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Aside from the J-dependent factors, which are of
order unity, and the factor 4/GM expressing the reduc-
tion in magnitude due to the many modes, note that
(4.3) and (4.5) depend in the same way on the essential
parameters (e.g., E, N4, and w). Since these dependences
have been verified experimentally, the present theory
may be taken as comparably satisfactory in this respect.

V. CONCLUSIONS

A theory of fluctuations in the saturation current has
been presented which, it is believed, describes the es-
sential physical features of the problem. The spectral
distribution is in agreement with experiment. The cutoff
frequency is found directly in terms of known properties
of the system (viz., ¢) and does not require the intro-
duction of phenomenological parameters. The magni-
tude of the noise power, however, is explained less
satisfactorily. It is believed that this would require a
more rigorous description of the primitive statistical
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fluctuations about a steady state far displaced from
equilibrium. As pointed out, the present theory, based
on an incoherent phonon picture, agrees in its depen-
dence on the essential parameters with the result of
a bunching theory due to Moore.” It remains to be
shown why this is so, and whether, in fact, the two
theories are in some sense equivalent. In this connection,
it may be of some importance to take into account
space-varying effects, neglected in the present treat-
ment. Finally, it is suggested that fluctuation analysis
should serve as a sensitive test of any future theory of
the acoustoelectric steady state.

ACKNOWLEDGMENTS

The author would like to thank Dr. A. R. Moore,
whose experimental work provided the impetus for
the present paper. He would also like to thank Dr.
D. O. North for many useful discussions on noise
phenomena.

PHYSICAL REVIEW VOLUME

174,

NUMBER 3 15 OCTOBER 1968

Modification of Friedel Oscillations by a Magnetic Field*

MarviN E. RENSINK
Lawrence Radiation-Laboratory, University of California, Livermore, California 94550
(Received 26 February 1968)

The electron density near an impurity or “test particle” in an electron gas is investigated for the case in
which a uniform magnetic field is applied to the system. The electron gas is at zero temperature and the
Coulomb interaction between electrons is neglected. A é-function potential is used for the interaction of the
electrons with the test particle. The induced electron density along a line passing through the test particle
parallel to the magnetic field is of the form #~3 cos2ksr for large 7, where kr is the Fermi wave number and 7
is the distance from the test particle. The induced electron density along a line passing through the test
particle perpendicular to the magnetic field is qualitatively different. It exhibits only a finite number of
oscillations in space and then falls off monotonically with increasing distance from the test particle. The
number of complete oscillations corresponds to the number of occupied Landau levels in the electron gas.
Similar results may be expected for the electron spin density near a magnetic impurity.

I. INTRODUCTION

NONMAGNETIC impurity in a metal gives rise

to a conduction-electron charge density? which
varies as 73 cos2kpr for large 7, where kr is the Fermi
wave number and 7 is the distance from the impurity to
the point in question. Similarly, a magnetic impurity in
a metal gives rise to a conduction-electron spin polariza-
tion? of the same form. This oscillatory phenomenon is
a consequence of the sharp cutoff in the momentum
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Energy Commission and the National Science Foundation.

17, Friedel, Nuovo Cimento Suppl. 2, 287 (1958); W. Kohn
and S. H. Vosko, Phys. Rev. 119, 912 (1960); J. S. Langer and
S. H. Vosko, J. Phys. Chem. Solids 12, 196 (1960).

2 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956); K.
Yosida, Phys. Rev. 106, 893 (1959).

distribution of the conduction electrons at zero
temperature.

Experiments dealing with these phenomena generally
utilize an external magnetic field. In previous analyses,
the effect of this field on the momentum distribution of
the electrons has not been considered. Indeed, it is not
apparent that one may neglect this effect. In the
presence of a static homogeneous magnetic field the
angular momentum of the electrons about the field lines
is quantized and the electrons occupy angular momen-
tum states (Landau levels) with quantum numbers
ranging from zero up to some cutoff NVr. However, this
does not imply a cutoff in the /inear momentum of the
electrons perpendicular to the field lines; if this cutoff is
absent or if it is modified in some way, then one may
expect a corresponding change in the behavior of the
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spin polarization or charge density near an impurity in
a metal. In this paper we calculate the conduction-
electron charge density near a nonmagnetic impurity,
including the effect of a static, uniform magnetic field.
Similar results may be expected for the conduction-
electron spin polarization near a magnetic impurity.

