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Aside from the 8-dependent factors, which are of
order unity, and the factor A j(rM expressing the reduc-
tion in magnitude due to the many modes, note that
(4.3) and (4.5) depend in the same way on the essential
parameters (e.g., E, 1Vd, and co). Since these dependences
have been verified experimentally, the present theory
may be taken as comparably satisfactory in this respect.

V. CONCLUSIONS

A theory of fluctuations in the saturation current has
been presented which, it is believed, describes the es-
sential physical features of the problem. The spectral
distribution is in agreement with experiment. The cutoff
frequency is found directly in terms of known properties
of the system (viz. , (r) and does not require the intro-
duction of phenomenological parameters. The magni-
tude of the noise power, however, is explained less
satisfactorily. It is believed that this would require a
more rigorous description of the primitive statistical

fluctuations about a steady state far displaced from
equilibrium. As pointed out, the present theory, based
on an incoherent phonon picture, agrees in its depen-
dence on the essential parameters with the result of
a bunching theory due to Moore. ~ It remains to be
shown why this is so, and whether, in fact, the two
theories are in some sense equivalent. In this connection,
it may be of some importance to take into account
space-varying effects, neglected in the present treat-
ment. Finally, it is suggested that Quctuation analysis
should serve as a sensitive test of any future theory of
the acoustoelectric steady state.
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The electron density near an impurity or "test particle" in an electron gas is investigated for the case in
which a uniform magnetic field is applied to the system. The electron gas is at zero temperature and the
Coulomb interaction between electrons is neglected. A 8-function potential is used for the interaction of the
electrons with the test particle. The induced electron density along a line passing through the test particle
parallel to the magnetic field is of the form r ' cos2kgr for large r, where k~ is the Fermi wave number and r
is the distance from the test particle. The induced electron density along a line passing through the test
particle perpendicular to the magnetic field is qualitatively diferent. lt exhibits only a finite number of
oscillations in space and then falls oG monotonically with increasing distance from the test particle. The
number of complete oscillations corresponds to the number of occupied Landau levels in the electron gas.
Similar results may be expected for the electron spin density near a magnetic impurity.

I. INTRODUCTION

A NONMAGNETIC impurity in a metal gives rise
to a conduction-electron charge density' which

varies as r ' cos2kgr for large r, where kp is the Fermi
wave number and r is the distance from the impurity to
the point in question. Similarly, a magnetic impurity in
a metal gives rise to a conduction-electron spin polariza-
tion' of the same form. This oscillatory phenomenon is
a consequence of the sharp cutoff in the momentum

~Work performed under the auspices of the U. S. Atomic
Energy Commission and the National Science Foundation.

' J. Friedel, Nuovo Cimento Suppl. 2, 287 (1958); W. Kohn
and S. H. Vosko, Phys. Rev. 119, 912 (19Q)); J. S. Langer and
S. H. Vosko, J. Phys. Chem. Solids 12, 196 (1960).' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956); K.
Yosida, Phys. Rev. 106, 893 (1959).

distribution of the conduction electrons at zero
temperature.

Experiments dealing with these phenomena generally
utilize an external magnetic Geld. In previous analyses,
the effect of this field on the momentum distribution of
the electrons has not been considered. Indeed, it is not
apparent that one may neglect this effect. In the
presence of a static homogeneous magnetic Geld the

arguer momentum of the electrons about the Geld lines
is quantized and the electrons occupy angular momen-
tum states (Landau levels) with quantum numbers
ranging from zero up to some cutoff E~. However, this
does not imply a cutoff in the linear momentum of the
electrons perpendicular to the Geld lines; if this cutoB is
absent or if it is modified in some way, then one may
expect a corresponding change in the behavior of the
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spin polarization or charge density near an impurity in
a metal. In this paper we calculate the conduction-
electron charge density near a nonmagnetic impurity,
including the eGect of a static, uniform magnetic field.
Similar results may be expected for the conduction-
electron spin polarization near a magnetic impurity.

