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direction, the transverse dispersion curves 7' in the
[£¢0] direction, and the longitudinal and transverse
dispersion curves in the [{¢¢7] direction are identical
for the two angular-force models. Figure 1(a) and 1(b)
of this paper and Figs. 3(a) and 3(b) of Ref. 1 show
that for the remaining three branches the curves from
the DAF model are in poorer -agreement with the
experimental data than those from the CGW model.

The frequency spectrum for the DAF model, while
showing two peaks as in the case of CGW model, gives
a somewhat greater weight to the low-frequency peak
as compared with the spectrum obtained from the CGW
model.

The theoretical curve for @p lies below the experi-
mental points over the whole temperature range. The
curve shown in Fig. 3 was obtained from the 0°K fre-
quency-spectrum histogram. If calculations are carried
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out in the quasiharmonic approximation, the theoretical
curve is found to be lower than that shown in Fig. 3,
i.e., the divergence from the experimental data is
greater.

Further, note that the DAF model suffers from the
defect of not being rotationally invariant. The CGW
model, on the other hand, is rotationally invariant.!

In conclusion, we find that for copper the CGW
model is better than the DAF model.
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A modified form of the Heine-Abarenkov model potential is proposed. The core potential is replaced with
a constant potential 4; only for those angular momenta for which there are core wave functions. Also, the
model radius R; is allowed to be different for each ! and to depend on energy. It is shown that this potential
can be optimized using a variational procedure. The optimum model parameters are obtained by choosing
an R; such that 4;= —v(R;). The optimized form of this modified model potential has several advantages.
It provides a unique prescription for selecting model radii, and it eliminates the necessity of approximating
the A4; for I>2. Also, the form factors tend to decay rather than oscillate at short wavelengths. The linear
extrapolation of 4; versus E proposed by Animalu is shown to be valid for most simple metals. Optimum
model potential parameters are obtained, and form factors and depletion holes are evaluated for a group of

simple metals using the optimized model potential.

1. INTRODUCTION

HE Heine-Abarenkov (HA) model-potential the-
ory'=? is, in a sense, a cross between the quan-
tum-defect method* (QDM) and the pseudopotential
method.® As in the pseudopotential method, the deep
potential at each ion center is replaced with a shallow
potential which is chosen so that the valence-electron
wave functions have no nodes within the core. The
actual value of the model potential, chosen for con-
venience to be a constant 4, for each value of angular
momentum /, is determined in the spirit of QDM. One

* Work supported by the Advanced Research Projects Agency
through the Center for Materials Research at Stanford University.

+ NASA trainee.

1V. Heine and I. V. Abarenkov, Phil. Mag. 9, 451 (1964).

21. V. Abarenkov and V. Heine, Phil. Mag. 12, 529 (1965).

3 A. 0. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).

4F. S. Ham, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1964), Vol. 1, p. 127.
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chooses a radius Ry outside the core and then adjusts
Ayuntil the logarithmic derivative of the wave function
inside Ry precisely matches the logarithmic derivative
of the Coulomb wave function outside Ry, This match-
ing is done only at the free-ion-term values, since only
for these energies can we evaluate the external wave
function without knowing the core potential (it is the
Coulomb wave function that decays at infinity).

There are several features of this procedure that
have never been adequately discussed. First, a single
value of Ry is chosen for all Z. This is not a necessary
restriction but was made largely for simplicity. The
choice of Ry for each element seems to have been
somewhat arbitrary. Heine and Animalu® did notice
that if they selected 4,/ 22Z/Ry;, the magnitude of the
form-factor oscillations at short wavelength (large q)
was reduced. Aside from this observation, no criterion
has ever been given for the choice of model radius.

8 A, O. E. Animalu and V. Heine (Ref. 3), Sec. 4.
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Second, all the 4, for I>2 were set arbitrarily equal
to A, The reason for doing this is that there are
essentially no term values available for /> 2, and there-
fore no direct way of calculating the A4; for these /’s.
The choice made by HA is convenient because it allows
the potential to be collapsed from

Wo=— ——Z Az(E)Pz, 1’<RM

1=0

P= éll Y)Y m| 1y

to
wo=—(Ao—A2)Po— (A1—A2)P1— A5, r<Ry. (1.2)

However, it is clear that this choice of 4; means that
the I>2 components of the model wave function cannot
have logarithmic derivatives that match those of the
true wave function at r=Ry. Also, it is not obvious
precisely what the approximation means or whether
anything important has been neglected. Though Heine
and Abarenkov’ have given several arguments in de-
fense of their choice, it would improve the theory to
eliminate this approximation.

The procedure outlined above gives values of A4,
(1=0,1,2) for ionic-term values. To find 4, at an
arbitrary energy, in particular at the Fermi energy of a
metal composed of these model ions, it is necessary to
make an extrapolation (see Figs. 3 and 6). Since the
A; at term energies usually lie roughly on a straight
line, a linear extrapolation was made. Animalu® has
indicated that this choice was really a guess, made for
lack of a better procedure, and was never investigated
closely. In particular, for /=1 and 2 the extrapolation
had to be made over a large energy range and seemed
risky at best. As it turns out, we can show (see Sec. 2)
that, except for some special cases, the linear-extrapola-
tion scheme is satisfactory.

There is one final point worth mentioning. As we have
already remarked, Heine and Animalu?® found that the
model-potential form factors had oscillating short-
wavelength tails. They briefly discussed the possible
significance of these oscillations, pointed out that they
were due to the discontinuity in the potential at Ry,
and proposed a damping factor to suppress them. How-
ever, no effort has been made to determine whether
these oscillations can be reduced by constructing a
model potential that is in some sense optimum.

The main objective of this paper is to propose a
modified form of the model potential. This new form of
the potential has several advantages. It lends itself
readily to a variational optimization procedure. The
condition for optimization gives us a direct way to
determine model radii. Also, the potential is constructed
so that the question of how to determine the 4; for

7V. Heine and I. V. Abarenkov (Ref. 1), p. 454.
8 A. O. E. Animalu (private communication).
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I>2 never arises. Aside from eliminating these diffi-
culties with the old theory, the optimum form of the
modified potential has another important feature: It
gives form factors that tend to decay rapidly at short
wavelengths instead of oscillating.

2. CONSTRUCTION OF THE MODEL
POTENTIAL

A. Free-Ion Model Potential

Before we discuss our proposals for modifying the
HA model potential, it is appropriate to consider in
some detail the procedure used to construct the poten-
tial. To begin, we consider the Schrédinger equation for
a single valence electron moving in the deep potential
of a free metallic ion, e.g., Al*3, It is convenient for the
free-ion problem to make a spherical separation of the
Schrodinger equation. The radial equation for the true
wave function ¢;(r) for angular momentum [ is simply
(we use atomic units throughout)

d%//,(r)_[l(l—l- 1)
dr?

