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the data at low temperature would not be valid if they
yield results which are inconsistent with the result
obtained from the analysis of the ;(p)-versus-T" data
[Fig. 6 and Eq. (4)]. Evidently, the simple model based
on the pressure dependence of a single donor level does
not suffice to explain the piezoresistance data around
20°K. A detailed experimental investigation in this
temperature range is required before any firm explana-
tion can be proposed for this disagreement between the
low- and the high-temperature piezoresistance data.

5. CONCLUSION

The result menear= 0 indicates that the lowest conduc-
tion-band minimum for this material is situated at
k= (0,0,0), and is in agreement with other work.}:3—6
The piezo-Hall and piezoresistance effects can be
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qualitatively explained on the basis of the simple model
that the donor ionization energy eg increases appreciably
with pressure. The value €;=~0.019 eV determined for
one sample from the data on m;(p) versus T is in excel-
lent agreement with the value €;~0.020 eV estimated
from the low-temperature data on p versus 7. The
result (des/dP)>+5.2X1072 eV/dyn cm™? derived
from the pressure data at 195°K suggests that there is
considerable contribution from some band other than
the (000) conduction band to the donor state functions.
The piezoresistance data around 20°K, when simply
interpreted on the basis of the pressure dependence of
the ionization energy of the single donor level, yield
(deq/dP)=~~+2.6X1072 eV/dyn cm™, in disagreement
with the estimate obtained from the pressure data at
195°K.

PHYSICAL REVIEW VOLUME

174,

NUMBER 3 15 OCTOBER 1968

Low-Field Mobility and Galvanomagnetic Properties of Holes in
Germanium with Phonon Scattering

P. LAWAETZ

Physics Laboratory I11, The Technical University of Denmark, Lyngby, Denmark
(Received 3 June 1968)

A theoretical calculation of the low-field galvanomagnetic properties of holes in Ge has been carried out
incorporating all relevant details of the band structure. The scattering is limited to acoustic and optical
phonons and is described by the deformation potentials a, b, d, and do. For pure acoustic scattering, no over-
all consistency is found between available galvanomagnetic data and deformation potentials derived directly
from experiments on strained Ge. The discrepancies may be ascribed to ionized-impurity scattering, but at
higher temperatures where optical phonon scattering is operative, the deviations are still appreciable. We
are led to conclude that the deformation-potential theory of phonon scattering needs reconsideration, and

a nontrivial correction is pointed out.

I. INTRODUCTION

LTHOUGH the electrical transport properties of
holes in Ge are more or less qualitatively under-
stood, their quantitative interpretation is still far from
satisfactory.! The difficulties encountered in this con-
nection are primarily due to the complicated energy
spectrum of holes in the vicinity of the degenerate
valence-band edge, which consists of the two bands

E,y (k)

= AL B%AH C¥(k 2k, k2R 2R 2R V2. (1.1)

The principal aim of the present work is to calculate
the low-field galvanomagnetic parameters mobility,
Hall factor, and magnetoresistance, avoiding any serious
approximations in the band structure or its effects on
scattering, so that it might be possible to establish a

1E. G. S. Paige, Progress in Semiconductors (Heywood and Co.,
Ltd., London, 1964), Vol. 8, p. 1. This review article discusses
most of the earlier experimental and theoretical work on electrical
transport properties of holes in Ge.

quantitative correlation between some important trans-
port properties.

The scattering mechanisms will be limited to acoustic
and optical phonons, and are treated on the basis of the
deformation-potential theory developed by Bir and
Pikus.? In this theory, the hole-phonon interaction is
determined by the four deformation potentials @, b, d,
and do. Of these, the first three, pertaining to the
acoustic scattering, also describe the change in the
valence-band structure with static strain® and, con-
sequently, they enter the theory of a large number of
phenomena pertaining to the valence band. dy is con-
nected with the optical phonon scattering and appears
only in the theory of transport phenomena.

The previous theories of low-field transport may all
be regarded as simplifications of the general case intro-

2G. L. Bir and G. E. Pikus, Fiz. Tverd. Tela 2, 2287 (1960)
[English transl.: Soviet Phys.—Solid State 2, 2039 (1961)7]. A
similar theory was worked out independently by M. Tiersten,
IBM J. Res. Develop. 5, 122 (1961).

3 G. E. Pikus and G. L. Bir, Fiz. Tverd. Tela 1, 1624 (1959)
[English transl.: Soviet Phys.—Solid State 1, 1502 (1960)].
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duced by some special choice of the parameters 4, B, C,
a, b, d, and do.* These models fall in the following five
groups (only pure acoustic scattering is considered):

(a) Single spherical band, B=C=0; (1) isotropic
scattering,! b=d=0.

(b) Two spherical bands, C=0; (1) isotropic scatter-
ing,! b=d=0, (2) anisotropic scattering,’ d= V3.

(¢) Real band structure, Eq. (1.1); (1) isotropic scat-
tering,’ b=d=0, (2) anisotropic scattering, general case.

Only the mobility calculation by Tiersten’ belongs to
the general case (c2). The inadequacy of the simplified
models may be illustrated by a comparison with the
experimental value of the acoustic Hall factor »=puy/uo
=1.36.5"10 The corresponding theoretical results are
(al) 1.18,1 (b1) 2.51,11 (b2) 1.60<7<2.53,% (c1) 2.07.
With the exception of the simplest and least-realistic
case (al), all models studied so far yield a Hall factor
above the experimental value. A similar situation exists
for the transverse magnetoresistance, and no model
based on spherical bands predicts a nonvanishing longi-
tudinal magnetoresistance. Consequently, there is a
clear need for a theory incorporating the full complexity
of the band structure and the acoustic phonon scattering.

It is well established experimentally’-!? that the tem-
perature dependence of the drift mobility o of holes
in Ge is of the form 7°-2- in the range 120-300°K. Since
this deviates considerably from the 7—!-% dependence
to be expected from pure acoustic scattering and para-
bolic bands,”'!* either strong optical phonon scatter-
ing!!? or nonparabolicity’'* has been suggested as a
possible cause, but so far no theory has incorporated
both mechanisms simultaneously. This will be done in
the present work, and for the first time the temperature
dependence of the galvanomagnetic effects will be calcu-
lated and compared with experimental data.

The physical model on which the present calculations
are based is outlined in Sec. II. Particular emphasis
will be laid on a qualitative discussion of the hole tran-

4In the course of the present calculations for Ge, it has been
shown that the usual approximation of an isotropic acoustic
phonon spectrum leads to a negligible error, especially in the
models where anisotropy is already present in band structure
(C50) or scattering (b, d0).

® G. L. Bir, E. Normantas, and G. E. Pikus, Fiz. Tverd. Tela
?i9%128)?] (1962) [English transl.: Soviet Phys.—Solid State 4, 867

6B. Lax and J. G. Mavroides, Phys. Rev. 100, 1650 (1955);
J. G. Mavroides and B. Lax, bid. 107, 1530 (1957); 108, 1648
(E) (1957).

