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Current Fluctuations in the Acoustoelectric Steady State
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A theoretical study of current Quctuations about the nonequilibrium acoustoelectric steady state of a
piezoelectric semiconductor is presented. The two salient features of the observed noise are its large magni-
tude (typically ~60 dB) above Nyquist noise and its spectral distribution (Lorentzian, with a low-frequency
cutoff 20 Mc/sec). The former feature arises, in the present formulation, from the large fluctuations
in the excess phonon concentration about its steady-state value. The low-frequency cutoff is given essentially
by the temporal-gain constant for phonon growth. Physically, it represents the characteristic time for a
Buctuation in drift velocity to produce a change in phonon concentration to which the drift velocity responds
adiabatically. The Anal result for the spectral distribution bears a strong resemblance to that derived by
Moore on the basis of a bunching theory.

I. INTRODUCTIOH

A S is well known, current Quctuations in solids at
thermal equilibrium are described by Nyquist's

theorem. ' Quite generally, it has been shown' that, in
thermal equilibrium, Quctuations in dissipative systems
are directly related to the kinetic coeKcient connect-
ing the linear response of the system to an arbitrarily
weak external force. Hence noise measurements in
thermal equilibrium provide no more information
than can be obtained by conventional transport mea-
surements. However, in considering Quctuations about
a eoeeqlilibrilm steady state, no such general re-
sult applies; each case must be investigated separately,
and new information may be obtained.

Fluctuations about a nonequilibrium steady state
have been studied for many systems. ' One particular
case, studied both theoretically' ' and experimentally, '
is that of semiconductors in electric fields suKciently
strong to produce, in some cases, appreciable depar-
tures from Ohm's law. These studies have shown, for
example, that, in addition to the usual thermal noise
associated with velocity Quctuations about the non-
equilibrium electron distribution, there is an additional
so-called "convective" noise associated with the energy
exchange between the hot carriers and lattice,

Moore' has recently measured current Quctuations
about the steady state' saturated current in CdS. It is
well established by now' that current saturation in this

'See, e.g.&
C. Kittel, Etementary Statistical Physics Uohn

Wiley R Sons, Inc., New York, 1958),p. 141.' H. B.Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).' See, e.g., F/Nctlation Phenomena in Solids, edited by R. D.
Burgess (A.cademic Press Inc. , New York, 1965).

4 P. J. Price, in Ref. 3, Chap. 8.' V. L. Gurevich, Zh. Eksperim. i Teor. Fiz. 43, 1771 (1962)
LEnglish transl. :Soviet Phys. —JETP 16, 1252 (1963)g.' E. Erlbach and J. B. Gunn, Phys. Rev. Letters 8, 280 (1962).

7 A. R. Moore, J. Appl. Phys. 38, 2327 (1967).' It is to be emphasized that these Quctuations are not associated
with the generation and propagation of acoustic domains ob-
served by many investigators Pe.g. , A. Many and I. Balberg,
Phys. Letters 20, 463 (1966);P. O. Silva and R. Bray, Phys. Rev.
Letters 14, 372 (1965)g. Rather, these are fluctuations that occur
about the steady state, reached either exponentially or via damped
oscillation, which we assume is achieved for the time of applica-
tion of the applied voltage pulse.

s R. W. Smith, Phys. Rev. Letters 8, 87 (1962); J. H. McFee,
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case is due to the internal generation of acoustic Aux
and the reaction of this Qux back on the drifting carriers.
Unlike the case of hot electrons, however, one must here
consider the simultaneous, coupled Quctuations of both
the electrons and phonons about their steady-state
values.

There are two salient features of the measured noise.
The 6rst is its large magnitude. For typical semiconduct-
ing samples, the noise power per unit bandwidth is

60 dB above thermal noise. This is shown in Fig. j. at
10 and 100 Mc/sec. The second feature is its spectral
distribution. This is approximately Lorentzian, with
a rather low cutoff frequency of 20-50 Mc/sec. This is
shown in Fig. 2. In both cases the data are plotted as
a function of V/V„where V, is the critical voltage for
saturation.

