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direction, the transverse dispersion curves T2 in the
)t'i'01 direction, and the longitudinal and transverse
dispersion curves in the (gt'j direction are identical
for the two angular-force models. Figure 1(a) and 1(b)
of this paper and Figs. 3(a) and 3(b) of Ref. 1 show
that for the remaining three branches the curves from
the DAF model are in poorer agreement with the
experimental data than those from the CGW model.

The frequency spectrum for the DAF model, while
showing two peaks as in the case of CGW model, gives
a somewhat greater weight to the low-frequency peak
as compared with the spectrum obtained from the CG%
model.

The theoretical curve for O~~ lies below the experi-
mental points over the whole temperature range. The
curve shown in Fig. 3 was obtained from the O'K fre-
quency-spectrum histogram. If calculations are carried

out in the quasiharmonic approximation, the theoretical
curve is found to be lower than that shown in Fig. 3,
i.e., the divergence from the experimental data is
greater.

Further, note that the DAF model seers from the
defect of not being rotationally invariant. The CGW
model, on the other hand, is rotationally invariant. "

In conclusion, we hand that for copper the CGW
model is better than the DAF model.
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A modified form of the Heine-Abarenkov model potential is proposed. The core potential is replaced with
a constant potential A & only for those angular momenta for which there are core wave functions. Also, the
model radius 8& is allowed to be diferent for each / and to depend on energy. It is shown that this potentia]
can be optimized using a variational procedure. The optimum model parameters are obtained by choosing
an R~ such that A~ = —v(R~). The optimized form of this modi6ed model potential has several advantages.
It provides a unique prescription for selecting model radii, and it eliminates the necessity of approximating
the 3& for /&2. Also, the form factors tend to decay rather than oscillate at short wavelengths. The linear
extrapolation of A& versus 8 proposed by Animalu is shown to be valid for most simple metals. Optimum
model potential parameters are obtained, and form factors and depletion holes are evaluated for a group of
simple metals using the optimized model potential.

l. INTRODUCTION

l
'HE Heine-Abarenkov (HA) model-potential the-

ory' —' is, in a sense, a cross between the quan-
tum-defect method4 (QDM) and the pseudopotential
method. 5 As in the pseudopotential method, the deep
potential at each ion center is replaced with a shallow
potential which is chosen so that the valence-electron
wave functions have no nodes within the core. The
actual value of the model potential, chosen for con-
venience to be a constant A~ for each value of angular
momentum /, is determined in the spirit of QDM. One
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chooses a radius 831 outside the core and then adjusts
A g until the logarithmic derivative of the wave function
inside R3f precisely matches the logarithmic derivative
of the Coulomb wave function outside E~. This match-
ing is done only at the free-ion-term values, since only
for these energies can we evaluate the external wave
function without knowing the core potential (it is the
Coulomb wave function that decays at infinity).

There are several features of this procedure that
have never been adequately discussed. First, a single
value of R~ is chosen for all l. This is not a necessary
restriction but was made largely for simplicity. The
choice of R~ for each element seems to have been
somewhat arbitrary. Heine and Animalue did notice
that if they selected At—ZjRst, the magnitude of the
form-factor oscillations at short wavelength (large g)
was reduced. Aside from this observation, no criterion
has ever been given for the choice of model radius.

e A. O. E. Animalu and V. Heine (Ref. 3), Sec. 4.
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Second, all the A& for l& 2 were set arbitrarily equal
to A~. The reason for doing this is that there are
essentially no term values available for l& 2, and there-
fore no direct way of calculating the A& for these Ps.
The choice made by HA is convenient because it allows
the potential to be collapsed from

to

we= —(Ae —A ~)Po—(A i—A q)Pi —A a, r(Ritr. (1.2)

However, it is clear that this choice of A ~ means that
the l& 2 components of the model wave function cannot
have logarithmic derivatives that match those of the
true wave function at r=E~. Also, it is not obvious
precisely what the approximation means or whether
anything important has been neglected. Though Heine
and Abarenkov' have given several arguments in de-
fense of their choice, it would improve the theory to
eliminate this approximation.

The procedure outlined above gives values of A~

(l=0, 1, 2) for ionic-term values. To find Ai at an
arbitrary energy, in particular at the Fermi energy of a
metal composed of these model ions, it is necessary to
make an extrapolation (see Figs. 3 and 6). Since the
AE at term energies usually lie roughly on a straight
line, a linear extrapolation was made. Animalu has
indicated that this choice was really a guess, made for
lack. of a better procedure, and was never investigated
closely. In particular, for /= 1 and 2 the extrapolation
had to be made over a large energy range and seemed

risky at best. As it turns out, we can show (see Sec. 2)
that, except for some special cases, the linear-extrapola-
tion scheme is satisfactory.

There is one final point worth mentioning. As we have
already remarked, Heine and Animalu' found that the
model-potential form factors had oscillating short-
wavelength tails. They briefly discussed the possible
significance of these oscillations, pointed out that they
were due to the discontinuity in the potential at E~,
and proposed a damping factor to suppress them. How-

ever, no effort has been made to determine whether

these oscillations can be reduced by constructing a
model potential that is in some sense optimum.

The main objective of this paper is to propose a
modified form of the model potential. This new form of
the potential has several advantages. It lends itself
readily to a variational optimization procedure. The
condition for optimization gives us a direct way to
determine model radii. Also, the potential is constructed
so that the question of how to determine the A~ for

7 V. Heine and I. V. Abarenkov (Ref. 1), p. 454.
' A. O. E. Animalu (private communication).

l&2 never arises. Aside from eliminating these di%-
culties with the old theory, the optimum form of the
modified potential has another important feature. ' It
gives form factors that tend to decay rapidly at short
wavelengths instead of oscillating.

