previous descrip-
tion by Musher, "in which the respective
QC f(I)X;(I}were written as determinantal func-
tions, and the exact nature of the result was not
fully appreciated. As 8, is divided into atomic
and interatomic parts, the energy corrections can
be classified as atomic and interatomic, the latter
arising from mixed interatomic and atomic inter-
actions.

A good approximation to the energy of spherical
atoms in a crystal will thus be of the form~

form nearly degenerate singlets and triplets as in
the various '& and sS of (Isns) excited helium
atoms.

B.Molecular Crystals

The theoretical description of weakly interacting
atoms and molecules has been beset with problems
and complications, the most famous of which is
the orthogonality catastrophe. " These have been
reviewed to some extent by Musher" and have
been dealt with in part recently by Musher and
Amos. " The arguments presented here provide a
simple and immediate resolution of an important
problem in the treatment of intermolecular inter-
action: how to take into account the indistinguish-
ability of the electrons while preserving the iso-
lated molecule wave function in zeroth order.

Consider, for example, a system consisting of
a number of ground-state singlet atoms I, II,
whose 4,'s are denoted by 4,(I), C,(II), ... , and
whose 4p 's are of the form

4', '(I) = al(I}ai(2)bi(3)bi(4) ~ . , (52)

where electrons 1 through N are associated with I,
electrons N+ 1 through 2N with II, etc. , and where
Xo's are as in (16). Thus the total wave function
for the problem can be written as

+,(I, II, ...) =+.4',.(I, II, ... )X,(I, II, ...), (53)

with

X,(I, II, .. . ) = X,(I)X,(II) ~ ~ ~, (54a)

X,(I, II, ...) = C', '+ @,'+ ~, (54b)

and with 4p given by either the product of exact
atomic functions

40O= C 0(I)40(II) (55a)

or the product of approximate atomic functions

4 O=4 0(I)4 o(II) (55b)

Using the latter choice, the total energy can be
found by performing perturbation. theory with

HO=H (1,... , N)+H (N+1, ~ .., 2N)+ ~ ~ ., (56)
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g = (g qg lq ~ ~ ~
) q(g Oqg 1+ ~ ~ ~

)I I II II

(58)I, II I, III

with the EI D' the I. ondon-van der Waals energy,
roughly proportional to AI II '. Si,nce the Born-
Oppenheimer Hamiltonians BI, HII, etc. , are com-
pletely different from each other (the atoms being
located in different parts of space), there is like-
ly to be no problem a,bout the convergence of the
interatomic energy expansion. It is, significant to
note that there are no orthogonality integrals and
no antisymmetrizing or exchange effects contribut-
ing to the interaction energy. Thus, as is eminent-
ly reasonable, the addition of an atom to a many-
atom system makes no contribution to the interac-
tion energy in zeroth order, where, by 1ack of de-
generacy in the individual atoms, the possibility
of collective behavior must be considered negligi-
ble. The present argument also serves to justify
the usua, l treatment of single excitations in crys-
tals (excitons), for which, however, it is not cor-
rect to say that exchange is neglected, since it is
completely correct within a perturbation-theoretic
framework to take as the energy the expectation of
the Hamiltonian over the usual nonantisymmetrized
exciton wave function.

Notice that when the interacting atoms or mole-
cules are not closed-shell systems, in order for
this procedure to hold, the unpaired electrons
must be combined into spin eigenfunctions, and
the methods of Musher and Amos' may be applied
to these electrons, although not to the inner-shell
electrons. In the next section it will be pointed
out that in certain circumstances one might obtain
useful results using a truly nonsymmetric 4p, i.e.,
one which does not satisfy (18) or its analogs, so
that the procedure of Ref. 19 can be avoided.

III. NONSYMMETRIC @'p

In the discussion of the previous section it was
always assumed that the zeroth-order approximate
function 4,' had the sufficient pair symmetry of
the exact function C „such as given by (18). This,
of course, is not necessary and it is certainly, in
principle, possible to expand Cp in terms of a per-
turbation expansion which does not have the suffi-
cient pair symmetry, although it is not possible to
ascertain beforehand whether the expansion con-
verges and whether it converges to the desired so-
lution.

