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The properties of surface states on ionic or partially ionic crystals such as NaCl, CdS, and GaAs have been
computed using the method of linear combination of atomic orbitals (LCAO) in a novel way. The method
consists of simulating an ionic crystal by assigning s and p orbitals on alternate sites in a one-dimensional
crystal so that the resonance integral alternates in sign along a chain. This feature causes the band gap to
lie at the center of the Brillouin zone, as required for these crystals. Also, the unperturbed reference energies
are conveniently chosen to be the band-edge energies, rather than the separated-atom energies as in the
more usual LCAO method. In an MX crystal, M-like states appear somewhat below the conduction band
when the lattice is terminated at an M atom. Similarly, X-like states appear somewhat above the valence
band when the lattice ends on an X atom. The results complement and support the previous Madelung
and Mathieu theories for ionic surface states, and have the proper qualitative behavior to agree
with experiment.

I. INTRODUCTION

1
COMPARED to intrinsic surface states on Si and~ Ge crystals, the intrinsic surface states on ionic

(or partially ionic) crystals such as NaC1, CdS, and
GaAs have received comparatively little attention
theoretically' ' or experimentally. ' "This situation is
unusual in the respect that the Si and Ge surfaces are
reconstructed" according to LEED (low-energy elec-
tron diffraction), whereas it seems that the ionic sur-
faces are not." "To be speci6c, the ionic surfaces of
MX crystals such as (110)zinc blende, (1120) wurtzite,
and (100) NaCl have a lateral periodicity identical to
the bulk and are natural cleavage surfaces. They have
an equal number of M (metallic) and X (non-metallic)
ions in the surface plane. Apparently, the lateral elec-
trostatic forces stabilize these surfaces against recon-
struction, even though the M and X ions generally have
only a fractional charge. This is especially true for the
III-V and II-VI compounds. Thus, there seems to be

' J. D. Levine and P. Mark, Phys. Rev. 144, 751 (1966).
' J. D. Levine, Proc. Am. Phys. Soc. 10, 1093 (1965); and in-

vited paper, Chicago American Physical Society Meeting, 1967
(unpublished).' J. D. Levine, Phys. Rev. 171, 701 (1968).

4 P. Mark, RCA Rev. 26, 461 (1965).
'P. Mark, J. Phys. Chem. Solids 26, 959 (1965); 26, 1767

(1965).' G. A. Somorjai and J. E. Lester, J. Chem. Phys. 43, 1450
(1965}.' R. K. Swank, Phys. Rev. 153, 844 (1967).' C. A. Mead, Solid-State Electron, 9, 1023 (1966).

9 W. Ruppel, in II-UI Semiconducting Compounds: 1967 Inter-
national Conference, edited by D. G. Thomas (W. A. Benjamin,
Inc. , New York, 1967).

' H. R, Huff, S. Kawaji, and H. C. Gatos, J. Surface Sci. 10,
232 (1968)."J.J. Lander, J. Surface Sci. 1, 125 (1964)."I.Murklund and S. Anderson, J. Surface Sci. 5, 197 (1966)."L.P. Feinstein and D. P. Shoemaker, J. Surface Sci. 3, 294
(1965).

"A. U. MacRae, J. Surface Sci. 4, 247 (1966); also A. U.
MacRae and G. W. Gobeli, in Semiconductors and Semimetals,
edited by R. K. Willardson and A. C. Beer (Academic Press Inc. ,
New York, 1966), Vol. 2, pp. 115—137.

more hope of comparing surface-state theory and experi-
ment for these ionic surfaces than for the reconstructed
Si or Ge surfaces.

Experimental evidence for ionic surface states has
been accumulating gradually in the last few years.
The ionic surface states seem to have the following two
properties. (1) They frequently appear in pairs: An
M-like surface state that lies a few tenths of an eV
below the conduction band edge, and an X-like surface
state that lies a few tenths of an eV above the valence
band. (2) The surface states frequently act as com-
pensated traps in the more insulating crystals, and cause
band bending in the more highly doped crystals. Then
band bending is inversely related to the band gap.