7 M. Tiersten, J. Phys. Chem. Solids 25, 1151 (1964).

8 C. Goldberg, E. N. Adams, and R. E. Davis, Phys. Rev.
105, 865 (1957).

®V. I. Stafeev and V. M. Tuchkevich, Zh. Tekh. Fiz. 28,
%fggs)(]1958) [English transl.: Soviet Phys.—Tech. Phys. 3, 1513
(19105?) C. Beer and R. K. Willardson, Phys. Rev. 110, 1286

1 E. M. Conwell, Phys. Rev. 94, 1416 (1954).

2D. M. Brown and R. Bray, Phys. Rev. 127, 1593 (1962).

13 P. Lawaetz, Phys. Status Solidi 11, K117 (1965).
(1;6 ;2) Keiper and H. W. Streitwolf, Phys. Status Solidi 12, K21
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sition rates due to acoustic phonon scattering and of
the validity of some necessary approximations in the
treatment of these quantities.

The central problem in transport theory is the de-
termination of the distribution function from the Boltz-
mann equation. As a consequence of the complexity of
the basic model, the solution will be performed numeri-
cally. In Sec. ITI, we show how the Boltzmann equation
may be brought into a form convenient for numerical
treatment by a power-series expansion of the distribu-
tion function in the external fields, retaining first-order
terms in electric field and second-order terms in mag-
netic field. The angular dependence of all quantities
entering the transport equation is handled by series
expansions in a suitable set of harmonics. In Sec. ITI B,
the link between the distribution function and the
macroscopic transport parameters is established. Sec-
tion III C deals with the problem of including the non-
parabolicity of the light hole band in the frame of the
theory.

The main problem in the numerical computation is
the evaluation of the various coefficients belonging to
the series expansions in surface harmonics of the angu-
lar-dependent quantities. This problem is closely con-
nected with the truncation of the series in question, and
thus with the over-all accuracy of the calculation. The
details are discussed in Sec. IV, in order to establish
that the principal uncertainty of the present results is
eventually due to the basic physical model and not to
approximations in the computational procedure. In an
earlier paper,!® we have stressed the important simplifi-
cations introduced by direct application of the inherent
cubic symmetry of the problem, and these ideas are
further developed in Sec. IV.

In Sec. V, we present the results of calculations of
mobility, the Hall factor, and of transverse and longi-
tudinal magnetoresistance. In the case of pure acoustic
scattering, a fairly complete mapping of all possible
combinations of the deformation potentials a, b, and d
is shown. This is made possible by the simple tempera-
ture dependence of the transport parameters in question,
following from the usual assumptions of parabolic bands
and the equipartition of acoustic phonon energies. It is
shown that most of the results can be interpreted in
terms of a simple model with unequal relaxation times
in the two bands. If nonparabolicity and optical phonon
scattering are included, a complete representation of
the results would be hopeless were it not for the fact
that the temperature dependence of the transport par-
ameters is practically independent of the details of the
acoustic scattering and is a function only of the low-
temperature value (pure acoustic scattering). A further
simplification is introduced by an automatic adjustment
of the optical deformation potential dy so that the value
of the mobility at 300°K coincides with the experi-
mental result.

15 P, Lawaetz, Phys. Rev. 166, 763 (1968), referred to as I.
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The crucial point of the theory is reached in Sec. IV,
where we compare the results of the present theory
with existing experimental data. Here, a careful selection
of data must be made in order to ensure that they
actually represent pure phonon scattering and low fields.
It will then be found that, although the fit is consider-
ably improved as compared to more simplified models,
there are significant discrepancies. Furthermore, we
may compare the results with deformation potentials
obtained by static strain experiments and this leads to
an enhanced inconsistency of the galvanomagnetic
results.

Finally, Sec. VII contains a discussion of possible
explanations for this rather surprising insufficiency of
the present model. It is concluded that deformation-
potential theory does not give the complete picture of
lattice scattering, at least of the part due to optical
phonons

II. THEORETICAL MODEL
A. Hole Energy Spectrum

The energy spectrum E=E(k) of holes in Ge is
derived by k-p perturbation theory including spin and
spin-orbit coupling.! In the vicinity of the valence-
band edge at k=0, the spectrum consists of two bands
degenerate at k=0 and a third band split off A=0.295
eV!7 by the spin-orbit coupling. Since the spin-orbit
splitting A is large compared to thermal energies at
300°K, the split-off band may be neglected in transport
theory, but the proximity of this band induces a con-
siderable %£* term in the nearest band, i.e., in the light
hole band.

To second order in k, the energy spectrum is given
by expression (1.1). This is the parabolic approximation,
where

E=kak), (2.1)

g)\(]:c) =A+(— 1)){32_{_ Cz(feﬁ]%yz-i—l%fl%f—{—f%f/%ﬁ)]“z .
(2.2)

£ is the unit vector in the direction of k; A=1 and 2
give the heavy and the light hole band, respectively.
A, B, and C have been measured by cyclotron resonance,
and we shall use the values!®

A=13.2740.025,
B= 8.6320.12,
|C|=12.4 20.25,

in units of %#2/2m, where m is the free electron mass.
Values similar to (2.3) have been obtained by others.*®

16 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98,
368 (1955); E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956).

17 A, C. Baynham and E. G. S. Paige, in Proceedings of the
Seventh International Conference on the Physics of Semiconductors,
Paris, 1964 (Academic Press Inc., New York, 1964), p. 149.

18 B, W. Levinger and D. R. Frankl, J. Phys. Chem. Solids 20,
281 (1961).

19 R. R. Goodman, Phys. Rev. 122, 397 (1961); J. C. Hensel,
Solid State Commun. 4, 231 (1966).

(2.3)
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The sign of A pertains to positive hole energies. The
sign of B and the related quantity D defined below
will be discussed later. For the present, we shall take
them to be positive. Insertion of (2.3) in (2.2) shows
that the light hole band is nearly spherically symmetric.

When the split-off band is taken into account directly,
the second-order k-p perturbation matrix!® cannot be
diagonalized in a simple way except for k parallel to the
(100) and (111) directions. For the (100) directions, we
obtain

Ei=(4—B)R2, (2.4)
Ey=3[(24+ B)k*+A]— (3[(24+ B)k2+ AT
—A(4+B)k2— (A+2B)(A—B)k) 12, (2.5)

For the (111) directions, B is replaced by D/v3,20 where
D= (3BH-C2)1%, (2.6)

From (2.4) we observe that the heavy hole band re-
mains parabolic in the principal symmetry directions,
whereas (2.5) shows that the light hole band is more
affected. An expansion of (2.5) gives

Ea~(A+B)k*—2B%*/A
=k2g2[1—C2k2g2/A] (27)

With the same degree of accuracy we may write (2.7)
in the form
E2(1+C2E2/A)=k2g2. (28)

We now make the approximation of generalizing (2.8)
to arbitrary directions of k. For C; we then use a suitable
mean value between C5(100) and Cy(111):

Co=B¥ A+ B)~24-D*(4AV3+B)2. (2.9)

We have thus chosen a specific angular dependence of
the nonparabolic contribution to the light hole band,
but in view of the smallness of this correction such a
simplifying approximation is justified.

We shall later show how the form (2.8) is taken into
account in our calculations. When not specified, the
energy spectrum is considered in the parabolic form
(2.1).

B. Phonon Spectrum

Since thermal holes are situated in a band extremum
at k=0, it follows that the phonons of interest have very
small wave vectors q. The long-wavelength part of the
phonon spectrum in Ge consists of three acoustic
branches with frequencies wexg and three optical
branches degenerate at =0 with » independent of g.