As a first exa,mple, consider a singlet-state
atom with two electrons in open shells whose 4 p
has the symmetry of (18). Instead of taking 400 as
(19), we take it as

C,' = a (1)a(2)b (3)b (4) v (N-1)nr (N), (59)

which does not possess any symmetry under
P& 1 ~. The zeroth-order Hamiltonian Bp can al-
so not be symmetric under P~ 1 ~, for otherwise
there would be another degenerate function which
would mix to zeroth order. If the perturbation ex-
pansion of (11), using this fJO and 40', converges
to a solution of the spinless Schrodinger equation,
then it must converge to a solution which either is
symmetric or antisymmetric under P~ 1 ~ or be-
longs to a Young tableau with more than two col-

umns. This is so because all spatial eigenfunc-
tions of B possess certain symmetries; and since
C p is restricted to be symmetric under Pn n + 1
(odd n &N I) -the only remaining choice in pair sym-
metry for 4p' is that under Pg j ~. There is no
definite indication, however, as to which of these
solutions the perturbation expansion will converge,
if it actually converges. If, however, it converges
to a solution which is antisymmetric or belongs to
one of the more complex symmetries, the wave
function defined by + = CC pxp vanishes, so that one
can determine whether the desir'ed function has
been indeed obtained. While the utility of this pro-
cedure is not evident, the point made here is mere-
ly that there is no explicit objection to using such
nonsymmetric functions in a perturbation expan-
sion. When both solutions are required, then the
methods of the previous section, in which a true
exchange integral appears, are best used.

Notice, of course, that because of the symmetry
of both Hp and 4p under all the remaining Pn n+ j
(n odd), the perturbation expansion cannot change
the symmetry behavior under these permutations;
but because of the lack of symmetry with respect
to P~ 1 ~, the perturbation expansion can pro-
duce the correct symmetry that was not included
in 4 p'. This method can be considered the inverse
of symmetry breaking, in that one starts with a
broken symmetry in order to approach the exact
symmetry perturbatively.

As a second example, and one whose two-elec-
tron analog, the hydrogen molecule, has been giv-
en previously, " consider a closed-shell singlet,
diatomic molecule whose 4 p' would ordinarily be
given by (19). If, however, for some reason it
proved desirable to take 4p as

4O'=a(1)a(2)b(1)b(2) A(N 1)B(N), -(60)
where A and 8 are the valence "bonding" atomic
orbitals of the two atoms, respectively, molecular
orbital description would have taken v =A+8 in
(19), and the valence-bond description would have
taken the sum A(N l)B(N)+B(N--1)A(N) as in (47).
If perturbation theory converges, however, and
84ppp&0, it will converge to the symmetric solu-
tion that one would have obtained from both the
molecular-orbital (MO) and the valence-bond (VB)
4p' —assuming their convergence. If, of course,
there is essentially no bonding (for example, if the
atoms are very far apart), then the symmetric and
antisymmetric solutions will be very nearly degen-
erate, and the perturbation expansion will not be
able to pick out either of them, '~" and can oscillate
rather than converge. This, however, will not oc-
cur in chemical bonds where the "bonding" states
are always several eV away from the "nonbonding"
(MO) and "antibonding" (VB) states of opposite sym-
metry, as well as any other states of the same
symmetry. Notice that such a procedure would not
be useful if one conceived of the two pair functions
as being built from the same atomic orbitals, as
implied in simple Mo theories. Thus for example,
in the He, molecule both Is~(1)lsb(2) and 1s~(3)lsd(4)
would converge to the same state and not to two dif-.
ferent ones; this result is necessary for 4 not to
vanish. Actually electrons 3 and 4 should be placed
in a nonsymmetric linear combination, such as
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1&~(3)»5 (4)-2sz(3)l&5 (4), in order to correspond
to the doubly occupied antibonding state of He, ++ if
the other electrons were absent.

The utility of these nonsymmetric wave functions,
other than for the hydrogen molecule, is probably
negligible, so that the point made here is a rather
academic one. An example where a chemist might
claim an advantage in using a nonsymmetric wave
function is in benzene where the 71 electrons in C','
could be written as

Oo (w) =A (1)B(2)C(3)D(4)E (5)F(6), (61a.)

although it is difficult to assess in advance what
symmetry this will converge to and which Xo would
be most suitable. It would be interesting to com-
pare the expansion for benzene based on the usual
molecular orbitals 4 i,

C','(~) = 0', (1)P,(2)9', (3)V.(4)p, (5)p, (6), (61b)

with that based on electrons in diatomic molecular
orbitals, i.e.,

@.'(~) = (~+&)(1)(&+&)(2)(C+D)(3)

X(C+D)(4)(E+F)(5)(E+F)(6). (6lc)

2

(b)