The two theories that have successfully described
these states are briefiy reviewed below. The simplest is
based on Madelung sums and classical electrostatics. ' '
Essentially, the bulk ions are taken to be classical point
ions with fractional charge. The surface ions are taken
to be equivalent to the bulk ions, except that their
Madelung energies are reduced because the Coulomb
three-dimensional sums are over only half-space. Then
since the bulk band gap is related to the bulk Madelung
energy (in this classical model), there should be a
reduced band gap at the surface and the 3f and X
pairs of surface states should appear. The M (or X)
states a,rise when there is an M (or X) ion in the surface
plane. Surface-state energies in the few tenths of an eV
range have been computed given the following: frac-
tional ionic charge (e.g. , 0.5 for CdS), first and second
ionization potentials and electron amenities, internuclear
spacing, crystal bulk type, and crystallographic direc-
tion, e.g., (110) zinc blende. Calculation shows that the
smaller the band gap, the deeper the surface states, in

agreement with experiment. There are two basic in-

adequacies of this model. The relationship of the model
to the solution of a Schrodinger equation is not ap-
parent, and the effects of band-broadening are not ex-
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plicitly included. These inadequacies will be resolved
in the present paper.

The other theory developed for dealing with ionic
surface states was designed to incorporate the exact
solution of a Schrodinger equation. The crystal po-
tential is chosen to be one-dimensional and sinusoidal
with variable amplitude. This amplitude is a measure of
the "ionicity. "The crystal is terminated at an arbitrary
position in the last unit cell and with arbitrary step
height. Inside the crystal, the Schrodinger equation
reduces, in this case, to the Mathieu equation, whose
properties are fortunately well known. Analysis shows
that ionic states appear in the appropriate band gap
and have the desired properties mentioned above. To
be spec fic, a one-dimensional lattice terminated at an
M ion (electropositive ion) has an M-like surface state
that moves closer to the conduction band the greater
the ionicity. Similarly, the lattice terminated at an X
ion has as X-like surface state that moves closer to the
valence band the greater the ionicity. These states
appear in the second band gap which lies at the center
I' of the one-dimensional Brillouin zone. "This is the
proper one-dimensional representation for ionic crystals
as seen from two points of view. First, consider the
simplest classical arguments. In a three-dimensional
ionic crystal (such as NaC1), the s and p levels of Cl are
filled, and these two are broadened to constitute the
separate s and p-valen-ce bands of the crystal with the
"first" band gap in between. Also, the s-like state of Na
is empty and this constitutes the conduction band that
lies above the Cl p band. Thus, the main or most im-

portant band gap between the top of the valence band
and the bottom of the conduction band is the second.
A much better argument can be obtained from ob-
serving the three-dimensional E(k) band structure con-
structed by others" for a variety of III-V and II-VI
partially ionic crystals. In most cases, the band gap
between the top of the valence band and the bottom of
the conduction band lies at the center I' of the three-
dimensional Brillouin zone (BZ), whereas the first band
gap (not of much interest for surface states) lies far
below and at the edge of the BZ. The type of band gap
at I is said to be "direct. " It is simpler, in many re-
spects, than the band gaps of Ge or Si, which are
indirect. "Alkali halides have an indirect gap due to a
valance-band maximum o6 I'. There are still certain
inadequacies of this one-dimensional Mathieu model.
It cannot readily be extended to three dimensions, since
the wave function must be matched at all points in the
interface region, and the choice of a sinusoidal potential
is somewhat restrictive unless other harmonics are
added.

It is desirable, therefore, to compute ionic surface
states by a third, independent method to further

"H. Jones, Theory of Brillolin Zones and Electronic States in
Crystals (North-Holland Publishing Co., Amsterdam, 1962).

"See, for example, M. L. Cohen and "Z. K. Bergstresser, Phys.
Rev. 141, 789 (1966).

strengthen and elucidate the theoretical basis of these
states. Surely the more independent the methods which

point to the same result, the greater the certainty of
this result. The new method selected in this paper is
called a band-edge LCAO (linear combination of atomic
orbitals) method.

Since the conduction- and valence-band-edge energies
are accurately known from a variety of theoretical and
experimental studies on many MX crystals, " it seems
wise to use these energies as firm starting points in the
computation of surface states. In other words, no
attempt will be made here to predict these band-edge
energies; they are taken as inputs to the problem of
ionic surface states. To be specific, the band-edge
energies and wave functions are taken as exact eigen-
values and eigenfunctions of the Schrodinger equation,
analogous to Ref. 3. In this manner, the location of the
surface states within the band gap becomes more accu-
rate and the comparison with experiment becomes more
natural. The above proposed procedure differs from the
more usual methods called LCAO or "tight-binding"
methods in texts on solid-state theory, " or "MO-
LCAO-Huckel" methods in texts on quantum chem-
istry. "In these more usual methods, the energies of the
separated atoms (not the band-edge energies) are taken
as the basic energies. For example, in some solid-state
tests'r the seParated atom energi-es and wave functions
are taken as exact eigenvalues and eigenfunctions of the
Schrodinger equation. In other solid-state texts, " the
unperturbed energies E(k) are taken as the basis of
LCAO perturbation theory. That is, the diagonal
energies are functions of k; they are not the band-edge
energy constants chosen here.