+20(r)— 2EJ¢1(7)= 0. (2.1)
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We make two assumptions at the outset. First, we
assume that for » greater than some reasonably small
core radius R¢, the free-ion potential »(r) can be re-
garded as local and, specifically, Coulombic. The va-
lidity of this assumption has been discussed in detail
by Ham.* Second, we ignore conduction-electron effects,
at least for the present. Interactions between conduction
electrons will be accounted for when we screen the
potential self-consistently. Interactions between con-
duction electrons and core electrons are treated in the
small-core approximation, and are included as an energy
shift when we calculate metallic energies, e.g., the
Fermi energy. To justify our treatment of valence-core
interactions we appeal to band-structure calculations
which require the same assumption that we have made.
These calculations have given excellent agreement with
band-gap measurements for semiconductors and Fermi-
surface data for metals. On the basis of this agreement
we conclude that this part of the small-core approxima-
tion is not unreasonable. It is important to emphasize
that a corresponding treatment of valence-core inter-
actions is required in pseudopotential theory as well.
Later in this section, we shall discuss this and another
application of the small-core approximation in more
detail.

The fundamental objective of model- (or pseudo-)
potential theory is to replace the deep ion-core potential
with a shallow potential that preserves the valence-
electron energies. The essential point is that this shallow
model potential can be treated as a perturbation. The
method proposed by Heine and Abarenkov was to re-
place v(r) with a square well 4;(E) inside some model



Qo (Ry)

Fic. 1. The function Q;(Ry) for =0 [defined in Eq. (2.4)7.
The horizontal lines represent values for the logarithmic derivative
of ¢, for various combinations of Ry and E.

radius Ry = Re¢. The model Schrodinger equation is then

() [z(z+1> <2AI(E)>_2E:IX1(1’)=O;

ar 72 2Z/r
7’<RM
( > (2.2)
>Ry

Note that from our first assumption X;(r)=y:(r) for
r>R M.

The A;(E) are determined in the spirit of QDM,
that is, they are adjusted until the logarithmic deriva-
tives of the internal and external solutions of (2.2)
match at Ry The external solution is uniquely defined
only at free-ion-term values. At these energies a bound-
ary condition at infinity can be imposed and the solu-
tions become Whittaker functions of the first kind. In
terms of the Wannier-Kuhn-Ham solutions,** ' we
can write

2727
2 (f) ~ Wn,z+1/2("“‘)
n

T(n+i+1)
T

+T'(n—)n'szN 51" (2) sin(n—I—1)x,

12T 21417 (3) cos(n—I1— )7

(2.3)

where
z=(8Zr)'2 and wn=Z/|2E|2,

The interior solutions of (2.2) are simply spherical
Bessel functions; therefore the logarithmic-derivative
matching condition is

_’YLRsz.l(’YzRM) l_(T dlh)
C jlviRa) Vidr/ e’ (24)

yi=[2(A+E) T,

9 G. H. Wannier, Phys. Rev. 64, 358 (1943).
10T, S, Kuhn, Quart. Appl. Math. 9, 1 (1951).
11'F, S. Ham, Quart. Appl. Math. 15, 1 (1957).
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ry(r)

AU

CASE |

CASE 2 OR 3

EXACT IONIC WAVE FUNCTION
ZERO NODE MODEL WAVE FUNCTION
ONE NODE MODEL WAVE FUNCTION

F16. 2. Schematic examples of model wave functions for the pos-
sible matching conditions illustrated in Fig. 1.

Note that for /=0 we use —#no(yoRy) in place of
—1(voRu).] We have plotted the function Qo in Fig. 1.
Since plots of all the other Q; are similar, it is enough
to concentrate on the /=0 case.

The procedure for obtaining A4, is, figuratively, to
evaluate the right-hand side of (2.4), draw a horizontal
line on the Q;-versus-y;Rys plot, and then determine 4,
from the values of v;Ry at the intersections. In Fig. 1,
we have drawn lines corresponding to three possible
cases for /=0. There are, of course, an infinite number
of intersections for any given value of logarithmic
derivative. Each corresponds to matching ¢; to a model
wave function with a different number of nodes in the
core. We have shown the situation schematically in
Fig. 2 for the cases indicated in Fig. 1.

We have emphasized that our aim is to replace the
core potential with the weakest possible model potential
in order that we be justified in using perturbation
theory. Clearly, the weaker the potential, the fewer the
number of nodes that the model wave function will
have inside the core. It is therefore entirely within the
spirit of our objective to choose, in each case, the 4;(E)
which corresponds to a nodeless model wave function.
That is, we select the intersection with the first branch
in a plot such as Fig. 1. [ Note that if the intersection is
on the imaginary v, branch, that is, |E|>4;, then
Xi(r) is a decaying wave function within the core.] If
the first branch of Q; is used to determine A;(E) for
all 7, then each component X;(r) of the model wave
function will be nodeless and the entire function

Xz(kr)

Xi(r)= lZ Vi@, ¢) (2.5)

4

will be nodeless as well.

Abarenkov!? has solved (2.4) by machine, using a
method analogous to the graphical determination that
we have discussed. In Fig. 3, we give a plot of Abaren-
kov’s results for ZRy =4 and /=0. To obtain the curve
of A;(E) shown (solid line), Abarenkov assumed that
each energy was a free-ion eigenvalue and used (2.3)
to determine the external logarithmic derivative. The

2], V. Abarenkov, Cavendish Laboratory Technical Report
No. 2, Cambridge, England (unpublished).
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F1c. 3. A typical set of results from Abarenkov’s tables of
model potential parameters. The dashed lines divide the plot into
regions corresponding to various numbers of nodes in the model
wave functions. The model parameters at a typical set of s-term
values E;, E,, and Ej3 are shown. The dash-dot line indicates
the linear interpolation-extrapolation procedure suggested by
Animalu.

singularities occur at energies for which ¥;(r) has a
node at r=Ry,. Figure 3 has been divided into regions
corresponding to various numbers of nodes by noting,
from Fig. 1, that when

Ao=—E+5(mn/Ru)?, (2.6)

the number of nodes in the matching solution increases
from #—1 to n. A similar division can be made for any
A -versus-E plot.

Using a plot such as Fig. 3, we can determine the
value of 4, at free-ion eigenvalues. A typical set of
points is indicated on the figure. When we combine
model jons to form a metal, it will be necessary to
evaluate 4; at energies between or below the term
values by interpolating or extrapolating. Animalu®
found that for most simple metals the 4, at term values
fell on a straight line, and he therefore extrapolated
linearly (Fig. 3). Before we can use this procedure with
confidence, we must provide some justification for it.

