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In the study of the sects of finite boundaries on the magnetic properties of a solid, one encounters the
problem of finding the energy eigenvalues of a one-dimensional linear harmonic oscillator located in a
potential enclosure. The %KB method is employed to solve this problem for an oscillator whose center is
fixed at some arbitrary position inside a potential box. Both numerical and analytical approximations of
the WEB method are employed to Qnd the energy eigenvalues over a wide range of the parameters of the
problem. Numerical methods are also used on the exact series solutions of a bound oscillator to find the exact
eigenvalues for the first few quantum states. A comparison of the two methods show that, in general, the
WKH eigenvalues are accurate to much better than 1% except when the classical turning points are near
the wall. Here the difference is of the order of 10% for the worst possible cases. The eigenvalues of a bound
oscillator are shown to reduce to unbound-oscillator energy eigenvalues if the classical turning points are
inside the potential enclosure and not near the walls. At the other extreme the eigenvalues are shown to
become plane wave box eigenvalues when the separation of the classical turning points is large compared
to the size of the enclosure. Also included is the relationship of the WEB solution to the Bohr-Sommerfeld
quantization rule for the bound oscillator.

I. INTRODUCTION

'HE problem of calculating the magnetic properties
of a metallic solid can be reduced (by the usual

assumptions of the one-electron approximation of a
solid') to studying the magnetic properties of an elec-
tron gas. H one wants to take into account the effects
of 6nite boundaries on the magnetic properties, then
the problem of interest will be to find the energy eigen-
values of a single electron in a magnetic Geld which is
also in a potential box. This problem can be reduced
(among other things) to that of solving a one-dimen-
sional harmonic oscillator in a box with a shifted origin.
Because such a bound oscillator is in itself signi6cant
for other applications, in addition to its relation to the
surface e6ects of a solid, the purpose of this paper is
to find the energy eigenvalues of a bound harmonic
oscillator by means of both the WEB approximation
and an exact method.

The exact method consists of a numerical extraction
of the eigenvalues from the exact series solutions of the
bound-oscillator differential equation. Because of prac-
tical difhculties, this method is restricted to the first
few quantum states and to boxes whose sizes are small. '

We will be more interested in using the WXB method
to find the eigenvalues because:

(a) In the problem of a solid, the majority of the
quantum states will be in the semiclassical region. For
example, a typical Fermi energy of 1 eV will correspond
to a quantum number of around 10 000 for the unbound
oscillator associated with a 1-kG 6eld.

(b) The WKB method gives the exact results for the
eigenvalues of an unbound oscillator, and we do not

expect the introduction of Gnite boundaries to radically
change the accuracy of this method. Our results will
show that this is indeed the case.

(c) The WKB method turns out to be a more con-
venient procedure for finding the eigenvalues than pro-
cedures using the exact eigenfunctions. Also the WEB
method gives us some analytical results, whereas the
exact procedures usually only produce numerical results.

The studies of a bound oscillator so far (using the
exact solutions which take the form of confiuent hyper-
geometric functions in these cases) give the energy
eigenvalues only for certain asymptotic or limiting
ranges of the parameters of the problem. ' ' In addition,
they 6x the position of the center of the oscillator at the
middle of the box. Both of these limitations are in-
tolerable if one is interested in knowing the energy-level
structure of a metallic solid in order to calculate its
magnetic properties. Here one must know the energy
eigenvalues over large ranges of the size of the box,
position of the center of the oscillator, and the quantum
number e of the oscillator. As we shall see, the WEB
method will allow us to And the energy eigenvalues over
these ranges.

The Hamiltonian of a harmonic oscillator in a box
(located in the interval Pa,bj) with its center shifted
by xp is given by

B=(1/2rtt)P'+s'nttos(x+xo)'+ V(x),

where
V(x) =0 a(x(b

xCa or x&b.

The effect of requiring that the box act like an infinitely

*Present address: Western Washington State College, Belling-
ham, Washington.' See any text on solid-state physics. For an especially good
review article see Max Dresden, Rev. Mod. Phys. BB, 265 (1961).' For the precise meaning of a small box and more on the use
of the exact solutions see Sec. V and Refs. 3-6.
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Here we need only consider region II with the WEB
wave function

V (e=~ "&B ~LF(&)—Fu.)j
+Bs exp —t'tF(g) —F(P,)j}.

