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The radiation at the boundary of an isotropic or cubic medium by a polarization at 2w, the amplitude of
which is proportional to the product of the incident laser field at w and a spatial derivative of this field, is
examined theoretically. A complete expression for the intensity and polarization of the reflected harmonic
radiation as a function of the angle of incidence and state of polarization of the incident laser beam is derived.
The angular dependences are in good agreement with observations on Si, Ge, and Ag. Some additional experi-
mental results, not previously reported, are described. The magnitude of the nonlinearity due to bound
electrons in these cubic materials is related to the square of the linear susceptibility, and agrees qualitatively
with observations in Si, Ge, and alkali halides. This nonlinearity has the same order of magnitude as that
caused by conduction electrons in metals, which has been extensively discussed in the literature. The influence

of absorbed surface layers is considered.

I. INTRODUCTION

HE second-harmonic (SH) generation of light in a
medium with inversion symmetry was first ob-
served by Terhune and co-workers! in calcite. A detailed
theoretical discussion of this quadrupolar type of inter-
action was given by Pershan? and by Adler.? They also
considered magnetic dipole terms. For the special case
of free electrons, these had also been discussed by
Bloembergen* and by Kronig.?

A general theory for the generation of harmonic light
in the reflected direction at the boundary of a nonlinear
medium had been developed previously.® Reflected
harmonics from crystals without inversion symmetry
had been extensively studied,” but the reflected har-
monic intensity arising from quadrupolar type terms is,
of course, much weaker. They were first observed by
Brown and co-workers? in silver. JTha® showed that the
nonlinearity of the conduction electrons arises from a
“surface-type” quadrupolar term in addition to the
volume term with magnetic dipole character from the
Lorentz force considered previously. It was clear from
Brown’s data that the surface-type term is dominant.
It is caused by the discontinuity of the normal com-
ponent of the electric field strength at the surface. The
normal derivative of the normal component of the field
behaves as a § function. In this paper this quasi-
discontinuity will be analyzed more carefully.
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Bloembergen et al.'® pointed out that similar
quadrupole-type surface terms should also occur in
insulators. The optical nonlinearity originates in this
case from bound electrons, i.e., valence electrons in semi-
conductors or ion core electrons in ionic crystals. The
harmonic generation was soon found experimentally in
silicon and germanium? and it was shown that in silver,
gold, and their alloys the contributions of valence, or
d-band electrons, and conduction electrons are of equal
importance.!! More recently, Wang and Duminski!?
have demonstrated the existence of the same effect, but
smaller in magnitude, in alkali halides and other ionic
crystals with very sensitive equipment.

In this paper we present first the experimental method
and apparatus used to detect the SH generation (SHG)
from some semiconductors and metals. Experimental
results on the polarization and directional dependence
of the SHG generation in silicon and germanium are
presented in Sec. III. Some previously published results
are also tabulated.

A theoretical expression for the magnitude of the
quadrupolar-type harmonic polarization on the basis of
localized electronic orbitals is derived in Sec. IV. This
treatment leads to a simple relationship between this
nonlinearity and the bulk linear susceptibility. Next,
the directional and polarization properties of the
harmonic-reflected radiation from isotropic and cubic
crystals is reviewed. This discussion is more complete
than in previous publications and integrates the various
contributions. Particular attention is paid to the limiting
behavior and quasidiscontinuity at the surface.

In Sec. V, the theory is compared with the experi-
mental results of the present and previously published
work. The influence of adsorbed surface layers on SH
signals is discussed.

10 N. Bloembergen and R. K. Chang, Proceedings of the Physics
of Quantum Electronics Conference, edited by P. L. Kelley, B. Lax,
and P. E. Tannenwald (McGraw-Hill Book Co., New York, 1966),
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F16. 1. Experimental method to detect SH reflected light from
media with inversion symmetry. (A) Glen-Thomson polarization
analyzers; (B) CuSO; solution filters.

II. EXPERIMENTAL TECHNIQUE
A. Apparatus and Experimental Method

The experimental arrangement is shown in Fig. 1.
The (Q-switched laser emission can be that of ruby,
Nd glass, or stimulated Raman scattering from organic
liquids. Both the laser polarization-direction ¢ and the
angle of incidence 6 on the sample can be varied. The
polarization of the SH radiation can be analyzed. The
signal photomultiplier is always aligned to be in the
direction of the reflected ray, while the photomultiplier
used to detect diffused radiation, which might occur
from thermal heating, is aligned to face the sample at
some arbitrary angle. Surface destruction and con-
current thermal radiation are the major limitations to
the amount of laser power density which can be incident
on the sample. The thermal radiation was found to
have a laser power density (W/cm?) threshold, whereas
the SH intensity varies as (W/cm?) X (cm?). Therefore,
it is more advantageous to expand the laser beam cross
section than to attenuate the laser intensity by filters.
The typical area we used was 2-3 cm?. Whenever the
diffuse radiation phototube registers a photocurrent
during the laser pulse, the corresponding signal data of
this pulse are discarded.

The laser beam is monitored in the usual way by
detecting the amount of SHG from a Z-cut quartz
platelet. The reflection from the glass beam splitter is
essentially independent of the laser polarization, be-
cause the angle of incidence on this glass slide is less
than 10°.