Moore~ originally explained his data in terms of a
two-state, two-parameter, phenomenological model. His
basic physical picture was that sound waves are co-
herently ampli6ed to the level where they spatially
bunch all available carriers. This requires a charac-
teristic time Tp. Then, after another characteristic time
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FIG. 1. Noise power at 10 and 100 Mc/sec versus applied
voltage (data of A. Moore, Ref. 7).

J. Appl. Phys. 34, 1548 (1963);R. Bray, C. S. Kumar, J. B.Ross,
and P. O. Sliva, J. Phys. Soc. Japan Suppl. 21, 483 (1963).
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drift velocity to produce a change in phonon number to
which the carriers respond almost instantaneously. "

The Boltzmann-equation description of amplification
and current saturation wi11 first be reviewed brieQy. VVe
shall then discuss the Quctuations about the steady-
state solutions provided by these equations.

II. PRELIMINARIES

Coupled Boltzmann Equations

The time-dependent Boltzmann equations describing
phonon amplification and current saturation have been
derived by Vamashita and Xakamura. "They are

I'IG. 2. Spectr" l distribution of the noise power
(data of A. Moore, Ref. 7). dvg(t) vs(t) —vp

7p

—Q gCq fs(eq) cos&q
2' h 'Pl q.

&„ the bunches decay, releasing the trapped charge into
the Ohmic state. In this picture, the large magnitude
pf the noise is attributed to the complete bunching of
all available charge within the individual wavelengths
pf the amplified sound wave. The expression for the
noise spectrum so obtained provides a good fit to the
data. However, aside from its phenomenological nature,
the physical picture is not entirely satisfactory. In par-
ticular, it is de.cult to see why the sound wave shouM
build up in a coherent fashion only to subsequently
decay, implying a statistical separation of the gain and
]oss mechanisms. Indeed, Moore infers that the decay
is npt an intrinsic process, but, for his short samples,
7 correspond to the drift of the bunches out of the
crystal. This then leaves open the physical mechanism
for r, when the transport is not drift-limited (i.e., r,
(drift time).

In the present paper, the noise is analyzed from an
entirely different point of view, namely, by means of
a Quctuation analysis of the conventional coupled
3oltzmann equations of the electron-phonon system.
It is to be emphasized that this is a spatially homogene-
pus theory' in which bunching effects are npt taken
into account. The method employed is a generalization
pf a method used to investigate current Quctuations in
the hpt-electron state, ' mentioned previously. It will

be seen that the magnitude of the noise is associated
with the large relative Quctuations in the phonon num-
ber. The characteristic relaxation time in the spectral
distribution is essentially given by the reciprocal gain
cpeKcient; this is the time required for a fluctuation in

"&Ye distinguish between bunching within individual wave-
lengths characteristic of the classical theory LD. L. White, J.
Appl. Phys. 33, 2547 (1962)j, and slow spatial variations in phonon
concentration and 6eld, characteristic of the incoherent phonon
theory D.. Friedman, Phys. Rev. 163, 713 (1967)j. There is
always some spatial variation in practice, and this could be taken
into account in the present treatment. However, we do not believe
that this is an essential feature of the noise problem. This is
particularly so in view of the fact that Moore (Ref. 7), in order to
inhibit domain formation, used short, uniform samples over
which the potential was fairly uniform. In this connection, see
also the latter part of Ref. 14.

X fv~(t) cosi7q —sj$q(t), (2.1)

d$q(t) VCq' m)'—
~ fs(eq) t vs(t) cos8q —sj&q(t)

dt

4 4'
(2.2)
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Here vz(t) is the carrier drift velocity at time t, )q(t)
is the excess number of phonons of mode q (i.e. , in ex-
cess of the thermal equilibrium number Nq~"), r, is
the Ohmic collision time, vs ——eEr,(m is the Ohmic drift
velocity that the electrons would acquire in the absence
of amplification, C,' is the electron-phonon coupling
constant (later to be particularized to piezoelectric
coupling), fo is the Maxwell distribution, e,=(k /2m)
X(-,'q)', &q is the angle between the phonons of mode q
and the direction of electron drift, s is the sound veloc-
ity, and v&

' and 72
—' are the linear and nonlinear

phonon loss rates, respectively. The remaining symbols
have their conventional meanings. In deriving these
equations, no assumption is made about the magnitude
of $„however, a displaced Maxwellian distribution is
assumed for the electrons.