(d)

7 ~ ~ ~ ~ ~ ~

4 6 8 ~ ~ ~ ~ ~ e

(e)

(c)

I 2

5 6

7 8

~ ~

4' =Zfc'[, ](~)X[--;](&), (Al)

where the C [~;](x) is a function of the spatial coor-
dinates of the N electrons and transforms like the
ith row of the eth irreducible representation of the
permutation group, SlV. The X[~;)(o) is a function
of the spins of the N electrons which transforms
like the conjugate row of the conjugate irreducible
representation. In terms of standard Young dia-
grams (which label the rows of the irreducible rep-
resentations) we have, for example. in &„ that if
the spatial part transforms like Fig. 1(a)', then the
spin part must transform like Fig. 1(b). The latter
is symmetric under all permutations, while the
former is antisymmetric under transpositions &ij.
It can be shown that for spins of ~, the spin func-
tions must transform like a Young diagram with at
most two rows. This then implies that the spatial
parts of the wave function must transform like a
Young diagram with at most two columns in order

As a last point it should be noted that the calcula-
tions of the magnetic susceptibility of the benzene
molecule in the MO approximation follow in a
straightforward way from the arguments given
here (for pair-wise symmetric 4'oo's) and our pre-
vious discussion, "since the one-electron Stern-
heimer Hamiltonians can be constructed for each
orbital independently.
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APPENDIX A: GROUP-THEORETICAL ARGUMENTS

The solutions of the N-electron Schrodinger equa-
tion which satisfy the Pauli principle for the case
when the Hamiltonian is independent of spin may be
written as2

FIG. 1. Various Young tableaux used in the analysis.

D,~
= (],/2/3)(P„-P, 3+P„2-Pi2,),(E)

(A4)

D„=(1/2v 3)(P„-P, -P, ,+P,).
If one operates on a function of the three electron
coordinates with Dii, a function transforming
like the ith row is formed. If one operates on a
function transforming like the ith row with D,j+,
one produces a function transforming like the jth
row. The projection operators have the following
properties":

D (&)D (P) 6 5 D (&)
ij kl o.P il kj

(A5)

(A6)

{D (o'$& D (o')
ji (A7)

to be an allowed eigenfunction, i.e. , one which can
satisfy the Pauli principle when put into a form
such as (Al).

The 4[~ f](r) [or X[~,.](o)] for different i are re-

lated to each other by projection operators" which
take a function belonging to the ith row into one be-
longing to the jth row. Let us consider as an ex-
ample the case of three electrons. The group ~3
has two one-dimensional representations and one
two-dimensional representation. The one -dimen-
sional representations are the totally symmetric
(A, ) and the antisymmetric (A, ) representations
whose projection operators are the symmetrizer
and the antisymmetrizer, respectively. The two-
dimensional representation (E) has the following
projection operators associated with it:

= (f'Pin-2P2s-~Pi3-2Pi--~Pi. s), (A2)(E)

D„—3(I-P„+2P2, +2P,S-~P„,-2P„,~), (A3)(E)
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Starting with the spin function X
= o.'(1)p(2)&(3), we

may form (unnormalized)

XSS=D22 X
=

a 1(~1PS P1-c22)~j,(E)

X11 11 X Si 1P2 3 I 1 2 3 1 SI 3]'
(E)

One can easily verify that

(A8)

(A9)

D1, X„=(1/2v 3)((p,o'2- o',p2) &g, (A10)

that is, operating on a function transforming like
the first row with D»+ has produced a function
transforming like the second row. The function
X„transforms like the standard Young diagram in
Fig. 1c, while the function g» transforms like
Fig. 1d.

It can be shown, from the rules for constructing
the matrix representation of the permutation
groups, that if the numbers n and n+1 are in the
same row (column) of a standard Young tableau,
then the function transforming like this tableau is
symmetric (antisymmetric) with respect to the
permutation P& ++1. Hence, if a spin function
transforms like the standard tableau in Fig. le,
then the function is antisymmetric under the per-
mutations P„, ~, '''p kg+1 2/+2 . If this
spin function were to be used in an expression
such as (Al), then the orbital function which mul-
tiplies it would transform like Fig. 1f, that is, be
symmetric under P»~P34, ~ ~ ~, P2n+1 2n+2. The
transformation properties under other permuta-
tions are more complicated. Operating on this
function by another permutation produces a linear
combination of partner functions (derived from the
original function by projection operators of the
form D,& ), with the particular linear combination
given by the matrix representation of the particu-
lar permutation in question. For example, in the
case of &3 (see above):

P13X11 -2X11—S~X12. (Al 1)

In general, of course, we have for a function gij+
=D&& y, transforming like the jth rom,

(A12)

where I'kj(~)(P) is the kjth matrix element in the
matrix representing the permutation P for the nth
irreducible representation.

