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A numerical analysis is made of the theoretical formula for the line shape of the surface-impedance
oscillations that result from microwave transitions between magnetic-field-induced surface quantum
states. After some general considerations of how such calculations depend on relevant physical parameters,
we present a critical comparison of the calculated and experimental curves. We illustrate how the theoretical
analysis of the experimental data gives the Fermi velocity (provided the shape of the Fermi surface is
known), electron mean-free time, the probability of specular reflection, all for electrons on a very small
region of the Fermi surface. In addition, a parameter characteristic of the depth of penetration of the
microwave electric field, namely, the skin depth 5, can be evaluated.

I. INTRODUCTION
' 'N the presence of a magnetic field, electrons skipping
. along the surface of a metal by periodic specular

reRection form quantum-mechanical bound states.
Microwave transitions between these surface quantum
states account for the oscillations of the surface imped-
ance observed in weak magnetic fields. In a previous
paper' the theory of such surface states has been
presented together with a consideration of their con-
tribution to the impedance in a magnetic field.

The present work is devoted to the evaluation and
numerical analysis of the expressions for the surface-
impedance derivative. The emphasis here is on the
calculation of the line shapes of the microwave signals,
and a comparison with some representative experi-
mental data. Not only do these calculations serve as a
convincing confirmation of the theory, but they also
illustrate how a systematic evaluation of the experi-
mental data gives quantitative information on Fermi-
surface parameters and scattering times of the electrons.

The essential result for the surface-impedance deriva-
tive dZ/dH is contained in Eq. (39) of Ref. 1 as

Z*.(&)= — [Z*.(o)3'
dH h(2rr)' dII

&& dk„n,Q . (1)
&mn+&f mn

For simplicity the x direction is chosen to coincide with

one of the principal axes of the impedance tensor. The
magnetic field lies along the y coordinate axis and is

parallel to the cylindrical sheet of the Fermi surface
that contains the skipping electron states. The sample
surface is the x-y plane. The integration over k„is to
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u „= ds C„(s)E(s)C„(s).
E(0) p

(2)

In the denominator of the summation cv and ~„are,
respectively, the experimental microwave frequency
and the difference frequency (e —e„)/h of two surface
states characterized by quantum numbers m and e.
The factor I'

„
is equal to s (1' +1'„),where I' and 1'„

represent the frequency width of the mth and eth
quantum states. Aside from the rather obvious sim-
plification of the Fermi-surface geometry, the essential
approximation that has gone into the derivation of
Eq. (1) is the consideration of the small signal limit;
that is to say, the surface-state resonances are con-
sidered to be a small perturbation of the impedance.

There is another aspect of this calculation that is
worth emphasizing. The surface-state resonances are a
purely quantum-mechanical affair where the resonance
frequency or „appears as a difference in the quantum-
Inechanical frequencies for the bound electron states.
This fact necessarily dictates the derivation of the
impedance in terms of matrix elements and the Lorentz-
ian response function, instead of the more conventional
transport-equation approach. Indeed, it is readily seen,
that in a classical approach to the problem, the consider-
ation of skipping orbits would lead to resonances
related to the skipping frequencies. Only in the limit
of high e does the classical skipping frequency approach
the quantum-mechanical beat frequency co „.

We proceed first with a consideration of the matrix
elements n „and a brief discussion of the linewidth
factor F „.Subsequently we explore the dependence
of several sample calculations on relevant physical
parameters. The final section is devoted to a detailed
fitting of the calculations to some characteristic experi-
mental data, to illustrate how various physical param-
eters can be extracted from the data.

be extended over the length of the Fermi surface. The
quantity o.

„
is the matrix element of the electric field

E(s) taken between the s-dependent factors in the wave
functions for the surface quantum states, i.e.,
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II. MATRIX ELEMENTS AND LIFETIMES

The first step in the calculation is the consideration
of the matrix elements rr „asdefined in Eq. (2). From
this definition we see the matrix elements are a measure
of the overlap of the surface-state wave functions with
the electric field in the radio-frequency skin layer, and,
as such, will inQuence decisively the amplitude and
shape of the resonances. The evaluation of the matrix
element for the dominant terms in the summation is
done by numerical integration.