The model for our calculations is a gas of non-
interacting electrons at zero temperature in a static,
uniform magnetic field B. A ““test particle” or impurity
in the system interacts with the electrons via a potential
V(x). For convenience we use a unit strength é-function
potential V(r)=4(r). The procedure for finding the
induced charge density due to the test particle is (a) find
the single-particle eigenstates, |e), i.e., calculate the
wave functions, ¥.(r), and energy eigenvalues E, from
the Schrodinger equation; (b) since the system is at
zero temperature, let all eigenstates with energies less
than the Fermi energy Er be occupied; and (c) calculate
the induced charge density via the relation

p)= X 9@,

where the upper limit ar on the summation is used to
indicate that only the occupied single-particle states are
included in the sum. To carry out this procedure in
detail we assume that it is sufficient to find the linear
response of the system to the test particle, i.e., the wave
functions ¥,(r) are calculated only to first order in V().
We do 7ot make an expansion in terms of the magnetic
field B. The unperturbed system is then simply a gas of
free electrons in a static, uniform magnetic field and
we denote the wave functions and energy eigenvalues
of this system by ¢.(r) and e, respectively. The wave
functions of the perturbed system to first order in the
test particle potential are then

had ¢a'( )Va’a:
VD~ 3 e (1)

a’=l,a'#a €4 €q’a
and the induced charge density is

m2Rey 3 POTedl®

a=1 a’=1,a'#a €q— €’

where Re denotes the real part and the matrix elements
of the test particle potential are

Vram [ 0t $u*(®)V (Do) 3)

The explicit forms of ¢a(r) and ¢, are given in Sec. II.
These are used in Sec. IIT to obtain an expression for
8p(r). In Sec. IIT A the induced charge density along a
line passing through the test particle parallel to the
magnetic field is evaluated. There is essentially no effect
due to the magnetic field. In Sec. III B the induced
charge density along a line passing through the test

MODIFICATION OF FRIEDEL OSCILLATIONS

745

particle perpendicular to the magnetic field is evaluated.
Here the induced charge density exhibits only a finite
number of oscillations in space and then falls off mono-
tonically with increasing distance from the test particle.
This is in contrast to the 7% cos2kpr form for no

- magnetic field.

II. UNPERTURBED ELECTRON
EIGENSTATES

The Hamiltonian for an electron in a static, uniform
magnetic field B is?

H=—1—(p+'—e'~A)2, @

2m c

where p is the canonical momentum, # is the electron
mass, — | e| is the electron charge, and ¢ is the velocity
of light. The vector potential A(r) at the position r may
be written

A(r)=1BXr. (5)

For this problem it is most convenient to use cylindrical
polar coordinates (r,6,2) with the z axis parallel to the
magnetic field B. In this coordinate system the com-
ponents of the vector potential are

A¢=3%Br, A4,=4,=0. (6)
The Schrodinger equation for an electron becomes
10 /0¢s\ 1 9%, 9%, ieB Ip,
. _(,_, 1 107 %a
r or\ dr r2 002 022 hc 99
eBr\? 2meq
—(_> ¢a+—’—¢a=0- (7)
2%he #?

This equation can be solved by separation of variables.
The energy eigenvalues and eigenfunctions which one
finds are?

€a=12p%/2m~+-#(eB/mc)(n+1+3%), (8)
ba(t) = Coeirrgitogiizg—¢/2L, () (9)
£=(eB/2hc)r?, (10)

where the eigenstates are labelled by the set of quantum

numbers
a=(p,l,n) (11)

and L,Y(¢) is the associated Laguerre polynomial. The
quantum number p specifies the linear momentum of
the electron parallel to the magnetic field and can take

3The electrons with spin up and spin down can be treated
independently since the perturbing test particle in our problem
does not interact with the spin of the electrons. Thus we neglect a
constant term in the Hamiltonian representing the interaction of
ftihiedintrinsic magnetic moment of the electron with the magnetic
eld.
4L. D. Landau and E. M. Lifshitz, Non-Relativistic Quantum
Miczhgnics (Pergamon Press, Inc., New York, 1965), 2nd ed.,
p. 426.
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on values ranging from —o to 4. The quantum
number /is a positive integer which specifies the angular
momentum of the electron about the magnetic field
lines. For positively charged particles (holes) one would
use eigenstates having negative ! values since these
correspond to azimuthal motion about the field lines
in the opposite sense. The radial quantum number #
must also be a positive integer.

We normalize the wave functions in a cylindrical
volume of length L and radius R, where L and R are
very large and we will eventually let them become
infinite. The normalization constant C, is then given by?®

1 eB n!

|Cal =

P —— (12)
2rL #e [(n—l—l)‘:l3

This completes the specification of the unperturbed
electron states.

