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The energy of a molecule is expressed as a summation involving the expectations values of
a two-electron Hamiltonian. An approximation which has been used for atomic systems, in-
volving the weight factors in this summation, was made to evaluate the energies for' the lith-
ium molecule and of an isolated lithium atom. It was found that at 4.0 a. u. the bonding en-
ergy was of the correct order of magnitude, but the correlation energy of the system was
overestimated giving an error in the total energy of the molecule of 1.3%. An alternative
approximation for the evaluation of the summation was proposed, and it was found to give
rise to an error of 0.3/p in the total energy and a bonding energy of the correct order of mag-
nitude. Attention is given to the application of geminal methods to larger systems.

I. INTRODUCTION

As every chemist knows, the energy of a cova-
lent crystal such as diamond can be estimated
quite accurately by adding together. the energies of
the separated carbon atoms and the bond energies
of adjacent atoms. Because only interactions be-
tween adjacent atoms are large, the energy is
clearly an extensive thermodynamic property.
Within the framework of ab initio quantum chemis-
try, it is much more difficult to demonstrate this
extensive property.

If the Hamiltonian of the system can be adequate-
ly approximated by a sum of one-electron opera-
tors using effective potentials, the energy may be
expressed as the expectation value of a reduced
one-particle Hamiltonian with the charge density.
The charge density, to a good approximation, may
be expressed as a sum of contributions from inde-
pendent groups of electrons. Hence in the inde-
pendent particle model with localized orbitals the
chemical picture is recovered.

The energy of a system can always be written
exactly as the expectation value of a two-particle
reduced Hamiltonian with the second-order reduced
density matrix. For N electrons, the two-parti-
cle density contains at least N(N —1)/2 important
terms. Hence the two-particle density is not ob-
tainable by simply summing contributions from
localized groups. This paper discusses some dif-
ficulties in approximating this density matrix for
a diatomic system. Some suggestions are made
which could lead to improved approximations for
larger systems.

II. THE MOLECULAR GEMINAL WAVE
FUNCTION

A trial function for an N-electron molecule may
be written as

+(12-.N) = Z & C (12)"''""N/2 " "N/2 "
x4 (24) ~ ~ ~ &„(N- 1,N)

N/2

for evenN, or

+(12" N)=„+„"~'""(N+ 1)/2

"n " '(N+1)/2 n

(N -2, N -1)d (N)
"(N —1)/2 (N+1)/2

where the weight factors

8 = Y'. a a
nm nn ~ ~ nay mn2" n~~

~ y n~ 2
2

(4)

are normalized so that

Za (5)

The energy expectation value with respect to the
Bamiltonian

N
3.'(12 N) =g, + .+g, (i)+ Z g, (ij )0 ~ i 1 -) ~ 2

is Z = ,'NZB— (7)

where e = (4' h@ ), (s)

h(12) being the reduced Hamiltonian to X (12 ~ ~ N),

h(12) = 2go/N +g, (1)+g, (2)+ (N —1)g,(12). (9)

This expression may be minimized with respect
to the Bnm, subject to the restrictions inherent
xn the a„...nNg&.

'
It is hoped thaf, with an appropriate choice of

the geminal basis set, such an energy sum will
75

for N odd, where the a„"a~ are restricted in
such a manner that the total eave function is ariti-
symmetric and Q&„d„)is an orthonormal set of
functions. The second-order reduced density ma-
trix of this wave function is

D(1 21 2) +=8 4& (12)C (1 2)
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converge rapidly to a limit which is close to the
true energy, indicating that the geminal-sum
wave function is a useful trial function even when
a truncated basis set of geminals is used. In the
case of atoms, a choice of geminals which diag-
onalize the reduced Hamiltonian is found to be
appropriate since they account for electron cor-
relation and give rise to a summation in Eq. (7)
having no off-diagonal terms. This method yields
fairly good energies using a particularly simple
approximation for the Bzz, the "zero-order ap-
proximation, " '~' which is related to a method of
Bopp. ' In such an approximation the B„z'" are
given the values they would have if they were
derived from a single determinantal wave function.
A correspondence is made between the 4~ and a
linear combination of the 2 &&2 two determinants
obtained on expanding the N XN determinant.
Generally certain doubly excited metastable en-
ergy levels of h are included.