The SH signal must pass the usual tests: (a) It must
be monochromatic and occur at the harmonic frequency
of the fundamental. (b) It must be time-correlated with
the monitor signal (~20 nsec), and not time-correlated
with the diffuse radiation signal, if any. (c) It must be
collimated along the reflection direction. In order to
obtain the absolute intensity of the observed SH signal
from the sample, a relative measurement was made
between the SHG from a (110)-face GaAs mirror and
that from the samples, as the former had been calibrated
absolutely.’* Fundamental beams at different fre-

13 R. K. Chang, J. Ducuing, and N. Bloembergen, Phys. Rev.
Letters 15, 415 (1965).
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quencies were obtained by using a ruby laser, a Nd-glass
laser, and the stimulated Raman effect from a ruby
laser in cyclohexane and nitrobenzene.

During a laser pulse containing about 10'® incident
quanta, about 40-2000 reflected harmonic quanta are
typically emitted from these media which possess a bulk
center of inversion. These give rise to 1-50 photo-
electrons at the photocathode. Photon-counting tech-
niques must be employed to measure the weak signals
accurately. Typical SH intensity data obtained for two
different fundamental polarizations on a Ag sample are
shown in Figs. 2 and 3, where the number of events
versus photocurrent height are plotted. The average
height of one photoelectron, which can be determined
from the dark current of the photomultiplier, is 0.7
units.

The distribution of Fig. 2 is fitted with respect to a
Poisson distribution

P,=@)"e"/n!,

where P, is the probability of detecting # photons and
7 is the average number of photons. For the data shown
in Fig. 2, one finds that

7i=P1/Py=75/103=0.73,
which is consistent with
7i=2P,/P1=2X25/75=0.67.
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F16. 3. The distribution in the number of photoelectrons caused

by the SH signal from a Ag mirror when the fundamental electric
field is polarized in the plane of incidence.
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TasLe 1. The ratio M of the SH reflected intensity when the
incident laser beam, incident at 45°, is polarized perpendicular and
parallel to the plane of incidence, respectively.

Harmonic- M M
photon energy M core core linear
(eV) expt. linear and nonlinear
Ag 3.58 0.066+0.013 0.068 0.084
Ag 2.87 0.06640.013 0.042 0.060
Au 3.58 0.0834-0.016 0.038

The distribution of Fig. 3 is fitted with respect to a
Gaussian with 7= 10. The ratio M between SH intensity
when the laser is polarized perpendicular and parallel
to the plane of incidence is tabulated in Table I. In the
above example shown in Figs. 2 and 3, the ratio is 0.07,
with a “confidence level” such that if the measurements
are repeated this value for the ratio will be within 209,

The data in Fig. 3 represent one of the largest signals
encountered in this kind of work. Recently, Wang and
Duminski'? have refined the statistical photon counting
to signals significantly smaller than those corresponding
to the data in Fig. 2. The largest signals occur in media
with high linear optical susceptibilities. The signals in
alkali halides, found by Wang and Duminski, are
significantly smaller than those in the metals and semi-
conductors studied by us.

B. Special Techniques

Since the signals cannot be increased by increasing
the laser flux density because of the limits imposed by
thermal radiation and material damage, a method of
multiple reflection has been attempted to enhance the
signal-to-noise ratio. Two parallel Ag mirrors are con-
tained in a dry box in which the pressure of the air can
be varied. In this manner, the phase relationship be-
tween fundamental and SH waves can be adjusted so
that constructive interference occurs on successive
reflections. For a total of three reflections, it has been
possible to increase the SH signal by a factor of 6, in
agreement with theoretical calculations. Because of
reflection losses occurring in both the fundamental and
SH beams, it will be difficult to improve the signal to
noise by more than an order of magnitude in metals.
For semiconductors and insulators this method cannot
be used effectively.

When our experiments were started, there was a
widespread belief that such harmonic signals would
arise only from conduction electrons. It was suggested
that the laser beam first created a conduction-electron
plasma in our semiconductor samples, and that the
nonlinear signal created by this plasma was observed.
This has been disproved in the following two ways.
First, the reflectivity of the Si and Ge samples was
monitored with a continous beam at 6328 A from a
He-Ne laser. No observable change in the reflectivity,
AR/R, occurred during the giant Q-switched laser pulse
which generated the SH intensity. In fact, with a Nd
laser pulse, a power level of 15 times over the usual
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operating power level for detecting SHG from Ge is
required to detect a AR/R =39, Therefore, the induced
conduction-electron density produces a negligible
change in the linear dielectric constant at the power
level used in our experiment. This puts an upper limit
on the concentration of conduction electrons, and this
concentration could at most produce 19, of the observed
signal. In the second place, the signals in Si and Ge were
found to be strictly proportional to the square of the
laser intensity. If conduction electrons must be first
created and then their nonlinear properties taken, the
SHG would be proportional to the fourth power of the
fundamental intensity.