First we require the form of the electric field E(z)
appropriate for the anomalous skin-eRect regime. For
the case of specular scattering and E in a principal
direction, this form appears as

E( )

o) KLECTRC FIELD E(z)

t

IO

E(z) 9 "x cos(xz/8)= ——(1—i/V3) dx,
E (0) 4vr p X Z

(3)

where b is the skin depth. The sirnplifications made at
this point are not so great as to leave substantial doubt
in the final results. ' The function E(z)/E(0) is readily
computed by numerical integration. Real and imaginary
parts of this electric field are displayed in Fig. 1. In
passing we note that, inasmuch as the characteristic
depth of penetration for the skipping electrons is several
8, the formulation of E(z) as in Eq. (3) is indeed quite a
necessary complication. A more approximate form, such
as E(z) ~ exp( —(1—iv3)z/8j, which is valid for small

s, would lead to substantially different values for the
3Q

The one-dimensional wave functions C„(z)for the
surface states are the Airy functions. Suitably normal-
ized, they appear as

I) SURFACE STATK WAVE FUNCTIONS AND ENERGY LEVELS.

FIG. 1. Hardware used for the computation of the matrix
elements n . (a) gives the form oi the electric 6eld in the
anomalous skin-effect regime. (b) is a sketch of the wave func-
tions and energy-level scheme for electron states in a triangular
potential well. Microwave transitions induced between the states
(as indicated in the figure) give rise to series of spectral lines, each
characterized by a given ground state.

with

and
f= (2eHE/Ii)"'z

—Ai(g —t „)
dt

The f „aresuccessive roots of the Airy function, i.e.,
Ai( —f„)=0. The factor E that enters in the definition
of n represents a local radius of curvature of the Fermi
surface in k space. For the detailed derivation of the
equations, we refer the interested reader to Ref. 1, but
to aid in visualizing these results, we sketch a few of the
lower-lying states and their corresponding wave func-
tions in the lower part of Fig. 1. These wave functions

' Diffuse reaction is known to make a very small numerical
change in the value of Z(s). rR. G. Chambers (private communica-
tion. )j If the current and field are not in a principal direction,
some small but tedious complications ensue. We have not yet
pursued the numerical aspects of this complication.' T. W. Nee, Ph. D. thesis, University of Maryland, 1968
(unpublished). (This aspect, as well as many other details, are
explored more fully in this thesis report. )

represent the periodic s-directed motion of the electrons
in the triangular potential well. The magnetic field
dependence of the matrix elements is contained in the
field dependence of the 4„(z).

From this point on the numerical evaluation of the
e

„
is completely straightforward. As might be ex-

pected, the matrix elements for states confined most
closely to the surface (i.e., the low-lying state r=1, 2,
etc.) are largest in amplitude. Successively higher-order
matrix elements (increasing e and m), at constant
magnetic field, diminish rapidly in amplitude. This
makes it possible to terminate the summation implied
in Eq. (1) after a finite number of terms. The variation
of the matrix elements, for fixed e and m, with changing
Inagnetic field II is also exactly as expected. Decreasing
H implies an increase in s„,the maximal depth of
penetration of the classical trajectory, and consequently
a decrease in the absolute value of the Inatrix element.

We turn next to a consideration of the effect of the
finite lifetime on the surface states. This appears in
terms of a frequency width I'„for each of the states.
The resonant response for transitions between pair
states (e,m) consequently has a width proportional to
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=—', (I'„+I'), as implied in Eq. (1). The essential
contributions to the finite lifetime are, on the one hand,
phonon and impurity scattering, on the other, the
possible failure of specular reQection at the metal
surface because of some sort of surface roughness.
This state of affairs is expressed (following the deriva-
tion in Ref. 1) by writing I' as the sum of two terms

I'„=1/r+AH. (7)

III. SURFACE-IMPEDANCE CALCULATIONS

To proceed with the evaluation of the expression for
the surface-impedance derivative t Eq. (1)j, we make
next a convenient (and not necessarily justified)
simpli6cation. Whereas, in principle, the quantities
e„o.„,or „,andI' „arefunctionsof k„,we take these
as constant and equal to their value at the position on
the Fermi surface where ~ „hasan extremal value.
In practice this amounts to considering the Fermi-
surface section responsible for the signals, in the form
of a cylinder with constant relaxation time and Fermi
velocity. To some extent this "cylindrical approxima-
tion" is justi6ed from the experimental observation on
the angular variation, polarization, and tip dependence
of signals. The cylindrical approximation, although not
necessary in principle, makes for a significant simpliGca-
tion in the computations.

In order to discuss the results of our calculation in
general terms, we introduce a suitably normalized
magnetic field h as

e s,
h=H-

h M(2E)'~'~

in terms of which the resonant-field values h „are
given by

~-= (l---f-)-" (9)

The matrix elements n „depend on the value of the
magnetic Geld II through the surface-state wave
functions C„(s).They also contain the microwave skin
depth 8 as a parameter. We express this dependence

~ J. F. Koch and C. C. Kuo, Phys. Rev. 14', 470 (1966).