Accordingly the new procedure chosen in this paper
will be called by a somewhat modified titl" the "band-
edge LCAO method"; its closest analog in the field of
solid state is the k p method. 's Also, its far-reaching
appeal in the computation of surface states and com-
parison with experiment has not been recognized before,
although certain of its aspects have already been de-
rived by Davison and others o, i under the title "MO-
LCAO method. "

The ionic surface-state problem has an especially
interesting feature. The s orbitals on the 3f sites and the

p orbitals on the X sites create resonance integrals P,
which altercate ie sight alorIg a chain. A mechanical
analogy might be a chain with two different masses and
two different spring constants alternating in sign along

"See, for example, J. M. Ziman, PrinciPles of the Theory of
Solids (Cambridge University Press, N. Y., 1964), p. 80; J. CaHa-
way, Energy Band Theory (Academic Press Inc. , New York,
1964), p. 102; H. Jones, ibid. , p. 216.

"See, for example, R. Daudel, R. Lefebvre, and C. Moser,
Qgantum Chemistry (Interscience Publishers, Inc. , New York,
1959), p. 52.

M. Cardona, J. Phys. Chem. Solids 24, 1543 (1963); also
M. Cardona and F. H. Pollack, Phys. Rev. 142, 530 {1966).

'OS. G. Davison and J. Koutecky, Proc. Phys. Soc. (London)
89, 237 (1966).

s' A. T. Amos and S. G. Davison. Physica 30, 905 (1964),
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the chain. But this mechanical system would be in-
herently unstable, so that there is no simple mechanical
analogy. By contrast, if one would have s orbitals on
the even (odd) sites and, say, other s orbitals on the odd
(even) sites, all P's would be the same sign along a
chain. Then the mechanical analogy would be the usual
sort of chain with two difI'erent masses and a positive
force constant. The band gap would occur at the edge
rather than the center of the BZ. This is the case
treated previously by Davison and others" "using two-
band LCAO theory, and it is also the case treated in
diatomic-crystal phonon-band theory. "'4 It is sot the
case applicable to ionic surface states.

It will be convenient and instructive to formulate the
band-edge LCAO model in one dimension by following
closely Levine's Mathieu and Madelung problems as
guides. That is, a deliberate attempt will be made to
construct parallels in formalism and notation between
these various approaches. This will demonstrate that
one can view ionic surface states in a variety of repre-
sentations, which are readily interchangeable. Also, the
results will be rearranged at the end to be consistent
with Davison's notation. ' This will demonstrate the new
features of the present problem within the more tra-
ditional LCAO context.

A following paper will extend the method of this
problem to three dimensions. Some new features then
appear such as light- and heavy-valence bands and spin-
orbit coupling. Detailed comparison with experiment
will be carried out at the end of that paper.

Very recently, the ionic-like surface states of InSb
surfaces have been interpreted using dangling-bond con-
cepts and combinations of Tamm- and Shockley-state
concepts, "but no attempt was made to assign energy
levels using the concepts. These "dangling-bond" con-
cepts complement, in a qualitative way, the Madelung,
Mathieu, and band-edge LCAO methods which seem
more explicit and better suited to computation of energy
levels. It should be noted, in passing, that the (111),
(111), and (100) surfaces of InSb are probably recon-
structed so that the dangling bonds are partly satu-
rated; this has not been taken into account in the
analysis of the authors. "

+ + - + + - + i«

a„ p a„ -p a„ p a„ -p a„

n*l

numbered sites e= 2, 4,6;their valence atomic orbit-
als p» have p-like symmetry. To be specific, upon re-
Qection about the atom centers of Fig. 1, the respective
orbitals become &sr -+ &sr and P» ~—P». The alterna-
tion in atomic-orbital symmetry type along the chain
is the main characteristic of ionic or partially ionic
crystals. In general, the ionicity is fractional, so that
the components of the crystal can be called atoms or
ions equivalently.

Let the conduction band-edge energy be called n~ and
its wave function be called per'. These eigenvalues and
eigenfunctions satisfy, by definition, Hiero=ujrgsr'.
From three-dimensional band-structure studies" ofmost
ionic or partially ionic crystals lt ze has symmetry I'i, so
that upon reflection ipiir' —r tuse'. Also, nil lies at the
center of the BZ as shown in Fig. 2.