2. CONSTRUCTION OF THE MODEL
POTENTIAL

A. Free-Ion Model Potential

Before we discuss our proposals for modifying the
HA model potential, it is appropriate to consider in
some detail the procedure used to construct the poten-
tial. To begin, we consider the Schrodinger equation for
a single valence electron moving in the deep potential
of a free metallic ion, e.g. , Al+'. It is convenient for the
free-ion problem to make a spherical separation of the
Schrodinger equation. The radial equation for the true
wave function i/i(r) for angular momentum l is simply
(we use atomic units throughout)

d'Pi(r) f(1+1)
+2@(r) 2E—P&(r) =0. (2 1)

dr r

We make two assumptions at the outset. First, we
assume that for r greater than some reasonably small
core radius Rc, the free-ion potential n(r) can be re-
garded as local and, specifically, Coulombic. The va-
lidity of this assumption has been discussed in detail
by Ham. ' Second, we ignore conduction-electron effects,
at least for the present. Interactions between conduction
electrons will be accounted for when we screen the
potential self-consistently. Interactions between con-
duction electrons and core electrons are treated in the
small-core approximation, and are included as an energy
shift when we calculate metallic energies, e.g. , the
Fermi energy. To justify our treatment of valence-core
interactions we appeal to band-structure calculations
which require the same assumption that we have made.
These calculations have given excellent agreement with
band-gap measurements for semiconductors and Fermi-
surface data for metals. On the basis of this agreement
we conclude that this part of the small-core approxima-
tion is not unreasonable. It is important to emphasize
that a corresponding treatment of valence-core inter-
actions is required in pseudopotential theory as well.
Later in this section, we shall discuss this and another
application of the small-core approximation in more
detail.

The fundamental objective of model- (or pseudo-)
potential theory is to replace the deep ion-core potential
with a shallow potential that preserves the valence-
electron energies. The essential point is that this shallow
model potential can be treated as a perturbation. The
Inethod proposed by Heine and Abarenkov was to re-
place v(r) with a square well A&(E) inside some model
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FIG. 2. Schematic examples of model wave functions for the pos-
sible matching conditions illustrated in Fig. 1.

Pro. 1. The function Q~(Rsr) for l=0 )defined in Eq. (2.4)g.
The horizontal lines represent values for the logarithmic derivative
of

lent ~ for various combinations of E~ and K

radius R~ R&. The model Schrodinger equation is then

d'X~ (r) l (l+ 1) f'2A ~(E))
i

—2E Xi(r)=0,
drs rs ( 2Z/r i

r(Rsr)
~ ~(2 -')

r&R i
Note that from our first assumption X~(r)—=f~(r) for
r) R~.

The Ag(E) are determined in the spirit of QDM,
that is, they are adjusted until the logarithmic deriva-
tives of the internal and external solutions of (2.2)
match at R~. The external solution is uniquely defined
only at free-ion-term values. At these energies a bound-
ary condition at infinity can be imposed and the solu-
tions become Whittaker functions of the first kind. In
terms of the Wannier-Kuhn-Ham solutions, ' " we
can write

(2Zr'i
A(t)-~ .iptysI i

I' (I+1+1)
—,'sJs(+t"(s) cos(N —l—1)s.

g I+1

+I'(~ l)n' ',sX—,(~t"(-s) sin(N —/ —1)s-', (2.3)

Note that for l=0 we use —ep(ppRsr) in place of
t(ppRsr). j We have plotted the function Q& in Fig. 1.

Since plots of all the other Q~ are similar, it is enough
to concentrate on the l=0 case.

The procedure for obtaining A& is, figuratively, to
evaluate the right-hand side of (2.4), draw a horizontal
line on the Q~-versus-y~R~ plot, and then determine A ~

from the values of y~R~ at the intersections. In Fig. j.,
we have drawn lines corresponding to three possible
cases for 1=0. There are, of course, an inhnite number
of intersections for any given value of logarithmic
derivative. Each corresponds to matching P~ to a model
wave function with a diferent number of nodes in the
core. We have shown the situation schematically in
Fig. 2 for the cases indicated in Fig. 1.

We have emphasized that our aim is to replace the
core potential with the weakest possible model potential
in order that we be justi6ed in using perturbation
theory. Clearly, the weaker the potential, the fewer the
number of nodes that the model wave function will
have inside the core. It is therefore entirely within the
spirit of our objective to choose, in each case, the A ~(E)
which corresponds to a nodeless model wave function.
That is, we select the intersection with the first branch
in a plot such as Fig. 1. [Note that if the intersection is
on the imaginary p& branch, that is, ~E~ )A&, then
X&(r) is a decaying wave function within the core.) If
the first branch of Q~ is used to determine A~(E) for
all /, then each component X~(r) of the model wave
function will be nodeless and the entire function

where
s= (8«)"' and N=Z/[2E['~'

X (kr)
X (r)=E I'-(&, q) (2 5)

The interior solutions of (2.2) are simply spherical
Sessel functions; therefore the logarithmic-derivative
matching condition is

will be nodeless as well.
Abarenkov" has solved (2.4) by machine, using a

method analogous to the graphical determination that
we have discussed. In Fig. 3, we give a plot of Abaren-
kov's results for SR~=4 and l=O. To obtain the curve
of A~(E) shown (solid line), Abarenkov assumed that
each energy was a free-ion eigenvalue and used (2.3)
to determine the external logarithmic derivative. The

Vrrrrjr rVrR ) r 4)-l=
Ad& &M (2.4)

vi= L2(A ~+E)j'".
9 G, H. Wannier, Phys. Rev. 64, 358 (1943).
' T. S. Kuhn, Quart. Appl. Math. 9, 1 {1951)."F.S. Ham, Quart. Appl. Math. 15, 1 {1957).