C. Sample Preparation

Measurements of SHG have been made on Ag, Ay,
Cu, Al, Ag-Au alloys, Si, and Ge. All the metallic
samples were evaporated onto a clean microscope slide
substrate in vacuum of 10-6-10—7 Torr. The Ag-Au
alloys were made by simultaneously controlled evapora-
tion of Ag and Au. The percentage of composition and
homogeneity of the samples were analyzed by a non-
destructive quantitative electron-probe microanalysis
through a customer service of the Advance Metals Re-
search Corporation. The precision on the relative com-
position and homogeneity was =439, for all the 19
samples. The thickness of all the samples was about a
few microns. The metallic samples were continually
flushed by N gas when SHG data were being taken, or
stored in a N-filled box. Within a few weeks, no change
in the SHG data could be noticed as a result of possible
tarnishing.

Both Si and Ge were thin slabs of single crystals.
Their typical dimensions were 2.5X2X0.2 cm?. One
face of the crystal was polished by a sequence of 1-, 0.3,
and 0.05-x Linde abrasives. The polished surface was
then mildly etched. The crystallographic orientations
of the surface were [111], [100], and [110], respec-
tively. The signals for different cuts were essentially
the same.

III. EXPERIMENTAL RESULTS

A. Polarization and Angular Dependence

Originally, the striking directional properties of the
SHG from Ag, observed by Brown and co-workers,!
were considered as proof that the nonlinearities arose
from free electrons. The directional properties of the
SH generated from Si and Ge is, however, quite similar
to that emitted from metals. In Fig. 4 the SH intensity
polarized in the plane of reflection, generated by a laser
beam with an angle of incidence 6=45° is plotted as a
function of the angle ¢ between the electric field vector
of the laser and the plane of incidence. The curves for
both Ag and Si are rather well described by a dominant

4 F, Brown and R. E. Parks, Phys. Rev. Letters 16, 507 (1966);
see also Ref. 8.
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F16. 4. Variation of the SH intensity as a function of angle ¢
between the fundamental electric vector and the plane of inci-
dence. The angle of incidence is 45°. (a) data for Ag (Ref. 8);
(b) data for Ge (Ref. 10). The solid line representing a cos’e
dependence is drawn for comparison.

contribution proportional to cos‘p. The SH intensity
for ¢=73m does not, however, completely vanish. In the
first column of Table I, the experimental ratio M for the
intensities at ¢=90° and ¢=0° is listed for a number
of materials.

The dependence of the SH intensity as a function of
the angle of incidence 6, for $=0° is shown in Fig. 5.
Again the behavior for Si and Ag is very similar. It is
evident from the theory, as will be discussed more fully
in Sec. IV, that this general behavior may be expected
from all materials that have a very high linear dielectric
constant. It has little to do with the question whether
the electrons are free or bound. The same angular
dependence on 6 for Ag has been reported by Sonnenberg
and Heffner.1

B. Magnitude and Dispersion of the Nonlinearity

Since the effect in media with inversion symmetry is
a quadrupole effect, one may expect that the SH signal
from Ge will be smaller by a factor |ke|? in order of
magnitude from that in GaAs. The latter crystal has a
similar structure, but since it lacks a center of inversion
an electric dipole effect is operative in it. The magnitude
of the wave vector £ inside the medium is essentially
equal to the inverse of the absorption depth of the SH
light; e is a typical atomic dimension. The effect in Si
and Ge is-indeed about three orders of magnitude
smaller than in the corresponding III-V compounds.
The effect in Ge has the same order of magnitude as

15 H. Sonnenberg and H. Heffner, J. Opt. Soc. Am. 58, 209
(1968).
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TasiLe II. The magnitude of the SH intensity, polarized in the
plane of incidence, created by a fundamental beam also polarized
in the plane of incidence. The angle of incidence is 45°. The
tabulated quantity is 1018| Ea | B(0=45°,¢=0°)|2/| E:(w) |4, with
the fields expressed in statvolts.

Harmonic
photon energy
(eV) Si Ge Ag Au
2.34 0.3 cee 1.7 ..
2.87 0.65 1.5 9.0 2.7
3.24 2.0 “es 6.5 2.0
3.58 2.5 2.0 6.0 1.0

that in Au. In Table IT, we list the SH intensity, divided
by the square of the indirect laser intensity. Both beams
are polarized in the plane of incidence and the angle of
incidence §=45°. The data are given for four different
frequencies. The harmonic dispersion curve in silicon is
plotted in Fig. 6, where the linear susceptibility has
been given for comparison. Both quantities increase,
when interband resonances are approached. Dispersion
curves for Ag and Au and SHG in Ag-Au alloys have
been published elsewhere.!! The relative magnitude of
the effect in Si, Ge, Ag, and Au, shown in Table II, is
quite comparable to the data published recently by
Wang and Duminski, who used a somewhat different
geometry at the ruby wavelength. The SH intensity is
strongly influenced by the linear dispersion through the

y SHG
SILVER

| siLicon t

0 [ WS I N N SR
10 20 30 40 50 60 70 80

90
DEGREE
ANGLE OF INCIDENCE §
Fic. 5. The variation of the SH intensity in Si and Ag as a
function of the angle of incidence. The fundamental electric field

vector lies in the plane of incidence, $=0°. The drawn curves are
derived from the theory, discussed in Secs. IV and V.
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Fresnel factors. In addition, there is an intrinsic disper-
sion in the nonlinearity. The data show again that the
interband contribution of the valence electrons in Si
and Ge is quite comparable to the nonlinearity in Au
and Ag. In Au and Ag, the nonlinear interband contri-
butions from the d electrons is comparable to that of the
conduction electrons, since the d electrons also contri-
bute significantly to the linear dielectric constant in
these metals. This has been discussed in several
papers.16:17 In Secs. IV and V the theory for the non-
linear contribution from bound electrons will be
analyzed more precisely.