The frequencies wqs and the corresponding polari-
zation vectors &, for the acoustic phonons of branch s
are the solutions of the secular equation?!

3
3 {Sawr— 0620 aar} s =0, (2.10)

a’=1

20 W. Bernard, H. Roth, and W. D. Straub, Phys. Rev. 132,
33 (1963).

21 W. P. Mason, Physical Acoustics and the Properties of Solids
(D. van Nostrand Co., Inc., New York, 1958), p. 370; H. M. J.
Smith, Phil. Trans. Roy. Soc. (London) A241, 105 (1948).
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where p is the mass density of the crystal and S is a
Shockley matrix?!:?? with the elements

Sii=(Cu—Cua)q*+Cug?,
Sii=(Cro+Cusqig;, 1%7.

C11, C12, and Cyq4 are the elastic constants for which we
shall use the values?

C11=1.30X10*2 dyn cm™2,
C12=0.49X 102 dyn cm™2,
C11=0.68X10'%? dyn cm—2.

(2.11)

(2.12)

The temperature variation of the elastic constants is
within 2%, from 77 to 300°K.?® This variation will not
be taken into account.

For a given ¢, the numerical evaluation of eigenvalues
and eigenvectors of Eq. (2.10) is standard and will not
be further commented upon.

The optical phonons are characterized by the feature
that to zeroth order in ¢ the two atoms in the unit cell
oscillate in opposite phase. The polarization-independ-
ent frequency at ¢g=0 has been measured by neutron
spectrometry?!:

f600=0.037 eV . (2.13)

As a consequence of the degeneracy in zeroth order of
g, the polarization vectors &y, (for one of the atoms)
may be any set of three orthogonal unit vectors.

C. Acoustic Phonon Scattering

To describe the scattering of holes by acoustic pho-
nons, Bir and Pikus? have worked out a deformation-
potential theory, taking into account the complicated
energy spectrum of holes. In this theory, the rate of
transition from state k in band X to k" an )\’ is?

7l'kBT N N
P, WK'2k)=3" 3" U(Ne,NEq5) 0k, 114

+ gqs

Vow qs2

X6(Ex(K)—Ex(k)£hwgs), (2.14)

where V is the volume of the crystal, 2z is Boltzmann’s
constant, and
UNENE qs) = 8Ex(k,e) 0 E (F',¢) — 8 E1(0,€)
X 8E5(0,)T\NENE), (2.15)
SEN(E, €)= e+ [ Bbe,s (3k,2—1)
+2Dde,, kb )/2E+cp., (2.16)
3E1(0,€)8E5(0,¢)) = (02— b2) €20 2+ (202 b e, ey
— %4, cp.,
Y(\ENE)=1—[D(k-F)2— B>+ (3B2—D2)
X (B2k+c.p)1/4E0Eey, (2.18)

(2.17)

22 W, Shockley, Phys. Rev. 78, 173 (1950).

% H. J. McSkimin, J. Appl. Phys. 24, 988 (1953).

2¢ B, N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747
(1958).
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Epnv=(—1B4C2(k2k,+cp) ]2,  (2.19)
€' (qs)= —%[giésj‘f"gjési]- (2.20)

c.p. stands for cyclic permutations of x, ¥, and z; @, b,
and d are the usual deformation potentials describing
the behavior of the valence-band edge when the crystal
is subjected to uniaxial stress.? In Eq. (2.14), the equi-
partition of phonon energies has been used, since for
the phonons interacting with thermal holes k7T >>7%w.
The error introduced in this way is about 2Cym*/pksT
~19, at 77°K for m* equal to the heavy-hole! effective
mass 0.3m, and p=15.33 g cm™3.

We now make the usual approximation of treating
the acoustic scattering as elastic, i.e., we neglect #w in
the energy-conserving & function in Eq. (2.14). It is
then easy to show that all energy dependence of P, is
contained in 8(E'—E). To see this, we observe that
(2.15) may be written as

UNeNE05) = u (Ve NE 0) g

because the “strain” €’ «gq. Furthermore, the disper-
sion-free acoustic spectrum may be expressed as

Fwqs=2:(§)gq.- (2.22)

Inserting of (2.21) and (2.22) in the expression (2.14)
for the transition rate yields

PoeNK k) = [ (27)%ks T/ VHC11]Sa(NENE')
X (En (k) — E\(k)),

(2.21)

(2.23)
with

P #Cn
SacO\k,}\/k/) = [ Z ust‘Qék,kz_q:I . (224)
E\'=E)\

4% qs

The energy conservation and the parabolic band struc-
ture ensure that S,c does not depend on the magnitude
of the k vectors. This feature is well known from simpler
band structures, and leads eventually to the simple
temperature dependence of acoustic-scattering limited-
transport parameters.

The introduction of elasticity in the acoustic phonon
scattering causes an error of the same order of magni-
tude as the equipartition approximation, i.e., 19, at
77°K. In addition, it is observed that Sa, defined in
Eq. (2.24), does not approach a limit as &' — £ for
N'=)\. This is also a consequence of the elasticity ap-
proximation, because when £'~k, Ey\(k’)— Ex(k) is no
longer large compared to the phonon energy. However,
the squared matrix element of the scattering, propor-
tional to U, does not particularly favor transitions with
k=K, and so the final error is not increased if we avoid
sampling the details near £=#’ in the numerical treat-
ment of Spe.

D. Optical Phonon Scattering

In their theory of optical phonon scattering of holes,
Bir and Pikus? have derived the following expression for
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the rate of transitions from state k in band X to k’ in \’:

™

Pop(NK' Nk) = T T (rot3£3) U NE 05)

pwodo” + as

X, wxq8(En (k) — Ex(k) £ o), (2.25)

where ¢p=5.66 A is the lattice constant of Ge intro-
duced in order to give the optical “deformation po-
tential” do (appearing below), the dimension of energy,
and

No= [exp(hwo/kBT)— 1]’1 ,
USONENE \qs) = 8E\(E)SEy 0 (B) — 6 E(0)
XOEL0)T(NENE), (2.27)
SE\(E) = Ddy(k.byostc.p.)/ Et, (2.28)
8E1°(0)8E(0) = —do2. (2.29)

¥ and Ejy are defined in Eqs. (2.18) and (2.19).

In Eq. (2.25), we now perform the summation over
the three polarization directions s for the optical pho-
nons, and, as pointed out in Sec. IT B, we may choose
the cubic axes as arbitrary polarization directions. We
then get, from (2.27),

U\ NE) = Do [k.b k2 k) +cp.]/
EnEinv+3d2YOENE). (2.30)

(2.26)

The summation of P,y over ¢ is now straightforward:
P ope WK k) = [(27)%w0/ V C11 1S op N/ \E)
X2 (not+35)3(En (k') — Ex(k) o), (2.31)
+

where

SoptWE \E) = (C11/8720w02ac®) USONENE) . (2.32)

This form of Py is suitable for the treatment of the
Boltzmann equation in the following section.

From the expressions for U° and ¥ it is seen that
P, is invariant under inversions in k and in k’. Thus
the optical phonon scattering has the “momentum-
randomizing” property which simplifies the later treat-
ment considerably.