"I.V. Abarenkov, Cavendish Laboratory Technical Report
No. 2, Cambridge, England {unpublished).
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Fxo. 3. A typical set of results from Abarenkov's tables of
model potential parameters. The dashed lines divide the plot into
regions corresponding to various numbers of nodes in the model
wave functions. The model parameters at a typical set of s-term
values E1, E2, and E3 are shown. The dash-dot line indicates
the linear interpolation-extrapolation procedure suggested by
Animalu.

singularities occur at energies for which fi(r) has a
node at r=RM. Figure 3 has been divided into regions
corresponding to various numbers of nodes by noting,
from Fig. 1, that when

the number of nodes in the matching solution increases
from e—1 to m. A similar division can be made for any
A ~-versus-E plot.

Using a plot such as Fig. 3, we can determine the
value of Ao at free-ion eigenvalues. A typical set of
points is indicated on the figure. When we combine
model ions to form a metal, it will be necessary to
evaluate A» at energies between or below the term
values by interpolating or extrapolating. Animalu'
found that for most simple metals the A g at term values
fell on a straight line, and he therefore extrapolated
linearly (Fig. 3). Before we can use this procedure with
con6dence, we must provide some justification for it.

There are really two problems to consider. The first
is whether the A & at term values can be connected by a
smooth line at all. If there were a singularity in the
logarithmic derivative at RM for some energy between
terms, we would expect the solution on the first branch
of Fig. 1 to jump abruptly from one end of the branch
to the other. Such a jump would obviously preclude
smooth interpolation. The second problem is, assuming
that a linear connection between terms is valid, how
far below the lowest term value can we safely extrapo-
late linearly'

These questions can be answered easily by studying
wave functions. However, before we do that, we can
make a general statement about the Ai(E) curve by
invoking the following theorem":

Let 1.(E,a) be the logarithmic derivative of a one-

FIG. 4. Na+ s wave functions calculated using a Hartree-Fock
potential (Ref. 14).The dashed lines indicate wave functions with
energies between E3, and E4,.
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Fn. 5. Zn+' d wave functions. The 3d wave function is from
W. W. Piper, Phys. Rev. 123, 1281 (1961). The 4d, Sd, and 6d
wave functions are from F. Herman (unpublished). The author is
deeply grateful to Dr. Herman, who graciously offered to compute
the Zn~ d wave functions.

dimensional wave function at r =a and energy E. Then,
for r) a, I (E,r) is a monotonically decreasing function
of E )Ref. 13 includes functions such as cot(E) in the
class of monotonic functionsj.

Since the logarithmic derivative of the true wave
function fi(r) Ldefined as in (2.5)j is zero at r=0 for
all l, it follows that at r= RM the logarithmic derivative
must decrease with energy. In terms of our graphical
discussion of the matching procedure, this means that
the horizontal lines in Fig. 1 must move down as energy
increases. Therefore, on a plot such as Fig. 3, the A i(E)
curve can move only from a region with m nodes to
one with @+1nodes.

To show that linear interpolation of Ai(E) between
term values is extremely reasonable, we consider the s
wave functions for Na+ obtained using a self-consistent
Hartree-Fock potential" (Fig. 4). For energies between
eigenvalues the wave functions are, of course, singular
at r= ~, but for the range of r shown the wave func-
tions at intermediate energies fall between the eigen-

3A. Messiah, Quantum Mechanics (North-Holland Publishing F. Herman and S. Skillman, Atomic Structure Calcglations
Co., Amsterdam, 1961),p. 100. (Prentice-Hall, Inc., Englewood Clips, K. J., 1963).
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where V, is the self-consistent potential due to all the
conduction electrons and the ei are the ion-core poten-
tials. One important feature of model-potential theory
is that we do not require an explicit expression for e;.
We need only assume that vi is Coulombic just outside
the core. To construct a pseudopotential, however, we
must know vi inside the core and consequently must
compute core wave functions explicitly and determine
the exchange interaction between conduction and core
states.

Now, suppose we consider the Schrodinger equation
obtained by replacing all of the true ion potentials with
model potentials m;,

(2.8)

functions. For Na+ reasonable model radii are in the
range r= 2 to 4. For these radii the logarithmic deriva-
tive is clearly a smooth function of energy, and therefore
A~(E) will be smooth. Though these considerations do
not prove that linear interpolation is precisely correct,
they indicate that it is at least not an unreasonable
procedure, and is likely to be quite accurate.

Linear extrapolation to energies far below the lowest
term value is not always justified. To illustrate the
type of difhculties encountered, we consider the d states
of Zn+2 (Fig. 5). The energy of the 3d core function is
not far below the Fermi energy. Therefore for energies
near E& and for, say, R~= 2, the logarithmic derivative
of the d functions is approaching a singularity. The
actual A~(E) curve for this case is shown in Fig. 6.
Clearly, a linear extrapolation to E& is not correct. The
d states of Zn+', Cd+', and Hg+' are the only cases where
the behavior shown in Fig. 6 is pronounced. Usually
the highest core energy for a given / is far below the
bottom of the conduction band and a linear extrapola-
tion of A ~ (E) to EF and below is an excellent
approximation.

We conclude that, when the logarithmic derivative
at E~ has no singularities in the range of energy in
which A~(E) is to be determined, the linear interpola-
tion or extrapolation procedure can be used with con-
6dence. If there is any doubt, the results can be checked

by actually computing wave functions numerically and
evaluating A&(E) directly. The only cases among the
simple metals where we have found difhculties in the
linear procedure are the l=2 states of zinc, cadmium,
and mercury. The reason for the diTiculty is that the
d bands in these materials are close to or within the
free-electron-like band.

B. Model Potential in a Metal

The Schrodinger equation that describes a single
conduction electron in a metal is

(2.7)

The appropriate well depths for these potentials have
yet to be determined. The same electron potential ap-
pears in this model equation as in (2.7). We have de-
noted the eigenvalue in (2.8) by E&~, since it is not
immediately obvious that it should equal the true
metallic eigenvalue EI,.