Investigation of such a function (1) in the case
of molecules, may thus be made using this zero-
order approximation for the Bzz, which does not
involve the total satisfaction of the antisymme-
trization condition and hence may give energies
which lie below the "true" energy. The treatment
could be extended by calculating the Bzz through
a variational calculation with the satisfaction of
the antisymmetrization condition'&'&' or by using
the zero-order approximation for the B„z as the
zero-order trial function in a perturbation series.

In the case of the neutral homonuclear diatomic
molecules having a nuclear charge of Z and N
(N= 2Z) electrons, it is convenient to scale the
lengths and energy of the reduced Hamiltonian by
the nuclear charge giving rise to the scaled-
reduced Hamiltonian,

h(r„r„R)= Z'h (Zr„Zr„ZR) (10)

where y = (2Z —1)/Z; thus 1(y (2.

The potential energy curves of the diatomic
molecules may be expressed in terms of summa-
tions involving pair energies Ez which are eigen-
values to the Hamiltonian (11). These pair en-
ergies will change through the molecular series
as a function of the interelectronic interaction
parameter y.

Certain of the pair energies will be bonding and
others nonbonding. If the Bz& "' are the dominant
terms in the energy sum then it should be possible
to employ concepts of "bond" and "bond order"
using the pair energies and their weight factors.

III. CALCULATION

A calculation has been made for the He, system
using rather simple geminals, ' and the error was

in atomic units, that is,

h'(12)= - —,
' v,"-—,

' v, "—
A,

+ -y, +, , (11)
y~ ' xB ' y ' x,2' R''

2 1 2

found to be of the order of 1% and constant for a
large range of internuclear separation. In the
present paper, the Li, system is considered in .

which correlation is more important and for which
the minimum in the potential energy curve is very
shallow.

A method of calculating potential energy curves
for diatomic molecules has been developed'~' using
a combination of self-consistent-field (SCF) con-
figuration interaction and perturbation theory. "

It was decided to calculate the potential energy
curves for the energy levels to the reduced
Hamiltonian of the Li, molecule using this method.
It should be noted, however, that in the case of a
Hamiltonian having an interaction term as large
as 5e'/r», the use of perturbation theory to cal-
culate corrections to a SCF energy is not strictly
justified. The calculations were performed at
a single internuclear separation of 4. 0 a. u. and
the results are given in Table I.

The energies of the reduced Hamiltonian to the
Li atom, calculated by the same method, are
shown in Table II. Using the zero-order approxi-
mation the energy of the Li, molecule is -15.2516
a. u. while twice that of the Li atom is —15. 1750
a. u. indicating that, in this approximation, the
molecule is stable with a binding energy of 0. 077
a. u. The binding energy is of the correct order
of magnitude when compared with the experimental
result of 0. 03 a. u, ; however, the total energy of
the system is in error by 1.3%, since the "exper-
imental nonrelativistic" "energy of two lithium
atoms is —14. 9561 a. u.

In these calculations the SCF energy was first
solved for the desired configuration. Since some
of these configurations corresponded to metastable
states, this proved difficult (notice, for instance,
that 10„2' is lower in energy than 1o+1o' because
of the large electron repulsion). The correlation
energies were estimated by second-order pertur-
bation theory using all configurations except the
other occupied geminals. The correlation energy
contributions from the other occupied geminals
were omitted because they tended to cancel in E.
For instance, the energy lowering of 1o&' by la@'
in second order is the same as the energy increase
of 10~' by 1og . Without this constraint this pair
of nearly-degenerate eigengeminals changes to
log' +1m„' with energies —8. 4860 and —1.700 a. u.
leg'-1'' is nearly 1s+1s~ with zero correlation
energy and log'+ 10+' is an ionic geminal with
large (0. 88 a. u. ) correlation energy. In reading
Table I, it should always be kept in mind that
any bound-state eigenvalue of h must lie at least
as low as —4. 5 a.u. which is the energy for one
electron in the 10& orbital and the other in an
unbound orbital oE zero kinetic energy.

IV. OVERESTIMATION OF THE ENERGY

As was the case with atoms, the use of the zero-
order approximation overestimates the energy of
the Li, system. A simple argument indicates
that this is likely to be the case for other members
of the series of homonuclear diatomic molecules.