The physical interpretation of these equations is
straightforward. The quantity multiplying $q in the
first term of (2.2) is the temporal-gain coeflicient. Thus
(2.2) gives the time rate of increase in phonon number
when the phonon gain exceeds the phonon losses. As
for (2.1), the first term on the right-hand side describes
the Ohmic relaxation via collisions to v~=vo, and the
second term gives a reduction in the rate of change of
e due to collisions of the carriers with the excess, stimu-
lated phonons. It is instructive to note that the coeffi-
cient of this latter term is just the gain factor when the
equations are expressed as a momentum balance. Thus,

"J. Yamashita and K. Nakamura, Progr. Theoret. Phys.
(Kyoto) 33, 1022 (1965).
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multiplying (2.1) by atm'U and (2.2) by Aq, we obtain

dP p(t) Pe(t) —
Pp —P G„(q) cos8,

Finally, rewriting (2.1) and (2.2) in terms of the di-
mensionless wave number

XLPe(t) cos8p —P,)pp(t), (2.3) one obtains
(2mkB T/It' )'"

dp, (t) Po Po=G„(q)LPe(t) cos8,—P,)P,(t) =——
dt ~1 ~2'

(2.4)
dve(t) =2 Lvo —ve(t)) —8f(xo) (ve—s) &(x,t), ( 2.5)

where

and
Pd =mmUve, P~= Ptm'Us Po= Aq4

G„(q)=mC, 'fp(oo)/27rk'e,

d&(xp, t) p= Cg(xp) (ve —s) &(xp, t) ————,
71 72

where

(2.6)

the gain constant for crystal momentum Aux density,
is independent of e.

Now the excess stimulated phonons occur in a nar-
row Cerenkov-like cone about the drift-velocity direc-
tion and in a rather narrow range (tIq) of ti space. "The
upper limit of this band is determined both by the falloG
of the piezoelectric interaction (as 1/q) and by the in-
crease of the phonon loss rate (typically, o.

&
' q'). The

cutoff for small q is due to the scree@.ing of the piezo-
electric interaction by the charge carriers when the
wavelength exceeds the Debye screening length. In
view of these considerations, the following approxima-
tions are made: (a) The phonon propagation for all the
modes is predominantly in the forward direction,

cos8o=1, qp pAq&q&qo—+pAq,

and (b) the q-dependent factor multiplying fo in the sum
appearing in (2.1) is suiTiciently slowly varying over the
range of interest that it can be factored out of the sum,
and the sum on $, taken directly:

k(xo, t) =Z k(x,t),

x'
f(x)=x'~

~
e *"4,

Ex'+xD')

e
—xo/4( x2 2 I

g(x) =
X kX'+ XD' S

4v.e'P 2

2 ~1/2 ME Sh2

/4~e'P~ ' k (2~)'~'

o' ~ 23IlV, (kBT)'

k 4wzlg '"
XD=

(2mkBT)'I' okBT)

(2.7)

(2.g)

(2.9)

(2.10)

(2.11)

where

Z ~(q) k.=~(qo) 4o,

4p= 4
hq

is the dimensionless Debye screening length. Here P is
the piezoelectric constant and e is the static dielectric
constant. The ion mass is M and X, is the number of
unit cells per unit volume.

Indeed, it is readily verified that the principal q-depen-
dent factor of F(q),

with

q2 )2

q qp+qDo)

qD (4v.+e2/okB7 ) 1/2

5X104&q&6X10' cm '

proposed by Yamashita and Nakamura. "
"Reference 11, pp. 1036-1037.