We confine our attention for the moment to a region
around the jth ion. For this purpose it is convenient to
rewrite (2.7) and (2.8) in the forms

(2.9)

In (2.10), we have made use of the fact that outside of
a given core m= v, that is, cores do not overlap. This
assumption limits the method to metals in which the
non-Coulombic part of the core potential is confined to
a small region around the nucleus.

To proceed beyond this point it is necessary to make
an additional small-core approximation. We assume
that over the region of the jth core the potential
Q;» tt;+V, can be regarded as constant. It is this
approximation that restricts application of the model-
potential method to the simple metals. One can defend
the approximation on the grounds that it is required
in both the pseudopotential method and the QDM.
However, that fact is essentially irrelevant. It is more
important to realize that when cores overlap, the prob-
lem becomes suKciently de.cult that, as yet, no
satisfactory model treatment has been given. For the
present, we must restrict our attention to the simple
metals for which the small-core approximation is
reasonable. Harrison' has pointed out one way to assess
the validity of the small-core approximation. He ob-
served that the computed core wave functions for the
free ion and free atom do not differ significantly and
that the situation in the metal should be somewhere
between these extremes. It is therefore clear that noth-
ing of critical importance is being neglected.
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We now define a new energy

Eb'=Eb —p v,—V. ,
idj

(2.11)

Eb' ——Ep+-'k' —(Q v~+ V,), (2.14)

where Ep is the energy of the bottom of the conduction
band and the last term is some suitable average of the
neighbor core potentials and the electron potential
inside the jth core. We have used the procedure pro-
posed by Animalu and Heine' to evaluate E&'. This
procedure is not entirely adequate but it is nonetheless
difficult to improve. The interactions between valence
and core electrons are included implicitly in the calcu-
lation of Ep, this is the only place in the theory where
these interactions enter. The calculation of EI,' is
analogous to the calculation of core energies in pseudo-
potential theory and requires precisely the same
approximations.

3. MODIFIED MODEL POTENTIAL

The model potential proposed by Heine and Abaren-
kov requires that we replace the ion-core potential with

which we consider to be constant inside the jth core.
Equations (2.9) and (2.10) then become

(2.12)
and

(T+w;) i Xb) = (Eb'+Eb Eb) i
Xb—) (2.13)

in this region. In our discussion of the free ion we found,
in dealing with an equation identical to (2.12), that we

could reproduce precisely the correct logarithmic de-
rivative at a radius Rbr by replacing (2.12) with a
model equation inside the core. The appropriate model
potential for arbitrary E was to be obtained by using
the linear Ai(E) relation. We use this prescription to
determine w; in (2.13),using A i (Eb ) in the potential. It
then follows immediately from (2.13) that Eb~= Eb.

As a result of our assumption that EI,' is a constant,
we have been able to construct a model potential for
the metal. The logarithm. ic derivatives of

~
fb) and

~

X,)
therefore match at model radii by construction. In
addition, we find that the metallic eigenvalues are the
same for the true and model problems. That this is
true only in the small-core approximation illustrates an
important di6erence between model-potential theory
and pseudopotential theory in which the eigenvalues
are equal by construction. We emphasize once more
that the small-core approximation is an essential as-
sumption of the theory. Without it we cannot construct
a metal from model ions.

To actually determine the A &(Eb')'s appropriate to a
metal, we must calculate E~' relative to the zero of
energy used in the free-ion problem. The metallic
eigenvalue EI, measured from the bottom of the band
can, for present purposes, be replaced with its free-
electron value. We then have

w p
= v b (r) —P 0 (Ri r) LA &+v b

—(r)]Pi,
L=p (3 1)

where vb(r) is the bare ion potential and lp is the largest
angular quantum number for which there are core
states. The model parameters 2 & are still computed by
assuming that vb(r) = Z/r for r)Ri. Using this —as-

an A &(E) for all values of l from zero to infinity. As we
have already emphasized, there is no direct way to
determine the Ai(E) for large angular momentum. In
order to proceed, it was necessary to make an arbitrary
and untenable assumption, namely, that for all /&2,
Ai(E) =A, (E).

A point that seems to have been overlooked is that
we can construct a weak model potential and a smooth
model wave function without modeling the core poten-
tial for all /. Consider, for example, a metallic ion that
has core states with angular quantum numbers /&/p

and none with higher l Le.g. , the highest core state in
AI+' is 2p, so that lp ——1j. The lowest eigenstate for
each /&/p will of course have no nodes at all and the
higher states will have their nodes outside the core.
Clearly, the /&/p components of a conduction-band
wave function will be nodeless. As a consequence, there
is nothing to be gained by modeling the core potential
for /&/p. These components of the wave function are
already smooth and the effective potential is weak, so
that we are justified in using perturbation theory.

Our first proposal for modifying the model potential
is, then, to replace the core potential with an 2& only
when there are core states with that /. For higher / we

use the true potential. Clearly, this modification all but
eliminates the problem of how to choose 2 ~ for /& 2,
since there are very few simple metals with f core states.
In fact, we shall frequently have to determine only Ap

and A&, as with aluminum, and occasionally only Ap,
as with lithium.

We make one further modification of the theory, that
is, we allow the model radius Ri(E) to depend on b and
on energy. The motivation for this change mill become
clear when we optimize the potential. It appears that
we may have complicated the problem somewhat by
introducing a whole set of new parameters, the E~.
However, it is these new parameters that make the
model potential flexible enough to optimize. We shall

find, as might be expected, that optimizing the poten-
tial leads to a relation between the AE and the E~, so

that, in fact, the number of parameters is not increased.
The new form of the bare model potential mp for a

single ion can be written quite simply as
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The W appearing in (4.3) is the complete model
potential for the crystal and includes the conduction-
electron potential V, (r),

We emphasize again that (4.10) holds for every /&lo.
For arbitrary energy this condition can be satis6ed
only if the conditions

(4.11)A ((R(*)= —~tg(R(*)

(aA)/aR() ( ~,m=0

(4 5)
and

W(r) = V,(r)+P wo(r —r;).