In the following argument the wave functions
used are not eigenfunctions of spin but an exten-
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TABLE I. The calculated energies of the reduced
HamQtonian of the lithium molecule.

Configuration SCF energy Correlation Bnn
(a.u.) energy (a.u.)

tween the energy expectation values of the pair
Qfqf and Qk Qk, and Vfk is the matrix element
of the interaction between these pairs.

The eigenfunctions to the reduced Hamiltonian
may be written in terms of the same basis set as

lo 2

lo.

1(r lo'
g Q

lo lo.
g I

lo' 2o'

lo' 2(T

2o'

lo 2o
Q g

lo 2aI g

fg +
E

fg +

ig +
I

1g +
Q

fg +

1g +

-5.0973

-5.0584

-2.3635

-8.4859

-4.5887

-4.6421

-0.9044

4.2628

-4.3390

0.2078

0.2040

0.2567

0.0000

0.1731

0.1075

0.0743

0.1841

0.0536

e =e —(N-1)'Z 6
n n l ln

. Hence in the zero-order approximation the total
energy of the system is

E = 2N +B— &'&e
nn n

—(N- 1}''NZB -&o&Z g
nn l ln -' (is)

C„12= „„e, C,. ),

where nag~ is generally large far some value of
i (»a», say) and small for all others. Hence in
second order the energy may be written

= e, & -Zk [(N- 1)Vk j2/AEk,

that is

TABLE II. The calculated energies of the reduced
Hamiltonian of the lithium atom.

Configuration SCF energy Correlation 8
(a.u.) energy

nn

ls iS
ls2s 3S

ls2s ~S

-5.6439
-4.6492
-4.7077

0.1411
0.0046
0.0010

a 2 2 1 1 2h=-gv, —$V2 3+ +-
Qg tz2

B=&)-g B Oe .
nn n

sion (in which linear combination of Slater deter-
minants are taken), which preserves the essential
features. A good wave function for a molecule is

(1
. k=-fv, -pv, -3I + + ' I'3/+&2+3/B

Yb
'F

B=3+B
nn n

But B»n '0' = 2/N(N - 1), if each spin component
is counted as a distinct state, so

E= (N - 1) ' Z c —(N —1}Zk lb I
'. (l9)

Now (N 1)-'Z„-s&& (ESCF, since each e&&
SCF SCF

lies below the expectation value of k (12) with
respect to the corresponding SCF orbitals of X
(12 ~ N). The Vfk and Vfk' are exchange integrals
and are therefore nearly equal, and the E~zl de-
pend mostly on differences in kinetic energy and
hence are also about the same size. The over-
all effect is that the zero-order approximation
tends to overestimate the correlation energy by
afactor of (N-1).

Such an argument suggests that the approximation

E,N~B & &&
SCF

nn n

—[N/2(N - 1}]+B &0 &~
' ' (2o)

+ ~'(Q&Q& QNQN), (12)

where l is not included in the set 1, 2 ~ .N.
The energy corresponding to this function may

be approximated by

SCF l, k lk fk'

SCF l, k l, k'

where ESCF i:s the energy calculated using the
single determinant, kg is the difference be-

may be much better than the zero-order approxi-
mation for calculating energies.

In the case of the Li, system, application of
this approximation gives a value of —14.910 a.u.
for the separated atoms and -14.998 a. u. for the
molecule at 4. 0 a.u. , yielding a binding energy
of -0.087 a. u. with respect to the calculated en-
ergy of the separated atoms or —0.042 a.u. with
respect to the experimental energy of the separated
atoms.

These total energies of the system lie within
0. 3% of the experimental values while the binding
energy is of the correct order of magnitude, and
they indicate that such an approximation may be a
powerful tool for the calculation of molecular

~ potential energy curves.
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V. WAVE-FUNCTION GROUPS

where A=[(KN)!] '"~ (-1) I',P
( &)

-K/2
(22)

(23)

and the 4'I are the wave functions for the individual
atoms. If DI & "(1 2 1'2') and DI&''(1 1') are the
reduced two- and one-particle matrices corre-
sponding to the atomic wave functions 4'I, then
it is easy to show that the density matrices for
the gas are

As one proceeds to calculate larger systems,
the factor N- 1 in the interelectronic interaction
term of the reduced Hamiltonian increases. Indeed
in the limit of a metal or long-chain polymer it
approaches infinity. Clearly although the summa-
tion (7), involving the eigenvalues to this Hamil-
tonian, is still valid, it does not seem to involve
a particularly useful approach to the problem.

