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confirmation of the theory for the magnetic-field-
induced surface quantum states.

Throughout the present work, we have aimed to
illustrate how various physical parameters can be
obtained from an analysis of the experimental data.
Certain refinements in the calculation (as well as in the
experiments) will be necessary to eventually produce a
point-by-point fit of experiment and calculations. In
view of remaining discrepancies, it would only be
fair to emphasize that the present work is meant as an
"in principle" demonstration of what one can learn. The
assignment of the oscillatory signal, as due to a ridge

along the Fermi surface of indium, must be considered
as tentative until more exhaustive studies have been
completed.
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The lattice dynamics of the fcc lattice has been investigated with a model in which interatomic forces in-
clude, in addition to central forces, angular forces of the type suggested by de Launay. The model has been
applied to copper, and results have been compared with a model investigated previously which had angular
forces of the type employed by Clark, Gazis, and Wallis.

INTRODUCTION

ECENTLY, the authors' have investigated the
lattice dynamics of fcc metals using a model in

which, in addition to central forces, angular forces of
the type employed by Clark, Gazis, and Wallis' (CGW)
were included. The CGW model was applied to copper.
The angular forces in this model arise from the re-

sistance to deformatioo of certain angles formed by
three lattice points. The change in the potential energy
due to a change 80 in the angle 0 is given by —',«(80)',
where ~ is the angular-force constant.

de Launaya has considered another type of angular

force which depends on the angle that the line joining
the moving atoms makes with the equilibrium position
of the line. The mechanical analogy is a rod connecting
the particles, the rod being fastened at its ends to the
equilibrium position by springs perpendicular to the
rod. Hendricks, Riser, and Clark4 have used a model

that has central forces up to second neighbors and

angular forces up to first neighbors to calculate the
vibrational spectra and specific heats of lithium and
vanadium (bcc lattice). In the present paper, we in-

vestigate a model for the fcc lattice that has central
and angular forces (de Launay type) up to and in-

~ P. S. Yuen and Y. P. Varshni, Phys. Rev. 164, 895 (1967).
2 B. C. Clark, D. C. Gazis, and R. F. Wallis, Phys. Rev. 134,

A1486 (1964).' J. de Launay, Solid State Phys. 2, 220 (1956).
4 J.B.Hendricks, H. N. Riser, and C. B.Clark, Phys. Rev. 130,

&S77 (&96&).

eluding second neighbors and apply this model to
copper. This model will be called the DAF (de Launay
angular-force) model. '

DAF MODEL

We consider a monoatomic fcc lattice and represent
the central-force constants for the first and second
neighbors by e1 and n2 and the angular-force constants
by o-1 and o-2.

As shown by de Launay, ' the displacement that is
effective for the angular-force constant o. due to dis-
placements s and s„of the particle m and particle e,
respectively, is given by e „)&(s„—s ), where e „ is
the unit vector from the particle m to the particle m.

Thus the change in potential energy due to s and s„ is

Using standard methods, the secular equation for the
determination of the angular frequencies co may be
derived. We merely quote here the result:

where 3E is the mass of a particle and I is the 3)(3 unit
matrix. The elements of the dynamical matrix D(q)
are as follows:

4n'1+801 2(nl+&1)C1(C2+C3)
4'trlC2C3+4n2S1'+4oe(52 +S,'), (3)

~ Not to be confused with the better known de Launay electron-
gas model.
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Fjo. 1. Dispersion curves of copper at 300'K. The curves shown are theoretical ones obtained from the DAF model.
Experimental points: ~ (Ref. 6), p (Ref. 7).

and

D,„=2 (nt —o t)StSs i

where
C;= cosmak, , S;= sinmak;;

kr, ks, and ks are components of k in Cartesian coordi-
nates, and a is the lattice constant.

