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The dielectric dispersion function of a medium can be defined by the locations of the poles and zeros of that
function in the complex-frequency plane. In this form the dispersion function is not restricted by special
characteristics of any specific physical model from which dispersion might be derived. The locations of these
poles and zeros are subject to several more or less fundamental physical restrictions which are described in
this paper. The connections between the locations of the poles and zeros, the frequencies and damping
constants of certain optical modes, and the Lyddane-Sachs-Teller relation are discussed. Adjustments of
locations of poles and zeros, consistent with the physical restrictions, were performed to obtain least-squares
fits of reststrahlen data from PrCI& and LaC13 using a small number of poles and zeros. In this way, approxi-
mate dispersion functions for the two dielectric tensor components of each crystal were obtained at room tem-
perature and at lower temperatures.

INTRODUCTION

' 'N this paper we describe the fitting of some infrared
~ ~ reststrahlen reflectance data with dielectric disper-
sion functions of a very general form. We have avoided
the usual custom of trying to fit the data with disper-
sion relations obtained theoretically from specific lat-
tice dynamical models. Instead we only assume that,
whatever the correct model is, the dispersion relation
can be closely approximated by a function with only a
few poles and zeros in the complex-frequency plane.
The locations of these poles and zeros completely define
the dispersion function. We have found the locations
of a small number of poles and zeros that quite accu-
rately describe the reststrahlen bands of Pr C13 and LaC13
at temperatures of 293, 82, and 20'K. If a theoretical
derivation of dispersion relations for these crystals from
any specific model is carried out in the future, it should
be a relatively small step to compute locations of the
most significant poles and zeros and to compare them
with our experimental results.

We place special emphasis on the method of analyzing
data by adjusting the locations of poles and zeros in
the dielectric dispersion functions because we believe
that this is the first time that reststrahlen data have
been fitted by this method. Reference to location of
zeros and poles in previous analyses, if made at all,
have usually been in the form of incidental remarks
except in some papers by Barker. ' ' In the past, data
have generally been fitted with a dispersion relation
derived from a model consisting of one or more un-

coupled, harmonically damped modes of ionic vibra-
tion. Such relations are unnecessarily restrictive. Ex-
cept when only one or two such modes are used as an
approximation, more adjustable parameters may be
required to get a good fit to data than are required if
poles and zeros themselves are adjusted. Barker' has
demonstrated that a better fit is obtained to certain

' A. S. Barker, Jr., Phys. Rev. 136, A1290 (1964).
'A. S. Barker, Ir., in Ferroelectricity, edited by E. F. Weller

(Elsevier Publishing Co., Amsterdam, 1967), p. 2136, especially
Kqs. (41) and (42).

reststrahlen data by using a dispersion relation written
like the uncoupled oscillator expression but having a
frequency-dependent damping term of a particular form
that can be derived from a model with two coupled
oscillators, than by using the same number of adjustable
parameters in the classical uncoupled, harmonically
damped oscillator relation. We will show that allowing

poles and zeros to be adjusted independently is equiva-
lent to allowing frequency-dependent complex param-
eters to appear in the uncoupled harmonic-oscillator
relation. Both Barker's expression and the uncoupled-
oscillator expression are restricted cases of the general
pole and zero-dispersion relation. We will also discuss
the relationship between the pole and zero-dispersion
relation and the uncoupled classical oscillator relation.
This is done so that readers familiar with the classical
oscillator relation can readily interpret the physical
significance of the locations of zeros and poles, and can
recognize some of the advantages of the "pole and zero-"
dispersion relation.

DISPERSION FUNCTION FORM

The following is a very general dispersion relation for
each spatial component of a frequency-dependent di-
electric tensor:

N

n=I

In this expression, or is the frequency of the incident
radiation. The zeros Z and the poles P„ that we will

determine have moduli or absolute values in the neigh-
borhood of reststrahlen frequencies. Poles near the real
axis and far from other poles may be taken to repre-
sent frequencies and damping constants of optically
active or electrically polar TO phonon modes of long
wavelength. Zeros near the real axis and well isolated
from other zeros may be taken to represent frequencies
and damping constants of electrically polar LO modes.
If a pole and a zero are nearer to one another than they
are to the real axis, they will show only a weak effect on
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the dispersion curves. Such pairs are characteristic of
optical processes involving two or more phonons, which
contribute small variations from the smooth curves
that would be produced if only simple first-order optical
resonances were present.