III. INDUCED CHARGE DENSITY

The matrix elements of the perturbing test-particle
potential appearing in Eq. (2) for the induced charge
density are easily calculated since the potential is
simply a & function. From the definition, Eq. (3), for a
spherically symmetric potential, one has

Vara= 27r¢a'*(0)¢a(0) ) (13)

and using the wave functions given in Sec. II this
becomes

Va’a= 27TC,11*C,,51,051' ,oﬂ/ Yn' ) (14)

where we have used
L,(0)=n!. (15)

The induced charge density is obtained from Eq. (2)
by substituting the expressions for the wave functions,
energies, and matrix elements given in Egs. (8), (9),
and (14):

ap 0
5p(r)=2 ReZ Z 2#511,031,0%'!7&”6',1:[2|Ca|2

a=1 a’=1
% ei(p’—p)ze—sLn’(E)Ln(E)
(#2/2m) (p>— p'2) + (heB/mc) (n—n')

The sum over all states @’ is simply the sum over all
quantum numbers:

(16)

S=3 3 —[ 4. (17)
a’'=1 a'=0 V=09, /

The summation over the occupied states a requires
more explanation. First, since only those states with
1=0 contribute to &p in Eq. (16), we consider the states
a=(p,0,n). The energy of these occupied states must

5 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953), Vol. I, p. 785.
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be less than the Fermi energy er so the summation over
n and p must be taken such that
#p*/2m~+-(fieB/mc)(n+3) < er. (18)

For a given value of #, this implies that the value of p
can vary between -t pr(#), where
B pr(n) 1/ 2m+ (heB/mc)(n+1)=ep. (19)

Further, it is clear that # must be less than or equal to

some positive integer Ny, where N r is the largest integer

satisfying the inequality
(heB/mc)(Np+3)Zer. (20)

The expression for the induced charge density can now
be written

m eB\? ¥r @ €Ly (E)Ln(f)
) = — 1] R - T
p(r) <27r3h2>('h6> eng() ué() n'in!

+pp(n) +o0
X f dp| dp’

—pp(n) —c0

ei(p'—p)z

X .
(p*— ')+ (2eB/hc)(n—n')

@1

A. Parallel to the Field

We evaluate the induced charge density along a line
passing through the test particle parallel to the magnetic
field by setting £ equal to zero in Eq. (21). Then, with
L,(0)=n!, we get

m eB 2 NFp eo t+p p(n)
3p(z)= < )(-—) ReXY ¥ a / d
2a3h?2 #c n=0 n'=0 J/—pp(n) ? —0 P

et(p'—p)z

X .
(p°= ")+ (2¢B/hc)(n—n')

(22)

We define a new variable of integration, ¢g=p'—p, and
then integrate over p:

m ) BB)zNF ® e
dp(2)= —) X X / dg et
o) (27r3h2 (hc A

PF(n)+zq+(eB/qﬁ6)(n —n)
s —3g—(eB/gha)w'—m)|

For large z, one can approximately evaluate the integral
in 8p by expanding the integrand in a power series about
the singularities on the real ¢ axis.® Then, to lowest

29

(23)

6 M. J. Lighthill, Fourier Analysis and Generalized Functions
(Cambridge University Press, New York, 1958), p. 46.
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order in 1/z, we have

m eB\2 NF o ete+(n,n")z
o) = )<~) > 2R
2x2h2/ \hic/ n=0 =0 g+(n,m’)z

eiq-(n,n’)z

g-(nn")z

where g.(n,%")= pr(n)z=pr(n’). According to Egs. (19)
and (20) the value of pp(n’) is purely imaginary for
1n'> N p, so that the contribution to §p from those terms
with #'>Np is exponentially small compared to the
rest of the terms. Thus in Eq. (24) we take #' <N p. The
summations may be changed to integrations by using
the differential of the defining equation for px(%):

(#%/m)pr(n) dpr(n)=— (ehB/mc)dn. (25)

The induced charge density becomes

m kF kF
6p(Z)=<m> Re /0 dp /0 ap’ pp

ei(rtp)z  pi(p—p')z
X)), o
(p+2) (p—1")s

where the Fermi wave number & is defined by

12k p?/2m=ep. @7
These integrals may be approximately evaluated for
large z by using Lighthill’s expansion procedure,® and
the result is

8p(z) = — (mkp/4m*h?) (cos2kpz) /3 (28)
to lowest order in 1/z. From this expression for §p(2) it
is seen that the induced charge density along the z axis
has the same 773 cos2kpr form which one finds in the
absence of a magnetic field.