There are really two problems to consider. The first
is whether the 4; at term values can be connected by a
smooth line at all. If there were a singularity in the
logarithmic derivative at R for some energy between
terms, we would expect the solution on the first branch
of Fig. 1 to jump abruptly from one end of the branch
to the other. Such a jump would obviously preclude
smooth interpolation. The second problem is, assuming
that a linear connection between terms is valid, how
far below the lowest term value can we safely extrapo-
late linearly?

These questions can be answered easily by studying
wave functions. However, before we do that, we can
make a general statement about the 4;(E) curve by
invoking the following theorem?3:

Let L(E,a) be the logarithmic derivative of a one-

18 A, Messiah, Quanium M echamcx (North-Holland Publishing
Co., Amsterdam 1961), p.
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Fic. 4. Nat s wave functions calculated using a Hartree-Fock
potential (Ref. 14). The dashed lines indicate wave functions with
energies between Ej; and Ey,.

dimensional wave function at r=a and energy E. Then,
for r>a, L(E,r) is a monotonically decreasing function
of E [Ref. 13 includes functions such as cot(E) in the
class of monotonic functions].

Since the logarithmic derivative of the true wave
function y;(r) [defined as in (2.5)] is zero at r=0 for
all J, it follows that at = Ry, the logarithmic derivative
must decrease with energy. In terms of our graphical
discussion of the matching procedure, this means that
the horizontal lines in Fig. 1 must move down as energy
increases. Therefore, on a plot such as Fig. 3, the 4;(E)
curve can move only from a region with # nodes to
one with #-+1 nodes.

To show that linear interpolation of 4;(E) between
term values is extremely reasonable, we consider the s
wave functions for Na* obtained using a self-consistent
Hartree-Fock potential' (Fig. 4). For energies between
eigenvalues the wave functions are, of course, singular
at r= oo, but for the range of  shown the wave func-
tions at intermediate energies fall between the eigen-

0.5

(NORMALIZED)

30
R (IN AU

R yq(R)

50
4D

Fi1c. 5. Zn*? d wave functions. The 3d wave function is from
W. W. Piper, Phys. Rev. 123, 1281 (1961). The 4d, 5d, and 6d
wave functions are from F. Herman (unpublished). The author is
deeply grateful to Dr. Herman, who graciously offered to compute
the Zn*2 d wave functions.

4 F, Herman and S. Skillman, Afomic Structure Calculations
(Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963)
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F1c. 6. Schematic A2(E) curve obtained from Zn*? d wave
functions. The linear extrapolation from ionic-term values is
shown for comparison. The plot is divided into regions in the same
manner as in Fig. 3.

functions. For Nat reasonable model radii are in the
range r=2 to 4. For these radii the logarithmic deriva-
tive is clearly a smooth function of energy, and therefore
A;(E) will be smooth. Though these considerations do
not prove that linear interpolation is precisely correct,
they indicate that it is at least not an unreasonable
procedure, and is likely to be quite accurate.

Linear extrapolation to energies far below the lowest
term value is not always justified. To illustrate the
type of difficulties encountered, we consider the d states
of Zn*? (Fig. 5). The energy of the 3d core function is
not far below the Fermi energy. Therefore for energies
near Er and for, say, Ryr=2, the logarithmic derivative
of the d functions is approaching a singularity. The
actual 4;(E) curve for this case is shown in Fig. 6.
Clearly, a linear extrapolation to Ep is not correct. The
d states of Zn*?, Cd+?, and Hg*? are the only cases where
the behavior shown in Fig. 6 is pronounced. Usually
the highest core energy for a given [ is far below the
bottom of the conduction band and a linear extrapola-
tion of A;(E) to Er and below is an excellent
approximation.

We conclude that, when the logarithmic derivative
at Ry has no singularities in the range of energy in
which 4;(E) is to be determined, the linear interpola-
tion or extrapolation procedure can be used with con-
fidence. If there is any doubt, the results can be checked
by actually computing wave functions numerically and
evaluating 4;(E) directly. The only cases among the
simple metals where we have found difficulties in the
linear procedure are the /=2 states of zinc, cadmium,
and mercury. The reason for the difficulty is that the
d bands in these materials are close to or within the
free-electron-like band.

B. Model Potential in a Metal

The Schrédinger equation that describes a single
conduction electron in a metal is

(T+X vt Vo) [¥r)=Ex|¥s), 2.7
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where V, is the self-consistent potential due to all the
conduction electrons and the v; are the ion-core poten-
tials. One important feature of model-potential theory
is that we do not require an explicit expression for v;.
We need only assume that v; is Coulombic just outside
the core. To construct a pseudopotential, however, we
must know v; inside the core and consequently must
compute core wave functions explicitly and determine
the exchange interaction between conduction and core
states.

Now, suppose we consider the Schrodinger equation
obtained by replacing all of the true ion potentials with
model potentials w;,

(T+Z wit Vo) | Xi)=EM|Xs). (2.8)

The appropriate well depths for these potentials have
yet to be determined. The same electron potential ap-
pears in this model equation as in (2.7). We have de-
noted the eigenvalue in (2.8) by Ex™, since it is not
immediately obvious that it should equal the true
metallic eigenvalue E.

We confine our attention for the moment to a region
around the jth ion. For this purpose it is convenient to
rewrite (2.7) and (2.8) in the forms

(T+v) [¥e)= (Ek“g.%'— Vo)) (2.9)

and
(T+w;) | X)= (EkM—g'v,-— Veolxe). (2.10)

In (2.10), we have made use of the fact that outside of
a given core w=v, that is, cores do not overlap. This
assumption limits the method to metals in which the
non-Coulombic part of the core potential is confined to
a small region around the nucleus.

To proceed beyond this point it is necessary to make
an additional small-core approximation. We assume
that over the region of the jth core the potential
> ixi v+ Ve can be regarded as constant. It is this
approximation that restricts application of the model-
potential method to the simple metals. One can defend
the approximation on the grounds that it is required
in both the pseudopotential method and the QDM.
However, that fact is essentially irrelevant. It is more
important to realize that when cores overlap, the prob-
lem becomes sufficiently difficult that, as yet, no
satisfactory model treatment has been given. For the
present, we must restrict our attention to the simple
metals for which the small-core approximation is
reasonable. Harrison® has pointed out one way to assess
the validity of the small-core approximation. He ob-
served that the computed core wave functions for the
free ion and free atom do not differ significantly and
that the situation in the metal should be somewhere
between these extremes. It is therefore clear that noth-
ing of critical importance is being neglected.
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We now define a new energy

E/= Ek—Z v,— Ve s
i#j

(2.11)

which we consider to be constant inside the jth core.
Equations (2.9) and (2.10) then become

(THv;) [Yr)=Ex’[¢r)

(THw;) | Xe)= (E'+Ex™— Ex) | X&)

in this region. In our discussion of the free ion we found,
in dealing with an equation identical to (2.12), that we
could reproduce precisely the correct logarithmic de-
rivative at a radius Ry by replacing (2.12) with a
model equation inside the core. The appropriate model
potential for arbitrary E was to be obtained by using
the linear 4,;(E) relation. We use this prescription to
determine w; in (2.13), using 4;(Ex’) in the potential. It
then follows immediately from (2.13) that E;M = Ej.