III. BASIS OF CALCULATION

The calculation of transport parameters from first
principles proceeds through three stages: establishment
of a fundamental theoretical model as given in Sec. II,
solution of the Boltzmann equation to obtain the dis-
tribution function, and evaluation of the transport pa-
rameters corresponding to the distribution function. In
this section we are concerned with the last two stages.
The method to be applied is discussed in I and so we
shall concentrate on presenting the problem in a form
suitable for numerical treatment.
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A. Boltzmann Equation

Let fr(k) be the distribution function of holes in
band A. Assuming a nondegenerate distribution, the
Boltzmann equation governing f\(k) in the steady state
reads

¢/ h[F-Vi—B- (Va(k) X Vi) ] /a(k)
-x ] WLV /(2]

XLPOkNK) fr (K)—P(NK NK) fr(k) ], (3.1)

where F and B are the applied electric and magnetic
fields, ¢ is the charge of a hole, and the velocity

V(&)= (1/7%) Vi Ex(k) . (3.2)

The total transition rate P is the sum of P, from (2.23)
and P,y from (2.31).

According to I,’® we then expand the distribution
function in a power series in the external fields, and its
angular dependence on &, fi(k)=fA(E,k), is expanded
in a suitably chosen orthonormal system of surface
harmonics ¥ ,(k), satisfying

1
- / PV u(B)Y u(B)=b8n. (3.3)

We then choose the form
AER=F@+T demNx)a T a(k)], (3.4)

where

f(x)=c exp(—x) (3.6)

is the nondegenerate thermal equilibrium distribution.
In accordance with I, ¢,, < FB?® and the Boltzmann
equation is to be solved for these coefficients which,
together with (3.4), determine the nonequilibrium dis-
tribution function.

In order to transform the transport equation (3.1)
into a convenient form, we express the angular depend-
ence of PO\k\N'k’), ViE, and Vi, EX Vi as expansions in
the system ¥,(E). We thus define the matrix elements

(3.5)

and

1 . . .
Gmo()\)=1" /d2k Ym<k)E)\_1/2VkE)\Yo(k), (37)

™

1 P )
Hm“(x)zz / %k Vn(R)ViEaX ViY u(k).  (3.8)

™

The transformation of the scattering integral in (3.1)
from k space to (E,k) space introduces the density-of-
states factor £g\~%/2 with the expansion coefficients

1
CuV)=— / @k V (k)i 2(k). 3.9)

™
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For parabolic bands, G, H, and C are energy-
independent.

Similarly, we write for the angular parts of the tran-
sition rates

SaeMENE) =3 S, s\ Y,(B)Y (B, (3.10)
SopAENEN =3 S, O\ Y,(B)Y, (B). (3.11)

As shown in I, the use of the form (3.4) for the dis-
tribution function makes it possible to separate dif-
ferent powers of the external fields in the transport
equation (3.1). For s=0, we find, using the orthogonality
properties (3.3) of the functions ¥ ,(k),

(]Cu
PG\ 1=3 KON, 0)b0n(N,2).  (3.12)
4r(ksT)? W-1=2 Yoo

Similarly, the s=1 equation reads

8 g S HoNu00)
b mu X
drh(kaT)? °“

=2 Km"(}‘:)‘/’x)‘#ln()\/,x) ) (3.13)
Nn
and for s=2

qC 11

B-3" Hou(N)1u(n,
g T Hn o0

=3 Kun(MN,2)2a (V%) (3.14)
Nn

The “scattering matrix’ K is readily found to have the
form

Kmn(}\)\,,x)z o Z Aynm Z C”()\”)[Sm,a(x”’)\)
» My

+yo{no(1+yo/2) 2+ (ne+1)(1—yo/x)"/?}
XS#VO()‘Hy)\)]_Z Auvncn()‘,)smvu(xy)\l) ) (3-15)

where

1 .
Avnm=~/d2k Yvynym, (3.16)
47

¥o=hwo/ksT, (3.17)

and the factor (1—y,/%) should be replaced by zero if
negative. In deriving (3.15) we have used the fact that
the optical phonon scattering is momentum-randomiz-
ing, and so the “in-scattering” term!® vanishes for all
odd distribution functions, as is always the case for
low-field magnetoconductivity.®

The above presentation of the transformation of the
transport equation has been given without much ex-
planation because this would take up an unnecessarily
large space. Apart from numerical factors, the meaning
of the different terms is readily explained by comparison
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with the principles solution given in I. Thus G is
essentially the matrix element of F,, between ¥, and
Yo=1, H,,, the matrix element of B,,,"® and K,,, the
matrix element of the scattering operator S,p.1% The form
of Egs. (3.12)—(3.14) then follows qualitatively from
Eqgs. (2.12) and (2.13) of I. Similarly, the form of the
scattering matrix element K,, (3.15) is easily inter-
preted. The first, positive part stands for the “out-
scattering” term and is diagonal in the band indices A
and N/, whereas the last, negative part is related to the
“in-scattering” term. The coefficients 4 given in Eq.
(3.16) are just numerical coupling constants between
different ¥, and have no physical significance.

It is readily seen that the unknown expansion coeffici-
ents ¢, of the distribution function may be obtained by
successive solution of the linear, inhomogeneous equa-
tions (3.12)—(3.14). It will be made clear in the following
section why the particular matrix version of the trans-
port equation derived here is well suited for numerical
treatment.

B. Transport Parameters
The drift velocity is given by

» S d% fr(k) Va(k
Vd=>:f () (). (3.18)

22 Sk fik)

Denoting the carrier density by #, we have the current
density

i=nqVa. (3.19)

In cubic crystals like p-Ge, the current density may be
expressed in the following way to first order in the
electric field and to second order in the magnetic field?®:

j= 0’0[F+CMB(F>< B)
+85FB*+v5B(F-B)+6;TF],
where T is a diagonal tensor with the elements B,? B,?

and B,2 The quantity oy is the zero-field conductivity
related to the mobility uo by

(3.20)

00="7quo- (3.21)
ap is equal to the Hall mobility
MH=THO, (3.22)

where 7 is the so-called Hall factor. Defining the general
mobility as
u=F- 1. A\ s

we find from (3.19) and (3.20)

du/uo*B2=Bp'+vs'(F-B)*
+85/ (F2B2+F,2B2+F2B2), (3.24)

(3.23)

where 85’ =Bzu¢?, etc.

2 F, Seitz, Phys. Rev. 79, 372 (1950). The notation is the same
as employed in Ref. 15.



174

In connection with the expansion (3.4) of the distribu-
tion function, we write

V=2 Vas, (3.25)

where Vg, < FB* just as ¢, in (3.4). We then obtain

Vo= 2(kBT)1/2/wdx exp(—x)a 37 ¢ (\x)Dn(N)/
An

0
T2 CoN),  (3.26)
A
where
1 s s
Dn()\)='—/d2k Yn(k)%g)\—m[E)\"I/ZVkE)\] (327)
4

and C was defined in (3.9). From Egs. (3.23) and (3.25),
we now find

po=F"1F Vg, (3.28)
r=FXB-Vu/u?FB|FXB|, (3.29)

and .
ou/uo*B*=F-Vas/us*BF . (3.30)

The transport parameters wo, 7, 88", v5', and dp’ can
thus be calculated from Egs. (3.24)—(3.30), provided
that the distribution function ¢s, is known.