(4.12)
The bare model potential at a given ion site depends on
the R» at that site but is independent of all the other
R~. The electron potential is completely independent of
the model radii.

Now, if we substitute (4.4) into (4.3) and note that
each of the R~ at a single ion site is independent, we
find that I(R~) is stationary, provided that

hold simultaneously.
It is not immediately obvious that this is the case.

One of the two conditions can always be met by ad-
justing Rg. We must therefore show that this choice of
E~ also implies the other. To do this we consider the
logarithmic-derivative matching condition in a metal.

=0
B. Equivalence of Optimization Conditions

We have shown that within the framework of the4.6

small-core approximation the logarithmic derivatives of
for all i&ED. lay making use of (4.5), Eq. (4.6) can be exact and model wave functions are equal at the model

reduced to radius,

8 a
(Xgi V+w, iX )+I(R) (X IX,)

i9R~ M)
=O. (4.7)

The integrals are now evaluated around one ion site
but the condition (4.7) must hold independent of which
site we choose.

It is appropriate to expand the model wave function
in spherical components about an origin at the ion site
where the R~ are being varied,

(4.13)

and

1 dX( 1 dg(
I.(R,)=

X~(Ri) «z( 4(«) «z)
Equation (4.13) would also hold if we had chosen a
slightly different model radius, R~'=R~+AR~. We take
dR~ to be in6nitesimal, so that

d2

P, (R,+DR—() ~((R()+DR)~((R() (4.14)
dr dr dr2

X((kr)
X~(r) =Z V~"(~,v).

L,m f

We may now write out (4.7) in detail,

(4.8)
A(R~+ ~Ri)Wh(Ri)+ AR~ A(R~)—

dr

The expansions for X~ and dX~/dr are slightly more
complicated, since X~ depends on y~, which depends on
R). We find that

R~

dr Xg*XgL V, (r) —A ((Rg))
~Rt 0

00

+ dr X)*X)LV,(r)+el, (r)j+I(R()
M) g)

1 ~A)d
X((R(+DR()=—X((R()+DR) — —X((R()

dr dr BR~ df

( R, aA)d2
+i 1+—

i

—X((R()
yP aR,) dr'

(4.15)

Ri

X (
dr Xg*Xg+ dr Xg*Xg

/

&A& 0

=0. (4.9) Xi(R(+DRi)=X)(Ri)+DRii 1+—
i

—Xi(R().
yP BR&~ dr

BA)
+ dr X,*X,+LA, (R,)+i,(R,)jX,'X,

c)Rz
=0.

(4.10)

Next we recall that for r&R~, the function X~(r) de-
pends on R~ through the parameter y~= L2(A~+X) j' '.
This follows from Eq. (2.13). For r)R&, the function
X~(r) is independent of R~. We use these results in
(4.9) and immediately obtain

8
dr LI(R()+A, (R))—V, (r)j (X,*X,)

y)BR) 0 8+g

Now we evaluate (4.13) at R~', substitute the ex-
pansions (4.14) and (4.15), and use the Schrodinger
equations (2.1) and (2.2) to eliminate O'P&/dr' and
d'X~/dr'. We find that the terms of order DRg must be
identically zero if the matching condition is to hold at
both R~ and R~'. From this requirement we obtain the
expression

Rs ~A)
2)it, (R()+Agf+ — L(R)) L(R))——

y)' Mg R)

l(1+1)
+yP =0. (4.16)

R)'
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TAnrz I. General optimized model potential parameters (in atomic units). The A~(E) for any element can be
obtained directly by interpolating this table.

E/Z'

0.2958
0.2551
0.2222
0.1953
0.1730
0.1543
0.1385
0.1250
0.1133
0.1033
0.0945
0.0868
0.0799
0.0739

1.450
1.991
2.532
3.115
3.735
4.387
5.083
5.842
6.628
7.421
8.298
9.196

10.135
11.151

L=O

A )/Z'

0.6894
0.5020
0.3948
0.3210
0.2677
0.2279
0.1967
0,1712
0.1509 2.650
0.1347 3./56
0.1205 4.767

2.066 0.1087 0.4840 5.809
2.653 0.0987 0.3768 6.808
3.296 0.0897 0.3033 7.805

A )/Z'

0.3773
0.2662
0.2097
0.1721
0.1469
0.1281

1=2
ZR~ Ai/Z'

0.0685
0.0637
0.0594
0.0555
0.0520
0.0488
0.0459
0.0432
0.0408
0.0385
0.0365
0.0346
0.0328
0.0312
0.0297
0.0283
0.0270

12.155
13.236
14.351

0.2505
0.2098
0.1782
0.1534
0.1334
0.1170
0.1037
0.0920
0.0825
0.0744
0.0675

2.475
3.533
4.544

3.992 0.0823 8.877
4.766 0.0755 9.954
5.612 0.0697 11.135
6.517 12.261
7.496 13 AA/l

8.546 14.706
9.644

2.087 10.864 0.4790
2.693 12.120 0.3712
3.365 13.437 0.2971
4.114 14.821 0.2431
4.956 0.2017
5.898 0.1695
6.936 0.1442
8.074 0.1239
9.313 0.1074

2.498
3.587
4.594
5.657
6.681
7.728
8.864

10.034
11,296
12.578
13.940

0.1126
0.1005
0.0898
0.0816
0.0744
0.0680

0.4039
0.2830
0.2200

0.4003
0.2/88
0.2176
0.1768
0.1497
0.1294
0.1128
0.0997
0.0885
0.0795
0.0717

6.285
8.192
9.873

11.534
13.070
14.604

0.1591
0.1221
0.1013
0.0867
0.0765
0.0685

5.852 0.1709
7.621 0.1312
9.259 0.1080

We are always free to choose Rt R~——* such that A ~(R~*)
= —eq(R~*). If we make this choice, then it follows im-
mediately from (4.16) that

as well. That is, the two conditions (4.11) and (4.12)
are equivalent. Therefore, to optimize the potential,
we simply select the model radii that allow us to match
the model potential smoothly to nt, (r) for each /&ls.

