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In the study of the effects of finite boundaries on the magnetic properties of a solid, one encounters the
problem of finding the energy eigenvalues of a one-dimensional linear harmonic oscillator located in a
potential enclosure. The WKB method is employed to solve this problem for an oscillator whose center is
fixed at some arbitrary position inside a potential box. Both numerical and analytical approximations of
the WKB method are employed to find the energy eigenvalues over a wide range of the parameters of the
problem. Numerical methods are also used on the exact series solutions of a bound oscillator to find the exact
eigenvalues for the first few quantum states. A comparison of the two methods show that, in general, the
WKB eigenvalues are accurate to much better than 19 except when the classical turning points are near
the wall. Here the difference is of the order of 109, for the worst possible cases. The eigenvalues of a bound
oscillator are shown to reduce to unbound-oscillator energy eigenvalues if the classical turning points are
inside the potential enclosure and not near the walls. At the other extreme the eigenvalues are shown to
become plane wave box eigenvalues when the separation of the classical turning points is large compared
to the size of the enclosure. Also included is the relationship of the WKB solution to the Bohr-Sommerfeld
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quantization rule for the bound oscillator.

I INTRODUCTION

HE problem of calculating the magnetic properties
of a metallic solid can be reduced (by the usual
assumptions of the one-electron approximation of a
solid!) to studying the magnetic properties of an elec-
tron gas. If one wants to take into account the effects
of finite boundaries on the magnetic properties, then
the problem of interest will be to find the energy eigen-
values of a single electron in a magnetic field which is
also in a potential box. This problem can be reduced
(among other things) to that of solving a one-dimen-
sional harmonic oscillator in a box with a shifted origin.
Because such a bound oscillator is in itself significant
for other applications, in addition to its relation to the
surface effects of a solid, the purpose of this paper is
to find the energy eigenvalues of a bound harmonic
oscillator by means of both the WKB approximation
and an exact method.

The exact method consists of a numerical extraction
of the eigenvalues from the exact series solutions of the
bound-oscillator differential equation. Because of prac-
tical difficulties, this method is restricted to the first
few quantum states and to boxes whose sizes are small.?

We will be more interested in using the WKB method
to find the eigenvalues because:

(a) In the problem of a solid, the majority of the
quantum states will be in the semiclassical region. For
example, a typical Fermi energy of 1 eV will correspond
to a quantum number of around 10 000 for the unbound
oscillator associated with a 1-kG field.

(b) The WKB method gives the exact results for the
eigenvalues of an unbound oscillator, and we do not

* Present address: Western Washington State College, Belling-
ham, Washington.

1See any text on solid-state physics. For an especially good
review article see Max Dresden, Rev. Mod. Phys. 33, 265 (1961).

2 For the precise meaning of a small box and more on the use
of the exact solutions see Sec. V and Refs. 3-6.
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expect the introduction of finite boundaries to radically
change the accuracy of this method. Our results will
show that this is indeed the case.

(c) The WKB method turns out to be a more con-
venient procedure for finding the eigenvalues than pro-
cedures using the exact eigenfunctions. Also the WKB
method gives us some analytical results, whereas the
exact procedures usually only produce numerical results.

The studies of a bound oscillator so far (using the
exact solutions which take the form of confluent hyper-
geometric functions in these cases) give the energy
eigenvalues only for certain asymptotic or limiting
ranges of the parameters of the problem.?—¢ In addition,
they fix the position of the center of the oscillator at the
middle of the box. Both of these limitations are in-
tolerable if one is interested in knowing the energy-level
structure of a metallic solid in order to calculate its
magnetic properties. Here one must know the energy
eigenvalues over large ranges of the size of the box,
position of the center of the oscillator, and the quantum
number # of the oscillator. As we shall see, the WKB
method will allow us to find the energy eigenvalues over
these ranges.

The Hamiltonian of a harmonic oscillator in a box
(located in the interval [e,b]) with its center shifted
by %, is given by

H=(1/2m)p*+3me*(w+x0)*+V (%),

where
V(i)=0 a<z<bd
=0 x<a or x>b.

The effect of requiring that the box act like an infinitely

3F. C. Auluck and D. D. Kothari, Proc. Cambridge Phil. Soc.
41, 175 (1945).

47J. S. Baijal and K. K. Singh, Progr. Theoret. Phys. (Kyoto)
14, 214 (1955).