Instead of the reduced magnetoconductivity param-
eters B85, v5', and 85’, we shall calculate the correspond-
ing magnetoresistance quantities bz’, ¢g’, and dp’ 26 be-
cause these are more directly determined by experiment:

bg'=bpus 2= —pp'—1?,

(3.31)

c8'=cpuit=—vyp'+r?,
dp'=dpus?=—26z".

Actually, we rather calculate the transverse magneto-
resistance coefficient bp’, the longitudinal coefficient for
fields in the (110) direction bz’+cs’+3ds’, and the
longitudinal coefficient for the (100) directions bp'+cp’
+dp’. We shall later see that these three combinations
represent different symmetry parts of the distribution
function.!’® From the discussion in I, it is therefore ex-
pected that they will be of different orders of magnitude.
It is easily seen from the temperature and energy
dependence of the acoustic-phonon-scattering rates and
from a qualitative solution of the Boltzmann equations,
(3.12)—(3.14), that for pure acoustic scattering uo < 73/2
and 7, bp’, ¢g’, and dp’ are independent of temperature.
Deviations from this simple temperature dependence
are caused by optical phonon scattering and nonpara-
bolicity, the effect of the latter being included below.

C. Inclusion of Nonparabolicity

We now proceed to incorporate the slight nonpara-
bolicity of the light hole band as expressed in the ap-
proximate formula (2.8). Only the direct band-structure

26 G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951).
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effects will be considered, and so the scattering is as-
sumed to be unaffected. The corresponding error in the
transport parameters is difficult to estimate, but is
probably of second order, since it vanishes for a parti-
cular choice of the deformation potentials, i.e., b=d=0
(exact only for isotropic acoustic phonon spectrum?).

In the above approximation, the effects of nonpar-
abolicity is a slight energy dependence of the coeffi-
cients C, D, G, and H. Thus, for A=2,

C— C[14-5C,E/A], (3.32)

D — D[1+C:E/A], (3.33)

G— G[1—4C:E/A], (3.34)
and

H— H[1-2C.E/A]. (3.35)

Finally, in the formula (3.26) for Vg4, the sum X"y Co(A\)
must be replaced by an integral

00

2 Co(A) — 27112 / dx s 2 exp(—x) > Co(A), (3.36)
X X

0

where Co(2) now includes the nonparabolicity correc-
tion to C as expressed in (3.32).

IV. METHOD OF COMPUTATION
A. Consequences of Cubic Symmetry

In the treatment of the Boltzmann equation in Sec.
III A, we did not make use of the inherent cubic sym-
metry of the problem. As shown in I, important simpli-
fications follow from the full application of the sym-
metry. The only condition to be fulfilled is that the
system ¥ ,.(£) should be chosen as the cubic harmonics, 27
which are classified according to the irreducible repre-
sentations and rows of the full cubic point group T It
then follows from I and Eq. (3.4) that the distribution
function coefficients ¢, are classified in the same way,
and the calculation of uo, 7, 85’, v5', and 65" may proceed
as in Sec. IIT A of I without reference to a specific field
configuration. The procedure for obtaining ¢on, ¢1a,
and ¢, is shown schematically in Fig. 1. The notation
for the irreducible representations and the correspond-
ing parts of the distribution function is the same as in I.
Then

po~do1, (4.1)

r~bis, (4.2)

BB’ ~— a5+ 84, (4.3)

By’ 478" +%05"~ 82441820+ 821, (4.4)
Br'+v5'+ 85"~ 8o2+ o1, (4.5)

where the sign ~ denotes “derived from.”
For the cubic harmonics*” belonging to the same ir-
reducible representation and row, the order indicates

2 F. C. von der Lage and H. Bethe, Phys. Rev. 71, 612 (1947).
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the degree of anisotropy. Since the deviation from isot-
ropy of the energy spectrum and of the phonon scatter-
ing rates is not extreme in p-Ge, we may estimate the
order-of-magnitude relation between 6831, 82, 823, and
824 from a consideration of their symmetry origins in
¢1: Ty, T'1o/, 15, and Ta5, respectively. The lowest order
of cubic harmonics for these representations is* 9, 5, 1,
and 3, respectively. From the simple anisotropy argu-
ment we then expect | 8a3|>>|824]|>>| 822[>>|821], and so

|85 |>>|85"+v5'+385"|>> | 85" +v5'+ 05| . (4.6)

A similar relation holds between the corresponding
magnetoresistance coefficients. Our results confirm this
estimate.

Another important consequence of cubic symmetry as
discussed in I is that the expansion coefficients .S, (\,\")
of the scattering rates defined in Egs. (3.10) and (3.11)
are diagonal in the irreducible representations and rows
therein. This reduces the number of distinct coefficients
drastically. An additional result obtained in I for the
low-field magnetoconductivity problem is that we re-
quire only the 'y, Ty, T'1y/, T15, and T'a5 coefficients of
Sac and the T’y coefficients of Sopt. Owing to the rela-
tively simple angular dependence of Sopt, it is easy to
find the I'; part by inspection of Egs. (2.30) and (2.32):

Cu
Sopt(T') =————X2d2.

8m2pwo’ay?

4.7

The remaining part of S, transforms according to T'yz
and T'»s” and has no influence on low-electric-field mag-
netoconductivity. The expansion coefficients of (4.7)
reduce to (Yo=1)

SVV'O(X)X,) = Sopt(rl)awav'o . (48)

Thus, for our present purpose, optical phonon scattering
is isotropic.
B. Important Details of Computation

It is not our intention to describe the actual calcu-
lations in detail. For instance, a table giving all the

fO ¢0 ¢1

¢ Nsz)

F16. 1. Schematic illustration of the procedure for calculation
of the various parts of the distribution function. The diagram
follow(sj from Ref. 15 and the notation is the same except for ¢o,
é1, and ¢a.
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Fic. 2. Contour diagram of the deformation potential ¢ adjusted
to give the experimental acoustic mobility.

necessary coupling coefficients A,n.m, defined in Eq.
(3.16), has been omitted although these have not been
published before. Nevertheless, we feel that some details
may be important in order to establish the reliability of
the results.

For a practical application, the infinite-series expan-
sions in the system ¥,.(E) or similar infinite matrices
introduced in Sec. ITI in the transformation of the Boltz-
mann equation must necessarily be truncated in order
to deal with a finite number of coefficients. Since the
coefficients C, G, H, and D are single surface integrals
over the unit sphere, they may be computed with a
desired accuracy by direct numerical integration within
a reasonable time. They depend only upon the energy
spectrum of holes, and so the truncation of the corre-
sponding series depends only on the anisotropy of the
energy spectrum. To achieve an over-all accuracy better
than 19 for holes in Ge, it has been found necessary to
include terms up to eighth order in the cubic harmonics.
This is mostly dictated by the small longitudinal mag-
netoresistance parameter (bz'+cp’+dp’). According to
the discussion in Sec. IIT A, the second-order distribu-
tion function 8; originates from the Ty’ representation
(in first order of the magnetic field) where the lowest
order of harmonics is 9. It follows that 8, falls outside
the accuracy of the calculation, and because it does not
lead to a separate transport parameter, 851 (and so an’
in ¢;) may be neglected entirely.