IV. THEORY OF SHG FROM MEDIA
WITH INVERSION SYMMETRY

General expressions for the calculation of nonlinear
source terms, including the contribution of both con-
duction and valence electrons and of all multipole
moments, may be derived from standard time-
dependent perturbation theory. Cheng and Miller's
have given complete expressions for the second-order
nonlinear sources for Bloch electron wave functions in
crystals. For a practical evaluation of the nonlinearity,
it is advantageous to use localized electron orbitals and
expand the interaction Hamiltonian between the radia-
tion field and the electrons as well as the nonlinear
current density in a multipole series.

The interaction Hamiltonian may be written in the
form

s, =—P-ER)—M-HR,H—Q:VrER,), (1)

with
P=—ex,

e e
M=——(xp=——L,
2mc 2mc

Q=—3exx,

where R is the origin of the unit cell under consideration
and x is the relative displacement operator.

The diamagnetic term e2?/8mc*(HXx)?, which is
proportional to (VrA)2, has been omitted. In the same
approximation, the total current density due to all
electrons becomes

a a
J= N[—(P)ceu-l—cVRX (M)een——Vr- <Q>cell] , (2)
at at

where N is the number of unit cells per unit volume
and ( )een implies sum of the expectation values for all
the electrons in the cell.

16S. S. Jha and C. S. Warke, Phys. Rev. 153, 751 (1967); 162,
854(E) (1967).

17 K. C. Rustagi, Nuovo Cimento 53B, 346 (1968).

18H. Cheng and P. B. Miller, Phys. Rev. 134, A683 (1964);
see also Ref. 17.
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Fi16. 6. The frequency dependence for the reflected SH intensity
from Si, for =45°, ¢=0°. The dispersion of the linear suscepti-
bility is shown for comparison.

By expanding
E(R,)=2 E(Rw)e*",

H(R,)=2 H(Rw)e ™,

so that )
Feu(t) =2 Fei(w)eit,

and using well-known time-dependent perturbation
theory, it is straightforward to find the expectation
value of a time-independent operator G in the perturbed
state. If the unperturbed system in the ground state
is |0), one obtains

(Ghrert=Got+2_ Gi(w)e= !

+ Z Gz(wrl—wz)e*i(wwwz)t_{. e (3)

wrtws
where
Go=(0|G|0)
(03C(w) |m)(m| G| 0)
Gi(w)= _§ I: ( Em“"‘ Fotfio)
(ola !m><m|scl(w)|0>]
 (Bm—Eo—ti)

(0]3Cs(wr) [ m)(m | Fe1(ws) | 1) (n| G| O)
Galertan) =2 2 [ (Ep— Eqt7icor) (En— Eo--fors)
_ {olsen| m)m|G|n)(n|5x()] 0)
(En— Eote)(En— Eo—fiwr)
n (0] G| m)m|3er(wr) | n){n | FCr(wn) | 0)]
(En— Eq—fico1s)(En— Eo—ficos)

+ (terms with w1 ws, if wiZws), (4)




818

and where
w12= w1+ ws
3@0|M>=Emlm>.

The second-order nonlinear current density may be
calculated from Egs. (2)~(4). The various combinations
of terms have been discussed by Adler.?

A. Quadrupolar Contribution from Localized Orbitals

We are interested in estimating the lowest-order
nonlinear contribution from bound electrons in non-
magnetic crystals with inversion symmetry. In this
case, one collects the terms in Eq. (2) in the nonlinear
current which are proportional to the spatial derivative
of a quadratic expression in the field components. In
the expressions for G, one uses the quadrupole operator
once and the electric dipole moment operator twice.
With w;=w,=w, one finds for the SH source term,

PNL.Q,(2w) = JNL.Q,(2w) / — 24w
=N(Tjiki—Tij s0) Ei(w) ViEr(w) . (5)

In the limit of low frequencies, in which case the
dispersion of the nonlinearity may be ignored, the ex-
pressions for I' become symmetric in both the first and
the last pair of indices and simplify to

R Ty
X[{0[&:| m)(m| (xax1)o.a. | m){re | Z;] 0)
+0| ;| m)(m| ;| n)(n| (2:21)0.4.| 0)
(0] (#ax0)o.a. | m)(m|Z:| n)n | 2;|0)+(F=24)], (6)
with

Ti=x;— (0] x:| 0) =1,
(2x%2)o.a. = xs21— (0| 2421 | 0)
and
Tije=Tji,;=Tij,z-
The structure of Eqgs. (5) and (6) is consistent with
the general form of the quadrupole volume source term

discussed by Pershan.? For a cubic or isotropic material,
the expression simplifies to

PNL' Qz-(Zw) = N(I‘zy,zy— Pzz,yy) (E:L'VjEj—EjV,'Ej) . (7)

If we can replace all energy denominators in Eq. (6)
by some average energy denominator %w, (closure
approximation), we obtain

e3

2ot [(O] waxjanx; | 0)

— (0] xix;] 0)(0] 252, [0)], (8)

where we have to sum over all the electrons in the cell.