5 P, Dean, Proc. Cambridge Phil. Soc. 62, 277 (1966).

6 T, E. Hull and R. S. Julius, Can. J. Phys. 34, 914 (1956).
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deep potential well is equivalent to imposing the
boundary conditions that the wave functions vanish
at the edges of the box. Changing to the dimensionless
variable 7= (mw/%)!/%x, the problem of finding the eigen-
values of this Hamiltonian is reduced to solving the
Sturm Liouville-type differential equation

¥"(1)+[A— (1470 W(r) =0, (1a)
with the boundary conditions
Y(ra)=9¥(74)=0, (1b)

and where
To= (mw/h) %%y, A=2E/tw,
To=(mw/h) ?a, 1= (mw/h)1?%,
I=1v—7o= (mw/H)V2(b—a).

For this set of variables Eq. (1) represents the differ-
ential equation of a harmonic oscillator placed in a box
of length / with the center of the oscillator shifted by .
Here \ not only represents the energy eigenvalues of (1)

but 4/A is the classical turning point of an unbound
oscillator. A change of coordinates to =1+ 7, reduces

(1) to
(2a)

(2b)

YO+ A—8¢(5H)=0,
‘/’(Ea) = ‘!’(Eb) =0 )

with

and where

Ey=Tp+70.

In this set of coordinates the harmonic potential is
fixed about the origin but now the location of the walls
depends on 7 (see Fig. 1). The difference between these
two representations of the Hamiltonian is the difference
between letting the center of the oscillator be shifted
by 7o and letting the center of the box be shifted by .

The objective of this paper has now been reduced to
solving Eqs. (1) or (2) for the energy eigenvalues A.
It is comforting to note that the Sturm-Liouville theory
guarantees the existence of a countable set of monotoni-
cally increasing eigenvalues A for these equations. More-
over, Sturm-Liouville theory guarantees that the as-
sociated solution can be chosen in such a way that the
eigenvalues form a complete set of orthonormal states.

«=TaT 70 )

II. WKB APPROXIMATIONS

The point A—£2=0 is not only the classical turning
point of the oscillator, but it is also a point of inflection
of the wave functions y(£), where they change from
oscillatory behavior in the region £2<\ to exponential
behavior in the region £2>\.7 Setting U(£)=\—£2, we
find that the WKB solutions exhibit this behavior by
approximating the exact solution by wave functions of
the form

[~ " exp| / (U@

7We follow closely the method used by C. Lanczos, Linear
Differential Operations (D. Van Nostrand Co., Inc., London, 1961).
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for U(£)<0 and
[U© T exp [ii / [U(s)]mde}

for U(£)>0. It is convenient to let

Fl)= [ (VU)dE=1[EO0—£)12) sin(E/vA)],

K= / (V= U)de=3{E(E -1
=N In[&/v/A-(8/A=1)12]}
and note that
F(an/N=imh, K(/\)=0.

In order to apply the WKB method we must match
the above approximate solutions across the turning
points by use of the connection relations. Since we also
impose finite boundaries, we must consider the relation-
ships of the turning points to the boundaries so that
we can properly apply the boundary conditions. For
a given energy eigenvalue N we have the following
possibilities:

(a) Both turning points are inside the box.
A<min{&’ £} .

If both turning points are inside the box, then the center
of the oscillator must lie inside the box and we must
consider the three regions I, II, and IIT in Fig. 1 for
values of X less than &2 and £% In these regions the
general WKB solutions can be written as

‘l/I(E) = (_ U)—"ll‘i[A 1 exp<__/
H
—VA
+4, exp(-}-/ (— U)Wd'f):l’
£
4
Yir (8= U‘”"I:Bl exp(i/ U”2d$>
—~\
¢ .
+ B, exp(—i/ U1/2d5>:l’
—V\
3
Y (8)= U—“{Bl' exp(i / Ulf2d£>
v
§
+By exp(—i/ U1/2d£>:|,
23

Y(§)=(— U)“”“':Cl eXP([/i(—U)I’W)

+C exp(—- L i(—-U)de)].

—V\

(~0yiaz)
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Here Y1+ and ¢ represent the same wave functions.
They are written in this manner so that it is easier to
use the connection relation across the points U(£)=0.

Since
+VA £ +VA
/ Ude:/ U1/2d£+/ Uzd,
—VA VAN £
Yirt and Y~ will be identical if

+VA
B,=B/ exp(—z/ U112d5>=B1leﬁi")‘/2,

VN

+V'A
By=B/ exp(—l—i / U1/2d£) = Bjle+inz,

_V
Applying the boundary condition ¥1(£,)=0, we find
Ay=—A 02Kt
At the other end, Y11(£5) =0 gives
Ci=— Cog2K (D),

The connection relations for a transition from the ex-
ponential region I to the periodic region II is given by

Bi=e¢""4(A1+3i45),
By=¢tit/4(4 1—%114 2) .

For transition from II to III the connection relations are

By =e+in(—3iCr+Cy),
By = HEiCCy).