In this expression ~ is the mean-free time between
successive phonon or impurity scattering events, and
the second term represents a "reasonable" form of
surface scattering rate. ' The constant A is independent
of e and represents a measure of the surface asperity.
While the linear variation of surface scattering with
6eld is perhaps no more than an educated guess, we
do consider it here in this form to illustrate how "in
principle" one can extract from the data information
on surface scattering. The important fact to note here is
that the bulk-scattering time is independent of the
magnetic field strength, whereas the surface-scattering
rate has an explicit dependence on Geld.

through a quantity P defined by

(i
(2Z~&

(10)

With the assumption of cylindrical Fermi-surface
geometry and the substitution of the normalized Geld
coordinate and parameters, our formula for the imped-
ance derivative now appears as

=const
da

n..s(p h) && (i—VS)
x—p (12)

dh ~ " 1—hs~'O —t )+sL(1/($r)+g/g]

The phase factor in the numerator results from the
usual expression for Z(0) in the anomalous skin-effect
regime, i.e., Z(0) =R(0) (1 i%3)—The c. onstant appear-
ing in front of the equation is a positive real quantity.
As expressed above, the impedance derivative depends
on four adjustable parameters, namely, the skin-depth
parameter P, the relaxation-time parameter oir, the
surface-scattering parameter a, and the scale parameter
connecting the actual magnetic Geld H to the normal-
ized 6eld h. This scale factor contains the Fermi-
surface parameters E and ss Lsee Eq. (8)], as well as
the microwave frequency co. The 6eld scale parameter
will not a8ect the line shapes or amplitudes of the
resonances, but merely adjusts scales to Gt the actual
data.

In principle, the summation implied in Eq. (12) is
extended over all possible pairs of surface states.
However, in practice, the matrix elements 0. „decrease
rapidly enough with increasing m or e to allow us to
terminate the sum after a finite number of terms. To
explore this convergence question we have calculated
separately a number of series, each characterized by a
diGerent ground state e, as a function of h. We choose
representative values of P=0.5, oir= 10, and for
simplicity take a=0. The results for the real part of
dZ/dH appear in the first part of Fig. 2. Individual
series for n= j., 4, and 10 are shown together with the
sum over the entire 20 series, all on the same vertical
scale. An examination and comparison of the individual
series with the sum curve will convince the reader that
the interference between series is an essential feature in
the line shape, linewidth, and amplitude of the final

Except for a numerical factor (approximately s), P
represents the ratio of the maximal depth of penetration
of the e= 1 trajectory to the skin depth 6 at the position
of the fundamental resonance k~2 ——0.432. As defined
in Eq. (10), P is inversely proportional to the skin
depth and is independent of magnetic 6eld. We also
choose to express surface scattering by a normalized
parameter

~= (H/a)(1/ )A.
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dR
dH

INDIUM (III

H [ioi]
T=4.2 K

f =54.5GHz

FIG. 7. Comparison of
experimental and best-fit
calculated curves for indium
(111)-plane data at 54.5
GHz. Parameters used in
the calculation are indicated
on the figure. The ampli-
tudes have been adjusted
arbitrarily to appear similar
in the two tracings.

dR
dH

'V') V 40 50

P =.~5
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Fermi surface with constant velocity and relaxation
time v. As noted earlier, although this assumption is
not necessary in principle, it makes for a significant
simplification of the calculations. In real Inetals we are
not likely to encounter such very simple Fermi-surface
geometry and it may well be necessary to calculate the
k„integral. The quantities 0, „,r, a, and the scale factor
H/O become functions of k„.That is to say, each slice
of the Fermi surface normal to the field will give its
own characteristic oscillation spectrum, with the central
section, say (where the parameters presumably have
stationary values), dominating the resulting signal. To
explore the nature of k„broadening we have carried
out such a calculation for the gently anisotropic model
of an elongated ellipse (see Fig. 6). As expected, the
central section makes the most important contribution,
but there is a noticeable increase in linewidth, which
results from the addition of signals due to neighboring
sections. It is readily evident that, when there is
substantial k„broadening, the position of the peaks is
shifted somewhat, and it is dificult to exactly determine
the value of v. The k„broadening is expected to be
nonsynunetric, because the extremal value of H/h will

usually be either a minimum (belly-like) or maximum
(neck-like), so that k„slicesneighboring the stationary
one will contribute resonances at greater (lesser) field
values. However, by an examination of the temperature
or frequency dependence (as in the following section),
it may be possible to separate unambiguously the two
contributions to the linewidth. The situation with
respect to k„broadening is much the same as for the
Azbel-Kaner cyclotron resonance, where m* broadening
a6ects both linewidth and line shapes of the resonances.
We are continuing to investigate the eGects of the
breakdown of the cylinder approximation.