The boundary condition ijzz($ )=0 again implies
Bg= —82, so that

Pzz(&) = U "42iBz sinPF(t) —F(&,)).
Applying the other boundary condition, fzz($b) = 0 gives
us the consistency relation
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which we must solve to find the energy eigenvaluesh.
Note that we have written the consistency relations in
all four cases in such a way that the possible values of
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FiG. 2. Energy eigenvalues of a dimensionless harmonic oscil-
lator as the position of the center of the oscillator varies from the
center of the box to outside the box. Here gX«l and i= 100.

III. NUMERICAL DETERMIm TION
OF WEB EIGENVALUES

In order to obtain the energy of eigenvalues of a
bound oscillator we must solve directly the consistency
relations (3) for X. Note that these four relations are
really only one relation, defined over four disjoint
ranges of g, which can be solved to give the quantum
number I as a function of $„$p, and X. We write this
in the form N=1tz(X, ).,pp), where

E(X$ t )=z(X—1)—zr ('tan '-'e ' ' I')
—sr ' tan —'(-'e—'x&I»)

= z(Z —4)—~-zF(].)—~-z tan-z(ze-'x«»)
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Fio. 3. Energy eigenvalues of a dimensionless harmonic oscil-
lator as the position of the center of the oscillator varies from the
center of the box to outside the box. Here gX=l and i=100.

The ranges are those given in parts (a)—(d), respectively,
of Sec. II.

We will use the variables rp and / interchangeably with
the variables P, and $& since they are equivalent,

rp= 4+ (p, l= tp —t..
Placing our original box symmetrically about the origin
(letting b= —tz), it can be shown that the consistency
relations are even functions of the dimensionless center
Tp for this arrangement. This, in turn, implies that the
energy eigenvalues X will also be an even function of Tp,

so that we only need consider positive displacements of
the center.

Because of the complex nature of the relations (3) it
is not possible to solve them exactly. In certain limiting
ranges it is possible to obtain approximate solutions.
In all ranges it is possible to solve them using numerical
methods and a high-speed digital computer. Fixing n,
Tp, and /, we can find X by solving for the zeros of
f(lz) =ts X(X,rp, l) T—he zeros ca.n be found by an itera-

tive hyperbolic interpolarion. ' Given an upper and lower
bound, and an initial guess (Xz,Xs,Xs), we can 6t a unique
hyperbola through these three points having the form

f(X)= (AX+B)/(CX+D), AD —BCW1.

If this hyperbola is taken to approximate n —X(lw, , rp l)
in the neighborhood of its zeros, then the zeros of the
hyperbola approximate the zeros of this function. When
the relative difference between successive values of the
zeros (i.e., X) is less than 10 ', we stop the iterations.
Since 1V(X,rp, l) is a monotone function of X, our pro-
cedure will approach the true value of X even if this
value does not lie in the initial bounds given. The lower

s A. M. Ostrowski, Solutions of Equations ozut Systems of Equo;
tious (Academic Press Inc. , New York, 1960).
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bound of X is always 2/s+1 and its upper bound can be
found by a procedure like that described by Nordtvedt. o

The analytical approximations described in Sec. IV give
a sufficiently close approximation of X over its whole
range that it can be used as an initial guess, and the
upper and lower bound can be placed near it.

Figures 2—4 represent tracings of machine plots of 40
points/in. of the energy eigenvalues found by the above
technique as a function of the center vp for various sets
of quantum numbers n. The size of the box has been
taken to be 100 P units in length. The three figures
represent the situations when the separation of the
classical turning points is much less, comparable with,
or greater than the size of the box. The parabolas
It= $ ' and X= /os represent the boundaries between the
regions where the turning points pass through the walls
of the box.