As a result of our assumption that E;’ is a constant,
we have been able to construct a model potential for
the metal. The logarithmic derivatives of |¢x) and |X)
therefore match at model radii by construction. In
addition, we find that the metallic eigenvalues are the
same for the true and model problems. That this is
true only in the small-core approximation illustrates an
important difference between model-potential theory
and pseudopotential theory in which the eigenvalues
are equal by construction. We emphasize once more
that the small-core approximation is an essential as-
sumption of the theory. Without it we cannot construct
a metal from model ions.

To actually determine the 4;(E%’)’s appropriate to a
metal, we must calculate E;’ relative to the zero of
energy used in the free-ion problem. The metallic
eigenvalue E; measured from the bottom of the band
can, for present purposes, be replaced with its free-
electron value. We then have

Ey'=Eo+3k*— <Z v+ Ve> )

#j

(2.12)
and

(2.13)

(2.14)

where E, is the energy of the bottom of the conduction
band and the last term is some suitable average of the
neighbor core potentials and the electron potential
inside the jth core. We have used the procedure pro-
posed by Animalu and Heine?® to evaluate E;'. This
procedure is not entirely adequate but it is nonetheless
difficult to improve. The interactions between valence
and core electrons are included implicitly in the calcu-
lation of Eo; this is the only place in the theory where
these interactions enter. The calculation of E;' is
analogous to the calculation of core energies in pseudo-
potential theory and requires precisely the same
approximations.

3. MODIFIED MODEL POTENTIAL

The model potential proposed by Heine and Abaren-
kov requires that we replace the ion-core potential with
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an A,(E) for all values of / from zero to infinity. As we
have already emphasized, there is no direct way to
determine the 4;(E) for large angular momentum. In
order to proceed, it was necessary to make an arbitrary
and untenable assumption, namely, that for all I>2,

A point that seems to have been overlooked is that
we can construct a weak model potential and a smooth
model wave function without modeling the core poten-
tial for all /. Consider, for example, a metallic ion that
has core states with angular quantum numbers [<1,
and none with higher 7 [e.g., the highest core state in
Al*? is 2p, so that ly=17]. The lowest eigenstate for
each />, will of course have no nodes at all and the
higher states will have their nodes outside the core.
Clearly, the I>1l, components of a conduction-band
wave function will be nodeless. As a consequence, there
is nothing to be gained by modeling the core potential
for I>1,. These components of the wave function are
already smooth and the effective potential is weak, so
that we are justified in using perturbation theory.

Our first proposal for modifying the model potential
is, then, to replace the core potential with an 4; only
when there are core states with that /. For higher / we
use the true potential. Clearly, this modification all but
eliminates the problem of how to choose 4; for I>2,
since there are very few simple metals with f core states.
In fact, we shall frequently have to determine only 4,
and A4, as with aluminum, and occasionally only A4,
as with lithium.

We make one further modification of the theory, that
is, we allow the model radius R;(E) to depend on / and
on energy. The motivation for this change will become
clear when we optimize the potential. It appears that
we may have complicated the problem somewhat by
introducing a whole set of new parameters, the R;.
However, it is these new parameters that make the
model potential flexible enough to optimize. We shall
find, as might be expected, that optimizing the poten-
tial leads to a relation between the 4; and the R;, so
that, in fact, the number of parameters is not increased.

The new form of the bare model potential w, for a
single ion can be written quite simply as

w0=vb(7)—zo: @(Rl——r)[Al—f-vb(r)]Pl,
=0 3.1)
O@W)=1,

=0’

r>0
r<0

where 9;(r) is the bare ion potential and J, is the largest
angular quantum number for which there are core
states. The model parameters 4, are still computed by
assuming that v,(r)=—2Z/r for r>R,. Using this as-
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sumption in (3.1) and regrouping terms somewhat, we
obtain

Z b VA
Wo=——— @(Rz—‘f)(Az—'—>Pl

r =0 r

+ Z ®(RC_7')7)corePl- (32)
I=1¢+1
The potential
Veore™ vb(r)—i-Z/r (3.3)

is confined to the core region and arises from the neutral
collection of nuclear charge 4—Z and core electrons.
Note that the model radii for all />, are completely
arbitrary and are in fact defined by the separation given
in (3.2). For convenience we have chosen them all to
be equal to the core radius Re.

We expect the term in (3.2) involving eore(r) to
make an extremely small contribution to the form fac-
tors for two related reasons. One is that the projection
operator picks out components of the wave function
with />, These components are extremely small near
the ion center where vore(7) is large. Also, we know that
for large ! the core potential is dominated by the
centrifugal term I(J+1)/72 at small 7, so that the wave
function is not altered by substantial changes in the
details of veore(7).

To verify that this term actually is small, we have
evaluated plane-wave matrix elements of it using Har-
tree-Fock potentials!* and have found them to be at
least two orders of magnitude smaller than the corre-
sponding matrix elements of the term

lo 7
—Z (“)(Rl—r)(A 11— —)Pz
=0 7
for all ¢<2kF. In view of these results we can accurately
approximate the bare model potential by
Z W Z
Wo— ——— @(Rz—7)<Al—' —)Pl.

r =0 7

(3.4)

Though (3.4) is an approximation, we know precisely
what effect we are neglecting when using it. Moreover,
if we like, and if the core potentials are available, we
can actually include the vere(7) term in the unscreened
form factor.

4. OPTIMIZATION OF THE MODIFIED
POTENTIAL

A. Cohen-Heine Variational Procedure

The modified model potential has a certain amount
of inherent arbitrariness built in through the freedom
in choosing R;(E). Though an optimization procedure
formally eliminates this arbitrariness, it still remains in
fact, because there is no rigorous criterion for optimiza-
tion. Cohen and Heine'® have suggested a reasonable

15 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
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criterion for optimization, that is, to seek the smoothest
possible model wave function by minimizing

I=/d3r |VXk|2//d3er*Xk.