The model for our calculations is a gas of non-
interacting electrons at zero temperature in a static,
uniform magnetic field B.A "test particle" or impurity
in the system interacts with the electrons via a potential
V(r) For. convenience we use a unit strength 8-function
potential V(r)=8(r). The procedure for 6nding the
induced charge density due to the test particle is (a) find
the single-particle eigenstates, Ia), i.e., calculate the
wave functions, f (r), and energy eigenvalues E from
the Schrodinger equation; (b) since the system is at
zero temperature, let all eigenstates with energies less
than the Fermi energy Zr be occupied; and (c) calculate
the induced charge density via the relation

p(r)= 2 I4-(r) I',

where the upper limit np on the summation is used to
indicate that only the occupied single-particle states are
included in the sum. To carry out this procedure in
detail we assume that it is sufficient to find the linear
response of the system to the test particle, i.e., the wave
functions f (r) are calculated only to Grst order in V(r).
%e do sot make an expansion in terms of the magnetic
field B.The unperturbed system is then simply a gas of
free electrons in a static, uniform magnetic held and
we denote the wave functions and energy eigenvalues
of this system by @ (r) and e, respectively. The wave
functions of the perturbed system to first order in the
test particle potential are then

a ~l, a'Qa &a—&ara

particle perpendicular to the magnetic fmld is evaluated.
Here the induced charge density exhibits only a 6nite
number of oscillations in space and then falls off mono-
tonically with increasing distance from the test particle.
This is in contrast to the r 'cos2kpr form for no
magnetic field.

1( IeI
H= Ip+ AI,

2$/s c
(4)

where y is the canonical momentum, m is the electron
mass, —

I
e

I
is the electron charge, and c is the velocity

of light. The vector potential A(r) at the position r may
be written

A(r) =-', BXr.
For this problem it is most convenient to use cylindrical
polar coordinates (r,8,z) with the z axis parallel to the
magnetic field B. In this coordinate system the com-
ponents of the vector potential are

~e=-,'&r, A„=~,=o.
The Schrodinger equation for an electron becomes

1 B t' BP ) 1 Bsqh Bsp ieB Bp

r Br( Br ~ r' B8' Bz' Ac B8

(eBr) ' 2me
I 4.+ 4.=0. (7)

E2Ac& is'

This equation can be solved by separation of variables.
The energy eigenvalues and eigenfunctions which one
hnds are4

II. UNPERTURBED ELECTRON
EIGENSTATES

The Hamiltonian for an electron in a static, uniform
magnetic field B is'

Bp(r) =2 Re+
y..(r) V;.y.'(r)

and the induced charge density is

(2)

e =0'p'/2m+A(eB/inc)(N+l+ ,'), -
(r) Q zipzcile]i/se j/2L i(()—

$= (eB/2')r'

(g)

(9)

(10)
a~i a'~l, a'Qa &a &a'

where Re denotes the real part and the matrix elements
of the test particle potential are

dr 4. *(r)V(r)4-(r). (3)

The explicit forms of P (r) and s are given in Sec. II.
These are used in Sec. III to obtain an expression for
bp(r). In Sec. III A the induced charge density along a
line passing through the test particle parallel to the
magnetic held is evaluated. There is essentially no eGect
due to the magnetic field. In Sec. IIIB the induced
charge density along a line passing through the test

where the eigenstates are labelled by the set of quantum
numbers

n= (P, /, is) (11)

and L„'($) is the associated Laguerre polynomial. The
quantum number p specifies the linear momentum of
the electron parallel to the magnetic held and can take

'The electrons with spin up and spin down can be treated
independently since the perturbing test particle in our problem
does not interact with the spin of the electrons. Thus we neglect a
constant term in the Hamiltonian representing the interaction of
the intrinsic magnetic moment of the electron with the magnetic
field.