IV. ANALYTICAL APPROXIMATIONS
OF WEB EIGENVALUES

When the turning points are not near the edges of the
box, we can make expansion of terms in the consistency
relations in powers of P/gX or (gX)/$, depending on
whether a turning point is inside or outside the box.
If $&gX, the relations (3) involve terms of the form

expL —2E($)j. Here E($) is positive and monotone if

$ is positive, so that expL —2E($)) will be small since
E will be fairly large (if g is not near gX). In the case
when both turning points are inside Lease (a) of Sec. IIj
we can obtain the zeroth-order approximation of X= 2n
+1 from (3a) by neglecting the second term on the
right in comparison with 2n+I. These are the energy
eigenvalues of an unbound oscillator. We expect this
result since the wave functions of a free oscillator fall
off like exp( —sr P) after the turning points so that the
introduction of finite boundaries should have little effect

X=2n+1+-
s. (2n+1)'/'

—2n+1

g
—lm/4

This approximation agrees with that obtained by Haull
and Julius for an asymptotic approximation of the
eigenvalue s.'

When both turning points are outside the box, we

note the parabolic dependence of X on the center 7'p

from the numerical solutions (Fig. 4). We thus expand
X in a Taylor series about rp=0.

&=&o+ ro+ ro'+
Bxp p BTp p

From the consistency relation (3d) we can find Xo since
at 7p=0 it becomes

provided that the walls are not near the turning points.
Note that when e is large, we can also neglect the second
term on the right in (3a) since its maximum value is

always less than unity. This again gives free oscillator
states.

The first-order correction can be found by replacing
X in E($) by 20+1,

g
2

q
1/2-2n+t

~=2~+1+- +~
vr (2n+1)'/' (2n+I

Xexp($ L$
'—(2n+1)g'/s)

( g
s )1/2-2n+t

+i-
s. .(2n+1)'/s E2n+1

&(exp( —)oL)o' —(2n+ 1)$'/s) .

Placing the center of the oscillator at the center of the
box, ro=O, and neglecting 2n+I in comparison with
the size of the box /, we have
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n(Xo —n ) +ho sin '(n/gXo) = (I+1)s (4)

where 0.=—2/. Here Xp represents the lowest possible value
of X (consider as a function of ro) for a given quantum
number e. The partial derivatives can also be obtained
from the consistency relation (3d) by direct differenti-
ation with respect to 7'p,

Q, (X—P.)'/s —(I~—$o)'"

pro sin '(fs/gX) —sin '($,/+It)

As expected,
W/Broi o=0

IO
0 IOO 200 500 400 500 600

CENTER &o

FIG. 4. Energy eigenvalues of a dimensionless harmonic oscil-
lator as the position of the center of the oscillator varies from the
center of the box to outside the box. Here gh))l and i =100.

' K. Nordtvedt, Jr. , J. Math. Phys. 8, 1406 (1967).

since X is known to be an even function of ~ p. Continuing,
we find

7 = 7 o+nro/$(Xo —n') sin-'(n/gXo) j.
See Ref. 6 and note that their u is equal to our &~l, and that

one must use Stirling's approximation to obtain their results.
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PIG. S. Plot of N(l) as a function of & for ci = 1.

oscillator is at the center of the box ($s
———$,), Baijal

and Singh used numerical methods on these conQuent
functions to extract the eigenvalues. "For the case of a
nonsymmetrically placed oscillator their work must be
extended in the following way. Instead of using con-
fluent functions a,s solutions of (2), we look directly for
the series solutions of the shifted oscillator differential
equation (1).Letting

y( )=u( )e-'*i~"&'

we find that (1) reduces to

u"(r) —2(r+ rs)u'(r)+ ()i—1)u(r) =0.
In the case when Xp becomes much larger than n' we
can make an expansion of (4). To first order this gives

)is= (n+1)'rr'/P

Converting back, from dimensionless variables, this
last equation takes the form

E= (A'/2m) (n+1)'s-'/L' n = 1, 0, 2,

of the energy eigenvalues of a particle in a one-dimen-

sional box. This means that if we let I.~ 0, then the
energy levels go like free-particle box states for the
center of the oscillator at zero. This is to be expected
since the particle must "bounce" o6 the walls before
it can feel the effects of the oscillator potential. For this
same approximation the coefficient of vp' approaches 1.
Thus when the separation of the turning points is large
compared to the size of the box, the energy eigenvalues

approach
)~ = (n+ 1)'7r'/P+ re'.