Similarly, let the valence band-edge energy be called
cr» and its wave function be called f»o. These satisfy
HP»' n»P»'. Fro——m three-dimensional band-structure
studies of cubic and zinc-blende crystals (no spin-orbit
coupling) P»' has symmetry" I'», which is equivalent
to the triply degenerate p„p„, p, wave functions. "
Since the one-dimensional representation of Fig. 1 is to
be used, f,' is chosen to be p, -like so that upon reflec-
tion f»o —& —P»e. A following paper will show that the
additional p,— and p„-like valence bands form two
heavy-hole bands, but that few new types of surface
states appear, so that p, and p„can be safely ignored

E, X

+QZ ~1+4—
CONDUCTION
BAND EDGE

Essential aspects of a one-dimensional ionic semi-
infinite chain showing the M and X atoms, their orbital-wave-
function symmetry types, Coulomb and resonance integrals, and
location with respect to the end of the chain (n =1l.

II. BULK

Consider a one-dimensional representation of a semi-
indnite ionic crystal of the type MX as shown sche-
matically in Fig. 1.The M (metallic) atoms are located
at odd numbered sites n=1, 3, 5, ~; their valence
atomic orbitals per have s- or d-like symmetry. By con-
trast, the X (non-metallic) atoms are located at even-

aMe& I

aM &2M
a'x-.~mx
ax.-& i

-gz', +e

'WSURFACE IMPORTANT(? ~)
~/ STATES BAND GAP

VALENCE BAND
EDGE

UNIMPORTANT t IS)j
BAND GAP

"T. A. HoGman, Acta Phys. Hungaricae 1, 175 (1951) (in
English).

ss F. Seitz, The Moderl Theory of SoMs (McGraw-Hill Book
Co., New York, 1940), pp. 277, 121.

'4 A. A. Maraududin, E. W. Montroll, and G. H. Weiss, Theory
of Lattice Dynamics in the Harmonic Approximation (Academic
Press Inc, , New York, 1963).

X- Yr/2
r X
0 f 7r/2

FIG. 2. One-dimensional representation of the band structure of
an ionic or partially ionic crystal with a cubic lattice.
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where m or e' can be odd or even. Specie.cally,for the present. Note that n~ also lies at the center of
the BZ in Fig. 2 and n~&n~.

It is logical to expand P ~' and Px' in terms of atomic
orbitals on M and X sites, respectively, with similar
symmetry properties as follows:

=ng m even.

4~1'= 2 4sr(&—n)
n=1,3, 5

Hn, ++1 Ha, n,—$ P n odd

These are commonly called "Coulomb" integrals, even
though there is a kinetic-energy contribution in FI.

(]a) Also, the nearest-neighbor integrals are

4 x'= P yx(s —n) .
n=2, 4, 6

(1b)

In this form P~o and Pxo have identical symmetry
properties to the Mathieu functions' ce2(s, q) and

se2(s, q), respectively. These border the second band gap
as desired in the ionic-crystal problem. '

It is desirable to create Bloch waves /sr and Px, which

closely resemble the band-edge functions f~' and Px'.
This is done by using the basic LCAO relations

a„y~(s—n),
n=1,3, 5

(2a)

Px —— Q a„yx(s—n),
n=2, 4, 6

a„=exp (in8),

8= f+itj, , $ and p real.

(2b)

(3)

(4)

Note that, for 8=0, It~=/~' and px=fx' as required.
The Bloch condition is satis6ed in the sense that
It (s+2)=exp(2'8)~t (s).

An adequate representation of surface states within
the band gap, or bulk states near the conduction or
valence band edges, can be made by forming a hybrid
as follows:

It =4~+&4x, (5)

where E is a hybridizing parameter, analogous to A. of
Ref. 3 and E of Ref. 20. Of course, for very thin band-

widths compared to the band gap, other band-edge

hybrids must be added on to Eq. (5) to yield a more

reasonable representation of the surface or bulk states.
Fortunately, this situation is not serious for most

crystals. "The consequences of including other hybrids
are relatively minor, as shown in Ref. 3, except for the

very lowest band edge in Fig. 2, which becomes a
metallic (or virtual) surface state.