L. D. Landau and E. M. Lifshitz, Eonklatiuistic Quaetum
Mechaisecs (Perganion Press, Inc. , New York, 1965), 2nd ed. ,
p. 426.
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on values ranging from —~ to +~. The quantum
number / is a positive integer which specifies the angular
momentum of the electron about the magnetic field
lines. For positively charged particles (holes) one would
use eigenstates having negative / values since these
correspond to azimuthal motion about the field lines
in the opposite sense. The radial quantum number g
must also be a positive integer.

We normalize the wave functions in a cylindrical
volume of length L and radius R, where L and E. are
very large and we will eventually let them become
infinite. The normalization constant C is then given by

be less than the Fermi energy op so the summation over
n and p must be taken such that

A'p'/2m+(AeB/mc) (n+ 2) & ep.

For a given value of n, this implies that the value of p
can vary between +pp(n), where

A'Lp p(n) j'/2m+ (AeB/nic) (n+-,') = ep. (19)

Further, it is clear that e must be less than or equal to
some positive integer Eg, where Ep is the largest integer
satisfying the inequality

1 88
Ic.lm=

2s.l. Ac L(n+3)!]'
(12) (AeB/nsc) (1Vp+ ,') &ep.- (20)

The expression for the induced charge density can now
This completes the speci6cation of the unperturbed be ~ritte~
electron states.

III. INDUCED CHARGE DENSITY
-'I"(t)L.(&)

hp(r)=l II
—

I
ReZ Z

(2''A'~ (Ac I ~=o ~'=o n'!n!
The matrix elements of the perturbing test-particle

potential appearing in Eq. (2) for the induced charge
density are easily calculated since the potential is
simply a 8 function. From the definition, Eq. (3), for a
spherically symmetric potential, one has

+y g(n)

—pg(n)
dp dp

g&(p p)z

l'- =2s4 *(0)4 (0) (13) X (21)
(p' —p")+(2eB/Ac) (n —n')

y...=2~C..*C.S, ,,S, ,e'~~t,

where we have used

I '(0) =n!.

(14)

and using the wave functions given in Sec. II this
becomes A. Parallel to the Field

We evaluate the induced charge density along a line
passing through the test particle parallel to the magnetic
field by setting $ equal to zero in Eq. (21). Then, with
1-„(0)=n!, we get

The induced charge density is obtained from Eq. (2)
by substituting the expressions for the wave functions,
energies, and matrix elements given in Eqs. (8), (9),
and (14):

( yg ) (eB)2 xp ~ +up{a)

ll
—IRZ Z

(2s-'A'~ (Ac &

gi(p' —y)z

dp dp

bp(r)=2Rep p 2vrhpohion'!n, llc, ~ I'Ic I'
0.=1 a'=I

X (22)
(O'—P")+(2eB/Ac)(n —n')

gi(p' —y)zg—Q, ,
X . (16) We define a new variable of integration, q= p' —p, and

(A2/2')(P2 pI2)+(AeB/inc)(n n~)
'

then integrate over p:

The sum over all states n' is simply the sum over all ni ) (eB) NP " +"
quantum numbers: ~p(s)= II —,I Z Z

2~3A2& &Ac) .=o. =0

Z=Z Z—
a'=1 n'=0 t'=0 22'

(17)

The summation over the occupied states n requires
more explanation. First, since only those states with
k= 0 contribute to hp in Eq. (16), we consider the states
n=(p, , O)n. The energy of these occupied states must

' P. M. Morse and H. Feshbach, Methods of Theoretical Physics
I,'McGraw-Hill Book Co., New York, 1953), VoI, I, p, 785.

p, (n)+ ,'q+(eB/qAc)(n-' n)—
X—ln (23)

2q Pp(n) ——,'q —(eB/qAc) (n' n)—
For large s, one can approximately evaluate the integral
in bp by expanding the integrand in a power series about
the singularities on the real q axis. ' Then, to lowest