We now have eight equations involving the eight un-
known coefficients in the wave functions. Intrasub-
stitutions of these above equations give the consistency
relation
Be—im\2— B¥gimh /2= ()
where
,BEe“’/z(l—{—%ie_“’K(_E“))(1-}—%1’6‘21{(“)) .

Since this relation must hold if the WKB method is to
give approximate solutions of (1), solving it for A will
give us the energy eigenvalues. Although we cannot
solve it exactly, we can take into account its transcen-
denta Inature. Using trignometric identities, it reduces to

cos(3mA+6)=0,
where
6=tan—1(ReB/Imp).

Therefore the consistency relation will hold if $w\--6
=1r(2n+1), so that

A=2n+1+4(2/x)

2K (—ka) | g2K(£)

} . (32)
2—3 exp{—2[K(— &)+ K(£&) ]}

Xtan™! {
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F16. 1. Potential energy of a
dimensionless harmonic oscil-
lator in an infinitely high po-
tential well.

POTENTIAL ENERGY

POSITION ¢

Recalling that K(£) is also dependent on \, we see that
Eq. (3a) does not give us the energy eigenvalues. We
must solve (3a) for A to find the eigenvalues as a func-
tion of the boundaries &, and £, and the quantum num-
ber .

(b) The left turning point is outside the box but the
right one is inside the box, £,2<A<£y2 For this case we
need only consider regions IT and III of Fig. 1 for values
of A between £,2 and £;,2. The WKB wave functions can
then be written as

Yir (8)=U""4{By expi[ F(§)— F(&)]
+B; exp—i[F(§)—F(&)]},
Yt (§) = UV By expi[F(§)—F(\/N)]
+By exp—i F()—F(/N]},
Yrr(§) = (—U)~*[C1 expK (£)+C; exp—K(§)].
Here ¢t and ¢ will be identical if
B,= Bll exp{ _'LE%T)\_F(Ea)]} )
B2=B2, eXp{l[iﬂ'}\—F(Eb)]} .
The connection relations for transition from region II
to IIT and the boundary condition relations at §; are
identical to those found in case (a). At £, the boundary
condition ¢ (£,)=0 implies B+ Bs=0. These re-
lations give the consistency relation §— §*=0, where
o= (144ie X E)exp{ —i[ir(\—1)—F(£) ]} .

In a manner similar to that used in case (a) we can
reduce the problem of solving this relation for A to
solving

N=4n+ 3+ (4/m)F(£)+ (4/m) tan—1(2e2K~t))  (3b)

for \. This relation is valid regardless of whether or not
the center of the oscillator lies inside the box, the only
difference being that £, <0 when the center is inside and
£,>0 when the center is outside for case (b).

(c) The right turning point is outside the box but the
left one is inside, £,2 <X\ < £,2. This case is nearly identical
with (b) and gives a consistence relation of the form

A=4n+3—(4/m)F(£)+(4/7) tan™}(Ge 2K ). (3c)
(d) Both turning poinis are outside the box,
A>max{£.2, 62} .
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Here we need only consider region II with the WKB
wave function

Y (§)= U~V B, expi F(§)—F(&)]
+B; exp—i[F(§)—F(£) ]} .

The boundary condition ¥11(£,)=0 again implies
B]_='—B2, SO that

Yui(§)=U"*2By sin[F(§)—F (&) ].

Applying the other boundary condition, ¥11(#;) =0 gives
us the consistency relation

F(&)—F(k)= (n+-1)m, (3d)

which we must solve to find the energy eigenvalues\.
Note that we have written the consistency relations in
all four cases in such a way that the possible values of
nare0, 1, 2,---. Also the relations (3) are valid even if
the center of the oscillator does not lie inside the box.

III. NUMERICAL DETERMINATION
OF WKB EIGENVALUES

In order to obtain the energy of eigenvalues of a
bound oscillator we must solve directly the consistency
relations (3) for \. Note that these four relations are
really only one relation, defined over four disjoint
ranges of £ which can be solved to give the quantum
number # as a function of £, £, and \. We write this
in the form n=N()\,&,,%;), where

N\ o ts)=2(\—1)—7(* tan~ e 2K (~4a))

—7~1 tan— (3¢ 2K (60)
=1(\—4)— 7 1F(&)—n" tan~ (Re 2K (&)
=3\—4)+7F (&) —7 ! tan~(Fe 2K )
= — 1 ()~ F ().

20t neo

n=8
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F16. 2. Energy eigenvalues of a dimensionless harmonic oscil-
lator as the position of the center of the oscillator varies from the
center of the box to outside the box. Here /A< and /=100.
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Fic. 3. Energy eigenvalues of a dimensionless harmonic oscil-
lator as the position of the center of the oscillator varies from the
center of the box to outside the box. Here 4/A=/ and /=100.