The truncation of the double-series expansion (3.10)
of the acoustic scattering rate is determined by the
anisotropy of the scattering which actually depends very
little on the anisotropy of the hole energy spectrum. The
expansion coefficients S,,* are computed by interpola-
tion in (\E,\'E’) space with a series having the maximum
total order »+»'=8. After that the v+»'=8 terms are
cut off, and the remaining terms with »»"< 6 result in
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a maximum over-all 19 sensitivity of the transport
parameters to variations in the choice of interpolation
points. It is our belief that this procedure is more rele-
vant than the least-squares method used by Tiersten.”
However, the small differences between our coefficients
and those found by Tiersten’ using v+’ <4 may perhaps
by ascribed to the fact that, in our method, the various
symmetry parts of S,. are separated before the com-
parison with the truncated series. This is not possible
in Tiersten’s case, due to the simple choice of interpola-
tion points in the main symmetry directions.” As shown
below, the principal anisotropy of the acoustic scattering
is connected with the even representations I';; and T'as’
because all the magnetoconductivity results may be in-
terpreted in terms of almost isotropic relaxation times.
This conclusion was also reached by Tiersten? for a
special choice of deformation potentials. The anisotropy
of the acoustic phonon spectrum has practically no in-
fluence on the results.? The effect is drowned in aniso-
tropies already present from other sources.

C. Previous Theoretical Results

For special choices of the deformation potentials q,
b, and d, the results of our calculation may be compared
with earlier theoretical calculations pertaining to pure
acoustic scattering. Using Tiersten’s parameters?
a=—2.0 ¢V, b=2.1 eV, and d=7.0 eV, we calculate
a mobility which deviates only 29, from his result. For
b=d=0, we may compare our result with the results
of Lax and Mavroides,® inserting their values of the
inverse mass parameters and using an isotropic acoustic
spectrum, although none of these changes is found to
be important. The Hall factor of 2.07 coincides with our
result, but the magnetoconductivity parameters show

I I ! | I
8 -T- 20 b—

>\\\
7\

i 4 ey
| | 1 | |
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F16. 3. Contour diagram of the deformation potential b adjusted

to give the experimental acoustic mobility.
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Fic. 4. Contour diagram of the deformation potential d adjusted
to give the experimental acoustic mobility.

significant deviations which seem to be due to a series
of small errors in Lax and Mavroides’s paper.??

V. RESULTS
A. Pure Acoustic Phonon Scattering

For pure acoustic scattering, the transition rate has a
quadratic form in the deformation potentials a, b, and d.
For constant ratios 8/a and d/e, the mobility w, will

7 he 15T

-2

a3

-6

| | Iﬁl 178

F16. 5. Contour diagram of the Hall factor r for
pure acoustic scattering.

28 In addition to the published error (Ref. 6), Eq. (5) in the
second paper of Ref. 6 contains three errors: (1) ouyyz and ozyzy
should be interchanged, (2) the first and third series should be
multiplied by 2, and (3) in the series for gz4y,, the coefficient of
v?%is incorrect as far as we can estimate from our results; we have
not attempted to repeat the calculations of Ref. 6.
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Fic. 6. Contour diagram of the transverse magnetoresistance
coefficient bp" for pure acoustic scattering.

be inversely proportional to a? whereas the Hall factor
r and the reduced magnetoresistance ou/uo*B? are in-
dependent of a. It follows that we may insert o'=1,
b'=b/a, and d’=d/a, calculate the corresponding mo-
bility u/, and finally scale the deformation potentials
so that the experimental acoustic mobility!? uy=3.37
X107(T/1°K)~1-5 cm?/V sec is obtained.

(a,6,d)= (/o) *(a’,0',@"). (.1)
The value of » and 8u/ue*B? is unaffected by this pro-
cedure. Then a, b, d, 7, bg’, (bg'+cs'+3ds’), and
(b5"+cp'+ds’) are functions of b/a and d/a only, and
are shown in Figs. 2-8. In Sec. II, we defined the sign
of a, b, and d as corresponding to hole energies, but in
the present problem, the relevant sign of 4 and d is
rather the sign of Bd and Dd, since we have chosen B
and D positive in Egs. (2.3) and (2.6). It is evident
from the quadratic form of the transition rates that the
total sign of @, Bb/|B|, and Dd/|D| is irrelevant for
transport calculations. Therefore, we have chosen a to
be positive in Figs. 2-4 without loss of generality. How-
ever, it is known from several experiments on uniaxially
strained Ge?*%° that Bb and Dd are positive and this
fixes the absolute sign.

The results presented for pure acoustic scattering in
Figs. 2-8 may be interpreted by a relatively simple
model of the scattering. This model is suggested by the
elliptical form of the curves of constant ¢ in Fig. 2.
If we take B=D=0 in Eq. (2.15) and the following
equations and assume an isotropic phonon spectrum
characterized by the average longitudinal and transverse
elastic constants

C1=%(3Cu+2C1+4C4y)
Ci=3C1—C12+3Cus),

2 J. J. Hall, Phys. Rev. 128, 68 (1962).
7T, Balslev, Phys. Rev. 143, 636 (1966).

(5.2)
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we obtain an effective deformation potential e of
the form
Eoti?=a’+ (Cz/Ct) (52""%42) .

In this model, the curve of constant a is given by
b +3d"=(Cy/C)(Bus®/a*—1). (5.4)

Apart from the shift of the center and the rotation of
the principal axes, the ellipses in Fig. 2 are quantit-
atively consistent with Eq. (5.4). The shift and the
rotation can be explained by Bs#05£D. Remaining in
the simple picture, we may assume effective deformation
potentials which are different for the two bands, and
are of the form

B et =0a’[14-(Cy/C)) (" +3d")
(=D& +nd'+50'd) ], (5.5)

where £ 7, and { are parameters determined from the
orientation and center of one of the ellipses in Fig. 2,
and they are found to be small compared to 1. Equation
(5.5) corresponds to simple, isotropic relaxation times
in the two bands, and this model is found to fit even the
details of Figs. 2-8 to within 5%, accuracy. The factors
depending on band structure are determined from Lax
and Mavroides’s theory®28 for 8'=d’=0.

The results will be discussed further when we compare
them with experimental data. Finally, we want to
mention that a change in the mass parameters 4, B,
and C within the uncertainty intervals, shown in Eq.
(2.3), has very little effect (<19%) on the transport
parameters.

(5.3)

B. Mixed Phonon Scattering and Nonparabolicity

The temperature dependence of the low-field trans-
port parameters has been calculated including optical
phonon scattering and nonparabolicity. The optical

-2 ——

|
-6 -4 -2 0 2 4 6

Frc. 7. Contour diagram of the longitudinal magnetoresistance
coefficient (bg'+cs'+3ds’) for pure acoustic scattering.
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deformation potential dy is determined so that the
mobility calculated at 7'=300°K coincides with the
experimental value'? pgp=2060 cm?/V sec. This auto-
matic adjustment of do is performed by the computer
using an iterative procedure based on the simple inter-
polation formula

1/IJ'= 1/“&0"'?(102 , (56)

where p is a constant varied from step to step. The fact
that three iterations (starting with dy=10 eV) sufficed
for an accuracy better than 19, supports the approxi-
mate validity of Eq. (5.6) which is a direct consequence
of the relaxation time interpretation of the acoustic
scattering given above. This simple picture is further
substantiated by the feature that the adjusted value of
dy is independent of the initial choice of 8/a and d/a.
The actual variation of dy is within 19, which is of the
same order of magnitude as the estimated maximum
error in the mobility calculation for mixed lattice scat-
tering. Another feature is that the temperature de-
pendence of the Hall factor and the magnetoresistance
is found to depend only upon the values obtained for
pure acoustic scattering, not explicitly on the ratios
b/a and d/a.