M. J. Lighthill, Fourier Analysis and Generalized Functions
I,'Cambridge University Press, New York, 1958), p. 46.
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order in 1/s, we have and yield

-eiq+(n, n') z
p m ) eB)'»

~p(s) =
I

(2m'A') Ac I n=o n'=o q+(n, n')s
&p(p) =-

A)

eiq (n, n')z-+, (24)
q (n, n')e

where

eB) ' &p e
—

&L„(&)L. (&)g(n, n')
x —IZ

Ac) n=o n' n+1= eIe't
(30)

(A'/m) p p(n) dp p(n) = —(eAB/mc) dn. (25)

The induced charge density becomes

( m
hp(z)=l lRe dp dp pp

where q+(nn') =pp(n)&pp(n'). According to Eqs. (19)
and (20) the value of pp(n') is purely imaginary for
e'&E~, so that the contribution to bp from those terms
with n'&E& is exponentially small compared to the
rest of the terms. Thus in Eq. (24) we take n'&Ep. The
summations may be changed to integrations by using
the differential of the defining equation for p p(n):

g(n, n') = —,'vr, n'&Ãp (31)

(e,/A~, —(n+-,'))
g(n, n') = sin—

'I I, n') cVp (32)
n' —n

and (o,=eB/mc is the electron-cyclotron frequency. The
summations occurring in the expression for gp(r) cannot
be carried out analytically, so bp has been evaluated
numerically for several cases. The simplest case occurs
when the magnetic field is so strong that all the electrons
are in the lowest energy Landau level, i.e., the unit
energy of quantized cyclotron motion Ace, is comparable
to the Fermi energy e~. Then we have Xp =0 and the
induced density is simply given by

ei(p+p')z ei(g—p')z

(26) (
E(p+p)' (p-p')'& lE A&l&A. f -= !

where the Fermi wave number k& is defined by

O'A p'/2m= ep. (27)

(ep/AMz
xsin 'I

I
. (33)

n )

These integrals may be approximately evaluated for
large s by using Lighthill's expansion procedure, ' and
the result is

ep/A(z)z 2
= 1 (34)

To evaluate !)p(r) numerically, we choose a magnetic
field such that —,'Ace, &~p& —,'A~, ; e.g.,

I)p(s) = —(mk p/4n-'A') (cos2k ps)/s' (28) B= (Ac/3e)(3ir po) (35)

to lowest order in 1/s. From this expression for bp(s) it
is seen that the induced charge density along the s axis
has the same r ' cos2k~r form which one 6nds in the
absence of a magnetic field.

B. Perpendicular to the Field

We evaluate the induced charge density along a line

passing through the test particle perpendicular to the
magnetic Geld by setting s equal to zero in Eq. (21):

where po is the electron number density and we have
used the free-electron value for the Fermi energy,
ep= (A'/2m) (3''po)' '. The induced charge density then
takes the form shown in curve 1 of Fig. 1. We see that
the induced charge density exhibits eo oscillatory be-

havior and falls o8 rapidly for large r. If a slightly
weaker magnetic field is used, such that Ep= 1, we get
the result shown in curve 2 of Fig. 1. Here we have
2&~.«s & 2&~.; e.g.,

p m y eBq»p - e tL„(~)L„,(~)-
~p(p) =

I(2''A2l Ac ) n=o n'=o n!n'!
ol

ep/AMz 2
= 2 (36)

B= (Ac/Se)(3m'po)'". (37)

+PJ'(n)

—pE(n)

X (29)
p' —p"+(2eB/Ac) (n —n')

The integrations over p' and p can be done explicitly

This corresponds to the case where only two Landau
levels are occupied and there is an additional "bump"
on the induced charge density as a function of distance
from the test particle. By reducing the magnetic field
even further, more Landau levels become occupied and
additional bumps appear in the induced charge density.
As the magnetic field approaches zero, the number of
occupied Landau levels increases, giving rise to more
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