L=~
w02
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For a cubic or isotropic material, Egs. (7) and (8)
reduce to

N(Toy,ep— Toz,yy) = (396 HPuw?) (<0[ x? | 0))2 ,

where 9T is the density of valence electrons. Since, in
the same approximation, the linear susceptibility is
given by

XPa-0(w) = (291€%/ frwo)(0[2?| 0) , ©)

we find that the nonlinear SH source term from bound
electrons in cubic or isotropic media with inversion
symmetry may be written, in the low-frequency limit,
as

PNL’Qiz (3/4916)(XL)2(E¢'V]‘E1'—EjV,‘Ej) . (10)

B. Contribution of Conduction Electrons

In this case, the low-frequency approximation dis-
cussed above is, of course, inapplicable. Furthermore
the magnetic-dipole contribution cannot be neglected.
Although the nonlinearity of an electron gas has been
discussed extensively in the literature, especially by
Jha and co-workers,®'7 we shall give here a very brief
derivation of the nonlinear source terms in a form
suitable for comparison with the bound-electron
contribution and with experiment.

In the absence of interband transitions, it is well
known that the response of the conduction electrons to
external electromagnetic fields may be calculated
classically. If we treat the electrons in the conduction
band with average effective mass m* as a gas, in
presence of the self-consistent fields E(r,f) and H(r,?),
the hydrodynamic equation of motion for the average
velocity V is given by

oV/3t+ V.- vV=—(e/m*)(E4+cVXH). (11)
In addition, we have the Maxwell equation
V- -E=—4re(n—mn,) (12)
and the continuity equation
n/dt=—v-nV), (13)

where 7 is the number density and J=—neV is the
electric current density. In writing Eq. (11) we have
ignored a pressure term which one obtains while inte-
grating the Boltzmann equation,'® assuming that this
is balanced by the force due to the surface-barrier
potential. By expanding

E= E(w)e @+ EQQw)e2ivt4-c.c.,
H=H(w)¢“+HQ2w)e 2!-c.c.,
V= Ve t4 Vye2ivttcc.,
n="mnoFniewtnge it .

we may solve Egs. (11) and (12) by successive approxi-
mation to find that the nonlinear part of the second-

19 See, e.g., S. Chandrashekhar, Plasma Physics (The University
of Chicago Press, Chicago, 1960), p. 5.



174

order polarization induced in the gas is given by

JNY(2w) e
—————=——(nVat-n.Vy)

PcondN L(zw) =

— 21w 10
= (noe3/4m*?w*)[E(w) - V]E(w)
+ (e/87m*w?) E(w) V - E(w)

+ (inoe’/4m*?cw?) E(w) X H(w) . (14)

C. General Form of Source Term
in Isotropic Media

Regardless of the detailed mechanism and models for
the nonlinearity, the nonlinear polarization in an
isotropic centrosymmetric medium may always be
written in the vector form

PNY(20) = (6—B—27)(E(w)- V) E(w)

+BE(@)(V-E(@)+7V(E(w)- E(w). (15)
This is equivalent to the form
PNY(20) = (6—B)(E(w) - V) E(w)
+BE(w)(V- E(w)+eE(w) XH(w), (16)

with a= (21w/c)y.

Comparison of Egs. (15) and (10) show that for an
isotropic (or cubic) insulating medium one has, in the
low-frequency limit,

3
B=—2y~—1{X(w)]?, 8=0. (17)
49te

In this approximation, cubic crystals also behave as
isotropic media as far as the quadrupolar SH generation
is concerned.

For conducting media we have to add the nonlinear
plasma contribution. Comparison of Egs. (15) and (14)
shows that

1=¢€ 87rm*w2
Boi=e/ ,

c 79e3 <wp2>
Ypl=0p1= =PBp1| —

2iw 8m*2t 42/’
0p1="Bp1+27vp1,

where w,?=4rne?/m* is the plasma frequency.

This value of 8,1 should not be taken too literally.
This term is very sensitive to the hydrodynamic
pressure and the surface potential gradient which act
normal to the surface. The true value of §p1 is probably
much smaller.

(18)

D. SH Fields Generated by Nonlinear
Quadrupolar Source Terms

Let us assume that a plane wave of frequency w is
incident from the vacuum at an angle 6 on the plane
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boundary of a solid. Let us choose the coordinate
system such that the boundary is given by z=0, and
the plane of incidence is y=0, the solid occupying the
half-space z< 0. Thus the incident light wave is given by

Eine= Ei,©@ exp[ (—iw/c)z cosb]
Xexp[(—iw/c)x sinfJe~**-c.c., (19)
with

Eino(® = (E, cosf cosp, Eq sing, — Eg sinf cosp) ,  (20)

where ¢ is the angle between the plane of incidence and
the polarization vector of the incident wave.