The dispersion relation (1) is the most general single-
valued form of complex dispersion function not in-
volving essential singularities or continuous lines of
singularities. Numerator and denominator are poly-
nomials in frequency ~. It is unlikely that any realistic
dielectric dispersion function cannot be closely approxi-
mated, at least along the real axis, by a ratio of poly-
nomials of rather low order. Some complex models from
which dispersion functions are derived lead to localized
clusters of poles and zeros in the complex-frequency
plane. If such a cluster is far from the real axis compared
to its diameter and contains equal numbers of poles and
zeros, its effect on dispersion will be the same as if the
cluster were replaced by a single pole and zero pair.
Consider a cluster of E poles and S zeros near a point
co& in the complex-frequency plane. The location of
poles (or zeros) will be represented by ie&+5„; (or
ear+8, ~), where the 8's are small. Then the contribution
to the dispersion function by the whole cluster can be
represented by

N CO
—03y ~zi N N

n =(~—~i—2 &*')/(~ —~i—2 4~)

LThe approximation neglects terms of order P
/(oi o&i)' )H—ence .a single pole at &vi++5„and a simi-

larly expressed zero describe the effects of the whole
cluster so long as co—co~ is large compared to any 5 in
the cluster. The location co~ of the single pole-zero
pair is not as critical in magnitude as its separation
g(5„—8s,;) because a~i is a much larger quantity.

Probably the worst that might occur in any realistic
model for dielectric dispersion is that E, the number of
poles and zeros in a small cluster, may go to in6nity in
such a way that P (8„—o~;) remains finite, so that the
approximation can still be made.

With the provision that clusters of poles and zeros
not too near the real-frequency axis are to be replaced
by a single equivalent pole-zero pair, even the most com-
plicated of realistic dielectric dispersion functions can
probably be represented accurately with a moderate
number of poles and zeros.

PHYSICAL RESTRICTIONS ON
POLES AND ZEROS

Many of the results given here have direct analogs
in the classical theory of passive two-terminal networks, '
where, for instance, admittance over frequency can re-

3 O. Brune, J. Math. Phys. 10, 191 (1931);also, see recent text-
books on network analysis, such as P. E. Pfei8er, Linear Systems
rlrsalysss (McGraw-Hill 13ook Co. , New York, 1961), Chap. 9,

place polarizability divided by the unit imaginary num-
ber i. Since electrical polarization I'= XX cannot occur
in a medium in response to an applied electric field E
before the field is applied, electrical polarizability g is
said to obey the principle of causality. '4 It has been
shown that functions that obey the principle of causality
can have poles only below the real axis, so that they are
analytic functions on and above the real axis. ' [We
adopt the convention that time-periodic functions are
of the form exp( —icosi). If the opposite sign convention
were chosen, as in Barker, ' ' poles would occur only
above the real axis.]Since dielectric tensor components
e differ from polarizability components p only by a real
additive constant, e must also have poles only below the
real axis.

Another physically required property of the disper-
sion function for e is that its zeros must also lie below the
real axis. This follows from the fact that, if the crystal
is polarized by any nonelectrical force, such as mechani-
cal stress, an electric field E=I'/y will be caused by the
polarization I'. Since such an electric 6eld cannot ap-
pear before the polarization is produced, 1/y must obey
the principle of causality just as g does. If 1/e had a
pole above the real axis, then so would 1/x, since x
and e differ only by a real additive constant. Conse-

quently, the zeros of e as well as its poles must lie below
the real axis.

If the electromagnetic behavior of a medium can be
described by a scalar or a second-rank. tensor dielectric
function, propagation must be symmetric for positive
and negative values of cu. Consequently, every pole and

every zero not on the imaginary axis must have a mate
with the same imaginary part but the opposite real

part. That is, a map of the zeros and poles has "mirror
symmetry" about the imaginary axis in most media

(see Davidov'). For brevity we shall call this restriction
the "symmetric" property.