The ranges are those given in parts (a)-(d), respectively,
of Sec. II.

We will use the variables 7o and / interchangeably with
the variables &, and £, since they are equivalent,

To=%ut%, I=%—&.

Placing our original box symmetrically about the origin
(letting b= —a), it can be shown that the consistency
relations are even functions of the dimensionless center
7o for this arrangement. This, in turn, implies that the
energy eigenvalues \ will also be an even function of o,
so that we only need consider positive displacements of
the center.

Because of the complex nature of the relations (3) it
is not possible to solve them exactly. In certain limiting
ranges it is possible to obtain approximate solutions.
In all ranges it is possible to solve them using numerical
methods and a high-speed digital computer. Fixing #,
70, and I, we can find A by solving for the zeros of
fO\)=n—N(\,70,). The zeros can be found by an itera-

tive hyperbolic interpolarion.® Given an upper and lower
bound, and an initial guess (A1,\2,\s), we can fit a unique
hyperbola through these three points having the form

O\ =(A\+B)/(C\+D), AD—BC51.

If this hyperbola is taken to approximate z—N(A,7o,))
in the neighborhood of its zeros, then the zeros of the
hyperbola approximate the zeros of this function. When
the relative difference between successive values of the
zeros (i.e., N) is less than 10~4 we stop the iterations.
Since N(\,70,/) is a monotone function of A, our pro-
cedure will approach the true value of A even if this
value does not lie in the initial bounds given. The lower

8 A. M. Ostrowski, Solutions of Equations and Systems of Equa-
tions (Academic Press Inc., New York, 1960).
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bound of A is always 2141 and its upper bound can be
found by a procedure like that described by Nordtvedt.?
The analytical approximations described in Sec. IV give
a sufficiently close approximation of X over its whole
range that it can be used as an initial guess, and the
upper and lower bound can be placed near it.

Figures 2-4 represent tracings of machine plots of 40
points/in. of the energy eigenvalues found by the above
technique as a function of the center 7o for various sets
of quantum numbers #. The size of the box has been
taken to be 100 {¢ units in length. The three figures
represent the situations when the separation of the
classical turning points is much less, comparable with,
or greater than the size of the box. The parabolas
A=£,% and A= £;? represent the boundaries between the
regions where the turning points pass through the walls
of the box.

IV. ANALYTICAL APPROXIMATIONS
OF WKB EIGENVALUES

When the turning points are not near the edges of the
box, we can make expansion of terms in the consistency
relations in powers of £/4/A or (v/A)/£, depending on
whether a turning point is inside or outside the box.
If £>4/)\, the relations (3) involve terms of the form
exp[—2K(£)]. Here K(£) is positive and monotone if
£ is positive, so that exp[—2K(¢)] will be small since
K will be fairly large (if £ is not near 4/A). In the case
when both turning points are inside [case (a) of Sec. IL]
we can obtain the zeroth-order approximation of A= 2#n
+1 from (3a) by neglecting the second term on the
right in comparison with 2#--1. These are the energy
eigenvalues of an unbound oscillator. We expect this
result since the wave functions of a free oscillator fall
off like exp(—%£?) after the turning points so that the
introduction of finite boundaries should have little effect

301
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F1c. 4. Energy eigenvalues of a dimensionless harmonic oscil-
lator as the position of the center of the oscillator varies from the
center of the box to outside the box. Here 4/A>>! and I=100.

9 K. Nordtvedt, Jr., J. Math. Phys. 8, 1406 (1967).
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provided that the walls are not near the turning points.
Note that when # is large, we can also neglect the second
term on the right in (3a) since its maximum value is

always less than unity. This again gives free oscillator
A in K(%) by 2n+1,
1/242n+1
)
Xexp{&[£.2— (2n+1)]12)
Placing the center of the oscillator at the center of the

states.
The first-order correction can be found by replacing
2 - Ea Eaz
A=2n+ 1+—|: + <
L Q2u+1)2 \2n+1
2 ‘Eb £b2 1/2—2n+1
)
ml.C2u+1)12 \2n+41 _
Xexp{— & £62— (2n-+1) 142} .
box, 79=0, and neglecting 2#»+1 in comparison with
the size of the box /, we have

4 l 2n+1
A=2n+ 1+—[———] s,
L (2n+1)12

This approximation agrees with that obtained by Haull
and Julius for an asymptotic approximation of the
eigenvalues.!?

When both turning points are outside the box, we
note the parabolic dependence of A on the center 7o
from the numerical solutions (Fig. 4). We thus expand
\ in a Taylor series about 7o=0.