The solution of Maxwell’s equations for the reflected
and transmitted waves at the fundamental frequency w
is given by the usual Fresnel formulas. The differential
equation for the Fourier component of the electric field
vector at the harmonic frequency is given by

\% X v X Eg— (4(.02/62)6(2(.0) E2
= (16m0?/c?)PNL(2w), (21)
where PNL(2w) has the form given by Eq. (15). We may

solve our problem by finding the general solutions of
the equations
VX VXE;— (40?/c?) e(2w) Eq
= (16mw?/c®)yV(E:-Ey), for 2<0 (22)

and

VX VXE;—(4w?/c2)E;=0, for z>0  (23)
and using the following boundary conditions at the
surface:

() Eny(z=0%)=Ey(z=07),

0E2,\ %  16mw? +n
(ii) < ) = lim dgz PN1,(2w)

0x / g™ ¢z 10 —n

= (16mw?/c?) L5 (w)— 1]ELX(z=07), (25)

aEQy =0+ 1671'(.02 gl
(iii) <— ) = lim dzPN%,(2w)

9z / 0™ ¢z 10

(24)

= (16mw?/c?)B{e(w)— 1} Ey, E1.(z=07), (26)
0E,, OE:\=" 16mw?
(iv ( — > =
ox 9z
= (167w?/c?)B{e(w) — 1} E1.E1.(z=07), (27)

which follow directly from Egs. (15) and (21).

Note that Eqs. (24)—(27) define § and B which are
observed experimentally and which are same as é and 8,
respectively, only if these are constants (including zero)
in the thin layer near the surface. If these change
abruptly from their bulk values to zero at the surface,
B~1B and §=~1s.

+1
lim / dzPNL,(2w)
2=0 62 70 -
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It is straightforward to show that the solution inside
the solid is given by

Eo= E,” exp(—1ks."z) exp[(—12w/c)x sinf]
4oy
e(2w)

v [EIT- E.7 exp(—i2k1.75)

—12w
Xexp( xsin@)] , for 2<0. (28)

4

Since the nonlinear volume source term is parallel to
the direction of propagation in cubic and isotropic
media, the transmitted wave does not grow away from
the boundary

The solution for the reflected wave is given by

E:= E.® exp[ (12w/¢)z cosf] exp[ (—i2w/c)x sinf ],

for 2>0 (29)
where
K1."=(w/c)[e(w) —sin20 712, (30)
Ko."= (20/c)[e(20) —sin®6]""2, (1)
Ep.T = — E,7(2w sinf) /K., (32)
By, B= Ey, T tanf. (33)

It is understood that for negative or complex (K1.7)?
and (K..7)?, Ki.,” and K,,T are to be calculated from
Eqgs. (30) and (31) in such a way that their real and
imaginary parts are always positive.

Using boundary conditions (24)—(27), one may deter-
mine the unknown coefficients E,” and E;2. In general,
the reflected harmonic wave has components polarized
in the plane of incidence (E2,®) as well as perpendicular
to the plane of incidence (5, %). In terms of the incident
field amplitude E,, we obtain

| E2 B| = (327w/c) Eo® sinf cos?6 sing cose
[e(w)—118
Le(w)]2go(w)ga(w) g1(2e)

and
| Eon®| = (327w/c) Eq? sinf cos?6
X | {[e(26) J2e()go2)get @)}
X |[—ve(w)[cos?p+sin’¢ gi*(w)/g1*(w) ]
—16[e2(w)— 1]e(2w) cos?p
+BLe(w)— 1] e(w) —sin?6]"/2
X [e(2w)—sin26]/2 cos?p ]|, (35)
where
go(w) =[e(w) ]2 cosb+[1— e (w) sin26]/2,
g0(2w) =[e(2w) ]2 cosf+[1— e 1(2w) sin?6]/2,
g1(w) = cosf+[ e(w) —sin26]1/2,
g1(2w) = cosf+[ e(2w) —sin26]1/2,
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These equations give the SH amplitude and polariza-
tion in terms of the incident fundamental amplitude £,
as a function of the angle of incidence 6 and of the
direction of the incident polarization ¢.

The same expressions could have been obtained
directly by making use of the nonlinear boundary
problem solved by Bloembergen and Pershan.®2° Their
Eq. (4.12) gives immediately the term proportional to
v, produced by the volume source term. The surface
terms can be derived by taking their Eqgs. (6.12) and
(6.22) for a layer of thickness d, and letting d approach
zero in such a manner that the product PN%¢ remains
finite.

Equation (34) follows immediately from their
Eq. (6.12) if one substitutes for the source term in the
y direction, i.e., normal to the plane of incidence

+1 6E1z -
PNLS 4, ﬁEly—B—~dz=6E1yE1z“°[5(w)_ 1].
. 2

(36)

The term proportional to 8 in Eq. (35) follows in the
same manner from the last term in Eq. (6.22). We
reproduce this equation here, in a slightly modified
notation, for the sake of convenience:

En®(2w) = — 8micwdc!
X [PNE(2w)er'/2(2w) sind €'()+costr PNYo(2w)]
X Ler'/2(2w) cosb+cosbr ], (37)

where er(2w) is the bulk dielectric constant.

The term proportional to §, due to the z component
of the nonlinear polarization P,=P¥LS cos(f,+a)
=0E,(0E,/9d,), is very sensitive to the details of the
limiting procedure. Not only E,, but also €(2), varies
rapidly within the layer. Physically the nonlinear
coefficient § also varies drastically at the surface.

In a purely formal manner we find from Eq. (37) a
contribution proportional to $8(e?—1) sin% instead of
15[ e2(w)—1]e(2w) occurring in Eq. (35). Wang and
Duminski®? apparently assumed that both § and e are
constant within the surfacelayer and find § sin?6[ e(w)—1]
instead.