Since e approaches unity as m approaches infinity for
all substances, it is necessary that %=M in Eq. (1).
The infrared dispersive properties of crystals that are
transparent and almost nondispersive in the optical-
frequency region can be described quite accurately by
lumping terms from zeros and poles at ultraviolet fre-
quencies into a real multiplicative constant ~,~&. In
order that e may approach this constant at optical fre-

quencies, which are much larger than the moduli of the
poles and zeros in the reststrahlen region, it is also
necessary that the number of zeros equal the number of
poles in the reststrahlen region alone for such crystals.

Insulators can have only real values of e at zero fre-

quency. Consequently, insulators must have one zero
on the imaginary axis for every pole on the imaginary
axis, and vice versa. We will call this the insulator

4 See, e.g. , J. Hilgevoord, Dispersion Relations and Causa/ De-
scription (North-Holland Publishing Co., Amsterdam, 1960);A. S.
Davidov, Quantum 3fechanics, translated and edited by D. ter
Haar (Addison-Wesley Publishing Co. , Inc., Reading, Mass. ,
1965), Sec, )I2,
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Primes and double primes denote real and imaginary
components, respectively. Form (3c) is an expansion
of the polar form, in which, for instance, Z=~, exp
X (—ii/s, ).We have made use of the symmetry restriction

' P. Debye, Polar Noleoszles (Chemical Catalog Co., New York,
1929), Chap. 5.

property. The Debye dispersion relation' represents the
case in which a single zero and a single pole occur on the
negative real axis. (In contrast, the Drude expression
for the dielectric dispersion function of a metallic con-
ductor has poles on the imaginary axis, but the corre-
sponding zeros are not on the imaginary axis. ) We found
it unnecessary to include poles and zeros on the imagi-
nary axis to 6t our reststrahlen data.

Another physical requirement in the case of passive
materials is that the imaginary part of e should be posi-
tive for positive frequencies. Otherwise the crystal
would have to contribute energy to a wave passing
through it, as in a laser amplifier. We have found no
tractable set of limitations on location of poles and
zeros that assures compliance with this "passivity"
requirement at all frequencies, although it is not hard
to write two simple conditions on such locations that
assure passivity at frequencies considerably larger than
the largest modulus of a pole or zero and at frequencies
considerably smaller than the smallest modulus. How-
ever, we found the use of such auxilliary equations un-
necessary. (See the section on curve fitting. ) Direct
computation of e from the adjusted dispersion relation
at a few high and low frequencies beyond the range of
the data revealed that the passivity condition was
satished everywhere.

Finally, we will present two restrictions that seem to
be very common but are more empirical than the fun-
damental physical restrictions already noted. We will
considers crystals that have no purely imaginary poles
or zeros and that are quite transparent in the visible
and near-infrared regions, as many ionic crystals, in-
cluding PrC13 and I.aC13 are. The dielectric constant in
the visible region is real and almost independent of fre-
quency in such crystals. Hence we may represent the
part of the dispersion function associated with poles
and zeros at ultraviolet frequencies by a real multipli-
cative constant ~ p& so long as the function is only used
for infrared frequencies. Recalling the symmetry prop-
erty, we may write the infrared dispersion function for
such crystals as follows:

/ [/o —(Z —iZ;")] [eo—( Z,' iZ,")]--
s=r [o/- (P,'-iP,")][eo- (-P —iP,")]

+/2
[oo~+ (2i(e~ ' Q P,")—O(to~ ')] (4)

j=1

2i &/&

= e,v, (1+—P (Z," P&") —O(o'/ —')). —

It is usually observed that the imaginary part of the di-
electric constant falls off faster than 1/eo at frequencies
above the reststrahlen band. Most insulating crystals
are quite transparent at less than twice the highest
frequency in the reststrahlen bands and remain so into
the visible region. Consequently, the sum of the imagi-
nary parts of all the poles must be very nearly equal to
the sum of the imaginary parts of all the zeros, so that
the second term in the expansion is nearly zero. We will
call this the near-infrared transparency condition.