The crystal energy E is obtained from using the
Schrodinger equation

e even. (9)

These are commonly called nearest-neighbor resonance
integrals. All other integrals are ignored here. Note that
P alternates in sign along a chain; this can also be seen
from inspection of Fig. 1. Also, note that the surface
M atom (n= 1) has a different Coulomb integral

/JI11 nM ~ (10)

(On the other hand, suppose that the lattice started as
m=2, 3, 4 . . ~. Then, the encl. atom would be X,
and one would have H22 nx'. ) It ——will be shown below
that the sign of p does not affect the presence or absence
of surface states; the results are dependent only on the
alternation in sign of p from one site to the next. To
solve for E, multiply Eq. (6) by &sr*(s—n) and inte-
grate Then. do the same with gx*(s—n). These opera-
tions combined with Eqs. (2), (5), and (7)—(9) yield
the recursion relations

o.~&
—E, 2iP sin8

,

—2iP sin8 nx —E 1

The solution of the secular equation is

=0 (13)

&= 2(nsI+nx&[(u~ —ux)'+16P' sin'8]'t') . (14)

Note that p gives the curvature of the band edges at
0=0; it can therefore be roughly determined by using
effective-mass measurements. In other words, the values
n~, ax, P can be determined from experiment and the
integrals in Eqs. (7)—(9) need not be explicitly
evaluated.

Using the definitions

pa +i pa i+A(neer E)—a =0 n odd, —(11)

(nx E)a„EPa„+~—+EPa„—~ On even. (——12)

Note that because of Eq. (5), all a~ with I odd must have
R as a coefficient. Equations (11) and (12) are only
valid for e&1.

Combining Eqs. (3), (11), and (12), one has the
matrix for the "bulk" states

(H E)P=0—
and the usual LCAO integrals of the form' "

H„„.= y„'(s n)Hy„. (s n')—ds, —

(6)

Eq. (14) becomes

a=2 n~ n~,
~= (~--)/p,
si= (a~—ax)/2p,

X= & (sP+4 sin'8)'".

(15)

(16)
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This is similar to Eq. (2.2) of Ref. 20 except that,
because of the alternation in sign of p, cos'8 is here re-
placed by sin'0. The bulk energies can be obtained
easily by setting ted=0, i.e., 8= $. Then Eqs. (14) and
(16) yield the desired bulk-band spectrum, drawn, for
example, taking si ——0.5, in Fig. 2. The main (valence-
to-conduction) band gap occurs at )=0, not at (=-',~,
which is the case in Refs. 20 and 21.

Next, consider the possibility of a surface state such
that 8= $+itj, in Eq. (16). For the wave function to be
exponentially damped into the crystal, one must have
p&0. For the energy to be real it is necessary that
Im(sin'8) =0 or

sin2$ sinh2ti= 0. (17)

One solution of this is p= 0, but this is the bulk spec-
trum described above. The ionic surface states are de-
fined from the combination

x= + (s '—4 smh'p)'" (19)

and they lie inside the band gap as desired for these
states. These states are sometimes called inner-surface
states. '0 Outer states are obtained from the combination

ti) 0,
a„= (—1)l" exp (—rip) .

(20)

]=0, p)0,
a„=exp( —mp) .

Their energies, obtained from Eqs. (16) and (18), are

crystal (M-M spacing is two units) are specified by
either )=0 or $= m. That is, the states at )=0 and (= 7r

are not distinguishable. This is a basic result of the
translational symmetry of the one-dimensional crystal.
Similarly, the states at $=+i2m, —i~~ are not distin-
guishable. For simplicity and clarity, therefore, Eq. (22)
will be ignored since it yields no new results. [Pote
added i' proof Thes.e complications disappear if the
M-3f or X-X distances are taken as unity, instead
of the M-X distance as assumed above. Then 0 —+ —,'8
and the equivalent sttes are 0, 2m, and m. ,

—x.
Also the Block condition takes the more familiar form
+~(s+1)= exp(ig)+~(s). j

To find R for the ionic surface state (nx(E(nw and
0=-gati) Eqs. (13) and (18) are used to obtain

R= (2p sinhp) (n,ir —E)—'.
Since p&0 and n~&E, it follows that

R/P&0.

(23)

(24)

R 1 E nx)"'—
P ]Pi ~.,„—E)

(25a)

This is a necessary condition for a surface state; it is
independent of the sign of P. (The case of R/P(0 cor-
responds physically to +&0, which is an exponentially
Azcreasirtg wave function and must be rejected. ) It is
possible to res, rrange Eqs. (13) and (23) to yield some
useful relationships:

The coefficients a„and a„+~ alternate in sign along a
chain and the energies

E= (axyR'a, ir)/(1+ R'),

4p' sinh'p= (nw —E) (E—ux),

(25b)

(25c)

x= + (si2+4 cosh'p)'" (21)

lie outside the allowed bands. But these outer states"
are not consistent with the assumptions inherent in
Eq. (5), so they will be neglected here. Moreover, it is
the ionic or inner states, not the outer states, that are
experimentally detected. Finally, consider the only
other combination which also satisfies Eq. (17), viz. ,

ti) 0,
a„= (—1)"exp( —nti).