We can rather easily transform (4.1) to a condition
involving the total crystal model potential . Inte-
grating by parts once and using periodic boundary
conditions to discard the surface term, we obtain

/d3r lVXk[2=—/d37' Xk*VQXk

=2F, / & X< X—2 / Br X2 Wxy.  (4.2)

(4.1)

Therefore, minimizing (4.1) is equivalent to maximizing

I=/d3r xk*ka//d3r X ¥ Xy

This condition seems to be rather unfortunate, because
it appears to require a maximization of W. Yet we have
repeatedly emphasized that the principal objective of
the theory is to obtain a small . In fact, Cohen and
Heine suggested that an alternative optimization cri-
terion might be minimization of (4.3). The confusion
lies in the sign of W, which is negative. A second varia-
tion shows that (4.3) has only one stationary point, a
maximum. Cohen and Heine claimed to be minimizing
W but were actually maximizing a negative potential.
In any event, there would be no need for concern, since
W has been constrained to be small by determining
A;(E) on the branch that gives a nodeless wave func-
tion. Any variation that we make to achieve the
smoothest possible wave function will not alter W
enough to invalidate the use of perturbation theory.
We now proceed to maximize (4.3), subject to varia-
tions in the model radii R;(E) at each ion site. The
integrals in (4.3) extend over the whole crystal. There-
fore we should, in principle, vary the R;(E) at every
ion site simultaneously. However, since the model wave
function around each ion site is dependent only on the
R; associated with that site and is completely inde-
pendent of the R; at all other sites, it is enough to
maximize (4.3) subject to variations of the model radii
at a single site. Varying model radii around stationary
values Ri*(E) is essentially equivalent to varying wave
functions around stationary solutions as done by Cohen
and Heine's and by Harrison.!® This is clear when we
note that, since X;(r) is a function of the R;, for small
variations AR; around the optimum radii we can write

(4.3)

lo X
X (R)=Xe(R*+ AR (RF)+S AR—| . (4.4)

=0 AR py*

16 W. A. Harrison, Ref. 5, Chap. 8.
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The W appearing in (4.3) is the complete model
potential for the crystal and includes the conduction-
electron potential V,(r),

W(r)= Ve(r)+z wo(r—1;). 4.5)

The bare model potential at a given ion site depends on
the R; at that site but is independent of all the other
R;. The electron potential is completely independent of
the model radii.

Now, if we substitute (4.4) into (4.3) and note that

each of the R; at a single ion site is independent, we
find that I(R;) is stationary, provided that

i(xlele) —o 4.6)
R (Xk|Xi) gy

for all I<I,. By making use of (4.5), Eq. (4.6) can be
reduced to

=0. (4.7)

Ri=R7*

I:—a—(xk| Vtwo| Xp)+1 (Rz)i(xkl Xk):l
OR; IR,

The integrals are now evaluated around one ion site
but the condition (4.7) must hold independent of which
site we choose.

It is appropriate to expand the model wave function
in spherical components about an origin at the ion site
where the R; are being varied,

Xl(kr)

X (r)= ZZ Y (0,¢). (4.8)

r

We may now write out (4.7) in detail,

9
{__ dr XX Vo) — 41(RD)]

o

a o0
+—-—/ dr XX [V o (r)+vo(r) JHI(Ry)

IJ Ry

a Ry 0
X"‘(/ dr Xz*xz'l'/ ar Xz*xz>} =0.
dRi\J, Ry Ri=R*

Next we recall that for r<R;, the function X;(r) de-
pends on R; through the parameter v,=[2(4,+ E) "2
This follows from Eq. (2.13). For > R;, the function
X;(r) is independent of R;. We use these results in
(4.9) and immediately obtain

(4.9)

1 04,; r& I¢]
== [ ar R+ i)~V )
Y1 9RJo dv1
04,
—}——/dr Xz*Xz—I-[Az(Rz)—I-'Db(Rz)]Xl*Xz} =0.
aRl Rz=Rz*

(4.10)
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We emphasize again that (4.10) holds for every I</,.
For arbitrary energy this condition can be satisfied
only if the conditions

Al(Rz*)= —'l)b(Rl*) (411)
and

(64 z/f)Rz) l rp=0

hold simultaneously.

It is not immediately obvious that this is the case.
One of the two conditions can always be met by ad-
justing R;. We must therefore show that this choice of
R; also implies the other. To do this we consider the
logarithmic-derivative matching condition in a metal.

(4.12)

B. Equivalence of Optimization Conditions

We have shown that within the framework of the
small-core approximation the logarithmic derivatives of
exact and model wave functions are equal at the model
radius,

ax, 1 dy
L(RZ)E —_— = —_—

Xl(Rz) dr g, !//z(.Rz) dr Ri
Equation (4.13) would also hold if we had chosen a
slightly different model radius, R/=R;+AR;. We take
AR; to be infinitesimal, so that

(4.13)

d d a?
—Yi(RiH+-AR)=—i(R)+AR—¢i(Ry)  (4.14)
q dr dr dr?
an

d
Yi(Rit AR:)EII/I(RZ)'I‘AR%-%(RZ) .
7

The expansions for X; and dX,/dr are slightly more
complicated, since X; depends on v;, which depends on
R,. We find that

d d 1 94:d
———Xl(_Rz—*—ARz)%’*xl(Rl)'}‘ARlI:_ — —Xi(Ry)
dr dr ")/12 aRz df

+
and

R 04N &
1+—‘-—~“>—~X1(Rz):] (4.15)
712 aRl ar?
R; 94\ d
Xi(Ri+ARy)= XZ(RI)-E—ARl(H—— ——)——X;(Rl) .
7;2 aRl dr
Now we evaluate (4.13) at R/, substitute the ex-
pansions (4.14) and (4.15), and use the Schrédinger
equations (2.1) and (2.2) to eliminate d%;/dr* and
d@2x;/dr*. We find that the terms of order AR; must be
identically zero if the matching condition is to hold at
both R; and R;. From this requirement we obtain the
expression

ZD"(R’HA‘]"F%%{L(Rz)[L(Rz)—é—J

1(+1)

R2

+w2} =0. (4.16)
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TaBLE 1. General optimized model potential parameters (in atomic units). The 4;(E) for any element can be
obtained directly by interpolating this table.