In the perturbation-theoretic treatment of this
paper, we start with a zeroth-order function 4'p
which has some of the requisite symmetry (i.e.,
that under the transpositions P221+1 221+2) but
does not have the property exemplified by (A12).
As there is no other Young tableau which belongs
to the same irreducible representation and which
possesses these pair symmetries, there is no de-
generate 4i, i & 0 which can mix with 4p . Thus
the specified pair symmetries are sufficient to en-
sure that if the perturbation expansion converges
to a function belonging to this irreducible repre-
sentation, it must converge to 4p.

APPENDIX B: LITHIUM ATOM

The total wave function for the ground state of
Li can be simply given by

1
~= Z 4' (~)X.(o)

i=0
(B1)

with the normalized gi

XS= 2 '~2[&(1)p(2)-p(1)a(2)]n(3) = -P„X„(B2a)

X, = ~ "'[2o'(1)&(2)P(3)-&(1)P(2)&(3)

-P(1)~(2)~(3)]
= (1/2/3) (P23-P13-P1~ +P123)Xs =P~X1, (B2b)

and with 4, related to

4 p =P~24p (B3a)

by 4, = (1/2v 2)(P22-P, S+P,~-P~S)C 3

= -P~4~.
If 40 is taken as the simple orbital product

C,'=a(1)a(2)b (3), (B4)

then C,' is given from (B3b) by

4 o=2 '&2[a(l)b(2)-b(1)a(2)]a(3),

(B3b)

(B5)
which clearly is antisymmetric under P~ as re-
quired for 4,. In fact 4,' transforms as a row of
the two-dimensional irreducible representations
of the permutation group, whereas 4 p does not.
Therefore it is possible to construct from this 4,'
a function

4'ss= 6 1 [2a(1)a(2)b(3)-b(1)a(2)a(3)
—a (1)b (2)a (3)] (B6)

1
@ =Bc'x'

i ii=0
(B7)

is, however, not antisymmetric under all permuta-
tions, although an antisymmetric wave function
can be simply constructed by

4' p= Q4ppgp (BS)

which is, in fact, the Slater determinant

11"3= 8 a(1)a(2)b (3)o (1)p(2) n(3)

and an eigenfunction of S'.
It is important to note, however, that the expec-

tation value

(B9)

(0"', I H I 4 ',)

which possess all the correct symmetry. Such a
function is, however, not amenable to the perturba-
tive treatment of the paper. Notice that, if a and b
are Hartree-Fock orbitals, then 4'p and 4~ are
degenerate eigenfunctions of the Hartree-Fock
Hamiltonians, whereas if they are Hartree-like or-
bitals then 4,' and 4,' are not degenerate eigen-
functions of the same IJO. As discussed in the text,
once the perturbation theory corrections to 4p are
included, the resultant 4, will have all the correct
symmetry and one need not be concerned about the
nonsymmetric nature of C,' itself. In principle, the
expansion could converge to the nearly degenerate
solution transforming like A, instead of the desired
solution (E,). This can be checked by looking at the
antisymmetric projection when spin is included.

The approximation to 4 which is
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includes exchange integrals explicitly even though

(4,' I H I 4,')
does not. Therefore the two energies differ from
each other. Similarly, while the expectation val-
ues of 8 over the exact 40 and 4~ must be equal,
the one over 4,' has no exchange integrals while
the one over 4,' has. All of this is due to the fact
that the exact functions 40 and 4, have not been
used, and in fact, the difference of these expecta-
tion values is a measure of the goodness of the
various approximate functions.

In the procedure of this paper, the perturbation
expansion is for the 4, and its energy eigenvalue.

Thus it is of no real importance how the expectation
value of H over +', differs from that over 4,'. The
perturbative procedure for 4', is well-defined and
such that, when it has converged, the expectation
values of B over 4, and over

~ = {fC.)(.=BC,)(,

are equal and there is no reason whatsoever to con-
sider + or its approximations. That is, in fact,
the advantage of the present procedure; the prob-
lem of solving for 4 has been reduced to solving
for 40, and it only confuses the issue to switch
back to + in midstream.
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