For an insulator, Eq. (17) predicts that § vanishes in
the low-frequency approximation so that the term is
probably quite small in any case. Equation (17) also
suggests that the nonlinearity is proportional to
[e(w)—172, provided that we consider the number
density 9 as a constant in the surface layer. One could
calculate § and B on the premise that this relationship
between linear and nonlinear coefficients continues to
hold on a microscopic scale within the surface layer.
Such assumptions are not realistic, but they provide an
estimate for the uncertainties involved.

The only correct way to find § and 8 is to calculate
the actual potential at the boundary, use the appropriate

20 In Eq. (4.12) of Ref. 6 one must take a=0 for the angle for
the geometry under consideration. Instead of !/ one should
read eg!/2
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wave functions for surface states rather than the bulk,
and determine JNT for these states without making a
multipole expansion. The model of a homogeneous solid
with an abrupt change in the linear and nonlinear
susceptibilities at the boundary yields, however, a
surprisingly good description of the observed effects
from bound electrons, when the effective averages f8
and § are taken about equal to one-half of their bulk
values. The results (35) and (36) are equivalent to those
obtained by Jha and Warke!® if we take §=§=0 and
B=8. For conduction electron plasma, B=48, since it is
constant in the thin layer at the surface. Our results are
also the same as those obtained by Wang and
Duminski? if we make the following substitutions,
P 12=E, B(¢=45°) A2, P, 112= Eq B(¢=45°)A1/2, and
P 12=F, B(¢=90°) 4172 and if their « sin2f is replaced
by %8e(2w)[e(w)—1]. Actually, their coefficient
awp+ 2y corresponds to our 8, although they apparently
assumed the normal component of the surface polariza-
tion to be proportional to awp. Also, the right-hand
side of Eq. (3) in their paper should be multiplied by a
factor of 2, and v should be changed to —v in Eq. (4).

V. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL RESULTS

For semiconductors and insulators one expects,
according to Eq. (17), that at low frequencies §=0 and
B= —2vy=~2B. For materials with a high dielectric con-
stant, it then follows that the dominant term in Eq. (35)
is the term in B, except when ¢=90°. The drawn curve
in Fig. 5 describes the theoretical dependence of the
square of this term on the angle of incidence, 6. The
agreement with the experimental data is adequate and
the behavior is largely determined by the function
sin?6 cos*. This remains true even if 65%0. Therefore,
the angular dependence in metals, where one has a
contribution of the valence electrons according to
Eq. (17) as well as a conduction-electron contribution
according to Eq. (18), is also about the same as ob-
served, if we use the experimental values for the linear
dielectric constants. The dominant nonlinear surface
terms are also responsible for the dependence of the
harmonic intensity on ¢. The last two terms in Eq. (35)
predict a cos‘p dependence both for Ag and Si, as shown
in Fig. 4.

For metals, the plasma contribution to the non-
linearity is usually larger than the nonlinear contribu-
tion arising from interband transitions of the valence
electrons, which may still be estimated from Eq. (17),
if one uses their contribution to the linear susceptibility
for xva“(w). The latter is quite important for Ag and Au
and their alloys and should always be taken into
account in the Fresnel factors. The magnitude and
dispersion of the nonlinearity in these metals have been
discussed by several authors.®-10.15-17 Tn Table I we
compare our experimental value for the ratio

M= | ERy, (0=45° ¢$=90°)|2| ERy,(=45° ¢=0°) |2
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with the theoretical values for M. The valence electron
contribution to the linear dielectric constant is taken
into account, but their nonlinear contribution is
assumed to be zero in the next to last column of Table I.
Rustagi’s!” estimate of this nonlinear interband contri-
bution improves the agreement, as shown in the last
column. }

The low-frequency relations =0 and = —v should
be most applicable to transparent materials. This rela-
tion predicts that the ratio (P,/Py;)V/2= (ERy/E®q) is
independent of the nonlinear coefficients, depending
only on the linear dielectric constant and on angles 8
and ¢, and going to zero for both ¢=0° and ¢=90°.
Wang and Duminski®? have tabulated this experimental
ratio for several ionic crystals, with 8=60° and ¢=45°.
Since the refractive indices of these compounds are close
to 1.5, one finds this ratio from Egs. (34) and (35) to be
of the order 2 for all these compounds. The experi-
mental values for (P,/P;)'? are close to unity. The
agreement with the theory may be improved by
assuming that §~0.58 owing to the existence of a
surface layer. Wang and Duminski report for this ratio
a higher experimental value §/8=4 for the alkali
halides. If we use, however, the form given by Eq. (35),
i.e., replace 6§sin20 by 36[e*(w)—1]e(2w), the corre-
sponding & values are reduced to §/8~0.6. Furthermore,
the detailed averaging over the surface layer would
become more critical for relatively low-index materials.
Therefore, the observations are not necessarily in
contradiction with the fact that & should vanish for
the bulk of these ionic crystals. One should expect the
signal from low-index materials tobemoresensitivetothe
detailed structure of adsorbed molecular layers, although
Wang and Duminski state that their results are inde-
pendent of the surface treatment. At any rate, the
observed angular and polarization dependence in these
materials is not inconsistent.