COMPARISON WITH CLASSICAL
OSCILLATOR DISPERSION

The classical Helmholz-Kettler uncoupled harmonic-
oscillator dispersion relation~ can be written

N/2 56~COpg

6= 6ppg
'=' /o +~'Yv/'/ops' /oui

where /t//2 is the "number of independent oscillators. "
This relation has been used in one form or another by
nearly every experimentalist since Rubins' to fit infra-
red reflectance or transmission spectra in the reststrah-
len region. This relation can be derived from a model
in which charges are subject to restoring forces propor-
tional to their displacements and to damping forces
proportional to their velocities. The relation satishes
the causality, passivity, reversibility, insulator, and
near-infrared transparency requiremerits if y;, At.„and
cv, are real and positive. Although the model is easy to
visualize, the damping term, especially, is unrealistic.
Attempts have been made to improve the accuracy of
this or similar formulas by making p, and co, or Ae; into
frequency-dependent parameters. ' '~" It is not trivi-

H. v. Helmholz, Pogg. Ann. 154, 582 (1874).' E. Kettler, Ann. Physik Chem. 50, 299 (1887).
M. Born and K. Huang, Dyn, am~cal Theory of Crystal Lattices

(Clarendon Press, Oxford, England, 1954), Chap. II.' H. Rubins, Ann. Physik Chem. 55, 267 (1894); 54, 476 (1895).
M. Born and K. Huang (Ref. 8), Eq. {47.8)."R. I'". Wallis and A. A. Maradudin, Phys. Rev. 125, 1277

(1962).
"V. S. Vinogradov, Fiz. Tverd. Tela 4, 712 (1962) )English

transl. : Soviet Phys. —Solid State 4, 519 (1962)g."M. Lax, J. Phys. Chem. Solids 25, 487 (1964).

to write e in terms of X/2, rather than /V, complex poles
and complex zeros. Expanding numerator and denomi-
nator of Eq. (3a) in powers of 1/co for large &o we obtain,
for the initial terms,

N/2

e=e.,zi~"+(2z ~ ' 2 Z")—O(~" ')]/
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ally easy to write a generalized harmonic-oscillator-like
dispersion relation with variable parameters and still
be sure that the fundamental physical restrictions are
automatically satisfied. In fact, the function derived
from quantum mechanics in Born and Huang" is not
symmetric, and the one proposed on phenomenological
grounds by Barker' does not necessarily obey causality,
as he wrote it, unless the variables are restricted in a
rather complicated, though not very stringent way.
Some other dispersion relations written as sums that have
been derived from quantum mechanics probably do
satisfy all of the physical requirements. " "

For a given number of poles and zeros, the Helmholz-
Kettler dispersion function is more restrictive than the
principles of physics require. If we expand the function
into the pole and zero form, we get a special case. Con-

versely, if we try to reduce the pole and zero form to the
classical oscillator form, we automatically get fre-
quency-dependent terms for hej or else for ~, and pj
except in a special restricted case.

By way of illustration we will now obtain the fre-

quency-dependent "constants" in the simple classical
oscillator expression that make it equivalent to a dis-

persion relation with single pairs of poles and zeros
(A'=2). We will not adopt the near-infrared trans-

parency condition that the sum of the imaginary parts
of the poles should equal the sum of the imaginary parts
of the zeros, but we will adopt the causality, symmetry,
and insulator restriction. We can then write the pole
and zero-dispersion relations in the polar coordinate
form (3c) as follows:

or
GP+ 2'loco�& sin p&

—co&

~„'S((o)
&= &opz+

co +2zco(0& slnpz, —
M&

e oP+2ma&, sing, —&o,' (a&,'—e„')L1+2uu(&o„sing~ —co, sing, )/(oP, —~ ')j
cppf, cv'+ 2z~ra~ sin p„—co„

(6)

(7)

(Incidentally, causality requires q „and a&~ to have the
same sign, and the same must be true of q, and ~,.)
This is equivalent to using a complex, frequency-de-
pendent oscillator strength 5(a&) in place of the real
constant De in the classical oscillator expression. Al-

ternatively, if we define a variable oscillator frequency
8,S

This is equivalent to a condition that the imaginary part
of each pole equals the imaginary part of each zero in
this single-oscillator model. When Eq. (12) is satisfied,
that is, for the single classical damped oscillator, Eqs.
(8) and (9) become

Q(ao) =a)„

and
( co~ sing~ —~, sing, )

Qz(~) —~z
~
1+2~ I'(a)) = 2 sing „=y„ (9')

and a variable dampirjg term as

COg COg

&stat &opt &opt (s y J/ y p

then we may rewrite Eq. (6) in the form

AEQ (M)
C= &opt (11)

ruz+ iorl'(a)) Q (n)) —Qz ((o)

By some very complicated substitutions we have thus
managed to write the simple dispersion relation for
single independent pairs of poles and zeros in the form
of the classical oscillator expression with frequency-
dependent constants Q(u) and I'(co). These constants
are truly constant only if

co„sing „—co, sing, =0. (12)
"R.H. Lyddane, R. G. Sachs, and E. Te1ler, Phys. Rev. 59,

673 (1941).