IV. COMPARISON WITH EXPERIMENTS

The preceding section was concerned with exploring
the general features of the calculated curves and ex-
plicitly illustrating the dependence of these on each of
the parameters that appear in the calculation. We now
turn to an attempt to fit such calculated curves to the
experimentally observed dR/dH oscillations by a
judicious choice of the four parameters P, ~r, u, and
the scaling factor H/h. These values are then to be
compared with what is known about the sample from
other measurements.

We choose data taken on an indium (111)-plane
sample with the magnetic field oriented along the [101j
axis. In this orientation we observe a signal that is
largely due to a single cylindrical section of the Fermi
surface, aligned parallel to this axis. As expected for such
a geometry, the peak positions move to increasing field
approximately as 1/cos8, when the field is rotated away
from the [101].The data shown in the figures below
are taken with the radio-frequency current perpendic-
ular to the field and at a temperature of 4.2'K. To
explore the frequency scaling of the parameters, the
same sample has been run at two diferent frequencies,
namely, 54.5 and 32.57 GHz.

Guided by the general considerations of the previous
section, we have chosen various sets of values for the
parameters in the calculation in an attempt to "fit" the
data. The field scaling parameter H/h is readily deter-
mined by matching up peak positions in the two curves.
Values of P, cur, and a are then chosen by trial and error
to produce an aesthetically pleasing facsimile of the
experimental tracing. Figure 7 shows the best fit
obtained to the 54.5-6Hz data using a limited number
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of choices of the three parameters. The values that
produce this best Gt are P= 0.45, o'er = 13.9, and a= 0.05.

While the over-all agreement of calculation and
experiment is satisfactory, there is nevertheless room
for improvement. In particular, we note that the experi-
mental oscillations tend to decay more rapidly at low
Gelds, and also the high-Geld peaks in the experiment
appear broader than the corresponding calculation.
We have juggled the parameters around systematically
without getting notable improvements in the Gt, and the
Gnal values and parameters represent a compromise.

While the choice of an appropriate P, which deter-
mines the over-all amplitude pattern (coinpare Fig. 3),
is not too diQicult, the choice of u7- and u prove more
troublesome. If, for example, we try to patch up the
calculation to produce a more rapid decay of the very-
low-Geld oscillations (as well as increase the width of
the high-Geld peaks) by lowering oir, we lose a great
deal of the structure at intermediate fields. On the other
hand, the effect of raising the surface-scattering
parameter u is to increase the width of the high-Geld

peaks (because of the linear dependence on H) and leave
the low-Geld portion unaffected. Some of that is
certainly needed and our choice of the coefficient here
is made to accomplish this. However, the high-field

peaks are still too narrow. A further increase in u,
however, will take its toll in the structure at intermediate
fields (10-20 Oe). It appears that if the surface-scatter-
ing term were to depend more strongly on II, perhaps as
II', we could produce a better Gt. We have been able
to reproduce accurately small, selected portions over a
narrow Geld range by appropriate choice of F for each
value of H. This approach gives us an empirical relation
I'(H), that in principle should resolve the question of
how surface scattering depends on field. Nevertheless,
more detailed work will be necessary.

Lest we get too concerned about the remaining
discrepancies, it is well to cite some of the possible
reasons, both experimental and theoretical, for why it
is not likely that we can do very much better. On the
experimental side, there is the fact that even though
the f101j signal is relatively clean, there is nevertheless
another oscillatory signal mixed in. A weak signal due
to another cylindrical position appears at slightly
higher Gelds in this orientation. There may also be a
small amount of magnetic field inhomogeneity over the
region of the sample. Finally, in spite of our best
intentions, there is some amount of overmodulation

and consequent distortion of the line shape at the lowest

Gelds. The calculations, on the other hand, neglect "k„
broadening" and use a simpliGed expression for Z(H),
especially since the f101] axis is not a principal axis of
the impedance tensor in the (111)plane. The question

of the k„dependence of various quantities in the
calculation is most troublesome. One expects that if the
resonance parameter varies with k„,this should make a
contribution to the effective linewidth that would look