B. Perpendicular to the Field

We evaluate the induced charge density along a line
passing through the test particle perpendicular to the
magnetic field by setting z equal to zero in Eq. (21):

n=0 n/=0 nln'!
+pp(n) ~+-c0
X / dp dp’
—I’F(") —0
1

X . (29)
p2— p"2+(2¢B/#c)(n—n")

The integrations over p” and p can be done explicitly
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and yield
m
dp(r)= <— ““)
’}Tth
eB\?N¥r e_ELn(g)Ln’(g)g<%7nl)
X (—) )N » (30)
fic/ n=0 n'=n+t1 nln'!
where
gnn) =1, WSNe (3

hese— (n4-12)\ 12
g(n,n’)=sin—1<w> , W'>Np (32)

w'—n

and w,=eB/mc is the electron-cyclotron frequency. The
summations occurring in the expression for 8p(r) cannot
be carried out analytically, so dp has been evaluated
numerically for several cases. The simplest case occurs
when the magnetic field is so strong that all the electrons
are in the lowest energy Landau level, i.e., the unit
energy of quantized cyclotron motion 7w, is comparable
to the Fermi energy ep. Then we have Np=0 and the
induced density is simply given by

B 2 » Lnr
o (S £
w2h2/ \hc/ w'=1 n’!

er/Tiw,— I\ 172
Xsin“(—F——l—2> . (33)

n

To evaluate 8p(r) numerically, we choose a magnetic
field such that 3w, <er<3fow,; e.g.,

er/tw,—31=1 (34)
or

B=(#c/3e)(3mw%p0)?3, (35)

where po is the electron number density and we have
used the free-electron value for the Fermi energy,
er=(%2/2m)(37%00)?/*. The induced charge density then
takes the form shown in curve 1 of Fig. 1. We see that
the induced charge density exhibits no oscillatory be-
havior and falls off rapidly for large r. If a slightly
weaker magnetic field is used, such that Np=1, we get
the result shown in curve 2 of Fig. 1. Here we have
. L ep<Shw; e.g.,

er/fw,—1=2 (36)
or

B=(#ic/5¢)(3m2po)2/3. (37)

This corresponds to the case where only fwo Landau
levels are occupied and there is an additional “bump”
on the induced charge density as a function of distance
from the test particle. By reducing the magnetic field
even further, more Landau levels become occupied and
additional bumps appear in the induced charge density.
As the magnetic field approaches zero, the number of
occupied Landau levels increases, giving rise to more



748

+0.01 T 1 T 1 1 T 1 T 1

-0.01 |~

-0.02 |~

-0.03 |~

sp(r)

-0.04 |~

-0.05 |~

~0.06 |~

-0.07
0

F1c. 1. The induced electron number density (in units of
—3mkr/#?) versus distance (in units of 1/kr) along a line passing
through the test particle perpendicular to the magnetic field. The
number of occupied Landau levels labels the curves.

and more oscillations until the form 72 cos2kzr is ob-
tained. It should also be noted from Fig. 1 that the
magnitudes of the maxima and minima in the charge
density decrease with the magnetic field.

This modification of the induced charge density by a
strong magnetic field can be attributed to a change in
the momentum distribution of the electrons. When
there is no magnetic field the unperturbed electrons
must all have momenta (or wavelengths) less than the
Fermi value. Thus only a limited number of Fourier
components are available for constructing the induced
charge density, and this necessarily leads to an oscil-
latory behavior for large distances. The momentum
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distribution for the electrons in a strong magnetic field
can be obtained from the Fourier transform of the
coordinate-space eigenfunctions given by Eq. (9). For
the case where only the lowest energy Landau level is
occupied, one finds that the momentum distribution
perpendicular to the direction of the magnetic field is
of the form exp(—k,%.2), where %k, is the perpendicular
component of the momentum and 7.=(2%c/eB)!/? is
the electron-cyclotron radius. All possible momenta or
wavelengths are present to some extent, so the electron
density does not have the oscillatory behavior at large
distances from the test particle.

These results indicate that in the presence of a strong
magnetic field the conduction-electron spin polarization
near a magnetic impurity may also differ qualitatively
from the zero-magnetic-field case, since the sharp cutoff
in the momentum distribution is similarly modified in
this case. However, the simplicity of the model used in
these calculations precludes any quantitative estimate
of this effect. The possibility of observing this behavior
depends on the density of conduction electrons, the
applicability of the free-electron model, and the inter-
action between the impurity and the conduction elec-
trons. The magnetic field By, needed to reach the
extreme quantum limit N =0 is related to the electron
density po by Bo= (%c/3¢)(3w200)?/3. In a semiconductor
such as InSb the conduction-electron density can be on
the order of 10'® cm= and the required magnetic field
By is about 2 kG. However, in a metal such as copper,
the density po is on the order of 10! cm™ and the
magnetic field needed to reach the extreme quantum
limit is beyond present capabilities. The problem which
one encounters is that while the extreme quantum limit
can be reached for low-electron densities, the number
of electrons may be too small to produce a measureable
effect. The strength of the interaction between the im-
purity or test particle and the conduction electrons also
has a direct influence on the perturbed charge or spin
density.
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