the Debye wave vector, varies by less than an. order of
magnitude over the range

Steady-State SOLutioms

The noise analysis depends critically on the form of
the steady-state solution about which the Quctuations
are taken. The approximation to the steady-state solu-
tion, in turn, depends upon the particular assumptions
made concerning the process that limits the growth of
phonon Aux. Hence some attention to the steady-state
solutions is warranted at this point. It should be em-
phasized that the purpose of the present paper is not
to get a quite accurate description of the steady-state
current voltage characteristic; this would require a
separate study removing many of the assumptions of
Ref. 11. Rather, an approximate characterization of
the steady state is sought which provides an adequate
basis for the fluctuation analysis.
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Lr'nerjr Phonon Losses Only (rs ——oo)

For this case, the steady-state solution to (2.6) is
given by

@=so*—s+[1/Cg(xp)$(1/ri) (2 12)

(Here and in what follows, steady-state values of quan-
tities are denoted by a bar. ) For this value of 8q, (2.5)
gives

(vp —8g) A 1—d
$o= Hxo) = (2.13)

Bf(xo) (8s—s) Bf(xo) tf

where
'vp=eE7 /rn

8= (8g-s)/(vp —s).

The physical content of the solutions is that the drift
velocity saturates at the fixed value (2.12) sufFicient to
provide the linear losses, while the steady-state phonon
number increases with increasing electric field according
to (2.13) in order to provide the required momentum
balance.

dvg(t)
=~[vs—vs(t) j—Bfp[v~(t) —sjb(t), (3.1)

dto(t) fp2
= Cgp[v&(t) —

s jap(t) ——, (3.2)

where the meanings of the abbreviations are obvious.
In the steady state, (3.1) and (3.2) become

0=2 (vp 8d) —Bfp(vg —s) $p

0= Cgo(8g s)gp (gp)'/—ro. —
(3.3)

(3.4)

We now consider momentary fluctuations in both
vg(t) and tp(t), i.e.,

creases with increasing field above the knee, "and since
this is the predicted behavior for the case in which the
growth of phonon Aux is limited by nonlinear losses, the
latter is taken as the appropriate steady-state solution.
The starting equations for the nonlinear-loss case are
written

vd(t) =8d+»e(t),

b(t) =6+8~.(t).

(3 5)Nonlinear Losses Dominant

In this case, according to (2.6), the steady-state pho-
non fiux is limited by the nonlinear loss term
given by

(3 6)

)p GpTo )

and ls
Substituting (3.5) and (3.6) into (3.1) and (3.2), one

obtains

go Cg(x——p) (8g s)— d»g(t)
(2.16) =~ [vo—8q —»~(t)j Bfp[(8& s)+»&(t)j

d

Bf(*o)
(2.17)

is the steady-state temporal-gain coeKcient. From (2.5)
it follows that $p is also given by

X[4+84(t)], (3.7)

d8/o(t) =Cap[(8e —s)+» (t)j[h+8b(t)j
dh

(5o)'+2h~b(t)+(6k )'
(3.8)

T2
except that 8, defined by (2.14), is no longer a constant,
since 8s now dePends on the field K To find this de- Neglecting (8~o)o as higher order and subtracting
pendence, (2.15) is substituted into (2.5). Solving, one (3 3) and (34) from (3.7) and (3.g), respectively, one
obtains gets"

8„—s=-,'Ep{—1+[11(4/Ep) (vp —s))'"), (2.18)

where

Eo=
Bf(xp) Cg(xp) rs

Thus in this approximation Hd increases with electric
field. The increase, however, is sublinear; it does not
give an Ohm's law above the knee.

III. FLUCTUATION ANALYSIS

As mentioned in Sec. II, the results of the fluctuation
analysis depend upon the steady-state solutions about
which fluctuations occur. Since the experimental ex-
perience in CdS indicates that the drift velocity in-

d»g(t) = —A 8vg(t) —Bfp j (8$—s)8(p(t)
d

+».(t)[ko+8b(t) j) (3 9)
"A. R. Moore and R. W. Smith, Phys. Rev. 138, A1250 (1965).
"Note that the field term ~v0 cancels out in this subtraction

recipe. The reason is the assumption of a rigidly displaced Max-
wellian. Thus, in the absence of phonons, the term —Abvq gives the
usual Nyquist noise about the steady-state distribution. In the
present calculation, the Geld dependence later reappears via the
dependence of eq and (0 on v0. In this connection, note that there
are current, but no charge density Quctuations corresponding to
fluctuations of the centroid of the distribution function. This as-
sumption is self-consistent if we note that the conductivity re-
laxation frequency co, (~10120 sec ') is orders of magnitude
larger than the frequency of the current fluctuations (~10r sec ');
thus any tendency toward charge bunching is immediately re-
laxed. Hence spatial correlations may be neglected Lace Ref. 5,
Eq. (2) and preceding text/; i.e. , fluctuations in adiacent volume
clcoicnfs are mutually exclusive.
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(t) = CK ((o s)bk (")+» (t)[h+&4(t) j)
d$