From the second-order terms of (4) we find that

(n+1)rr ((n+1)'rr' P'l' ' '+I, +—
I

2l ~, 4P 24~

which can be used to 6nd the second-order correction to
A. . It should be added that there are many other approxi-
mations that one could make following these same
procedures for different ranges of the parameters of the
bound-oscillator problem. "

For a well of 6nite depth these same procedures can
be used to 6nd the eigenstates. "We note that there
will be little difference for states with large e. This re-
sults from the fact that the depth of well Vp always
appears in terms of the consistency relations which are
less than 2.

V. EXACT SOLUTION

It is well known that the harmonic-oscillator dif-
ferential equation (2) has an exact set of solution which
can be expressed in terms of confluent hypergeometric
functions. ' ' For the special case when the center of the

"For more complete details, see R. Vawter, Ph. D. thesis, State
University of New York, Stony Brook, 1968 (unpublished).

Assuming the series solution

u(r)= P c„r",
n=p

we obtain the recurrence relation

2v. p 2n —3—'A

ca= cn —i+ ~n—2

n n(n —1)

for e&2 and where cp and c& are arbitrary.
We place our box in the interval f0,1) since u(0) =0

implies that cp=0. This eliminates one of the arbitrary
constants so that

u(r) =cifr+ (2rs) r'/2!+ $(2rs) '+ (3—)i)jr'/3!
+$(2rs)s+(2re) (3+5—2)t)]r /4!+ ~ ~ ~ ) .

Since c& is fixed by normalization, the other boundary
condition u(l) =0 gives us an equation which fixes the
eigenvalues of the shifted oscillator. Figure 5 is a plot
of u(l) (for et=1) as a function of )~ for re=0 and i=2.
We can numerically extract the zeros (i.e., the eigen-

values) of u(l) by the same type of method described
in Sec. III (See Tables I and II).

We note that u(r) is a slowly convergent function of

r, so that the numerical method above only works
satisfactorily for small l (i.e., l&1). For example, ap-
proximately 50 terms are needed for each point plotted
of u(l) in Fig. 5. The numerical method also only works

satisfactorily for the first few quantum states since the
larger X becomes, the larger the difference between the
maximum value of the partial sums and the convergent
value of u(l). For example, the partial sums of u(l) in

Fig. 5 reach values of the order of 10' before they con-

verge back down to values of the order of 1.This means
that a large numer of significant figures (in this case 16)
must be carried along if the convergent values are to be
found correctly.

"See Ref. 4 and note that their fo and ri~ are equal to our 2+a
and —,

' (X—1), respectively. Moreover, their states labeled by q= 1,2,
3, , corresponds to our states m=1, 3, 5,-. , so that theyappear
not to have included the even states. Also their eigenstates do
not approach A&a(N+s) as 1 becomes large compared to v'A.
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TABLE I. Comparison of exact and WKB eigenvalues of a harmonic oscillator in a box for /=2 and n=O, 1, 2, 3. Here ro is the
distance of the center of the oscillator from the center of the box.

Exact
energy

2.596
2.610
2.651
2.718
2.812
2.933
3.080
3.255
3.456
3.685
3.940
4.223
4.532
4.868
5.231
5.621
6.038
6.482
6.954
7.452
7.977
8.530
9.110
9.717

10.35
11.01

10.15
10.16
10.21
10.28
10.38
10.52
10.68
10.87
11.09
11.34
11.62
11.92
12.26
12.63
13.02
13.45
13.90
14.38
14.90
15.44
16.01
16.61
17.23
17.89
18.58
19.29

WKB
energy

2.810
2.827
2.877
2.961
3.079
3.231
3.418
3.212
3.454
3.709
3.979
4.268
4.578
4.911
5.268
5.651
6.059
6.496
6.960
7.451
7.969
8.515
9.089
9.691

10.32
10.98

10.20
10.22
10.26
10.34
10.44
10.58
10.74
10.93
11.16
11.41
11.70
12.01
12.35
12.72
13.13
13.56
14.02
14.51
15.04
15.59
16.17
16.78
17.43
18,10
18.80
19.53

n=o
jq error

8.210
8.296
8.547
8.954
9.503

10.176
10.963
1.309
0.068
0.648
0.994
1.088
1.028
0.884
0.706
0.524
0.355
0.206
0.079
0.025
0.110
0.177
0.229
0.268
0.299
0.321