N
A=Dot—

To

92\
Tot—

o 070

Tt

0

From the consistency relation (3d) we can find Ao since
at 7o=0 it becomes

a\o—a?)124-\g sin—(a/A/No) = (n+ D), 4

where a=4}I. Here )\ represents the lowest possible value
of \ (consider as a function of 7o) for a given quantum
number #. The partial derivatives can also be obtained
from the consistency relation (3d) by direct differenti-
ation with respect to 7o;

N (=)= (=g

970 Si(£s/v/\) —sin(Ea//N)
As expected,

(”\/(97'0’ 0= 0

since \ is known to be an even function of 7o. Continuing,
we find

A=NoFaro/[No—a?) sin~Y(a/a/No)].

10 See Ref. 6 and note that their ¢ is equal to our 3/, and that
one must use Stirling’s approximation to obtain their results.
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Fic. 5. Plot of #(!) as a function of X for ¢;=1.

In the case when \¢ becomes much larger than a? we
can make an expansion of (4). To first order this gives

No= (n+1)2r2/12.

Converting back, from dimensionless variables, this
last equation takes the form

E=(/2m)(n+1)*r?/L2,

of the energy eigenvalues of a particle in a one-dimen-
sional box. This means that if we let L— 0, then the
energy levels go like free-particle box states for the
center of the oscillator at zero. This is to be expected
since the particle must “bounce” off the walls before
it can feel the effects of the oscillator potential. For this
same approximation the coefficient of 74 approaches 1.
Thus when the separation of the turning points is large
compared to the size of the box, the energy eigenvalues
approach

n=1,0,2,---

A= (n+1)%%/P+142. (5)
From the second-order terms of (4) we find that

(D f(n1)ar B\
)\0=[ Jl ( + > ] ’
21 4/ 24

which can be used to find the second-order correction to
. It should be added that there are many other approxi-
mations that one could make following these same
procedures for different ranges of the parameters of the
bound-oscillator problem.!!

For a well of finite depth these same procedures can
be used to find the eigenstates.!! We note that there
will be little difference for states with large #. This re-
sults from the fact that the depth of well Vy always
appears in terms of the consistency relations which are
less than %.

V. EXACT SOLUTION

It is well known that the harmonic-oscillator dif-
ferential equation (2) has an exact set of solution which
can be expressed in terms of confluent hypergeometric
functions.?—¢ For the special case when the center of the

11 For more complete details, see R. Vawter, Ph.D. thesis, State
University of New York, Stony Brook, 1968 (unpublished).
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oscillator is at the center of the box (£,=—§&,), Baijal
and Singh used numerical methods on these confluent
functions to extract the eigenvalues.!? For the case of a
nonsymmetrically placed oscillator their work must be
extended in the following way. Instead of using con-
fluent functions as solutions of (2), we look directly for
the series solutions of the shifted oscillator differential
equation (1). Letting

Y =u(r)edrtm?,
we find that (1) reduces to
" (7)—=2(r+7o0)u (1) +A—Du(r)=0.
Assuming the series solution
u(r)= 2 cat™,
n=0
we obtain the recurrence relation

2n—3—\

Cn—2

27’0
Cn=—Cn_11
7 n(n—1)

for > 2 and where ¢, and ¢; are arbitrary.

We place our box in the interval [0,L] since #(0)=0
implies that co=0. This eliminates one of the arbitrary
constants so that

()= crf{ 1+ (270) 7%/ 2!+ [ (270)2+(3—N\) ]r?/3!
+L(270)*+(270) (34-5—2N) ]r¥/4!+- - -} .

Since ¢; is fixed by normalization, the other boundary
condition #(l)=0 gives us an equation which fixes the
eigenvalues of the shifted oscillator. Figure 5 is a plot
of u(l) (for c1=1) as a function of A for 7o=0and /=2.
We can numerically extract the zeros (i.e., the eigen-
values) of #(I) by the same type of method described
in Sec. III (See Tables I and II).

We note that «(r) is a slowly convergent function of
7, so that the numerical method above only works
satisfactorily for small ! (i.e., IS1). For example, ap-
proximately 50 terms are needed for each point plotted
of u(l) in Fig. 5. The numerical method also only works
satisfactorily for the first few quantum states since the
larger \ becomes, the larger the difference between the
maximum value of the partial sums and the convergent
value of u(l). For example, the partial sums of #(I) in
Fig. 5 reach values of the order of 10° before they con-
verge back down to values of the order of 1. This means
that a large numer of significant figures (in this case 16)
must be carried along if the convergent values are to be
found correctly.