=0 =1 =2
E/Z? ZR, A,/2? ZR, A,/Z? ZR, A,/2?
0.2958 1.450 0.6894
0.2551 1.991 0.5020
0.2222 2.532 0.3948
0.1953 3.115 0.3210
0.1730 3.735 0.2677
0.1543 4.387 0.2279
0.1385 5.083 0.1967
0.1250 5.842 0.1712
0.1133 6.628 0.1509 2.650 0.3773
0.1033 7.421 0.1347 3.756 0.2662
0.0945 8.298 0.1205 4.767 0.2097
0.0868 9.196 2,066  0.1087 0.4840 5.809 0.1721
0.0799 10.135 2.653 0.0987 0.3768 6.808 0.1469
0.0739 11.151 3.296  0.0897 0.3033 7.805 0.1281
0.0685 12.155 3.992 0.0823 0.2505 8.877 0.1126
0.0637 13.236 4766  0.0755 0.2098 9.954 0.1005
0.0594 14.351 5.612 0.0697 0.1782 11.135 0.0898
0.0555 6.517 0.1534 12.261 0.0816
0.0520 7.496 0.1334 13.444 2.498 0.0744  0.4003 6.285 0.1591
0.0488 8.546 0.1170 14.706 3.587 0.0680  0.2788 8.192 0.1221
0.0459 9.644 0.1037 4.594 0.2176 9.873 0.1013
0.0432 2.087 10.864  0.4790  0.0920 5.657 0.1768 11.534  0.0867
0.0408 2.693 12,120 03712 0.0825 6.681 0.1497 13.070 0.0765
0.0385 3.365 13.437 0.2971 0.0744 7.728 0.1294 14.604  0.0685
0.0365 4.114 14.821 0.2431 0.0675 8.864 0.1128
0.0346 4.956 0.2017 10.034 0.0997
0.0328 5.808 0.1695 11.296 0.0885
0.0312 6.936 0.1442 12.578 0.0795
0.0297 8.074 0.1239 2.475 13.940  0.4039 0.0717 5.852 0.1709
0.0283 9.313 0.1074 3.533 0.2830 7.621 0.1312
0.0270 4.544 0.2200 9.259 0.1080

We are always free to choose R;= R;* such that 4;(R;*)
= —2,(R;*). If we make this choice, then it follows im-
mediately from (4.16) that

(aA z/aRz) [ Rl*= 0

as well. That is, the two conditions (4.11) and (4.12)
are equivalent. Therefore, to optimize the potential,
we simply select the model radii that allow us to match
the model potential smoothly to v,(r) for each I<l,.
This optimization condition is actually almost an
obvious one. We might expect that eliminating dis-
continuities in the potential would tend to decrease any
oscillations in the model-potential form factors at short
wavelengths. As we have already remarked, Animalu
and Heine?® did notice that such oscillations were reduced
if A,(E) was chosen roughly equal to Z/Rj. However,
in their formulation it was impossible to achieve perfect
matching for all . Of course, there still are discon-
tinuities in the derivatives of the potential at R; that
give rise to small form-factor oscillations at large ¢. If
we had elected to construct a well varying linearly with
7, for example, we could presumably eliminate not only
the potential discontinuity, but also the first-derivative
discontinuity. Further discontinuities could be elimi-
nated by including higher powers of » in the model
potential. If this procedure were carried to the limit,
we would find that we had simply constructed the
Taylor series for the exact potential. One finds that

attempting to construct model potentials more compli-
cated than the simple square well introduces sufficient
complications that the method is no longer practical.

C. Internal Consistency

At this point in our discussion it is worthwhile to
summarize the key constraints that we have imposed in
constructing the optimum model potential: (i) The core
potential is modeled only for </, where /, is the
maximum angular momentum of core states; (ii) the
model parameters 4;(E) have been selected to give
model wave functions X;(r) that have no nodes in the
core; and (iii) optimization requires that 4;= —v,(R;).
Of these constraints, only the second can be regarded
as a fundamental requirement of the theory. Initially,
each constraint was established independent of the
others. For instance, in deriving the optimization condi-
tion we did not have to specify a range of ! or that the
model wave function be nodeless. However, when im-
posed simultaneously, these constraints are no longer
independent.

To show this we apply the Wronskian theorem® to
the Schrodinger equations

d3u(r) [l (+1)
dr? r?

: 2vb(')+2Ve(f)—2E]‘l/z(")=0 (4.17)
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F16. 7. Optimized model-potential parameters versus energy
for I=0. These curves can be used to obtain 4;(Er) directly by
doing the linear extrapolation graphically.

and
ax, ril+1)
~——|: —24 z—I—ZVe(r)—ZE:IXl(r):O. (4.18)
dr? 72

Since the logarithmic derivatives of ¢;(r) and X;(r)
have been matched in determining 4;(E), independent
of what R; we pick, the boundary terms vanish and
we are left with

/ dr [A1(R)+ve(r) Wa(r)Xi(r)=0.  (4.19)

Now, suppose that we require a nodeless X;(7) but
relax the constraint that limits the model potential to
1<ly. For I>1, we have seen that ¢,;(r) is nodeless in
the core. Therefore (4.19) cannot hold unless A4 ;4 v,(7)
changes sign in the range of integration, which precludes
having A;=—v,(R;). We conclude that, had we not
constrained ! to be less than [, we would have en-
countered an inconsistency in trying to optimize the
potential.

It is important to emphasize that we have achieved
internal consistency only in the sense that, having re-
quired the first constraint, we have avoided contradict-
ing the Wronskian theorem. We have not proved that
our three constraints are necessarily consistent. How-
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F16. 8. Optimized model-potential parameters
versus energy for /=1, 2.

ever, empirically we have found no apparent difficulties
in obtaining optimum model parameters for the modi-
fied model potential.

D. Optimized Model-Potential Parameters

Model-potential parameters are calculated by assum-
ing that v,(r)= —Z/r outside of the model radius. The
optimization condition is then simply

Ar=Z/R;. (4.20)

We can obtain optimized parameters by interpolating
Abarenkov’s? tables to find 4, that satisfy (4.20). A
program has been written to carry out this interpola-
tion. The accuracy of the results is limited somewhat
by the fact that Abarenkov evaluated A; at widely
spaced values of Ry However, the figures-are probably
accurate to two decimal places, which is really all the
accuracy required in view of the crude A4;-versus-E
extrapolation that must be made.

The optimized model parameters are listed in Table I
and plotted in Figs. 7 and 8. The parameters for any
element can be obtained from this table using the
appropriate Z and the ionic-term values. To determine
A; at the Fermi energy it is necessary to extrapolate
linearly, as discussed in Sec. 2. We have done this for a
series of elements and listed the parameters in Table II.

Tasre II. Optimized model-potential parameters (in atomic units) evaluated at the Fermi energy. These figures
can be regarded as accurate to at least two decimal places.