In order to find a better approach, let us con-
sider the wave function for a dilute gas of K iden-
tical neutral atoms with nuclear charge Z=N.
The wave function to a good approximation is just

y(~, ~ "r )=ca(1 "KN)

I I'1+(I 1)N"2-+(I-1)N "'
IN

so

D&,&
N-1

D &,&
N(K-1)

NK 1~-a QNK —1) p

where TrD '"= 1, TrD "'=1.
Q

Then

TrhD &2&= Z +N Zg.
I&J IJ I

—2N + ,' N(KN——1)) g
I&8 'I~

(31)

(32)

Tr)&D &2) = Z +N Zg
I&4 IJ l

I'
1 [N(KÃ- 1) g

I&J IJ ' I&j IJ (34)
K 1),l-

1
P K(K —1)

' 1'2 'I)J
x (1 —Pl )D '" (1, 1')D~&»(2, 2') (30)

(24) where gl =Tr[--,.'g&-N/& ]D &»1I " ' 1I (35)

(38)

I=1

'K(NK I)J
„(1-I,2)DI

&'& (1, 1')D~&'&(2, 2'), (25)

Since E =Ng + —,'N(N 1)~1 I ' 2, I'

KN
e

I

(37)

which has the following reduced Hamiltonian

)=~ Z, '
I&4 IJ

K
1+ —

~ V.2-N
i=1 I=1 iI

, (KN 1)-
v

where Pzj is an operator permuting the electronic
coordinates. This derivation holds only for iso-
lated systems for which the C'I are nonoverlapping
and are identical to the free-atom functions.

The Hamiltonian for the gas is
KN

K= ~ -+ ~ ——,-V.'-N - -- + g (28)
I&J IJ i 1 =1iI

N(K-1) g+

I(J IJ (3s)

Finally, (28) reduces to

(40)

It is interesting to note that, in the limit of large
&, Dp"' becomes the dominant part of D~» in the
sense that Dp" ' gives the entire normalization in-
tegral and the entire contribution to D" &. In fact,
as K

K"T,aD & &=gN-"' -"Z -' (3g)
P I lg K-1 1&JrIJ'

Consequently the energy of the gas is

E = &KN TrhD ~2&.

&s& K-&P~ D &» (1,2;1'2')

(2s)

(2g) and

ANT ~
N-1

D (2) N —1
2 KN-1 n 2 ~2 II

KN
@

N(K —1) &2)—2Tr)& (~ 1)Dp
2& ~Ngl~

I

(41)
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Hence even though D~ "'gives no contribution to
D" ', it gives the entire electron repulsion of the
separate atoms and must be accurately approxi-
mated.

In order to see how D")might be approximated
for interacting systems, let us consider a simple
case in which each C'~ is approximated by a single
Slater determinant with orbitals Qii. Then

D (2) —
}

(1) (2)
}

„& iy~*(1 ) yjI*(2') i (43)

or D (2) 2 (2) (44)

where DiIII" ' is the density matrix for the two-
electron wave function pijII= (1/M2) I pii ~"Q.I &~'

(

Similarly

~(1 —P, i, ~)(1 —P„)DI(1,1 ')D&(2, 2')

(2) 45
zqr~

where DgjIg&» is the density matrix for

i~= (1/. ~. 2 I Q.I(1)Aj~(2) I (48)

(47)

where (iI) =i+ (N —1)I, and

E=
( 1) Q Tr(&D"I~"'). (48

(ii) & (j~)
In order to obtain a better approximation to the
total energy, it might be possible to retain this
expression for D'" and E with Dz.fg") generatedU
from a different gi.ig. It would be desirable if
this could be done ky solving an eigenvalue equa-
tion of the form

ijIJ ijIJ ijIJ ijIJ' (48)

so that some interactions between atoms could be
included. One reasonable way of doing this would
be to write

-1J= 2 ~
—2 2 +~ ~ ~J++1.2U zj

where

d&q l4p ~(e)

k=1L=1 - kL P ~ qk
l

and the Z indicates that the terms containing pii
or Qjg are omitted. This is equivalent to solving
the two-electron problem in the eff ective field of
R-2 neutral atoms and two positive ions f+ and
8+ (neglecting exchange potentials). The pgI rep-
resent the Hartree-Fock orbitals of the unperturbed
atoms. For I=4, this reduces to solving for a two-

electron wave function in the field of I++ and K-1
neutr al atoms.