2 sin y,+ (a), sing, —co, sin p, )co,/((o'„—(o,z)

$1+2i&u (ce„sing ~
—~, sin p, )/(co, '—&u„z))&

and use the Lyddane-Sachs-Teller relation, ' ' '4 which
can be written

t cf. Eq. (5)j. Thus we see that the classical harmonic-
oscillator model forces compliance with the empirical
restriction that the sum of imaginary parts of the zeros
should equal the sum of imaginary parts of the poles in
the case of a "single oscillator" (E=2). When more than
one oscillator is required to fit data, the classical os-
cillator dispersion relation still forces rigid compliance
with this empirical restriction. However, each additional
classical oscillator adds another, generally much more
complicated and unjustified, restriction on the positions
of the poles and zeros. Hence the pole and zero-disper-
sion relation, with the ad hoc restriction that the sums
of imaginary parts of zeros and poles must be equal or

approximately equal, is much less restrictive than the
classical uncoupled-oscillator relation with the same
number of zeros and poles, except for the special un-

realistically simple case when S=2.
The classical oscillator model also forces compliance

with the passivity condition if all the damping terms

y,. are positive. However, we have found no difhculty
in controlling the adjustment of pole and zero locations
to satisfy that condition by the indirect computational
method previously described if initial estimates of pa-
rameters are not too far oG.
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One possible reason that data can usually be fitted
very well by using the Helmholz-Kettler classical os-
cillator dispersion relation with several oscillators is
that, by appropriate choice of oscillator parameters,
poles and zeros that are unnecessary to obtain a good
fit may be made so close together that they have prac-
tically no effect on the resulting dispersion curve. The
Helmholz-Kettler model is accurate enough to put the
poles and zeros of the strongest or fundamental modes
in the reststrahlen bands of simple ionic crystals in
about the right places, but is it not very efficient for
describing the finer features of such spectra. For exam-

ple, a point made by Barker, ~ in his discussions of di-
electric dispersion relations in KTaO3 and SrTiO3, was
that much better fits could be obtained to observed in-
frared reAectance between about 5 and 40 p using a dis-
persion relation derived from a special model with two
coupled oscillators than from the Helmholz-Kettler
model with two uncoupled oscillators used by earlier
authors to fit the same data. To get as good a fit with
the Helmholz-Kettler model would have required at
least one and probably two additional oscillators, of
three parameters each, whereas Barker used no addi-
tional parameters. (He might have used two more pa-
rameters since a complex coupling term appears in the
most general two-coupled-oscillator model, but one of
the damping constants was omitted and the coupling
constant was made real in Barker's model. ) Both models
with two oscillators yield two poles and two zeros with
positive real-frequency components. The extra poles
and zeros that would appear if an equally good fit to
these particular data were forced from the Helmholz-
Kettler model by introducing more oscillators would
cancel one another in such a way that only poles and
zeros near the locations of those obtained from Barker's
model would have appreciable effect. Both Barker's and
the Helmholz-Kettler two-oscillator model use less pa-
rameters than are required to locate two poles and two
zeros because the models contain implicit, special re-
strictions that may or may not be valid for a particular
crystal. However, three or four Helmholz-Kettler os-
cillators would take more adjustable parameters than
two poles and two zeros, and the most general two-
coupled-oscillator model would take as many param-
eters as two poles and two zeros.

PHYSICAL INTERPRETATION OF POLE
AND ZERO FUNCTION

In the general case where several pairs of poles and
zeros are required to fit data, we find that each elec-
trically polar TO phonon mode corresponds to a pole
near the real axis and each electrically polar LO mode
corresponds to a zero near the real axis. Higher-order
effects correspond to pole and zero pairs close to one
another and relatively far from the real axis.