Element  Ro(Er) Ao(Er) d40/9E Ri(Ewr) A:1(Er) 94.1/9E Ry (Er) Ay (Er) 94:/0E
Li 3.02 0.331 —0.186
Be 2.00 1.000 —0.202
Na 3.26 0.307 —0.231 2.711 0.369 —0.196
Mg 2.58 0.776 —0.286 2.19 0.912 —0.058
Al 2.15 1.395 —0.326 1.82 1.647 —0.044
K 4.20 0.238 —0.294 4.00 0.250 —0.120
Rb 4.46 0.224 —0.336 4.48 0.223 —0.159 8 s 8
Zn 2.03 0.984 —0.355 1.45 1.380 —0.484 2.33 0.860P 0
Cd 2.24 0.892 —0.424 1.75 1.144 —0.513 2.16 0.924b —0.571
In 2.24 1.341 —0.454 2.01 1.494 —0.224 2.75 1.089 +0.094

2 No values are obtainable using the range of parameters in Abarenkov's tables,

b Obtained by extrapolation beyond the range of Abarenkov’s tables.
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Tasie IIT. Depletion holes evaluated using the optimized
model potential. OPW orthogonalization holes are given for
comparison.

Element —p/Z —po®V/Z
Li 0.08367 0.068
Be 0.06218 0.057
Na 0.08923 0.074
K 0.12533 0.144
Mg 0.07568 0.079
Al 0.06564 0.076
Rb 0.14569»

Zn 0.07306 0.138
Cd 0.08629
In 0.07225

a Computed without / =2 terms.

It is worth noting that the values of A;(Er) and the
corresponding R;(Er) do not differ much from those
given by Animalu.l® However, the difference is enough
to make significant changes in the form factors.

5. NUMERICAL RESULTS

The general expressions for the screened form factor
and the depletion hole given recently by Shaw and
Harrison'” hold without modification for the new opti-
mized model potential. However, the details of the
expressions used for computation must be altered
somewhat.

We look first at the depletion hole”

ow
p=— 2 @ X * (1) —X4, (1) 5.1)
OFE

k<kFJ Qp k
The derivation of this expression does not depend on the
detailed structure of the model potential % and is
therefore valid for the optimum potential

10
w= Ve(r)—l—fub(r)——lz OR;—r)[A1+v(r)]P:. (5.2)

We need only require that Q> 4$7R# for every I. To
obtain an explicit expression for p we differentiate
(5.2), recalling that R;(E) is now a function of energy:

dw ‘2 5(R OR; y P
pyeap ML 7)31'5—[ +25(r) P

L 94,
> —ORi—7r)P;. (5.3)
=0 0E

For the optimized model potential 4;=—v,(R;), so that
the first term in (5.3) vanishes. Therefore, to lowest
order in w, the depletion hole is

4 l(, aAl 1 1
p=—Z(2H—-1)——/ dx xZ/ dy
T =0 0E /, 0
X%k p*R3(x) 7 2Lk pRi(x)xy].  (5.4)

( ;76% W. Shaw, Jr., and W. A. Harrison, Phys. Rev. 163, 604
1 .
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This expression differs from the one used previously to
compute p, in that it accounts for the energy dependence
of R;(E) in integrating over k and the sum over / goes
only to Jo. These differences are sufficient to alter the
values of p given by Shaw and Harrison. We have
computed new depletion holes for a group of elements.
The results are given in Table IIT and compared with
orthogonalized-plane-wave (OPW) orthogonalization
holes.? It is interesting to note that the depletion hole
for beryllium, which was previously found to be nega-
tive,!” becomes positive when calculated with the new
potential.

We have computed form factors using the approxi-
mate bare model potential given in Eq. (3.4). The
errors inherent in neglecting the v¢oe(#) term in (3.2)
are insignificant compared with the inaccuracies in the
A(E). From (3.4) the local and nonlocal contributions
to the unscreened form factor are'®

vg=—4rZ/¢*Q (5.5)
and
4dr b 1
f(k,q)=——> (2I41)P;(cost) A lRﬁ/ dx
Qp =0 0
Xw(x—1)7(k'Rwx)ji(kRw), (5.6)

where Q is the atomic volume Q/N.

The screened form factor is calculated exactly as in
Shaw and Harrison. A program has been written to
evaluate these form factors, as well as band-structure
energies and effective interactions between ions, for the
optimum model potential.’® The form factors for a group
of eight elements are given in Table IV. There are
several interesting features of these results that we
should mention. The form factors tend to be somewhat
smaller than the previous model-potential or pseudo-
potential results in the region of the first few reciprocal-
lattice vectors. In addition, the optimized form factors
decay more rapidly than those of Animalu!® at short
wavelengths. The small oscillations that remain are due
to discontinuities in the derivatives of the potential at
R;(E). Finally, we note the dip in the indium and
cadmium (/o= 2) form factors below ¢=2kp. This is not
a spurious effect, but arises from the /=2 contribution
to the nonlocal part of the form factor.

Note that the model-potential form factor is nonlocal,
that is, it depends not only on the scattering momentum
g, but also on the initial-state wave number % and on the
scattering angle. The results given in Table IV are
computed for scattering on the Fermi surface when
¢<2kr and for backscattering when ¢>2kp. To illus-
trate the & dependence of the form factor, we have

18 See Ref. 17 for notation.

19 A report containing a complete listing and discussion of the
program used in these computations is available on request, from
Reports Office, W. W. Hansen Laboratories, Stanford University,
Stanford, Calif. 94305 (unpublished).
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plotted in Fig. 9 the indium form factor computed for
scattering on various energy shells. In Fig. 10, we have
plotted the indium form factor as a function of scatter-
ing angle for two scattering momenta and an initial-
state momentum of £=21kp. The table included in the
figure gives the corresponding form factors for energy-
shell and Fermi-surface scattering. It is evident that
the value of the nonlocal form factor can differ from
wq(kr) by up to an order of magnitude. In calculations
of metallic properties it is important to include correctly
the full nonlocal model potential.

ROBERT W.
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We have plotted the optimized form factor for alumi-
num in Fig. 11 and have compared it with Animalu’s'¢
results. The comparison is not really relevant, since
the form factors given by Animalu were computed
using a potential which was not internally consistent.”
We should emphasize that both the reformulation of
the model potential discussed earlier'? and the modifica-
tions and optimization given here are based on first-
principles arguments and do not represent an attempt
to obtain agreement with experimental results. It is
now important to determine how well the reformulated

TasrLe IV. Form factors for eight metals evaluated using the optimized model potential. w°Pt (k) is in atomic units.
For ¢<2kr these results describe scattering on the Fermi surface; for ¢>2kr they describe backscattering.