2$pbb(t)
(3.10)

72

Following Gurevich, ' (3.9) and (3.10) are now multi-
plied by»d(0), and an average is taken over all possible
initial times (i.e., designated t= 0 in this case), but for
a fixed time difference 7., giving,

—&»~(0)»s(r) &

dT

= —A(b (0)& ())—&for(~ —)&~ (0)&b()&

+h(» (o)» ( )&+&»~(0)» (r)&4(r)&1 (311)

—(».(0)~~ ( )&
d7

=CcoL(~ —)&» (0)~&o( ))+h&».(0)~ ( ))

+&».(0)».( )~~.( )&j

—(2( /ros) &»s(0) 8&p(r) ) . (3.12)

Taking the Fourier transforms of (3.11) and (3.12)
with respect to v and doing an integration by parts for
the time derivatives on the left-hand sides, one obtains

-(~)—(L»~(0)3')/2~= —Av "(~)—&fp

XL(td —s)q.f(~)+je„„(~)+q„„,(~)j, (3.13)

-~.(-)-&».(0)~~.(0)&/2-
=c„g(e.—.),,( )+h „„()+ „„,( )~

—2(h/rs) v.f(~) (3 14)
where

00

y..(tp) —=— dr e'"'&»s(0)»s(r) & (3.15)
2'

00

y.o(tp) —=— dr e'"'&»g(0)b&p(r)&, (3.16)
2' 0

1
y, „f(tp) —=— dr e'"'&»s(0)»@(r)8&p(r)). (3.17)

2Ã

The real part of y„,(tp), given by (3.15), gives the
power spectrum of the drift-velocity Quctuations by the
Weiner-Khintchine theorem, ' and is the quantity for
which we ultimately want to solve. Equation (3.16), on
the other hand, describes the coupled correlations.

In the next subsection, dealing with the magnitude
of the noise, it will be shown that

«~~.) &«(h) . (3.18)

It follows that the triple correlator y„,~ is very much
smaller than tpy. .. and is therefore negligible. Then
solving (3.14) for y.f, and using (2.15) and (2.16) to

eliminate 72, one gets

&».s~&
v-(~)+

ip—p/Cgp+ (r)s s)— 2x

ko

1/Cgo
X—np/Cgo+ (Vs—s)

Substituting this expression into (3.13) and solving for
y„,(cp), one obtains two contributions:

v-(~) =v-"'(~)+v-'"(~),
where

((»s)'&
p„„o)(tp)—

and

X (3.19)
(—ipp+A) (itp —6)+8fp$p(imp —26)

Magnitude of Noise

From (3.19) and (3.20) it is seen that the magnitude
of the noise is set by the mean values &»zh&& and &(»z) ').
Now»z= L&(»z)'&]' ' is simply the rms drift-velocity
Quctuation. In thermal equilibrium this is obtained' by
noting that v~ is nothing more than the sum over the
individual random-particle velocities v;, and that these
are undergoing thermal fluctuations (»~)' keT/rN. This
leads to the well-known result for Nyquist noise.

However, it would be incorrect to use such a result
in the present case. The reason is that, by definition,
acoustoelectric current saturation occurs when the
scattering of electrons by the stimulated phonons Pi.e.,
the second term on the right side of (3.1)) dominates
the usual Ohmic collisions, else there would be no cur-
rent saturation in the Grst place. However, the phonons
themselves are undergoing Quctuations. The relative
Quctuations of Bose systeIns in thermal equilibrium is,
in fact, known to be quite large. ' In the present case,
Quctuations are occurring, of course, about the steady
state h, and not about the thermal-equilibrium Planck
distribution. However, asslmieg that the relative Quc-
tuations per mode are the same in the two cases, it is
possible to calculate the magnitude of the measured
noise power.