The definition of the frequency of a phonon mode is
somewhat arbitrary because of the finite lifetime of the

mode. One way to define the real frequency of a TO
mode is to identify it with the real parameter eo, in the
denominator of the classical oscillator dispersion rela-
tion, Eq. (5). This is exactly equivalent to identifying
it with the distance of a pole from the origin (the modu-
lus of the pole). )See Eq. (3b).j By direct analogy we
may somewhat arbitrarily define the real frequency of a
polar LO mode as the modulus of a zero in the dispersion
function. (To show the physical significance of this
definition we note that a pure, undamped LO mode
would be one in which the electric field is entirely gener-
ated by polarization within the crystals, so that K+I'
=0 or x= —1 in rationalized cgs units, or «=O.' '4 ")

Similarly, the lifetime of a TO mode is proportional
to the reciprocal of the corresponding damping term
y,co, in the classical oscillator relation. The dimension-
less parameter y, , which might be called a "decay num-
ber, " is the same as twice the sine of the absolute angle
y„between the real axis and the pole

C
cf. Eqs. (3b) and

(5)g. By direct analogy we may define the "decay num-
ber" of a LO mode as twice the sine of the absolute angle
y, between a zero and the real axis. (Note that the peak
in the polarization or in the damping of a phonon mode
is not necessarily at ~„-or at co» unless the correspond-
ing decay number is very small. )

The genera)ized form of the Lyddane-Sachs-Teller
relation for several TO and LO modes is '

N/2 ~
&stgt &opt

i=i co».2'

where e,t,t is the static or very-low-frequency dielectric
constant. This expression is an obvious result of allow-
ing co to approach zero in the pole and zero-dispersion
relation with mirror symmetry about the imaginary
axis LEq. (3c)j.

Once we understand the relations between the loca-
tions of poles and zeros in the dielectric dispersion rela-
tion and the frequencies and damping of modes and the
Lyddane-Sachs- Teller relation, it seems somewhat
pointless to try to maintain a semblance of the classical
oscillator dispersion relations in describing experimen-
tal results, as experimenters have in the past. Theo-
retical expressions, as usually presented, involve sums
of terms, as the classical oscillator model does, rather
than products, as in the pole and zero expression, but
some added physical insight might sometimes be gained
by expanding such theoretical expressions into the pole
and zero form.

PROPERTIES OF PrC13 AND LRC13

PrC13 and LaC13, along with other rare-earth chlo-
rides, are of considerable current interest to solid-state
spectroscopists because they have a number of long-

"D. W. Berreman, Phys. Rev. 130, 2193 (1963); in Lattice
Dynamics, edited by R. F. Wallis {Pergamon Press, Inc. , New
York, 1963), p. 397.
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'6 J, Murphy, H. H. Caspers, and R. A. Buchanan, J. Chem.
I hys. 40, &43 (i964).

'7 D. W. Berreman, Phys. Rev. 163, 855 {1967).

lived excited electronic states over a wide range of fre-
quencies. These states are associated, not with just a
few impurity atoms but with the two rare-earth atoms
in every unit cell. We hope to contribute to a better
understanding of the role that phonons play in energy
transfer among the rare-earth ions by learning more
about the frequencies and lifetimes of the phonons
themselves through study of the reststrahlen, or main
infrared reQectance bands of these crystals.

LaC13, PrC13, and other rare-earth chlorides are trig-
onal crystals with three easy cleavage planes parallel to
the threefold axis of symmetry. They belong to the
space group C6&' or I"3/m. Every rare-earth ion is en-
dosed in an almost regular, six-cornered cage of chlorine
atoms. "

There are three long-wavelength modes of lattice vi-
bration that result in oscillatory changes in polarization
of each unit cell. Other modes exist but they do not re-
sult in such polarization and are therefore not infrared
active in first order, though they may have small sec-
ondary effects. Of the three infrared-active modes, one,
with A „symmetry, is stimulated by infrared radiation
with its oscillating electric-field component parallel to
the threefold, or c-axis of symmetry. The other two
modes, with E&„symmetry, are stimulated by an os-
cillating electric field perpendicular to the c axis."