One can understand why the results in the high
dielectric-constant materials are essentially independent
of the surface treatment and adsorbed layers, such as
oxides or hydroxyl groups. The nonlinearity of the
latter is much smaller than that of the first layer of the
atomic bulk material. The harmonic signal was observed
to be independent of the orientation of the surface cut
with respect to the crystallographic axes in Si and Ge.
This is in agreement with the form of Eq. (7), which is
identical for cubic and isotropic materials.

Whereas the magnitude of our observations on Si
and Ge agree with those reported by Wang and
Duminski, there is a discrepancy in the SH intensity,
polarized perpendicular to the plane of incidence. We
were unable to detect this intensity. With the assump-
tion 8= —2y and §=0, we find from Egs. (34) and (35)
for the ratio

| ERy (0=45°,p=45°) || ERy1(0=45°,0=45°) | ~2=0.01,

and the perpendicular polarization of the harmonic
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TasLe ITI. Comparison between theoretical and experimental
values of the quadrupolar nonlinear coefficient.

Density Harmonic

of valence  photon  _ 18(10716 esu)
electrons, energy  B(10716 esu) from
(108 cm3)3  (eV) expt. Eq. (17)

Si 2.0 2.87 48» 30
Ge 1.8 2.87 80 62
CaF, 1.5 3.58 0.4> 0.35
BaF, 1.0 3.58 0.4> 0.40
KCl1 0.96 3.58 0.6> 0.75
NaCl 1.3 3.58 0.55> 0.65
LiF 3.2 3.58 0.5> 0.15
NaF 2.4 3.58 0.5b 0.20
MgO 3.2 3.58 1.2b 0.70
KBr 0.85 3.58 0.45b 1.0
K1 0.65 3.58 0.550 2.5
CaCO;s 1.00 3.92 1.1¢ 0.75

a This work.

b From Ref. 12, _

o From Ref. 21. This is a bulk effect in a noncubic crystal, and 8 should
be identified with 8. See text for further details.

would indeed fall just below our detection limit. Wang
and Duminski list v/8=10 for Si and v/B=17 for Ge.
If these higher values were correct, they would present
a serious difficulty for our low-frequency theory.

We now turn to the magnitude of the nonlinear
coefficients. The experimental value for 8 may be deter-
mined from the data listed in Table II for Si and Ge.
For comparison with the theory, we take our data at
the lower frequencies. We list these in Table I1I together
with the data of Wang and Duminski for several ionic
crystals of cubic symmetry. We compare these with
values of 38, calculated from Eq. (17) with the known
index of refraction and density of valence electrons.

The agreement between our simple theory and experi-
ment seems to be quite good, except for KBr and KI.
We have consistently assumed the P band to be the
valence band for all the ionic crystals. However, for
KBr 3d and 4s bands, and for KI 44 and Ss bands
overlap with their P bands. The effective density of
electrons in valence bands is therefore expected to be
much higher in these solids, which will reduce the
calculated values of 33 accordingly.

Bjorkholm and Siegman?' have measured the
quadrupole nonlinearity in calcite very accurately. This
value is determined from the bulk effect, with a helium-
neon laser beam in a phase-matched condition. Unlike
in cubic crystals, the volume term may drive the SH
wave in anisotropic crystals, if either the fundamental
or harmonic is an extraordinary wave. Calcite has 3m

21 J, E. Bjorkholm and A. E. Siegman, Phys. Rev. 154, 851
(1967). Their coefficient 73 corresponds to $N Tz in our notation,
etc.
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symmetry and the observed nonlinearity is a linear
combination of the coefficients NT',,.., and NI,y in
Eq. (5). In order to make the comparison with cubic
crystals, we have assumed?! NT...,~NT.eyy=8 for
the entry in Table ITI. Again the order of magnitude is
well confirmed by the theoretical model.

It may be concluded that the SHG in reflection from
media with inversion symmetry is described rather well
by the quadrupole-type nonlinear properties calculated
for the homogeneous bulk material with an abrupt
discontinuity at the boundary. The order of magnitude
can be correctly related to the linear dielectric constant
in insulators. There is a marked trend of increasing
nonlinearity with increasing dielectric constant. The
bound electrons also contribute significantly to the
nonlinearity in metals.

The directional and polarization properties are well
described by a combination of linear and nonlinear
Fresnel factors. In materials with a high dielectric
constant, the dominant contribution comes from the
first layer of atoms in the bulk material. Adsorbed
molecular layers have relatively little effect, because
they have a much smaller dielectric constant and hence
a much smaller nonlinearity. The angular dependence
in alkali halides and other ionic crystals with rather
lower dielectric constant is more complex as the con-
tributions of the various terms in Egs. (34) and (35)
become more nearly equal to one another.

In principle, the accurate determination of the
quadrupole-type nonlinearity could also give informa-
tion about the electronic structure at the surface. At
present, the experimental data do not permit us to draw
any detailed conclusions about such a structure. The
magnitude of the weak harmonic signals is consistent
with a model in which the linear and nonlinear suscepti-
bilities of the homogeneous bulk material drop abruptly
to zero at the boundary. It is remarkable that the
optical quadrupole-type terms, which escape experi-
mental detection at the fundamental frequency, should
be observable in SHG because of the excellent dis-
crimination between the light frequencies. It is essen-
tially a “null method.”
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