As was the case in Ref. 1, we determine the four
force constants in terms of the three elastic constants
c», c», and c44 and the longitudinal-phonon frequency
v b in the L100) direction at the Brillouin-zone boundary
given by

experimental data used are the same as those given in
Table I of Ref. 1. The force constants calculated from
Eqs. (7)—(10) are shown in Table I. The dispersion
curves were calculated from the 300'K data and are
compared with the experimental data' ' in Figs. 1(a)
and 1(b). Recently, Svensson, Brockhouse, and Rowe'
have accurately measured the dispersion curves of
copper; their results are close to those of Sinha. ' The
histogram for the vibrational frequency distribution

g(v) is shown in Fig. 2. The calculated effective calori-

»= (1/~) L(2/M) (nt+ ~t)7".
The resulting expressions are as follows:

nt ——sa(cts+c44)+4' vs'M,

Clg= 4GCy] 47& Pg ~ ~

o 1— (4lrI+c24 )c+47I p4s M,
and

0's= sG(crs+3c44) —st ps M .

(6)

(7)

(8)

(9)
D

Zl

C7I

6

5-
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TABLE I. Force constants for copper. All values are
in the units of 10' dyn/cm.

Temp. ('K)

0
300

32.99 1.500
31.66 1.344

—4.248 2.304—3.913 1.833

APPLICATION TO COPPER

With a view to comparing this model with the CGW
model treated in Ref. 1, calculations were carried out
for copper at two temperatures, 0 and 300'K. The

I

9 (IO' cps )

FzG. 2. Frequency-distribution histogram for copper at O'K.

S. K. Sinha, Phys. Rev. 143, 422 (1966).
D. Cribier, B. Jacrot, and D. Saint-James, in Proceedings of

the International Atomic Energy Agency Symposium on Inelastic
Scattering of S'eutronsin Solids and Liquids, Vienna, 1960 (Inter-
national Atomic Energy Agency, Vienna, 1961),p. 549.

E. C. Svensson, B. N. Brockhouse, and J. M. Rowe, Phys.
Rev. 155, 619 (1967).
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v(Ts) = (1/2m) {(1/M) [2m vbsM(1 —Cr)

+ (2aC44 s vb2M)S121}l/2. (15)DISCUSSION

metric (0'n) Debye temperatures are shown in Fig. 3, and
along with the experimental points due to Martin. ' "

The CG%' model examined in Ref. 1 and the DA.F
model considered in this paper both have four param-
eters and a comparison would be appropriate. The
results for the dispersion curves can be conveniently
compared by writing down the expressions for the
frequencies directly in terms of the elastic constants
and vb. These are given below.

COW Model

(i) [$00) direction:

v(L) = (1/2s){(1/M)[2''vb'M(1 —Cr)

+ (ac»—~'vbsM)Srsj}'/' (11)

v(T) = (1/2s){ (1/M)[(acrs+ac44 —2s'vb'M)

X (C,—1)+(-', acts+-,sac44 —m-'vb'M)

XSr'$}"'; (12)

(ii) [gOj direction:

v(I )= (1/2s) {(1/M) [(acts+ ac44—2w'vb M)

X (Cl 1)+(acll+ sac12+ sac44

~2v 2M)S 2j}1/2 (13)

v(Tr) = (1/2s) {(1/M) [(acrs+ac44 2vbsMs)—
X (Cr 1)+(acti sacls+ sac44

~2v 2M)S 2)}1/2 (14)

b D. L. Martin, Can. J. Phys. BS, 1'I (1960).
+ D. L. Martin, Phys. Rev. 141, 576 (1966).

(iii) [{ggdirection:

v(L) = (1/2~)[(a/M) (crr+2crs+4c44)]'"Sr, (16)

v(T) = (1/2w) [(a/M) (crt—crs+ c44) j'/ Sr. (17)

DAF Model

(i) [{001direction:

v(L) = (1/2s) {(1/M) [2' vb'M(1 —Ct)

+ (acrt s.svbsM)Sls)}t/2, (18)

v(T) = (1/2s) {(1/M) [s'vbsM(1 —Cr)

+ (ac44—srs'vbsM)Srs1}'"; (19)

(ii) [g0$ direction:

v(I ) = (1/2s ){(1/M) [s'vb'M (1—Cr)

+ (actr+acrs+2ac44 —ss'vb'M)Sr'f}"', (20)

v(T )= (1/27r){ (1/M)[ vb M(1—C )
+ (acr t acrs s7r'v—b'M)S—pj}"'

p (21)

v(T,)= (1/2 ){(1/M)[2vr' b'M(1 —C )
+ (2ac44 —s'vb'M)Srs j}r/') (22)