The fitted value of dy is do=(6.4120.03) eV. If non-
parabolicity is neglected, dp=6.53 €V, so that the in-
fluence of nonparabolicity on the mobility at 300°K is
about 49%,. Effects of the same order of magnitude are
found for the galvanomagnetic effects, though somewhat
larger. The smallness of the nonparabolicity contribu-
tion justifies the approximate treatment of this pheno-
menon in Sec. IT A.

The temperature dependence of the mobility calcu-
lated as described above is shown in Fig. 9. The 723
dependence in the range 120-300°K found experi-
mentally®1? is clearly reproduced and is thus a property
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Fic. 8. Contour diagram of the longitudinal magnetoresistance
coefficient (bg’'+cs’+dg’) for pure acoustic scattering.
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Fic. 9. Temperature dependence of mobility uo calculated with
mixed phonon scattering and nonparabolicity. do=6.41 eV.

of the relatively strong optical phonon scattering.* The
temperature dependence of the Hall factor and of the
magnetoresistance is shown in Figs. 10-13 for selected
values of the low-temperature, pure-acoustic-scattering
parameters. It is observed that the inclusion of optical
phonon scattering in general raises the value of 7, b5/,
(bp'+cp'+3d5’), and (bg'+cs'+d5’). This is due to the
strong energy dependence of this type of scattering. It
is worth noting that, whereas the mobility is unaffected
by optical phonon scattering below 77°K, the galvano-
magnetic effects show some dependence even down to
50°K.

VI. COMPARISON WITH EXPERIMENT

One of the attractive features of the deformation-
potential theory of acoustic scattering is that its param-
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F16. 10. Temperature dependence of the Hall factor » for repre-
sentative values of the low-temperature limit. dy=6.41 eV.
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F1c. 11. Temperature dependence of transverse magnetore-
sistance bgp’ for representative values of the low-temperature
limit. do=6.41 eV.

eters, the deformation potentials @, b, and d, may be
determined from experiments which are independent of
acoustic scattering of holes. Thus, the only adjustable
parameter in the theory is do, and in view of the reli-
ability of the value of the mobility,»? it follows from
our theory that the fitted value of dy=6.41 eV is beyond
question if the fundamental theoretical model is correct.
On the other hand, the theory for pure acoustic scatter-
ing contains no adjustable parameters, and a comparison
with relevant experimental data therefore concludes in
a judgment of deformation-potential theory.

A. Deformation Potentials

When the crystal is subjected to uniaxial stress, the
deformation potentials & and d determine the splitting
of the valence-band degeneracy at k=0 and the change
in the form of the band structure in the vicinity of this
point, whereas a determines the total shift of thevalence-
band edge.? Thus, b and d are connected directly with
the valence band, while ¢ can only be found in combina-
tion with the corresponding parameter for the conduc-
tion band E,+35,L

The parameters b and d have been determined with
appreciable accuracy by several experimental methods,
and the most reliable results are reviewed in Table I.
It is evident that the values obtained for d differ signifi-
cantly in the following three groups of methods: (1)
direct optical edge, (2) indirect optical edge, and (3)
other experiments not involving interband transitions.
This is a first indication that the present version of
deformation-potential theory may not be entirely cor-
rect. Since acoustic phonon scattering is an intraband
process, we shall take the values of & and d from the
third group as relevant for comparison with the trans-
port results of the present work. Thus || ~2.1 eV and
|d] ~6.5 eV will be used, but, as we shall see, this
choice turns out to be unimportant because the com-
parison with experimental transport parameters below
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Fic. 12. Temperature dependence of longitudinal magneto-
resistance (bp’+-cs’+3ds’) for representative values of the low-
temperature limit. do=6.41 eV.

indicates that a more fundamental inconsistency may
exist.

A value of @ may be found from the band-gap dilata-
tional coefficient £y, (in electron energy):

E10=Ed+%Eu+d; (6-1)

together with a conduction-band transport determina-
tion of Es+4=,. Information on E;, can be obtained
from studies of changes in the optical indirect interband
transition with hydrostatic pressure’’ and uniaxial
stress.?®32 Thus Paul finds?' E;,=—3.8 eV, while
Balslev obtains the value®? E;;=—2.9 eV. Similarly,
the published values of 4§, show quite an appreci-
able spread because E, is so large (18 €V) and the ratio
Ea/Eu is close to —3.! The range of values of a deter-
mined from Eq. (6.1) is approximately —1.2 to —3.6
eV, but the most important result of the above discus-
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. F16. 13. Temperature dependence of longitudinal magnetore-
sistance (bg’+cs'+dg’) for representative values of the low-tem-
perature limit. do=6.41 eV.

31'W. Paul, J. Appl. Phys. 32, 2082 (1961); W. Paul and H.
Brooks, in Progress in Semiconductors, edited by A. F. Gibson
(Heywood and Co., Ltd., London, 1961), Vol. 7, p. 135.

71, Balslev, Phys. Letters 24A, 113 (1967),
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TasLE I. Deformation potentials b and d determined
from experiments on strained Ge.

[5] (eV) || (eV)
2.740.3 4.740.5
2.440.2 414040
1.84:0.3 3.74£04¢
24404 3.54:0.44
2.140.2 7.041.5¢
6.040.6f

a Direct optical edge splitting, dc method, absorption. See A. M. Glass,
Can. J. Phys. 43, 12 (1965).

b Direct optlcal edge splitting, stress modulation, reflection. See I.
Balslev, Solid State Commun. 5, 315 (1967).
30'= Indirect optical edge splitting, energy modulation, absorption. See Ref.

d Indirect optical edge splitting, stress modulation, absorption. See Ref.
32.

e Acceptor binding-energy variation. See Ref. 29.

f Cyclotron resonance in the quantum limit. See J. C. Hensel, Solid
State Commun. 4, 231 (1966).

sion is that e is certainly negative, i.e., it has the
opposite sign of Bb and Dd.

B. Transport Properties

The experimentally data on mobility''? have already
been used in the theory to adjust @, b, d, and d, for fixed
ratios b/a and d/a. These adjustments can always be
made, and the experimental temperature dependence
T-23 between 120 and 300°K is realized for any choice
of 8/a and d/a. Thus, the mobility alone is not a good in-
dicator of the actual values of /a and d/a. As found by
Tiersten,” the set (¢,b,d)=(—1.92, 2.01, 6.71) eV fits
the mobility and is consistent with the results of experi-
ments on strained p-Ge discussed above. It is, however,
seen from Figs. 2-4 that with |6 ~2 eV and |d| =7 eV
the determination of ¢ from the mobility is very un-
certain: a=—1.541.5 eV.