(22)

"This equivalence was not pointed out by Davison and
Kouteckg (see Ref. 20).

This combination yields the same energies as Eq. (19),
but a„ for I odd (even) has a negative (positive) sign.
Recalling that 1t~ and fx are I.CAD functions located
on odd and even sites, respectively, one sees that in
Eq. (5) the change )=0—+ $=m. is identical to the
change E.—+—E. It will be shown later that the proper-
ties of ionic surface states are not affected by this com-

sisteet transformation E—&—E. Therefore, the choices
)=0 and $=~ are equivaterit. "From a band-structure
point of view, the energies and wave functions at the
center of a one-dimensional Brillouin zone of a diatomic

which have direct analogs with Ref. 3. Note that when
E~O, 8—+nx and p=0; when E.~ 1, E~ n and p,

is a maximum; when E—+~, E~ n~ and @=0.For R
imaginary either E&o.~ or E&nx and p, becomes imagi-
nary so that a Bloch wave is formed in the conduction or
valence bands.

III. SVRFACE

The p values for the ionic surface states, which have
so far remained unspecified, will now be determined
from the surface matching conditions.

R(o.~' E)ai+Pa2 0. — ——

Combine this with Eq. (18) to yield

E=n~'+Pe "/R.

Since from Eq. (11),R/P&0, one must have

(26)

(27)

(28)

M Atom

For a termination on an M atom (e= 1) as shown in
Fig. 1, Eq. (11) yields
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Verso

N

This is the existence cond2tion for an M-tike surface state.
Thus, n,~l' must lie below the 0.~ level as shown in
Fig. 2. This result is independent of the sign of P as
assumed earlier. The "bulk" equations (11) and (12)
can be written in the forms

E= nM p(e—~ e~—)/E, (29)

.8 —
1 ~

~ t ~ t- ~

.6-

IKE
FACE
TE

a=~x+P(e~ e~)—Jt. . (30)

These equations indicate that the Schrodinger equation
is satisfied within the "bulk. "They are equivutemt in the
sense that they both yield the same E, provided the
same value of E be used.

Eliminate E from Eqs. (27) and (29) to get

pe"/R = nM —aM'. (31)

Next, eliminate p/R from Eqs. (31) and (27) to yield

&=~M'+ (aM ~M') exp( —2t ) (32)

This demonstrates that Eq. (28) is correct, since ti) 0.
Equivalent but much more awkward expressions for
M-like states can be obtained by eliminating E from
Eqs. (27) and (30), instead of Eqs. (27) and (28). Using
the definitions

S2M (&M C1)/P )

L= exp( —2p),

Eqs. (32), (28), and (19) become

X= 52M+ (sl —s2M)L )

sl (sl 82M) (1 L) r

z2M+ X+z1, )

(33a)

(33b)

(34c)

X= +Ls12—(1—I)'L 'git2. (34d)

Note that, since 0&p& ~, the allowed range of L is
0(L&1.Also, note from Eq. (33) that L is unchanged
if ti iS replaCed by ti ~ i2r+ti. ThiS again ShOWS that all
X of interest are independent of the choice )=0 or $=2r
as presumed earlier.

Eliminating X from Eqs. (34b) and (34d) yields

where
pML'+qML 1=o, —

PM = (Si—S2M)',

qM 1+2 s2M

rM= pMqM

(36a)

(36b)

(36c)

The root of Eq. (35) for 0(L(1 is

2pML= qM+ (qM'+4pM)'t'— (37a)

—1+ (l +4rrr) "}L=-
gm 2~3f

(37b)

As can be seen from Eqs. (36a) and (36c), rM is always
positive. It can be shown that the term in the brackets
in Eq. (37b) is always less than unity and positive for

x
0
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///~y

2

L~
FD:. 3. graphical solution of the surface-state pro&&eIn. &he

M- and X-like surface states appear as the intersections of the
surface and bulk relations.

al1. r~. The same is true for the coefficient q~ ', since

Eq. (34c) applies. Therefore, 0&L(1 as required in

Eq. (33b) and there is an allowed solution of Eqs. (37a)
and (37b) for all si and s2M, provided that si) s2M. This
is true even if s2M is negative. Substitution of Eq. (37b)
in Eq. (34a) yields x as an explicit function of si, s2M.