[Ioo]

2~/a

.8—

.6—

4-

[Iol]

is

FIG. 8. Sample and Fermi-surface geometries a propriate for
the (111)plane. The magnetic Geld is along a ['101 axis and into
the plane of the figure. Electrons skipping along the surface are
located on a small section of the second-zone hole surface of
indium. The electron in a bound surface state repeatedly traverses
the narrow angular range ( 1') as indicated.

somewhat like the relaxation time broadening (compare
Fig. 6). In fitting a value of oir in the cylindrical-model
calculation, we will then not get the true electron
scattering time. We also note that the predicted linear
dependence of surface scattering on the magnetic Geld
is based on an idealized model of surface roughness.

We turn now to an examination of the values of the
parameters Gt in the calculation. To start with, the
field scaling parameter necessary to Gt peak positions
is H/Ii= 86.4 Oe and yields a value for E/tIs' of 21.7
)&10 ' secs cm . Extensive studies of the angular
anisotropy and polarization dependence of the indium
plane signals' suggest that the f101]-axis data arises
from electrons traversing the ridge of the square
protuberance on the second-zone hole surface. This
ridge is reasonably uniform with respect to k„and one
should expect the extremal value of E/ur' to be
associated with the central section of the ridge. We show
the central cross section of the second-zone surface~ in
Fig. 8 and indicate the segment of electron orbit that
we believe is responsible for the signal. While skipping
along the metal surface, the electronrepeatedlytraverses
this small section of the Fermi surface. The value for the
local radius of curvature determined from this model is
K=0.17&(10' cm '. The value of the Fermi velocity

6 J. D. Jensen, Ph.D. thesis, University of Maryland, 1968
(unpublished).

7 Ke are indebted to J. R. Anderson for supplying the orthog-
onalized-plane-wave parameters and computer program to allow
us to calculate the shape of this section.
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FIG. 9. Experimental and
best-6t calculated curves
for the indium (111)-plane
data at 32.57 GHz. The
amplitudes have been ad-
justed arbitrarily to appear
similar in the two tracings.
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dH
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dH
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v lj'v

INDIUM (III)
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T =4.2'K
f =32.57 GHz
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a =.04
~~ = ll. l

QIO ~ IS

H (oe)

at this point appears then as ng=0. 92X10s cm/sec.
This value is well in line with velocities determined by
Mina and Khaikin from an analysis of cyclotron-
resonance data, and gives us confidence in the over-all
formulation of the surface-state problem. Recent
measurements in bismuth, where the Fermi-surface
shape and velocities are well established, have allowed
us to make an even more critical comparison. '

The value of P determined from the fitting is 0.45.
Using Eq. (10), we can relate this to the microwave
skin depth 8. Inserting X=0.17X10s cm ' yields
5=0,63)&10 ' cm at a frequency of 54.5 6Hz. This
value of the skin depth is just about what we would

expect, but there is not available relevant experimental
evidence to make an exact comparison.

Surface scattering in the calculation is described by
a =0.05. The value of this parameter is much dependent
on the assumed functional form of the dependence of
such scattering on field. It is not very accurately deter-
mined from our calculation, to the extent that experi-
ment and calculation do not match in all details.
Nevertheless, we stress that it appears necessary to
have a linewidth parameter that increases with 6eld
in order to produce a satisfactory fit to the data. The
present value of u as 0.05 at a field of approximately
36 Oe (i.e., the position of the I= 1, m=2 transition)
implies an effective scattering rate due to lack of
specularity that is 0.3 of the bulk scattering rate
determined below. Expressed in terms of the probability
of specular reflection Lsee Eq. (48), Ref. 1$, this is
equivalent to a value of P=0.88.

The value of ~r derived from the calculation is 13.9.
Although not unreasonable, it is considerably lower than

8 R. T. Mina and M. S. Khaikin, Zh. Eksperim. i Teor. Fiz. 51,
62 (1966) I English transl. : Soviet Phys. —JETP 24, 42 (1966)g.

s J. D. Jensen and J. F. Koch (to be published).

the value we would have assigned from an examination
of cyclotron-resonance signals in this specimen, i.e.,
cur~30. Because one is measuring the relaxation time on
a very small portion of the Fermi surface, it is not
surprising to find a value substantially different from
that appropriate for an orbital average. Very likely,
however, the discrepancy here results from trying to
represent the linewidth as solely due to collision
broadening, when indeed the k„anisotropy makes a
substantial contribution to the width. We shall explore
this question further with a consideration of frequency
scaling of the experiment and calculations.