0.532
0.534
0.539
0.547
0.558
0.572
0.589
0.608
0.630
0.655
0.681
0.709
0.740
0.772
0.806
0.841
0.877
0.914
0.953
0.992
1.032
1.073
1.115
1.158
1.201
1.245

&0

0.00
0.12
0.24
0.36
0.48
0.60
0.72
0.84
0.96
1.08
1.20
1.32
1 44
1.56
1.68
1.80
1.92
2.04
2.16
2.28
2.40
2.52
2.64
2.76
2.88
3.00

0.00
0.12
0.24
0.36
0.48
0.59
0.72
0.84
0.95
i.08
1.20
1.32
i.44
1.56
1.68
1.80
1.92
2.04
2.16
2.28
2.40
2.52
2.64
2.76
2.88
3.00

Exact
energy

22.52
22.53
22.57
22.65
22.75
22.88
23.04
23.23
23.48
23.70
23.97
24.28
24.62
24.98
25.37
25.80
26.25
26.73
27.24
27.78
28.35
28.94
29.57
30.23
30.91
31.63

39.80
39.81
39.86
39.93
40.03
40.16
40.32
40.51
40.73
40.97
41.25
41.55
41.89
42.25
42.65
43.06
43.51
43.99
44.50
45.04
45.60
46.20
46.82
47 47
48.16
48.86

WKB
energy

22.54
22.55
22.60
22.67
22.77
22.91
23.06
23.26
23.48
23.72
24.00
24.31
24.65
25.01
25.41
25.83
26.28
26.77
27.28
27.82
28.39
28.99
29.62
30.27
30.96
31.68

39.81
39.83
39.87
39.94
40.04
40.17
40.33
40.52
40.74
40.99
41.26
41.57
41.90
42.26
42.66
43.08
43.53
44.01
44.52
45.05
45.62
46.22
46.84
47.49
48.18
48.88

n=2
/& error

0.103
0.103
0.104
0.104
0.105
0.106
0.107
0.109
O.i i i
0.113
0.115
0.117
0.120
0.123
0.125
0.128
0.131
0.135
0.138
0.142
0.145
0.148
0.152
0.156
0.160
0.164

0.032
0.032
0.032
0.033
0.033
0.032
0.033
0.033
0.034
0.034
0.034
0.035
0.035
0.036
0.036
0.037
0.037
0.038
0.038
0.039
0.040
0.040
0.041
0.042
0.042
0.043

0.00
0.12
0.24
0.36
0.48
0.59
0.72
0.84
0.95
1.08
1.20
1.32
1.44
1.56
1.68
1.80
1.92
2.04
2.16
2.28
2.40
2.52
2.64
2.76
2.88
3.00

0.00
0.12
0.24
0.36
0.48
0.60
0.72
0.84
0.96
1.08
1.20
1.32
1.44
1.56
1.68
1.80
1.92
2.04
2.16
2.28
2.4)
2.52
2.64
2.76
2.88
3.00

VI. ERROR OF THE WEB EIGENVALUES

With the numerically determined exact eigenvalues
found in Sec. V we can directly compare the WEB
eigenvalues with exact eigenvalues. " Since the eigen-
values depend on position of the center of the oscillator
7'p length of the box l, and the quantum number e, we
make our comparison for those values of these param-
eters which give the worst agreement. Before proceeding
to determine the regions of worst agreement we note

"For an estimate of the relative error of the wave functions
see Ref. 11,

that in this section we will place our original box
symmetrically about the origin (letting b= —a) as in
Sec. III. In this way 7 p measures the distance the center
of the oscillator is displaced from the center of the
box.

In general, the WEB method will be at its worst for
those energies whose associated turning points are near
the walls (the points where X= ),' or X= (~'). This is
expected since the WEB wave functions become singu-
lar at these energies and the consistency relations (3)
are discontinuous functions at these energies. Moreover,
the WKB eigenvalues asymptotically approach the



756 R I CHARD VA WTE R

TAsLR II. Comparison of exact and WKB eigenvalues of a harmonic oscillator in a box for /=4 and n=0, 1, and 2. Here Tp is the
distance of the center of the oscillator from the center of the box.