12 See Ref. 4 and note that their £ and #, are equal to our 24/c
and 2(A\—1), respectively. Moreover, their states labeled by ¢=1,2,
3,-- -, corresponds to our states =1, 3, 5,- - -, so that they appear
not to have included the even states. Also their eigenstates do
not approach 7w(n+3) as ! becomes large compared to v/A.
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TaBLe I. Comparison of exact and WKB eigenvalues of a harmonic oscillator in a box for /=2 and #=0, 1, 2, 3. Here 7o is the
distance of the center of the oscillator from the center of the box.

Exact WKB Exact WKB
energy energy % error 70 energy energy 9 error 70
n=0 n=2
2.596 2.810 8.210 0.00 22.52 22.54 0.103 0.00
2.610 2.827 8.296 0.12 22.53 22.55 0.103 0.12
2.651 2.877 8.547 0.24 22.57 22.60 0.104 0.24
2.718 2.961 8.954 0.36 22.65 22.67 0.104 0.36
2.812 3.079 9.503 0.48 22.75 22.77 0.105 0.48
2.933 3.231 10.176 0.60 22.88 2291 0.106 0.59
3.080 3.418 10.963 0.72 23.04 23.06 0.107 0.72
3.255 3.212 1.309 0.84 23.23 23.26 0.109 0.84
3.456 3.454 0.068 0.96 23.48 23.48 0.111 0.95
3.685 3.709 0.648 1.08 23.70 23.72 0.113 1.08
3.940 3.979 0.994 1.20 23.97 24.00 0.115 1.20
4.223 4.268 1.088 1.32 24.28 2431 0.117 1.32
4.532 4.578 1.028 1.44 24.62 24.65 0.120 144
4.868 4911 0.884 1.56 24.98 25.01 0.123 1.56
5.231 5.268 0.706 1.68 25.37 25.41 0.125 1.68
5.621 5.651 0.524 1.80 25.80 25.83 0.128 1.80
6.038 6.059 0.355 1.92 26.25 26.28 0.131 1.92
6.482 6.496 0.206 2.04 26.73 26.77 0.135 2.04
6.954 6.960 0.079 2.16 27.24 27.28 0.138 2.16
7452 7.451 0.025 2.28 27.78 27.82 0.142 2.28
1977 7.969 0.110 2.40 28.35 28.39 0.145 2.40
8.530 8.515 0.177 2.52 28.94 28.99 0.148 2.52
9.110 9.089 0.229 2.64 29.57 29.62 0.152 2.64
9.717 9.691 0.268 2.76 30.23 30.27 0.156 2.76
10.35 10.32 0.299 2.88 30.91 30.96 0.160 2.88
11.01 10.98 0.321 3.00 31.63 31.68 3 0.164 3.00
n=1 n=
10.15 10.20 0.532 0.00 39.80 39.81 0.032 0.00
10.16 10.22 0.534 0.12 39.81 39.83 0.032 0.12
10.21 10.26 0.539 0.24 39.86 39.87 0.032 0.24
10.28 10.34 0.547 0.36 39.93 39.94 0.033 0.36
10.38 10.44 0.558 0.48 40.03 40.04 0.033 0.48
10.52 10.58 0.572 0.59 40.16 40.17 0.032 0.60
10.68 10.74 0.589 0.72 40.32 40.33 0.033 0.72
10.87 10.93 0.608 0.84 40.51 40.52 0.033 0.84
11.09 11.16 0.630 0.95 40.73 40.74 0.034 0.96
11.34 11.41 0.655 1.08 40.97 40.99 0.034 1.08
11.62 11.70 0.681 1.20 41.25 41.26 0.034 1.20
11.92 12.01 0.709 1.32 41.55 41.57 0.035 1.32
12.26 12.35 0.740 1.44 41.89 41.90 0.035 1.44
12.63 12.72 0.772 1.56 42.25 42.26 0.036 1.56
13.02 13.13 0.806 1.68 42.65 42.66 0.036 1.68
13.45 13.56 0.841 1.80 43.06 43.08 0.037 1.80
13.90 14.02 0.877 1.92 43.51 43.53 0.037 1.92
14.38 14.51 0.914 2.04 43.99 4401 0.038 2.04
14.90 15.04 0.953 2.16 44.50 44.52 0.038 2.16
15.44 15.59 0.992 2.28 45.04 45.05 0.039 2.28
16.01 16.17 1.032 2.40 45.60 45.62 0.040 2.40
16.61 16.78 1.073 2.52 46.20 46.22 0.040 2.52
17.23 17.43 1.115 2.64 46.82 46.84 0.041 2.64
17.89 18.10 1.158 2.76 47.47 47.49 0.042 2.76
18.58 18.80 1.201 2.88 48.16 48.18 0.042 2.88
19.29 19.53 1.245 3.00 48.86 48.88 0.043 3.00

VI. ERROR OF THE WKB EIGENVALUES

With the numerically determined exact eigenvalues
found in Sec. V we can directly compare the WKB
eigenvalues with exact eigenvalues.!* Since the eigen-
values depend on position of the center of the oscillator
7o, length of the box /, and the quantum number %, we
make our comparison for those values of these param-
eters which give the worst agreement. Before proceeding
to determine the regions of worst agreement we note

13 For an estimate of the relative error of the wave functions
see Ref. 11,

that in this section we will place our original box
symmetrically about the origin (letting = —a) as in
Sec. ITI. In this way 7o measures the distance the center
of the oscillator is displaced from the center of the
box.