This optimization condition is actually almost an
obvious one. Ke might expect that eliminating dis-
continuities in the potential mould tend to decrease any
oscillations in the model-potential form factors at short
wavelengths. As we have already remarked, Animalu
and Heine' did notice that such oscillations were reduced
if A ~(E) was chosen roughly equal to Z/R~. However,
in their formulation it was impossible to achieve perfect
matching for all l. Of course, there still are discon-
tinuities in the derivatives of the potential at E~ that
give rise to small form-factor oscillations at large q. If
we had elected to construct a well varying linearly with
r, for example, we could presumably eliminate not only
the potential discontinuity, but also the first-derivative
discontinuity. Further discontinuities could be elimi-
nated by including higher powers of r in the model
potential. If this procedure were carried to the limit,
we would find that we had simply constructed the
Taylor series for the exact potential. One finds that

attempting to construct model potentials more compli-
cated than the simple square well introduces sufFicient
complications that the method is no longer practical.

C. Internal Consistency

At this point in our discussion it is worthwhile to
summarize the key constraints that we have imposed in
constructing the optimum model potential: (i) The core
potential is modeled only for l+lp where lp is the
maximum angular momentum of core states; (ii) the
model parameters A~(E) have been selected. to give
model wave functions X~(r) that have no nodes in the
core; and (iii) optimization requires that A& ———v&(R&).

Of these constraints, only the second can be regarded
as a fundamental requirement of the theory. Initially,
each constraint was established independent of the
others. For instance, in deriving the optimization condi-
tion we did not have to specify a range of l or that the
model wave function be nodeless. However, when im-
posed simultaneously, these constraints are no longer
independent.

To show this we apply the Wronskian theorem" to
the Schrodinger equations

d'iP((r) l(l+1)
+2et, (r)+2 V, (r) —2E fq(r) =0 (4.17)

dr' - r'
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FIG. 7. Optimized model-potential parameters versus energy
for l=0. These curves can be used to obtain A~(Ez) directly by
doing the linear extrapolation graphically.

FIG. 8. Optimized model-potential parameters
versus energy for l =1,2.

and ever, empirically we have found no apparent difficulties
d'xi f(3+1) in obtaining optimum model parameters for the modi-

—2At+2V, (r) —2E X~(r) =0. (4.18) fied model potential.
dr2 r2

Since the logarithmic derivatives of gi(r) and X~(r)
have been matched in determining A i(E), independent
of what E& we pick, the boundary terms vanish and
we are left with

D. Optimized Model-Potential Parameters

Model-potential parameters are calculated by assum-
ing that es(r) = —Z/r outside of the model radius. The
optimization condition is then simply

A i
——Z/Ri. (4.20)

dr LA i(Ei)+vs(r)]Pi(r) Xi(r) =0. (4.19)

Now, suppose that we require a nodeless X,(r) but
relax the constraint that limits the model potential to
i&le. For l) ls we have seen that gi(r) is nodeless in
the core. Therefore (4.19) cannot hold unless A i+vs(r)
changes sign in the range of integration, which precludes
having Ai ———vs(Ei). We conclude that, had we not
constrained l to be less than /0, we would have en-
countered an inconsistency in trying to optimize the
potential.

It is important to emphasize that we have achieved
internal consistency only in the sense that, having re-
quired the first constraint, we have avoided contradict-
ing the Wronskian theorem. We have not proved that
our three constraints are necessarily consistent. How-

We can obtain optimized parameters by interpolating
Abarenkov's" tables to find A& that satisfy (4.20). A
program has been written to carry out this interpola-
tion. The accuracy of the results is limited somewhat
by the fact that Abarenkov evaluated A& at widely
spaced values of E~. However, the 6gures are probably
accurate to two decimal places, which is really all the
accuracy required in view of the crude A&-versus-E
extrapolation that must be made.

The optimized model parameters are listed in Table I
and plotted in Figs. 7 and 8. The parameters for any
element can be obtained from this table using the
appropriate Z and the ionic-term values. To determine
AE at the Fermi energy it is necessary to extrapolate
linearly, as discussed in Sec. 2. We have done this for a
series of elements and listed the parameters in Table II.

TAnLE II. Optimized model-potential parameters (in atomic units) evaluated at the Fermi energy. These figures
can be regarded as accurate to at least two decimal places.

Element Ro(Er) Ao(E~) BAO/dE R& (Er) A g (Er) aAi/aE R2(Er) As(E~) BA 2/8E

I.i
Be
Na
Mg
Al
K
Rb
Zn
Cd
In

3.02
2.00
3.26
2.58
2.15
4.20

2.03
2.24
2.24

0.331
1.000
0.307
0.776
1.395
0.238
0.224
0.984
0.892
1.341

—0.186—0.202—0.231—0.286—0.326—0.294—0.336—0.355—0.424—0.454

2.71
2.19
1.82
4,00
4.48
1.45
1.75
2.01.

0.369
0.912
1.647
0.250
0.223
1.380
1.144
1.494

—0.196—0.058—0.044—0.120—0.159—0.484—0.513—0.224

2.33
2.16
2.75

0.860b
0.924b
1.089

0—0.571
+0.094

a No values are obtainable using the range of parameters in Abarenkov's tables,
& Obtajged by extrapolation beyond the range of Abarenkov's tables. ,
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TABLE III. Depletion holes evaluated using the optimized
model potential. OPW orthogonalization holes are given for
comparison.

Element

Li
Be
Na
K
Mg
Al
Rb
Zn
Cd
In

—v/~

0.08367
0.06218
0.08923
0.12533
0.07568
0.06564
0.14569.
0.07306
0.08629
0.07225

popw/g

0.068
0.057
0.074
0.144
0.079
0.076

0.138

a Computed without l =2 terms.