Equation (3.9) is considered at t=0 One then notes.
that the electrons follow the phonons essentially in-
stantaneously. "Thus the time derivative on the left-

to See Ref. 11, Eq. (51) and preceding text. The same assump-
tion could also have been made in the derivation of the correla-
tion function itself (that is, the neglect of the term t~ with respect
to A) rvith but minor modification in the final results.

v-"'( )=(&~.&k)/2 )&f (.—)
X((—ice1A) (itp —6)+&fog p(ipp —26)] ~ (3.20)

The order of magnitude of the noise power, as deter-
mined by &(»z)s& and &»z8$&, will be calculated erst;
then the spectral distribution will be investigated.
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hand side can be neglected. Solving for bvd(0), one gets

Bfp(vg —s)
bvg(0+) = — b)p(0),

A+Bfpgp(0)
(3.21)

Using this result, it is seen that (3.20) is larger than
(3.19) by the factor

~
A/(ia) —G)

~

10 .

Hence y, „"& is neglected with respect to y„('&; hence-
forth, the superscript (2) will be dropped. One has

y»(ra) = ((bvqb$)/2v)Bfp(vd, s)f(p&), —(3.22)
where

where b$ has been dropped with respect to gp in view of
the inequality (3.18). The proof for this will be given
later.

From (3.21) it follows directly that

Bfp(—vg s) (bv—db&) = (A+ Bfptp) ((bvd) ')

where M is the number of modes in the phonon band
and, certainly, $,))1.

From (3.22), (3.24), and (3.25) one obtains

1 A (1—8)'—Rey„„(pp) =——(vp —s)' Ref(a&), (3.26)
2x M

where f(pp) is given by (3.23).
The numerical magnitude of the noise will be calcu-

lated in Sec. IV.

Spectral Distribution

The frequency dependence of the noise power is given
by Ref(pp), with f(&o) given by (3.23). Taking the real
part and using (2.17) to eliminate tp, one gets

(u' —GA (2—d)/d
Ref(cv) =

L(o'—GA (2—8)/0]'+ o)'(6+ A/8) '

In the frequency range of interest,

cv 3X10' sec ',
and taking typical values '

f(ar) = P(—i(o+A) (io)—G)+Bf,&,(i p—p 2G)j—'. (3.23)
A=r ' 10" sec ', G 10' sec—',

Using (3.21) and (2.17), one has
it is seen that

—(1/2v) Bfp(vq —s)(bv, b&)
and

6'«A

1 (Bfp)'(v~ s)'—
((b~.)')

2pr A+Bfpgp

1 (1-~)' &(b~.)')=—A (vp —s)' . (3.24)
2~ S (g,)'

co2«AG.

Under these conditions, Ref(~) simplifies to

1 8 1—Ref(&u)=
GA 2—d 1+ rpp'

where

(3.27)

The problem then reduces to a calculation of the primi-
tive fluctuation in phonon number bop about its steady
value $p.

Recall that (p refers to the sum of the excess phonon
numbers in the hot-phonon band Lcf. text preceding
(2.5)]. For convenience, reverting back to pl space,

tp=4p=Z 4
Then

(bb)'= 2 b4b&p
q, q' in hq

&(b~.)')= E b„h(l,+1)
q, q' in bq

=E h(4+1),

where, as stated just prior to (3.21), it is assumed that
equilibrium phonon statistics for the individual modes
can be applied to fluctuations about the steady state.
It then follows that

&(«.)') Z., ~,(~,+1) ~~,.'
(3.25)

(h)' ( Z., ~,)'

1/r =(o,p G(2 a) . —— — (3.28)

Hence, in the frequency range of interest, the spec-
tral distribution is very nearly Lorentzian. Moreover,
the cuto6 frequency is essentially equal to the steady-
state temporal-gain coefFicient, to within a numerical
factor of order unity. As pointed out in the Introduc-
tion, this represents the characteristic time for an initial
Quctuation in drift velocity to produce a change in

phonon number to which the drift velocity responds
adiabatically. The cutoff frequency will be estimated
numerically in Sec. IV.

with r given by (3.28).