The mathematics can be considered in another way

by using a graphical method as shown in Fig. 3. Here X

is plotted versus I. in the physically meaningful range
0(L&1.The C-shaped curve with extrema +z~ is a
plot of the bulk. relation Eq. (34d). To be specific, si is

chosen for the figure to be z~ ——0.5. The straight line

sloping upwards from z2~ to z~ is the surface relation

Eq. (34b), which applies to a termination on an M
atom. The intersection of the curve and the line gives
the M-like surface state as shown in the figure. There is

also a trivial intersection at X=z~, but this occurs at
I.= 1 or @=0, so this is just the allowed (M-like) con-

duction band-edge state. From this graph one can see

that there will always be a nontrivial intersection
(surface state) provided that si) s2M. If s2M is negative

enough, the negative sign of Eq. (34d) may be the ap-

propriate solution, in which case X(0. In any case,
there is at most one (surface-state) solution for any
fixed value of z2~, even though the "bulk" relation

Eq. (34d) seems to be double-valued.
The I parameter has a simple physical significance

as seen from writing Eq. (34b) in the form

(si—s.M)
—(si—x) KE

zj z2~ PE
(38)

Referred to the conduction band edge, the M-like
surface state has a "trap" energy equal to z&—X and a
"potential energy" (PE) equal to si—s2M in dimension-

less notation. The di6erence between these energies is
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the "kinetic energy" (KE) of the electron in the surface-
state trap. Thus, L is simply the ratio of KE to PE in
the surface-state trap. For example, in Fig. 2, L=0.8
for the 3f-like surface states. Note from Eq. (33b) that
0&L&1, so KE&PE. For fairly shallow surface states,
r~ is small, so that the square root can be expanded to
give

M
—1 (1+s12 s22)

—1 (39)

This shows that the ratio KE/PE, is smaller for crystals
with wider band gaps 2s~ and deeper surface-state
potential energies s~—s2~.

The problem can be summed up as follows. From
Eq. (37b), L is obtained; from Eq. (33b), ti is obtained;
from Eq. (32), E is obtained; and from Eq. (31), R is
obtained. Thus, in principle, the 3f-like surface-state
problem is solved.

(nx' E)a2 PR—as 0—, ——

E=nx' PR exp( —t—i),
n~(EKo.g .

(40a)

(40b)

(40c)

This is the existence condition for an X like smrfa-ce

state. Thus, 0,~' must lie above the n~ level as shown in
Fig. 2 and the result is also independent of P.

The equations analogous to Eqs. (31)—(34) are

PR exp(ti) =nx' nx, —
E=nx' (nx' nx) exp( ——2—ti),

s2x = —(nx' n)/P, —

s2x (sl s2x)L p

—3]Q X(—S2g ~

(41a)

(41b)

(41c)

(41d)

(41e)

Equation (34d) is unaltered for X-like surface states.
Equivalent but much more awkward expressions would
be obtained if, for X-like states, Eq. (29) were used
instead of Eq. (30). Also, Eqs. (35)—(37) apply here
except that s2~ is everywhere replaced by s».

The X-like state can also be formed graphically. In
Fig. 3, Eq. (41d) is drawn as a straight line sloping
downwards; its intersection with the bulk solution,
Eq. (34d), yields the X-like surface sate as shown.
There seems to be a strong formal similarity between
the properties of M- and X-like surface states.

Before completing this analysis, consider again the
consequences of selecting Eq. (22) as a condition for
surface states instead of Eq. (18). The switch from
e=ip to e=vr+ip is equivalent to setting R~ Rin-
Eq. (5) and in alt subsequent equations containing R,
even Eq. (24). But the existence conditions for surface
states $Eqs. (28) and (40c)j and their energies E have

X Atom

For a termination on an X atom (instead of the M
atom shown in Fig. 1), the equations analogous to
Eqs. (26)—(28) are

been shown to be independent of R, provided that the
same E is used throughout. In fact, the energies are de-
pendent only on L=exp(2ie), so L is unchanged by
switching from H=ip to S=vr+ip. This demonstrates
that Eqs. (22) and (18) yield equivalent surface states,
so that one is justified in ignoring Eq. (22). Stated
another way, the ionic surface states arise at the center
I' of the BZ in Fig. 2, which is characterized by (=0
or $=m interchangeably.

IV. DISCUSSION AND CONCLUSIONS

The results of this band-edge LCAO method closely
complement and support those of the Mathieu' and
Madelung'' methods. The Mathieu analogy can best
be seen by comparing the matrix, Eq. (13), with the
comparable matrix of the Mathieu problem (for small
band gap) rewritten here to yield consistent notation:

2m 'E p

—2' 'E p

b —E 1
=0 (42)

Here, m is the band-gap index, and for ionic surface
states m=2. a2=n~ and b2 ——e~, so that the diagonal
elements are the identical band-edge energies in both
the LCAO and Mathieu problems.