It is worth noting that the values of A, (Er) and the
corresponding R~(Er) do not differ much from those
given by Animalu. "However, the difference is enough
to make significant changes in the form factors.

S. NUMERICAL RESULTS

Bm BEl—= —P S(R,—r) t A,+v, (r)jP,
l=O BE

o BAl
O(R( r) P). (5.3)—

l-o BE

For the optimized model potential A ~
———v~(R~), so that

the first term in (5.3) vanishes. Therefore, to lowest
order in m, the depletion hole is

4 'o BAl
p=- E(2I+1)

~ l=o BE

"R. W. Shaw, Jr.,
(1967).

1 1

ds x
0 0

Xy'k p'R0 (x)jPLk rR&(x)xyf. (5.4)
and W. A. Harrison, Phys. Rev. 163, 604

The general expressions for the screened form factor
and the depletion hole given recently by Shaw and
Harrison'~ hold without modification for the new opti-
mized model potential. However, the details of the
expressions used for computation must be altered
somewhat.

We look first at the depletion hole'~

Bzv

p = —Q d'r x„*(r) x„(r) . (5.1)
k(kF g~ BEI

The derivation of this expression does not depend on the
detailed structure of the model potential m and is
therefore valid for the optimum potential

lo

w= V, (r)+vb(r) —P O(R(—r)LA(+vg(r) jP(. (5.2)
l~

We need only require that Q~) ~~a-El' for every /. To
obtain an explicit expression for p we differentiate
(5.2), recalling that R&(E) is now a function of energy:

This expression differs from the one used previously to
compute p, in that it accounts for the energy dependence
of R~(E) in integrating over k and the sum over / goes
only to l'0. These differences are sufficient to alter the
values of p given by Shaw and Harrison. We have
computed new depletion holes for a group of elements.
The results are given in Table III and compared with
orthogonalized-plane-wave (OPW) orthogonalization
holes. 5 It is interesting to note that the depletion hole
for beryllium, which was previously found to be nega-
tive, '~ becomes positive when calculated with the new
potential.

We have computed form factors using the approxi-
mate bare model potential given in Eq. (3.4). The
errors inherent in neglecting the v„„(r) term in (3.2)
are insignificant compared with the inaccuracies in the
A~(E). From (3.4) the local and nonlocal contributions
to the unscreened form factor are"

and
v, = —4v Z/g'Qv (5.5)

where Qv is the atomic volume Q/X.
The screened form factor is calculated exactly as in

Shaw and Harrison. A program has been written to
evaluate these form factors, as well as band-structure
energies and effective interactions between ions, for the
optimum model potential. "The form factors for a group
of eight elements are given in Table IV. There are
several interesting features of these results that we
should mention. The form factors tend to be somewhat
smaller than the previous model-potential or pseudo-
potential results in the region of the first few reciprocal-
lattice vectors. In addition, the optimized form factors
decay more rapidly than those of Animalu" at short
wavelengths. The small oscillations that remain are due
to discontinuities in the derivatives of the potential at
R~(E). Finally, we note the dip in the indium and
cadmium (lo ——2) form factors below q= 2kr. This is not
a spurious eGect, but arises from the I= 2 contribution
to the nonlocal part of the form factor.

Note that the model-potential form factor is nonlocal,
that is, it depends not only on the scattering momentum

q, but also on the initial-state wave number k and on the
scattering angle. The results given in Table IV are
computed for scattering on the Fermi surface when

q&2kF and for backscattering when q) 2kF. To illus-

trate the k dependence of the form factor, we have

See Ref. 17 for notation.
'9 A report containing a complete listing and discussion of the

program used in these computations is available on request, from
Reports Once, W. W. Hansen Laboratories, Stanford University,
Stanford, Calif. 94305 (unpublished).

0 1

f(k, g) = ——P(23+1)P~(cose)A~RP dx
o l=o 0

Xx(x—1)jt (k'R(x) j&(kR&x), (5.6)
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plotted in Fig. 9 the indium form factor computed for
scattering on various energy shells. In Fig. 10, we have
plotted the indium form factor as a function of scatter-
ing angle for two scattering momenta and an initial-
state momentum of k=-,'kg. The table included in the
figure gives the corresponding form factors for energy-
shell and Fermi-surface scattering. It is evident that
the value of the nonlocal form factor can differ from
ot, (ks) by up to an order of magnitude. In calculations
of metallic properties it is important to include correctly
the full nonlocal model potential.

We have plotted the optimized form factor for alumi-
num in Fig. 11 and have compared it with Animalu's"
results. The comparison is not really relevant, since
the form factors given by Animalu were computed
using a potential which was not internally consistent. '~

We should emphasize that both the reformulation of
the model potential discussed earlier'~ and the modifica-
tions and optimization given here are based on first-
principles arguments and do not represent an attempt
to obtain agreement with experimental results. It is
now important to determine how well the reformulated

TA33LE IV. Form factors for eight metals evaluated using the optimized model potential. ms'P~(ks) is in atomic units.
For q&2kz these results describe scattering on the Fermi surface; for q&2kJ they describe backscattering.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
4.0
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
5.0
5.4
5.8
6.2
6.6
7.0

—0.11564—0.11374—O.iiiii—0.10686—0.10117—0.09428—0.08641—0.07783—0.06878—0.05948—0.05012—0.04084—0.03176—0.02297—0.01452—0.00646
0.00122
0.00851
0.01546
0.02212
0.02880
0.03228
0.03467
0.03628
0.03721
0.03755
0.03740
0.036g3
0.03591
0.03470
0.03327
0.03166
0.02992
0.02gi0
0.02622
0.02432
0.02243
0.02057
0.01876
0.01702
0.01537
0.01380
0.01234
0.01099
0.00975
0.00862
0.00760
0.00669
0.00589
0.00519
0.00458
0.00297
0.00230
0.00209
0.00200
0.00184