(iii) [gQ direction:

v(L) = (1/2s )[(a/M) (crt+ 2crs+4c44) )'"Sr, (23)

v(T) = (1/2 )[(a/M) (c —c„+c,.)j /'S, . (24)

On comparing these two sets of equations, we note
that the longitudinal dispersion curves in the [{'00j
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direction, the transverse dispersion curves T2 in the
)t'i'01 direction, and the longitudinal and transverse
dispersion curves in the (gt'j direction are identical
for the two angular-force models. Figure 1(a) and 1(b)
of this paper and Figs. 3(a) and 3(b) of Ref. 1 show
that for the remaining three branches the curves from
the DAF model are in poorer agreement with the
experimental data than those from the CGW model.

The frequency spectrum for the DAF model, while
showing two peaks as in the case of CGW model, gives
a somewhat greater weight to the low-frequency peak
as compared with the spectrum obtained from the CG%
model.

The theoretical curve for O~~ lies below the experi-
mental points over the whole temperature range. The
curve shown in Fig. 3 was obtained from the O'K fre-
quency-spectrum histogram. If calculations are carried

out in the quasiharmonic approximation, the theoretical
curve is found to be lower than that shown in Fig. 3,
i.e., the divergence from the experimental data is
greater.

Further, note that the DAF model seers from the
defect of not being rotationally invariant. The CGW
model, on the other hand, is rotationally invariant. "

In conclusion, we hand that for copper the CGW
model is better than the DAF model.
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A modified form of the Heine-Abarenkov model potential is proposed. The core potential is replaced with
a constant potential A & only for those angular momenta for which there are core wave functions. Also, the
model radius 8& is allowed to be diferent for each / and to depend on energy. It is shown that this potentia]
can be optimized using a variational procedure. The optimum model parameters are obtained by choosing
an R~ such that A~ = —v(R~). The optimized form of this modi6ed model potential has several advantages.
It provides a unique prescription for selecting model radii, and it eliminates the necessity of approximating
the 3& for /&2. Also, the form factors tend to decay rather than oscillate at short wavelengths. The linear
extrapolation of A& versus 8 proposed by Animalu is shown to be valid for most simple metals. Optimum
model potential parameters are obtained, and form factors and depletion holes are evaluated for a group of
simple metals using the optimized model potential.

l. INTRODUCTION

l
'HE Heine-Abarenkov (HA) model-potential the-

ory' —' is, in a sense, a cross between the quan-
tum-defect method4 (QDM) and the pseudopotential
method. 5 As in the pseudopotential method, the deep
potential at each ion center is replaced with a shallow
potential which is chosen so that the valence-electron
wave functions have no nodes within the core. The
actual value of the model potential, chosen for con-
venience to be a constant A~ for each value of angular
momentum /, is determined in the spirit of QDM. One

~ Work supported by the Advanced Research Projects Agency
through the Center for Materials Research at Stanford University.

t NASA trainee.' V. Heine and I. V. Abarenkov, Phil. Mag. 9, 451 (1964).' I. V. Abarenkov and V. Heine, Phil. Mag. 12, 529 (1965).' A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).
F. S. Ham, in Sold State Physics, edited by F. Seitz and D.

Turnbull (Academic Press Inc. , New York, 1964), Vol. 1, p. 127.
~ W. A. Harrison, I'seldoPotenticls irl, the Theory of 3fetals

(W. A. Benjamin, Inc., New York, 1966).

chooses a radius 831 outside the core and then adjusts
A g until the logarithmic derivative of the wave function
inside R3f precisely matches the logarithmic derivative
of the Coulomb wave function outside E~. This match-
ing is done only at the free-ion-term values, since only
for these energies can we evaluate the external wave
function without knowing the core potential (it is the
Coulomb wave function that decays at infinity).

There are several features of this procedure that
have never been adequately discussed. First, a single
value of R~ is chosen for all l. This is not a necessary
restriction but was made largely for simplicity. The
choice of R~ for each element seems to have been
somewhat arbitrary. Heine and Animalue did notice
that if they selected At—ZjRst, the magnitude of the
form-factor oscillations at short wavelength (large g)
was reduced. Aside from this observation, no criterion
has ever been given for the choice of model radius.

e A. O. E. Animalu and V. Heine (Ref. 3), Sec. 4.