The rare-earth chlorides are quite soft and are readily
attached by water vapor. Consequently, in spite of our
efforts to make smooth, clean samples by cleaving or
polishing parallel to the (110) faces in a nitrogen atmo-
sphere, there may be some decrease in reQectance near
the tops of the reststrahlen bands caused by slight
roughness of sample surfaces. '~ We found that such er-
rors in measurement at the tops of reststrahlen bands

would cause appreciable errors in fitting the locations
of secondary poles and zeros but not in fitting the widely
separated poles and zeros near the real axis that corre-
spond to primary polar lattice modes.

EXPERIMENT AND PRIMARY DATA

We mounted the samples in vacuum in a cryostat on
the end of a cold finger. The cryostat had two poly-
ethylene windows set at right angles to one another.
The radiation was reQected by the sample or by a rho-
dium reference mirror at approximately 90' from the
direction of incidence. The threefold or c axes of the
crystals were always vertical, and perpendicular to the
plane of incidence and reQection.

Measurements were made with a Perkin Elmer
Model 301 grating spectrometer with a Golay cell de-
tector. The sample chamber was altered to accommo-
date the cryostat and to return the reQected light back
into the monochromator. The experimental setup is
shown schematically in Fig. 1.

Sy making the threefold axis of the crystal perpen-
dicular to the right angle of reQection, and by measuring
reQectance of radiation with its electric field polarized
parallel to the threefold or c axis, we obtained results
only for the part of the dielectric tensor associated with
vibrational polarization parallel to that axis. Sy turn-
ing the axis of polarization 90' without rotating the
crystal, we obtained only the orthogonal component of
the dielectric tensor. With the crystal oriented in that
way, each of the two orthogonal components of polar-
ized light obeys the standard Fresnel equations derived
for reQectance of light at oblique incidence by an aniso-
tropic crystal. When a trigonal crystal is oriented in
that way the appropriate component of the dielectric
tensor may be treated as a scalar in the Fresnel equa-
tions for each polarized component of the radiation.
If the threefold axis had been oriented in any other
direction, the simple Fresnel equations would not have
been valid, at least for one component, because the elec-
tric-field vector of the incident radiation would have
had components both parallel and perpendicular to the
threefold axis.

The rare-earth chlorides are transparent to visible
light. The refractive index e in the visible region was
obtained by interposing a sample of known thickness
between an objective lens of moderate numerical aper-
ture in a microscope and a marked microscope slide.
The vertical distance that the microscope barrel had
to be moved to refocus the slide when the slab was in-
terposed or removed, together with the slab thickness,
give sufficient information to compute the refractive
index. We found no measurable difference between the
refractive index e, in the visible region, for light polar-
ized parallel to the 2' axis and that for light polarized
normal to it. The parameter e,~~ in the various dielec-
tric dispersion relations is assumed to be equal to the
square of the measured value of m. We assume that the
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temperature dependence of e is negligible since the
thermal-expansion coefficient is small.

The reststrahl reQectance bands for polarized radia-
tion reQected at right angles from a thick Qat crystal of
PrC13 were measured at temperatures of about 300 and
82'K. The data are shown in Figs. 2 and 4. Similar data
for Lacls are shown in Figs. 3 and 5. A number of data
points taken at 20'K lay almost exactly on the points
taken at 82'K and are not shown.
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CURVE FITTING

We used a computer program described elsewhere"
to do the parameter adjustment for least-squares fit-
ting and to compensate for the smearing effects of
spectrometer slit width on the observed spectra. We
used the Fresnel equations to compute reQectance of
obliquely reQected radiation from values of e derived
from our dispersion relation. As usually written, the
Fresnel reQectance equations contain an ambiguous
sign on a square root. The sign is usually chosen so as
to make the computed reQectance less than unity. This
choice is equivalent to choosing the sign on the dielec-
tric constant that makes its imagniary part positive to
satisfy the passivity condition. However, if the poles
and zeros in the general dispersion relation are not in
appropriate locations, it may yield negative values of
the imaginary part of e. In order that the error in loca-
tions of poles and zeros would be "recognized" by the
computer program that adjusted parameters for least-
squares fitting of the data, we chose the root in Fresnel's
equations that gave reQectance greater than unity when
the dispersion relation gave negative values for the
imaginary part of e. We also had an option in the corn-
puter program to exaggerate the size of the imaginary
part of e if it came out negative. This feature augmented
the misfit with experimental data and parameters were
therefore adjusted away from improper values more
rapidly. However, we found this option unnecessary if
moderately accurate initial estimates of parameters
were used. During the initial parameter adjustment we

put in artificial data points of estimated reQectance at
a very low and a very high frequency in order to make
sure that the dispersion relation satisfied the passivity
condition in the tails of the spectrum as well as in the
range of the experiments. These two data points were
not enough to affect the adjustment of parameters ap-
preciably unless the passivity criterion failed at one of
them, which it never did when good fits to the real data
were obtained.