This procedure is not completely impractical
when applied to a crystal. The integrals involved
in calculating fiji by a variational procedure
would give without any additional effort
Tr(r» 'Di I '2'), Tr[(rU '+r2I-')D"Ig'@j, and
Tr[(V'+ V ' D''Ig"'J. Hence Tr(hD~~') could be
evaluated without the use of additional integrals.
The equations are also reasonable in the sense
that, if the effective potential of a neutral atom is
neglected and the fiji are solved in the open
shell SCF approximation, the sum of the atomic
SCF energies would be recovered in the case of
a dilute gas. If the SCF approximation is not
used, then the eigenvalues of

h&july
would lie below

the SCF result by about the pair-correlation en-
ergy of the ij pair. The eigenvalues of hgjgg
(IgJ) for a dilute gas would be given exactly by
the open-shell SCF solution.

For a two-electron atomic problem, the de-
crease in (r» ') for a correlated wave function
is about twice the correlation energy, and the in-
crease in (- ~ V) is about equal to the correla-
tion energy. Since the average electron repulsion
for an atom comes entirely from the D& ~' ',2J
whereas the kinetic energy comes primarily from
the D&IIZ" ~ (for which it is unshif ted by correla-
tion), the value of E in this approximation would
be below the real total energy of all the atoms by
their total correlation energy.

It is interesting to compare these approaches
for a homonuclear diatomic molecule in the limit
of infinite internuclear separation for the simple
example of the four-electron molecule A, .

The energy of the molecule A, having nuclear
charge Z is given by the summation (7) as

E=2Z 8
nm nm (82)

The single determinantal wave function for A,
consists of a 4x4 determinant of 18 orbitals on
atoms A. Hence in the zero-order approximation
at the limit of infinite internuclear separation

E= 2[)E,+ -', E,], (»)
where E, is twice the energy of the ground state of
an electron associated with a nuclear charge A, and
E, is the ground-state energy of a two-electron
atom having nuclear charge Z and an interelectronic
interaction term (2Z —1)'/r»

The energy given by (53) should be just twice the
energy E(Z) of the two-electron atom having charge
Z. Hence

2E(Z) = ,' [8Z'E + 2E,]-
H

(54)

Hence a comparison of the two methods yields a
relationship between the energy of two-electron

where EH is the energy of a hydrogen atom. If the
reduced Hamiltonian is scaled by a factor of (N 1), -
the above expression becomes

E(Z) —
8& [8Z'E + 18E(Z/3)]
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atom having charges Z and Z/3. From a perturba-
tion expansion, in & ', for atomic energies

E(Z)=Z'6, +Ze, + s, + ~ ~ ~

and

E(Z/3) = (Z/3)'6, +Z/3e, + 6,+ ~ ~ ~

Therefore the following relationship is found:

E(Z) = 3E(Z/3)+aZ EH —26 + 0(6,); (58)

that is, the two methods agree except for second-
order terms or correlation terms in the energy.

VI. CONCLUSION

The zero-order approximation is found to have
the same degree of success in this molecular ex-
ample as in the case of atomic calculations. That
is, the energy lies below the true energy by the or-
der of 1/o owing to the overestimation of the corre-
lation energy. The energy difference between the

two internuclear separations of a molecule is of
the correct order of magnitude, similarly the en-
ergy difference between two excited states of an
atom is given to within 0. 3/~ in the atomic case.
The argument which indicates why the correlation
energy is overestimated also yields an improved
approximation. It appears that by using the mini-
mum number of geminals and screening the ener-
gies in the correct manner, a good result is ob-
tained for the energy of a molecular system. An
extension of such methods to larger systems is
possible if the geminals are carefully selected. It
is desirable that rapid convergence of the energy
summation is achieved, and to this end the two-
electron eigenfunctions of an effective field prob-
lem may be used as the basis for the wave func-
tion of. such a system.
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