"A. Moore (private communication) quotes a spatial-gain
constant u,~10' cm ' corresponding to n 10"—10'6 cm ' and
nearly complete current saturation for a typical semiconducting
sample.

IV. FINAL RESULTS AND DISCUSSION

From (3.26) and (3.27) one obtains

1 1 A (1-s)' 1
Rey„„'P&((o)=—— (vp —s)' (4.1)

2~3 GM 2—y 1+~PrP
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1 14kgT 1
Rey„, ~' &(cu) =——

2m. A gn e'U
(4.2)

This is to be compared with the Nyquist result for
thermal noise,

it is found that

Now

Rep..«& A/G= 10~
(th)

and that there are no Quctuations in carrier concentra-
tion in the present theory, ' one finally obtains

Reyrr ~'(&) = (&o.'/L')e' Rey~~ ~'(a&)

1 Pep ( s)2 -1 A
e'

22r L' 4 P~ AGM

(1—y)2 1
X (4 3)

2—8 1+op r

The corresponding result for Nyquist noise is

Reyrr &'"'(&o) = (I/2 r) 42keT/R,

where E is the total Ohmic resistance.

(4.4)

Frequency Cuto8

The cutoff frequency of the Lorentzian, given by
(3.28), is essentially equal to G. With a spatial gain of
typically 10' cm ', ' and with s—2&(10' cm sec ' one
has

(22r) 'co =G=2X10'SeC '

in order-of-magnitude agreement with the data shown
in Fig. 2.

Magnitude of Noise

To establish the magnitude of the acoustoelectric
noise, one takes the ratio of (4.1) to (4.2) t or, equiva-
lently, (4.3) to (4.4)j in the low-frequency limit err((1.
This gives

Rey..«& ((v) 222 (1-S)2 A
hm = n'U(to —s)2"'"'Rey..'"a'(~) 4keT 2—S O'M

Taking~
m=10" cm ', 0=10 ' cm',

vo —s 10' cm sec '

X=300 K,

It proves to be more convenient for later discussion to
express the 6nal results in terms of the total current
Quctuations rather than drift-velocity Quctuations. The
total current and drift velocity are related by

I=A '2Mvo (N——d/L) eve,

where A' is the sample cross-sectional area, I is its
length, m is the electron concentration, and Sd, is the
total electron number. Noting that

A/G 10'.

Recall that M is the number of modes in the phonon
band. For a Debye phonon spectrum, which certainly
applies for the low wave vectors of interest (qp 104

cm ')," the number of modes with q between qo and

qp+Aqp is given by

co(qo)&q= (qo'/22r)&q (10'/22r) X10'=10"

The number of modes M is smaller than this by the
ratio of the area of the Cerenkov-like cone to 4x, de-
noted by O. For the particular case for which the previ-
ously quoted parameters apply (i.e., 22=10" cm ',
6= 10' sec '), the current-voltage curve is highly satu-
rated'o (vd=s) and one would expect a very small
Cerenkov-like angle, perhaps Q~ 10 '. Then

M=co(qp)AqO'= 10

Rey «'/Rey, „&'~' 10'

which is smaller than the experimental ratio of ~10'
shown in Fig. 1. In essence, the relative Quctuation in
total phonon number is reduced (with respect to the
fluctuations of a single mode) by the number of modes
within the phonon band, and the noise level is reduced
proportionally. The width of this band, as estimated in
Ref. 11, is quite uncertain, principally because of un-
certainties in the correct description of the phonon
losses, and this appears as an uncertainty in the present
calculation. In addition, it must be emphasized that the
use of equilibrium boson statistics for each phonon mode
should be regarded only as a physically plausible
assumption.