q/kr Li Be Na Mg Al K cd In
0 —0.11564  —035274  —007945  —0.17482  —0.28664  —0.05193  —0.18367  —0.21184
01  —0.11374  —0.34631  —007815  —0.17185  —0.28144  —005091  —0.17920  —0.20779
02  —0.11111  —033403  —007662  —0.16688  —0.27152  —0.04996  —0.17460  —0.20156
03  —010686  —0.31470  —0.07415  —0.15895  —025587  —0.04840  —0.16730  —0.19169
04  —0.10117  —028976  —007081  —0.14851  —023562  —004630  —0.15757  —0.17886
05  —009428  —0.26086  —006674  —0.13612  —021210  —0.04373  —0.14601  —0.16386
0.6  —008641  —022960  —006206  —0.12236  —0.18664  —0.04076  —0.13316  —0.14753
07  —007783  —0.19740  —005694  —0.10783  —0.16045  —0.03748  —0.11955  —0.13062
08  —006878  —0.16541  —005150  —0.09304  —0.13454  —0.03398  —0.10565  —0.11378
09  —005948  —0.13444  —004588  —007844  —010970  —003036  —0.09182  —0.09752
10  —005012  —0.10506  —0.04022  —0.06437  —0.08647  —002670  —0.07839  —0.08218
1.1 —004084  —007758  —0.03460  —0.05110  —006520  —0.02308  —0.06555  —0.06795
12 —003176  —005215  —002913  —003882  —004611  —0.01956  —0.05346  —0.05490
13 —002297  —002879  —002387  —002764  —0.02926  —001621  —004218  —0.04300
14  —001452  —000744  —001888  —001763  —001465  —001309  —003174  —0.03212
1.5 —0.00646 001202  —0.01420  —0.00881  —000222  —001022  —002213  —0.02208
1.6 0.00122 0.02974  —0.00986  —0.00117 000813  —000765  —0.01330  —0.01264
1.7 0.00851 004589  —0.00586 0.00531 001651  —0.00540  —0.00518  —0.00352
1.8 0.01546 0.06066  —0.00222 0.01070 002306  —0.00349 0.00231 0.00562
1.9 0.02212 0.07430 0.00107 0.01506 0.02794  —0.00193 0.00930 0.01512
2.0 0.02880 0.08742 0.00410 0.01859 003145  —0.00072 0.01603 0.02554
2.1 0.03228 0.09152 0.00628 0.02038 0.03243 0.00043 0.01993 0.02997
2.2 0.03467 0.09321 0.00798 0.02109 0.03191 0.00129 0.02287 0.03327
2.3 0.03628 0.09327 0.00923 0.02098 0.03032 0.00187 0.02500 0.03557
2.4 0.03721 0.09199 0.01008 0.02020 0.02792 0.00217 0.02642 0.03723
2.5 0.03755 0.08964 0.01056 0.01888 0.02490 0.00223 0.02722 0.03809
2.6 0.03740 0.08643 0.01071 0.01715 0.02145 0.00209 0.02748 0.03831
2.7 0.03683 0.08256 0.01059 0.01510 0.01772 0.00178 0.02729 0.03790
2.8 0.03591 0.07819 0.01024 0.01285 0.01386 0.00134 0.02673 0.03716
2.9 0.03470 0.07347 0.00970 0.01047 0.00997 0.00081 0.02585 0.03586
3.0 0.03327 0.06852 0.00900 0.00803 0.00615 0.00021 0.02471 0.03431
3.1 0.03166 0.06346 0.00819 0.00561 000249  —0.00042 0.02338 0.03239
32 0.02992 0.05838 0.00729 000324  —0.00095  —0.00108 0.02189 0.03022
33 0.02810 0.05336 0.00633 000098  —0.00410  —0.00172 0.02030 0.02784
34 0.02622 0.04848 000534  —000114  —000695  —0.00235 0.01863 0.02531
35 0.02432 0.04379 000433  —0.00309  —000944  —0.00294 0.01691 0.02267
3.6 0.02243 0.03934 000333  —0.00485  —001157  —0.00348 0.01519 0.01997
3.7 0.02057 0.03515 000234  —0.00640  —001333  —0.00396 0.01348 0.01726
38 0.01876 0.03127 000140  —0.00772  —001471  —0.00438 0.01180 0.01457
39 0.01702 0.02770 000049  —0.00883  —001572  —0.00474 0.01017 0.01194
4.0 0.01537 002446  —0.00035  —0.00971  —001638  —0.00503 0.00861 0.00942
41 0.01380 002154  —0.00113  —001037  —001672  —0.00524 0.00712 0.00702
42 0.01234 001895  —0.00184  —001082  —0.01674  —0.00539 0.00573 0.00479
43 0.01099 001667  —0.00248  —0.01107  —0.01648  —0.00547 0.00444 0.00275
44 0.00975 001468  —0.00304  —001113  —001598  —0.00548 0.00325 0.00091
45 0.00862 001297  —0.00352  —0.01101  —0.01527  —0.00543 000217  —0.00070
4.6 0.00760 001152  —0.00393  —001075  —0.01438  —0.00533 000119  —0.00208
47 0.00669 001030  —0.00425  —0.01035  —001335  —0.00518 0.00033  —0.00322
48 0.00589 0.00930  —0.00450  —0.00983  —0.01221  —0.00498  —000043  —0.00412
49 0.00519 000847  —0.00468  —0.00922  —001099  —0.00474  —0.00107  —0.00478
5.0 0.00458 000781  —0.00478  —0.00853  —0.00974  —000447  —0.00162  —0.00522
5.4 0.00297 000627  —0.00460  —0.00541  —000487  —0.00320  —0.00287  —0.00504
5.8 0.00230 000558  —0.00373  —0.00247  —000120  —0.00191  —0.00294  —0.00284
6.2 0.00209 000495  —0.00254  —0.00041 0.00068  —0.00087  —0.00230  —0.00020
6.6 0.00200 000413  —0.00137 0.00057 000094  —0.00022  —0.00137 0.00160
7.0 0.00184 0.00322  —0.00044 0.00061 0.00023 0.00002  —0.00048 0.00204
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F16. 9. Optimized model-potential form factors for indium calcu-
lated for scattering on various energy shells.

model-potential theory can predict various experimental
observations.

We have used the optimized model potential in two
calculations of metallic properties. The energy-wave-
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Fic. 10. Indium form factor as a function of scattering angle
for two scattering momenta.
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F1c. 11. Optimized model-potential form factor for aluminum.
The form factor obtained by Animalu is given for comparison.
These form factors are obtained by taking |k|= |k+q|=FkF for
¢<2kr and k-+q antiparallel to & for ¢>2kp.

number characteristics® have been computed for a group
of simple metals and the results have been used to
evaluate the band-structure energy and thereby to de-
termine stable crystal structures for these metals. The
details of this work will be reported in a separate paper.
We have also studied the properties of liquid metals
using the optimized model potential*® A paper on this
work is forthcoming.

ACKNOWLEDGMENTS

The author would like to express his gratitude to
Professor Walter A. Harrison, who has been a constant
source of encouragement and stimulation. Thanks are
also due to Dr. A. O. E. Animalu for his continued
interest in this work.

2 R.{W. Shaw, Jr.,, and N. V. Smith, Phys. Rev. (to be
published).