The off-diagonal terms in the Mathieu problem
contain the k y-like integral in dimensionless form, since

ce (s,q) —~se„(s,q)ds.
0 ds

(43)

This integral couples the ce (s,q) and se (s,q) functions,
which are the band-edge wave functions of the top and
bottom, respectively, of the mth band gap. By compari-
son, the off-diagonal term in Eq. (13) of the LCAO
problem contains an integral of the resonance type with
strength P as shown in Eqs. (7) and (9). It also couples
the band edges, but in a somewhat different way. In
any case, the off-diagonal term P gives the curvature to
the band edges, as shown in Fig. 2, and can thus be de-
termined from effective-mass experiments.

In the Mathieu problem, the P parameter hybridizes
the se (s,q) and ce (s,q) functions, while in the LCAO
problem the R parameter hybridizes the /sr and fx
functions.

There are also similarities with regard to the surface-
matching equations. Both X and R are uniquely deter-
mined by these equations, and the existence conditions
for surface states are essentially X&0 and R&0. This
similarity holds even though the Mathieu problem re-
quires equating the values and slopes of f at the surface
s0, while the LCAO problem simply removes atoms to
the left of the surface (a0——0, a i——0, a 2

——0, etc.).
It is also illuminating to relate this band-edge LCAO

method to the Madelung problem. There the band-edge
energies are simply taken as e~ and nz and the surface-
state energies are simply taken as o.~' and o,z'. This
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simplicity is a consequence of the lack of a quantum-
~echanical foundation in the Madelung problem. In
other words, in the classical Madelung problem the oG-
diagonal terms containing p are absent. These terms
containing p, as shown in Eqs. (32) and (41b), add
kinetic energy and cause the 3f- and X-like surface-
state energies to approach somewhat closer to their re-
spective band edges. Also, the classical Madelung
problem contains no bulk bandwidth; this is a conse-
quence of the absence of off-diagonal terms containing P.

The main advantage of the Madelung problem is that
it is strongly based in chemistry and electrostatics. Un-
doubtedly, the Coulomb-energy differences n~ —o.~'
and nx' —nx can be computed by the Madelung
method much more reliably than by using the LCAO
integrals. This follows because the details of the local
potential and wave functions in the surface and bulk
needed for Eqs. (8) and (10) in the LCAO method are
not known. To be specific, the three-dimensional
Madelung model'' of an ionic solid strongly indicates
that e~~)n~' and o,x')ax, as shown in Fig. 2. This
follows because the surface Madelung constant is less
than the bulk, and the Madelung energy acts with equal
strength, but in opposite directions, on the M and X
ions. ' ' Also, the surface and bulk Coulomb energies are
fairly realistically computed in the Madelung method
by taking the usual sort of Coulomb sum over all ions
in the respective half and full spaces. In this manner
one can augnseet the usefulness and accuracy of the
band-edge LCAO method by evaluating n~ —a~' and
o,~'—o.x from the three-dimensional Madelung method.

This completes the discussion of ionic surface states
using the one-dimensional band-edge LCAO method.
It has been successfully integrated with the Mathieu

and Madelung methods, and displays the main features
experimentally observed briefly in the Introduction. A
more complete and quantitative comparison with ex-
periment will be carried out in a following paper, where
this band-edge LCAO method is extended to three
dimensions. [Note added in proof. P. Mark has kindly
pointed out to one of us (J.D. L.) that the above band-
edge method has other useful features. These become
apparent when the separated-atom energies of 3f and X
species are explicitly included. Then the atomic M level
is raised by the Coulomb term J'&~*AV~&Mdv and the
atomic X level is lowered by the term J'Px*DVxpxd&.
Here AV~ and AV~ are the antisymmetric parts of the
crystal potential in the M and X cells, respectively. The
band-edge states then correspond to n~ and o,~, re-
spectively. The classical limit' ' follows by using 8 func-
tions for p~ and Px and by using the Madelung poten-
tial for AU.

Recently, it has been proved [J. D. L. (to bepub-
lished) j that the above surface-state problem and the
problem considered in Refs. 20 and 21 should have, in

fact, idemHcal energies, although the wave functions
have a phase shift. A number of errors in Refs. 20 and
21 have thus been uncovered. Details will be given in a
review article "Quantum theory of surface states" by
the authors (S. G. D. and J. D. L.), in Solid State
Physics, edited by F. Seitz and D. Turnbull (Academic
Press, Inc. , New York, to be published). ]
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