Exact
energy

1.075
1.080
1.095
1.120
1.157
1.206
1.268
1.334
1.436
1.543
1.668
1.811
1.973
2.154
2.356
2.579
2.824
3.091
3.381
3.694
4.030
4.390
4.774
5.183
5.616
6.074

3.529
3.543
3.583
3.649
3.742
3.860
4.003
4.171
4.363
4.578
4.818
5.080
5.365

WKB
energy

n=0
1.083
1.089
1.107
1.138
1.178
1.224
1.267
1.514
1.564
1.641
1.743
1.868
2.015
2.184
2.376
2.591
2.829
3.089
3.374
3.682
4.013
4.369
4.750
5.155
5.585
6.041

n=i
3.357
3.758
3.760
3.791
3.853
3.946
4.069
4.222
4.403
4.609
4.841
5.982
5.379

'%%uz error

0.716
0.822
1.116
1.523
1.816
1.520
0.056

12.657
8.977
6.398
4.529
3.159
2.150
1.405
0.855
0.450
0.153
0.065
0.223
0.337
0.418
0.473
0.511
0.535
0.548
0.554

0.221
6.063
4.942
3.875
2.953
2.216
1.649
1.225
0.90g
0.671
0.493
0.358
0.254

TP

0.00
0.12
0.24
0.36
0.48
0.60
0.72
0.84
0.96
1.08
1.20
1.32
1.44
1.56
1.68
1.80
1.92
2.04
2.1.6
2.28
2.40
2.52
2.64
2.76
2.88
3.00

0.00
0.12
0.24
0.36
0.48
0.60
0.72
0.84
0.96
1.08
1.20
1.32
1.44

Exact
energy

5.674
6.006
6.360
6.738
7.140
7.564
8.013
8.485
8.891
9.501

10.04
10.61
11.21

6.799
6.816
6.865
6.946
7'059
7.204
7.380
7.587
7.825
8.092
8.389
8.715
9.068
9.450
9.858

10.29
10.76
11.24
11.75
12.98
12.86
13.45
14.07
14.71
15.38
16.07

WKB
energy

5.684
6.012
6.364
6.740
7.139
7.562
8.009
8.479
8.974
9.493

10.04
10.60
11.20

n
6.955
6.974
7.033
7.131
7.269
7 449
7.674
7.600
7.870
8.148
8.446
8.766
9.112
9.485
9.886

10.31
10.77
11.25
11.76
12.30
12.86
13.45
14.07
14.71
15.38
16.06

% error

0.174
0.111
0.062
0.024
0.007
0.031
0.050
0.065
0.077
0.086
G.094
0.099
0.104

2.283
2.324
2.450
2.665
2.978
3.404
3.980
0.167
0.572
0.691
0.673
0.587
0.479
0.373
0'280
0.204
0.144
0.097
0.062
0.034
0.014
0.000
0.012
D.021
0.027
0.032

Tp

1.56
1.68
1.80
1.92
2.04
2.16
2.28
2.40
2.52
2.64
2.76
2.88
3.00

0.00
0.12
0.24
0.36
0.48
0.60
0.72
0.84
0.96
1.08
1.20
1.32
1.44
1.56
1.68
1.g0
1.92
2.04
2.16
2.28
2.40
2.52
2.64
2.76
2.88
3.00

exact eigenvalues as the turning points recede from the
walls either into the box or outside the box. To obtain
an estimate of the region affected around the walls, we
recall that the unbound oscillator wave functions decay
exponentially (like e &'") after the turning points. Thus
only those unbound oscillator eigenfunctions whose as-
sociated turning points are inside the box and closer
than a few $ units to the walls will have values appreci-
ably different from zero at the walls. Therefore we ex-
pect the error to be greater when the turning points are
within a few $ units of the walls. It turns out that the
error is the greatest right at the walls due to the dis-
continuity in the consistency relations (3). In all cases
the discontinuity in the energy eigenvalues X is p

—(2/pr)
)&arctan2 =0.2. If X is large, then this discontinuity will
be small, so that this discontinuity error will have its
greatest eGect when X has its smallest values. The latter
occurs when tt=O and rp=O (see Figs. 2—4). For rp=p
the discontinuity occurs when X=(—,'l)', and since the
minimum possible value of X is 1 for m=0, then the
greatest error will occur when /=2. Tables I and II
show that this error is never more than 10%.