We tried using the real and imaginary parts of the
poles and zeros on the positive side of the imaginary
axis directly as adjustable parameters to do some of the
curve fitting. This choice of adjustable parameters was
satisfactory except that it did not allow us to impose the
near-infrared transparency condition or to fix ~,t,t..

» D. W. Berreman, J.Appl. Opt. 7, j.447 (1968).
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FIG. 2. Single reststrahlen band associated with A„mode in
PrC13 for radiation incident at 45' from normal, with curves com-
puted from least-squares adjusted poles and zeros. Note displaced
ordinates for curves at room temperature and at 80'K.

EXPERIMENTAL RESULTS
AND CONCLUSIONS

The data for 0--polarized radiation could be fitted
moderately well with a single pair of poles and zeros
near the real axis, or a simple classical oscillator model.

A.nother equivalent set of parameters was found to be
just as stable in arriving at a good fit, and allowed direct
control over e,&,& and the transparency condition.

The alternative parameters used were e.,&, e,',&/'. ,&,

QZ/"/PP, ", the cV/2 parameters P;", the cV/2 pa-
rameterscu», the —,'(E—2) parameters Z,"/Z&" for j)1,
and the -', (1V—2) parameters co»/". & for j)1. This
adds up to 2A+1 adjustable parameters, which is the
same number we would have had if we had used & p$
and the two coordinates of each pole and zero in the
positive real side of the complex plane.

The computer program that we used offers the possi-
bility of fixing any of the parameters in the function to
be fitted to data. In arriving at the pole and zero loca-
tions and curves given in the tables and figures we fixed
the value of PZ,"/PE," at unity, which forces satis-
faction of the near-infrared transparency requirement
mentioned in the section on physical limitations.
(Almost identical results were obtained when this pa-
ramater was left as a free variable. ) We also set e,~&

equal to the values that we measured directly. If we
had accurate measurments of e,& & we could also fix the
parameter e,', '/e, ",but we do not.
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rection pole and zero are shown last. The data points
and fitted curves are shown in Figs. 4 and 5.

There is a significant shift toward slightly lower-

frequency moduli (sr~ and &a,) and slightly larger damp-
ing or phase angles (&p~ and y, ) in the locations of the
primary zeros and poles when the temperature changes
from 82 to 293'K. The lower-frequency moduli can
be attributed to slightly lower atomic rigidity in the
crystal which may be associated with thermal expan-

sion. The higher damping is to be expected at higher
temperatures because of the higher states of excitation
in the phonon levels through which damping occurs.
Neither shift is sufhcient to suggest any radical change
in the crystal, such as a phase transition, within or near
this temperature range. We also obtain some data points
at frequencies near poles and zeros at about 20'K. Those
points lay almost exactly on top of the points obtained
at nitrogen temperature. We therefore did not take suf-
ficient data at liquid-helium temperature to warrant a
separate determination of locations of zeros and poles
by a separate curve fitting.

There is a striking similarity between PrC13 and LaC13
in both location and temperature dependence of loca-
tion of poles and zeros. This confirms not only the simi-
larity of the crystals but the reliability of the data and
of the curve-fitting method adopted here. Readers fa-
miliar with the difFiculty in eliminating higher orders
of radiation in the far-infrared region with a grating
spectrometer will not be surprised at the failure of most
of the curves to reach the lowest reflectance computed
from the fitted dispersion relations. The filtering was
better in some of the later data, and better fits were
obtained, but the parameters obtained for best fits seem
to be remarkably insensitive to such difBculties. This
insensitivity is in marked contrast to the great diS.-
culties we encountered in attempting a direct Kramers-
Kronig analysis of some of these data.
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