In general, the WKB method will be at its worst for
those energies whose associated turning points are near
the walls (the points where A= £,2 or A=§,?). This is
expected since the WKB wave functions become singu-
lar at these energies and the consistency relations (3)
are discontinuous functions at these energies. Moreover,
the WKB eigenvalues asymptotically approach the
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Tasre II. Comparison of exact and WKB eigenvalues of a harmonic oscillator in a box for /=4 and #=0, 1, and 2. Here o is the
distance of the center of the oscillator from the center of the box.

Exact WKB Exact WKB
energy energy 9% error T0 energy energy 9% error To
=0 5.674 5.684 0.174 1.56
1.075 1.083 0.716 0.00 6.006 6.012 0.111 1.68
1.080 1.089 0.822 0.12 6.360 6.364 0.062 1.80
1.095 1.107 1.116 0.24 6.738 6.740 0.024 1.92
1.120 1.138 1.523 0.36 7.140 7.139 0.007 2.04
1.157 1.178 1.816 0.48 7.564 7.562 0.031 2.16
1.206 1.224 1.520 0.60 8.013 8.009 0.050 2.28
1.268 1.267 0.056 0.72 8.485 8.479 0.065 2.40
1.334 1.514 12.657 0.84 8.801 8.974 0.077 2.52
1.436 1.564 8977 0.96 9.501 9.493 0.086 2.64
1.543 1.641 6.398 1.08 10.04 10.04 0.094 2.76
1.668 1.743 4.529 1.20 10.61 10.60 0.099 2.88
1.811 1.868 3.159 1.32 11.21 11.20 0.104 3.00
1.973 2.015 2.150 1.44
2.154 2.184 1.405 1.56 n=2
2.356 2.376 0.855 1.68 6.799 6.955 2.283 0.00
2.579 2.591 0.450 1.80 6.816 6.974 2.324 0.12
2.824 2.829 0.153 1.92 6.865 7.033 2.450 0.24
3.091 3.089 0.065 2.04 6.946 7.131 2.665 0.36
3.381 3.374 0.223 2.16 7°059 7.269 2.978 0.48
3.694 3.682 0.337 2.28 7.204 7.449 3.404 0.60
4.030 4.013 0.418 2.40 7.380 7.674 3.980 0.72
4.390 4.369 0.473 2.52 7.587 7.600 0.167 0.84
4774 4.750 0.511 2.64 7.825 7.870 0.572 0.96
5.183 5.155 0.535 2.76 8.092 8.148 0.691 1.08
5.616 5.585 0.548 2.88 8.389 8.446 0.673 1.20
6.074 6.041 0.554 3.00 8.715 8.766 0.587 1.32
n=1 9.068 9.112 0.479 1.44
3.529 3.357 0.221 0.00 9.450 9.485 0.373 1.56
3.543 3.758 6.063 0.12 9.858 9.886 0280 1.68
3.583 3.760 4.942 0.24 10.29 10.31 0.204 1.80
3.649 3.791 3.875 0.36 10.76 10.77 0.144 1.92
3.742 3.853 2.953 0.48 11.24 11.25 0.097 2.04
3.860 3.946 2.216 0.60 11.75 11.76 0.062 2.16
4.003 4.069 1.649 0.72 12.98 12.30 0.034 2.28
4171 4222 1.225 0.84 12.86 12.86 0.014 2.40
4.363 4403 0.908 0.96 13.45 13.45 0.000 2.52
4.578 4.609 0.671 1.08 14.07 14.07 0.012 2.64
4.818 4.841 0.493 1.20 14.71 14.71 0.021 2.76
5.080 5.982 0.358 1.32 15.38 15.38 0.027 2.88
5.365 5.379 0.254 1.44 16.07 16.06 0.032 3.00