Figure 14 shows experimental data on the Hall factor
selected to represent pure lattice scattering and the low-
magnetic-field limit.5710.3:3¢ This limit is determined by
the conduction (uB)*<1, where u is the light hole
mobility. Thus, at 77°K, magnetic fields below 100 G
are needed and only the results published by Beer and
Willardson® fulfill this condition. From a simplified
theory of the dependence of » on the magnetic field,”® the
low-field limit should be the maximum value of ». It is
seen in Fig. 14 that many experimental points lie above
those taken from Ref. 10, and it follows that it is rather
impossible to draw a definite conclusion about the low-
temperature value of 7. It is also known!® that ionized
impurity scattering lowers the value of 7, but at con-
centrations of 10*® cm™310 this should be a rather small
effect. Accepting Beer and Willardson’s result,»=1.36
#+0.07 at 81°K, to represent pure acoustic scattering,
an inspection of Fig. 5 shows that this can only be fitted
by the theory if a, Bb, and Dd have the same sign, which
is at variance with the results of the more direct deter-

3 0. A. Golikova and L. S. Stil’bans, Fiz. Tverd. Tela 3, 3115
(1961) [English transl.: Soviet Phys.—Solid State 3, 2266 (1962)].

3 F. J. Morin, Phys. Rev. 93, 62 (1954); M, B, Prince, <bid.
92, 681 (1953).
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F1c. 14. Experimental data on the Hall factor » selected to
represent low magnetic field and pure lattice scattering. The full
curve shows the minimum theoretical Hall factor also displayed
in Fig. 10.

mination of ¢, b, and d described above. The minimum
value of 7a. for |b]|=2 €V, |d|=~T7 eV, and ¢ having
opposite sign of Bb and Dd is about 1.60, which is
evidently far above any existing experimental value of
7ae. The situation is not better at higher temperatures,
as is indicated by a comparison between the experi-
mental Fig. 14 and the theoretical Fig. 10. Thus, even
if we suggest that 7,.~1.6 and explain the low-temper-
ature discrepancy in terms of impurity scattering, this
cannot be done at 300°K, and we conclude that at
least the theory of optical phonon scattering is incorrect.

Much the same arguments apply to the transverse
magnetoresistance bp or bp'=bpus2. Here, relevant ex-
perimental data are scarce. At 81°K, Beer and Willard-
son'? give bp=6X10° cm*/V? sec?. Using the value of the
mobility measured in Ref. 10, us1=4.0X10* cm?/V sec,
we find bp’=3.7, which can only be fitted in the first
quadrant of Fig. 6, just as is the case of the Hall factor.
However, b5'=3.7 may not actually represent pure
lattice scattering,!® and the value suggested by the
directly determined deformation potentials is bp'~7.7.
The difference is seen to be quite large. At 196°K, Ref.
10 gives bp=2.5X10% cm?*/V? sec?, and the correspond-
ing reduced parameter is bg"=6.0 (u196=6.5X10? cm?/V
sec). Finally, we add a value of 55=>5X107 cm*/V? sec?
obtained by Glicksman3 at 290°K corresponding to
bs'=8.2. Neither of these values can be fitted in Fig.
11 if b5’=7.7 is taken as the low-temperature value
representing pure acoustic scattering. This gives a fur-
ther indication that the theory of optical phonon scat-
tering needs reconsideration.

Very little quantitative data exists concerning the
longitudinal magnetoresistance parameters. From Gold-
berg et al.* we derive (8p+vp+%05)/8s~0.17 and
(Bs+vp+05)/Bs=0.07 at 77°K. Using bp'~3.7 and
r=~1.36 (both derived from Ref. 10 as discussed above),
we find Bs'~—35.6, and this gives (bp'+cp'+3ds")
~0.95 and (bp'+cp'+dp")=0.39. Since a simplified
theory of impurity scattering cannot be applied to these

3 M. Glicksman, in Progress in Semiconductors, edited by A. I,
Gibson (Heywood and Co. , Ltd., London, 1958), Vol. 3, p. 1,
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parameters [it is not only the momentum relaxation
time (T'y5) that enters the calculation], the influence of
this type of scattering cannot be estimated in the present
case, and no reliable values pertaining to pure acoustic
scattering can be deduced from the above data. At
290°K, the results of Glicksman® indicate that
(bp’+cs’+3%dp’)=1.2, which is not inconsistent with
Fig. 14 for a low-temperature value of 0.95. The same
applies to the rather uncertain value of (bg'4cp'+dz’)
derived from Ref. 35 for 290°K.

If we allow for ionized impurity scattering to explain
the low values of 7 and b3’ at 77°K, we can conclude
from the above discussion that the acoustic scattering
may be described by a deformation-potential theory
using |b| =2 eV, |d| =7 eV, and a=(—1.541.5) eV in
agreement with results of experiments on strained p-Ge.
To substantiate this claim further, there is a clear need
for a theory of ionized impurity scattering of holes since
the difference between measured and calculated values
of » and b’ is unexpectedly large for impurity concentra-
tions of 10 cm—3.20 A first step in this direction is the
theory of the transition rates given in Ref. 5. Further
work on the subject is presently in progress. On the
other hand, it is evident that optical phonon scattering
is not well described by the usual theory.

VII. CONCLUSION

In this paper, we have attempted to calculate some
low-field transport properties of holes in Ge for pure
lattice scattering, taking into account all relevant de-
tails of the band structure and of the scattering. It has
thus been established that the nonparabolicity of the
light hole band has a negligible effect below 300°K,
except when very high accuracy is wanted. Even in this
case the effect may be overshadowed by secondary ef-
fects not considered in the present work.

The phonon scattering is described by the four de-
formation potentials @, b, d, and do. With the exception
of mobility, existing experimental data on galvano-
magnetic properties cannot be reconciled with directly
determined deformation potentials without assuming
an unexpectedly large influence of ionized impurity scat-

LAWAETZ

174

tering. At room temperature, this is quite unlikely to
be the case and we conclude that at least the theory
of optical phonon scattering must be reconsidered. As
evident from Table I, the values of d determined directly
from experiments on strained Ge show a significant
scatter between different experimental methods. This
suggests that also the acoustic or static part of the usual
general form of the deformation-potential theory may
have to be modified.

A theory giving nontrivial corrections to the defor-
mation-potential approach to acoustic and optical pho-
non scattering has been put forward by Tolpygo.*® The
basic idea is that long-range potentials of essentially
quadrupole nature®” are induced by a vibration of the
nonpolar crystal, and that these potentials are of the
same order of magnitude as the deformation potential,
but of a different angular dependence. Tolpygo’s
theory®® is based on a particular model of the lattice vi-
brations, but in a forthcoming paper we shall present a
general theory of this long-range interaction and its rela-
tion to the ordinary deformation-potential model. This
theory yields qualitatively the same results as Tolpygo
obtained for the scattering but, in addition, it can explain
the variation of d values obtained by different static strain
experiments. It may finally be added that the new theory
gives a dramatic correction to optical phonon scattering
which will no longer be momentum-randomizing.

Because of an error in the calculation of the factor
in Eq. (4.7), all fitted values of the optical deformation
potential do should be multiplied by 2.
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