Aside from this factor, it is of interest to note that
(4.3) is of the same form as the result derived by Moore. 7

The physical basis of his theory was discussed in the
Introduction. It reads

1Eo2 ( s'
(Moore)(~) e2

~

g p2
2~ I2 5 p

where
1/r= 1/rp+ 1/r„

here rp is the lifetime in the Ohmic state (the time re-
quired for charge bunching) and r, is the lifetime in the
perfectly saturated state (the time required for decay
of the sound wave and charge debunching). Also, X is
the wavelength of the amplified sound (a single fre-
quency is assumed rather than a band of frequencies as
in the present case) and 'U is the sample volume.
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Aside from the 8-dependent factors, which are of
order unity, and the factor A j(rM expressing the reduc-
tion in magnitude due to the many modes, note that
(4.3) and (4.5) depend in the same way on the essential
parameters (e.g., E, 1Vd, and co). Since these dependences
have been verified experimentally, the present theory
may be taken as comparably satisfactory in this respect.

V. CONCLUSIONS

A theory of fluctuations in the saturation current has
been presented which, it is believed, describes the es-
sential physical features of the problem. The spectral
distribution is in agreement with experiment. The cutoff
frequency is found directly in terms of known properties
of the system (viz. , (r) and does not require the intro-
duction of phenomenological parameters. The magni-
tude of the noise power, however, is explained less
satisfactorily. It is believed that this would require a
more rigorous description of the primitive statistical

fluctuations about a steady state far displaced from
equilibrium. As pointed out, the present theory, based
on an incoherent phonon picture, agrees in its depen-
dence on the essential parameters with the result of
a bunching theory due to Moore. ~ It remains to be
shown why this is so, and whether, in fact, the two
theories are in some sense equivalent. In this connection,
it may be of some importance to take into account
space-varying effects, neglected in the present treat-
ment. Finally, it is suggested that Quctuation analysis
should serve as a sensitive test of any future theory of
the acoustoelectric steady state.
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Modification of Friedel Oscillations by a Magnetic Field*
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The electron density near an impurity or "test particle" in an electron gas is investigated for the case in
which a uniform magnetic field is applied to the system. The electron gas is at zero temperature and the
Coulomb interaction between electrons is neglected. A 8-function potential is used for the interaction of the
electrons with the test particle. The induced electron density along a line passing through the test particle
parallel to the magnetic field is of the form r ' cos2kgr for large r, where k~ is the Fermi wave number and r
is the distance from the test particle. The induced electron density along a line passing through the test
particle perpendicular to the magnetic field is qualitatively diferent. lt exhibits only a finite number of
oscillations in space and then falls oG monotonically with increasing distance from the test particle. The
number of complete oscillations corresponds to the number of occupied Landau levels in the electron gas.
Similar results may be expected for the electron spin density near a magnetic impurity.

I. INTRODUCTION

A NONMAGNETIC impurity in a metal gives rise
to a conduction-electron charge density' which

varies as r ' cos2kgr for large r, where kp is the Fermi
wave number and r is the distance from the impurity to
the point in question. Similarly, a magnetic impurity in
a metal gives rise to a conduction-electron spin polariza-
tion' of the same form. This oscillatory phenomenon is
a consequence of the sharp cutoff in the momentum

~Work performed under the auspices of the U. S. Atomic
Energy Commission and the National Science Foundation.

' J. Friedel, Nuovo Cimento Suppl. 2, 287 (1958); W. Kohn
and S. H. Vosko, Phys. Rev. 119, 912 (19Q)); J. S. Langer and
S. H. Vosko, J. Phys. Chem. Solids 12, 196 (1960).' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956); K.
Yosida, Phys. Rev. 106, 893 (1959).

distribution of the conduction electrons at zero
temperature.

Experiments dealing with these phenomena generally
utilize an external magnetic Geld. In previous analyses,
the effect of this field on the momentum distribution of
the electrons has not been considered. Indeed, it is not
apparent that one may neglect this effect. In the
presence of a static homogeneous magnetic Geld the

arguer momentum of the electrons about the Geld lines
is quantized and the electrons occupy angular momen-
tum states (Landau levels) with quantum numbers
ranging from zero up to some cutoff E~. However, this
does not imply a cutoff in the linear momentum of the
electrons perpendicular to the Geld lines; if this cutoB is
absent or if it is modified in some way, then one may
expect a corresponding change in the behavior of the