exact eigenvalues as the turning points recede from the
walls either into the box or outside the box. To obtain
an estimate of the region affected around the walls, we
recall that the unbound oscillator wave functions decay
exponentially (like e~#/2) after the turning points. Thus
only those unbound oscillator eigenfunctions whose as-
sociated turning points are inside the box and closer
than a few £ units to the walls will have values appreci-
ably different from zero at the walls. Therefore we ex-
pect the error to be greater when the turning points are
within a few ¢ units of the walls. It turns out that the
error is the greatest right at the walls due to the dis-
continuity in the consistency relations (3). In all cases
the discontinuity in the energy eigenvalues A is £— (2/7)
Xarctany=0.2. If X is large, then this discontinuity will
be small, so that this discontinuity error will have its
greatest effect when \ has its smallest values. The latter
occurs when #=0 and 7o=0 (see Figs. 2-4). For 70=0
the discontinuity occurs when A=(3))?, and since the
minimum possible value of A is 1 for =0, then the
greatest error will occur when /=2. Tables I and II
show that this error is never more than ~10%,.

We emphasize that Tables I and II show the com-
parison between the exact and WKB eigenvalues in the
region of the worst possible agreement. First, we have
chosen to look only at the first few quantum states.
Second, we have shrunk the size of the box down so that
the turning points of the lowest quantum states will
always be within a few £ units of the walls. If /is taken
to be less than 1, then the error can be shown to always
be less than 19, independent of 7o or #. This happens
because the turning points of even the lowest states are
always larger than the size of the box. In fact, if /0.1,
then the analytical equation (5) for M is always good
to at least one part in 10%. If / is greater than 10, then
the error in A can also be shown to be less than 19,
for all 7o and # except for the case when #=0 and turn-
ing points are at the walls. Even this error decreases
from a maximum value ~109%, as ! becomes larger.

VII. RELATION TO BOHR-SOMMERFELD
QUANTIZATION RULE

It is well known that the Bohr-Sommerfeld quanti-
zation rule & pdg="%(n+%) and the WKB method give
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the same result for the eigenstates of unrestricted sys-
tems. For a bounded system this quasiquantization rule
must be modified by replacing 1 by a factor v which
depends on the boundary conditions. For our infinite-
well case the WKB solutions (i.e., the consistency re-
lations) can be written in the form of the modified
quasiquantization rule as

/ (=)= r(nt7),

where the upper and lower limits of the integral are
understood to be taken between the actual classical
turning points min{£;,0/A} and max{£,,—+/A}, respec-
tively. Here

Y= %—1—7‘-“1 ta,n"l% —2K (— fa)-—l—ﬂ-“l tan-l-zl. —2K (£b)
=34771 tan~ e 2K (D)
=371 tan e 2K~ ka)

=1

in the four regions [ (a)-(d)] described in Sec. II. There-
fore v depends not only on the size of the enclosure but
also on the position of the center of the oscillator .
For a well of finite depth we can likewise write the WKB
solutions in the form of a modified Bohr-Sommerfeld
quantization rule where 4 depends also on the depth
of the well.l!

VIII. SUMMARY

Using the WKB method, we find the introduction of
finite boundaries will radically change the structure of
the eigenstates of a quantum-mechanical linear oscil-
lator. If the classical path is such that the oscillator will
run into the wall, then its eigenstates will be changed
from a usual free-oscillator state regardless of whether
the boundaries are considered to be those of a well of
finite or infinite depth. We have, in general, two limiting
cases. If both turning points are inside the enclosure,
then the associated eigenstates behave like a free-oscil-
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lator state except for the addition of a small term which
goes as the exponential negative of the square of size
of the enclosure. If the enclosure is small compared to
the size of the turning points, so that the oscillator must
classically bounce off the walls long before it would
reach its normal turning points, then the associated
eigenstates behave like free-particle box eigenstages.
The intermediate ranges of the eigenstates can be found
by numerical methods with the aid of a high-speed
computer (Figs. 2-4). We note these facts:

(1) The eigenstates depend on the size of the en-
closure, the position of the center of the oscillator, and
the height of the walls.

(2) For a symmetrically placed box, the eigenvalues
are an even function of the position of the center of the
oscillator. If both turning points are inside the well,
then the states are independent of 7o to a good approxi-
mation. When one or more turning points are outside
the box, then the eigenstate shows a parabolic depend-
ence on To.

(3) The minimum bound on an eigenstate is always
2n+1 regardless of position of the center or the depth
of the well.

(4) The upper bound for an infinite well is (n-+1)%r2/
l2+ Toz.

(5) The consistency relations used to find the eigen-
states can be written in the form of a modified Bohr-
Sommerfeld quantization rule for a well of finite or in-
finite depth, where v is a complicated function of the
size of the box, the position center of the oscillator, and
the depth of the wall.

(6) A comparison of WKB results with the exact
results show that the WKB method gives the eigen-
values for a bound oscillator which are never worse than
~10%, and in general are much better than 19,
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