We emphasize that Tables I and II show the com-
parison between the exact and WEB eigenvalues in the
region of the worst possible agreement. First, we have
chosen to look only at the first few quantum states.
Second, we have shrunk the size of the box down so that
the turning points of the lowest quantum states will

always be within a few $ units of the walls. If l is taken
to be less than 1, then the error can be shown to always
be less than 1%, independent of rp or pp. This happens
because the turning points of even the lowest states are
always larger than the size of the box. In fact, if 3&0.1,
then the analytical equation (5) for X is always good
to at least one part in 10'. If / is greater than 10, then
the error in X can also be shown to be less than 1%
for all 7 0 and e except for the case when e= 0 and turn-
ing points are at the walls. Even this error decreases
from a maximum value 10% as l becomes larger.

VII. RELATION TO BOHR-SOMMERFELD
QUANTIZATION RULE

It is well known that the Bohr-Sommerfeld quanti-
sation rule +Pdq= A(e+ pr) and the WEB method give
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the same result for the eigenstates of unrestricted sys-
tems. For a bounded system this quasiquantization rule
must be modi6ed by replacing —,

' by a factor p which
depends on the boundary conditions. For our in6nite-
well case the WKB solutions (i.e., the consistency re-
lations) can be written in the form of the modified
quasiquantization rule as

(X—P)'~'d&= m (n+y),

where the upper and lower limits of the integral are
understood to be taken between the actual classical
turning points min{]i„gX}and max{/„—gX}, respec-
tively. Here

=-+7r 'tan '-'e 'x& &~&+7r 'tan 'ie 'x&&»

=-'+m ' tan '-'e ' &&»

7l=-'+7r ' tan '-'e 'x~ &~&
2

in the four regions P(a)—(d)j described in Sec. II. There-
fore y depends not only on the size of the enclosure but
also on the position of the center of the oscillator rp.
For a well of finite depth we can likewise write the WKB
solutions in the form of a modi6ed Bohr-Sommerfeld
quantization rule where p depends also on the depth
of the well. "

VGI. SUMMARY

Using the WEB method, we find the introduction of
6nite boundaries will radically change the structure of
the eigenstates of a quantum-mechanical linear oscil-
lator. If the classical path is such that the oscillator will
run into the wall, then its eigenstates will be changed
from a usual free-oscillator state regardless of whether
the boundaries are considered to be those of a well of
6nite or in6nite depth. We have, in general, two limiting
cases. If both turning points are inside the enclosure,
then the associated eigenstates behave like a free-oscil-

lator state except for the addition of a small term which

goes as the exponential negative of the square of size
of the enclosure. If the enclosure is small compared to
the size of the turning points, so that the oscillator must
classically bounce off the walls long before it would
reach its normal turning points, then the associated
eigenstates behave like free-particle box eigenstages.
The intermediate ranges of the eigenstates can be found

by numerical methods with the aid of a high-speed
computer (Figs. 2—4). We note these facts:

(1) The eigenstates depend on the size of the en-
closure, the position of the center of the oscillator, and
the height of the walls.

(2) For a symmetrically placed box, the eigenvalues
are an even function of the position of the center of the
oscillator. If both turning points are inside the well,
then the states are independent of 7p to a good approxi-
mation. When one or more turning points are outside
the box, then the eigenstate shows a parabolic depend-
ence on v.p.

(&) The minimum bound on an eigenstate is always
2N+1 regardless of position of the center or the depth
of the well.

(4) The upper bound for an infinite well is (e+I) 'n'/
)2+~ 2

(5) The consistency relations used to fmd the eigen-
states can be written in the form of a rnodi6ed Bohr-
Sommerfeld quantization rule for a well of 6nite or in-
finite depth, where y is a complicated function of the
size of the box, the position center of the oscillator, and
the depth of the wall.

(6) A comparison of WKB results with the exact
results show that the WKB method gives the eigen-
values for a bound oscillator which are never worse than

10%, and in general are much better than 1%.
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