In an effort to examine more critically the parameters
introduced in the calculation we have repeated the
indium measurements at a frequency of 32.57 6Hz.
The sample is remounted in the low-frequency spec-
trometer and we obtain the experimental curve in the
upper portion of Fig. 9. Parameters P, a, and the field
scaling H/Is are adjusted according to their predicted
dependence on frequency, whereas we allow co7 to vary
until a satisfactory Gt is obtained. The resulting calcula-
tion gives ~x=11.1, rather than the predicted value of
8.3 obtained by frequency-scaling co7.. In fact, when the
calculation is done using 8.3, the resulting curve gives
linewidths considerably greater than the experimental
tracing. A great deal of the structural detail does not
appear in the calculation. It seems that there is a
contribution to the linewidth parameter that does not
scale linearly with frequency. This would be expected
when there is k~ broadening.

V. CONCLUSIONS

Ke are convinced that, on the whole, the formulation
of the surface-state problem and the impedance calcula-
tions are essentially correct. The comparison of calcula-
tion and experimental data provides a most convincing
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confirmation of the theory for the magnetic-field-
induced surface quantum states.

Throughout the present work, we have aimed to
illustrate how various physical parameters can be
obtained from an analysis of the experimental data.
Certain refinements in the calculation (as well as in the
experiments) will be necessary to eventually produce a
point-by-point fit of experiment and calculations. In
view of remaining discrepancies, it would only be
fair to emphasize that the present work is meant as an
"in principle" demonstration of what one can learn. The
assignment of the oscillatory signal, as due to a ridge

along the Fermi surface of indium, must be considered
as tentative until more exhaustive studies have been
completed.
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The lattice dynamics of the fcc lattice has been investigated with a model in which interatomic forces in-
clude, in addition to central forces, angular forces of the type suggested by de Launay. The model has been
applied to copper, and results have been compared with a model investigated previously which had angular
forces of the type employed by Clark, Gazis, and Wallis.

INTRODUCTION

ECENTLY, the authors' have investigated the
lattice dynamics of fcc metals using a model in

which, in addition to central forces, angular forces of
the type employed by Clark, Gazis, and Wallis' (CGW)
were included. The CGW model was applied to copper.
The angular forces in this model arise from the re-

sistance to deformatioo of certain angles formed by
three lattice points. The change in the potential energy
due to a change 80 in the angle 0 is given by —',«(80)',
where ~ is the angular-force constant.

de Launaya has considered another type of angular

force which depends on the angle that the line joining
the moving atoms makes with the equilibrium position
of the line. The mechanical analogy is a rod connecting
the particles, the rod being fastened at its ends to the
equilibrium position by springs perpendicular to the
rod. Hendricks, Riser, and Clark4 have used a model

that has central forces up to second neighbors and

angular forces up to first neighbors to calculate the
vibrational spectra and specific heats of lithium and
vanadium (bcc lattice). In the present paper, we in-

vestigate a model for the fcc lattice that has central
and angular forces (de Launay type) up to and in-

~ P. S. Yuen and Y. P. Varshni, Phys. Rev. 164, 895 (1967).
2 B. C. Clark, D. C. Gazis, and R. F. Wallis, Phys. Rev. 134,

A1486 (1964).' J. de Launay, Solid State Phys. 2, 220 (1956).
4 J.B.Hendricks, H. N. Riser, and C. B.Clark, Phys. Rev. 130,

&S77 (&96&).

eluding second neighbors and apply this model to
copper. This model will be called the DAF (de Launay
angular-force) model. '

DAF MODEL

We consider a monoatomic fcc lattice and represent
the central-force constants for the first and second
neighbors by e1 and n2 and the angular-force constants
by o-1 and o-2.

As shown by de Launay, ' the displacement that is
effective for the angular-force constant o. due to dis-
placements s and s„ofthe particle m and particle e,
respectively, is given by e „)&(s„—s ), where e

„
is

the unit vector from the particle m to the particle m.

Thus the change in potential energy due to s and s„is

Using standard methods, the secular equation for the
determination of the angular frequencies co may be
derived. We merely quote here the result:

where 3E is the mass of a particle and I is the 3)(3 unit
matrix. The elements of the dynamical matrix D(q)
are as follows:

4n'1+801 2(nl+&1)C1(C2+C3)
4'trlC2C3+4n2S1'+4oe(52 +S,'), (3)

~ Not to be confused with the better known de Launay electron-
gas model.