—0.35274—0.34631—0.33403—0.31470—0.28976—0.26086—0.22960—0.19740—0.16541—0.13444—0.10506—0.07758—0.05215—0.02879—0.00744
0.01202
0.02974
0.04589
0.06066
0.07430
0.08742
0.09152
0.09321
0.09327
0.09199
0.08964
0.08643
0.08256
0.07819
0.07347
0.06852
0.06346
0.05838
0.05336
0.04848
0.04379
0.03934
0.03515
0.03127
0.02770
0.02446
0.02154
0.01g95
0.01667
0.01468
0.01297
0.01152
0.01030
0.00930
0.00847
0.00781
0.00627
0.00558
0.00495
0.00413
0.00322

—0.07945—0.07815—0.07662—0.07415—0.07081—0.06674—0.06206—0.05694—0.05150—0.04588—0.04022—0.03460—0.02913—0.02387—0.01888—0.01420—0.00986—0.00586—0.00222
0.00107
0.00410
0.00628
0.00798
0.00923
0.01008
0.01056
0.01071
0.01059
0.01024
0.00970
0.00900
0.00819
0.00729
0.00633
0.00534
0.00433
0.00333
0.00234
0.00140
0.00049—0.00035—0.00113—0.001g4—0.00248—0.00304—0.00352—0.00393—0.00425—0.00450—0.00468—0.00478—0.00460—0.00373—0.00254—0.00137—0.00044

—0.17482—0.17185—0.16688—0.15895—0.14851—0.13612—0.12236—0.10783—0.09304—0.07844—0.06437—0.05110—0.03882—0.02764—0.01763—0.00881—0.00117
0.00531
0.01070
0.01506
0.01859
0.02038
0.02109
0.02098
0.02020
0.01888
0.01715
0.01510
0.01285
0.01047
0.00803
0.00561
0.00324
0.00098—0.00114—0.00309—0.00485—0.00640—0.00772—0.00883—0.00971—0.01037—0.01082—0.01107—0.01113—0.01101—0.010/5—0.01035—0.00983—0.00922—0.00853—0.00541—0.00247—0.00041
0.00057
0.00061

—0.28664—0.28144—0.27152—0.25587—0.23562—0.21210—0.18664—0.16045—0.13454—0.10970—0,0g647—0.06520—0.04611—0.02926—0.01465—0.00222
0.00813
0.01651
0.02306
0.02794
0.03145
0.03243
0.03191
0.03032
0.02792
0.02490
0.02145
0.01772
0.01386
0.00997
0.00615
0.00249—0.00095—0.00410—0.00695—0.00944—0.01157—0.01333—0.01471—0.01572—0.0163g—0.016/2—0.01674—0.01648—0.01598—0.01527—0.01438—0.01335—0.01221—0.01099—0.00974—0.00487—0.00120
0.00068
0.00094
0.00023

—0.05193—0.05091—0.04996—0.04840—0.04630—0.04373—0.04076—0.03748—0.0339g—0.03036—0.02670—0.02308—0.01956—0.01621—0.01309—0.01022—0.00765—0.00540—0.00349—0.00193—0.00072
0.00043
0.00129
0.00187
0.00217
0.00223
0.00209
0.0017g
0.00134
0,00081
0.00021—0.00042—0.00108—0.00172—0.00235—0.00294—0.00348—0.00396—0.00438—0.00474—0.00503—0.00524—0.00539—0.00547—0.00548—0.00543—0.00533—0.00518—0.00498—0.00474—0.00447—0.00320—0.00191—0.00087—0.00022
0.00002

Cd

—0.18367—0.17929—0.17469—0.16730-0.15/57—0.14601—0.13316—0.11955—0.10565—0.09182—0.07839—0.06555—0.05346—0.04218—0.03174—0.02213—0.01330—0.00518
0.00231
0.00930
0.01603
0.01993
0.02287
0.02500
0.02642
0.02722
0.02748
0.02729
0.02673
0.02585
0.02471
0.02338
0.02189
0.02030
0.01863
0.01691
0.01519
0.01348
0.01180
0.01017
0,00861
0.00712
0.00573
0.00444
0.00325
0.00217
0.00119
0.00033—0.00043—0.00107—0.00162—0.00287—0.00294—0.00230—0.00137—0.00048

—0.21184—0.20779—0.20156—0.19169—0.17886—0.16386—0.14753—0.13062—0.11378—0.09752—0.08218—0.06795—0.05490—0.04300—0.03212—0.02208—0.01264—0.00352
0.00562
0.01512
0.02554
0.02997
0.03327
0.03557
0.03723
0.03809
0.03831
0.03790
0.03716
0.03586
0.03431
0.03239
0.03022
0.02784
0.02531
0.02267
0.01997
0.01726
0.01457
0.01194
0.00942
0.00702
0.00479
0.00275
0.00091—0.00070—0.00208—0.00322—0.00412—0.00478—0.00522—0.00504—0.00284—0.00020
0.00160
0.00204
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FIG. 10. Indium form factor as a function of scattering angle
for two scattering mornenta.

FIG. 9. Optimized model-potential form factors for indium calcu-
lated for scattering on various energy shells.

model-potential theory can predict various experimental
observations.

We have used the optimized model potential in two
calculations of metallic properties. The energy-wave-

FIG. 11.Optimized model-potential form factor for aluminum.
The form factor obtained by Animalu is given for comparison.
These form factors are obtained by taking If, I

= Iit+g I
=As for

q&2kz and k+q antiparallel to k for q&2hz.

number characteristics5 have been computed for a group
of simple metals and the results have been used to
evaluate the band-structure energy and thereby to de-
termine stable crystal structures for these metals. The
details of this work will be reported in a separate paper.
We have also studied the properties of liquid metals
using the optimized model potential. "A paper on this
work is forthcoming.
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